
Phased Array System Toolbox™
Reference

R2020b



How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Phased Array System Toolbox™ Reference
© COPYRIGHT 2011–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
April 2011 Online only Revised for version 1.0 (Release 2011a)
September 2011 Online only Revised for Version 1.1 (R2011b)
March 2012 Online only Revised for Version 1.2 (R2012a)
September 2012 Online only Revised for Version 1.3 (R2012b)
March 2013 Online only Revised for Version 2.0 (R2013a)
September 2013 Online only Revised for Version 2.1 (R2013b)
March 2014 Online only Revised for Version 2.2 (R2014a)
October 2014 Online only Revised for Version 2.3 (R2014b)
March 2015 Online only Revised for Version 3.0 (R2015a)
September 2015 Online only Revised for Version 3.1 (R2015b)
March 2016 Online only Revised for Version 3.2 (R2016a)
September 2016 Online only Revised for Version 3.3 (R2016b)
March 2017 Online only Revised for Version 3.4 (R2017a)
September 2017 Online only Revised for Version 3.5 (R2017b)
March 2018 Online only Revised for Version 3.6 (R2018a)
September 2018 Online only Revised for Version 4.0 (R2018b)
March 2019 Online only Revised for Version 4.1 (R2019a)
September 2019 Online only Revised for Version 4.2 (R2019b)
March 2020 Online only Revised for Version 4.3 (R2020a)
September 2020 Online only Revised for Version 4.4 (R2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents


Objects
1

Functions
2

Blocks
3

Apps
4

iii

Contents





Objects

1



phased.ADPCACanceller
Package: phased

Adaptive DPCA (ADPCA) pulse canceller

Description
The ADPCACanceller object implements an adaptive displaced phase center array pulse canceller
for a uniform linear array (ULA).

To compute the output signal of the space time pulse canceller:

1 Define and set up your ADPCA pulse canceller. See “Construction” on page 1-2.
2 Call step to execute the ADPCA algorithm according to the properties of

phased.ADPCACanceller. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object™, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ADPCACanceller creates an adaptive displaced phase center array (ADPCA) canceller
System object, H. This object performs two-pulse ADPCA processing on the input data.

H = phased.ADPCACanceller(Name,Value) creates an ADPCA object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN). See “Properties” on page 1-2 for the list of
available property names.

Properties
SensorArray

Uniform linear array

Uniform linear array, specified as a phased.ULA System object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

PRFSource

Source of pulse repetition frequency

Source of the PRF values for the STAP processor, specified as 'Property' or 'Input port'. When
you set this property to 'Property'', the PRF is determined by the value of the PRF property. When
you set this property to 'Input port', the PRF is determined by an input argument to the step
method at execution time.

Default: 'Property'

PRF

Pulse repetition frequency

Pulse repetition frequency (PRF) of the received signal, specified as a positive scalar. Units are in
Hertz. This property can be specified as single or double precision.
Dependencies

To enable this property, set the PRFSource property to 'Property'.

Default: 1

DirectionSource

Source of receiving main lobe direction

Specify whether the targeting direction for the STAP processor comes from the Direction property
of this object or from an input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the targeting
direction.

'Input port' An input argument in each invocation of step specifies the
targeting direction.

Default: 'Property'

Direction

Receiving mainlobe direction (degrees)

Specify the receiving mainlobe direction of the receiving sensor array as a column vector of length 2.
The direction is specified in the format of [AzimuthAngle; ElevationAngle] (in degrees).
Azimuth angle should be between –180 and 180. Elevation angle should be between –90 and 90. This
property applies when you set the DirectionSource property to 'Property'. This property can be
specified as single or double precision.

 phased.ADPCACanceller

1-3



Default: [0; 0]

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed. You can specify this property as single or double precision.

Default: 0

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor comes from the Doppler property of
this object or from an input argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the Doppler.
'Input port' An input argument in each invocation of step specifies the Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency (Hz)

Specify the targeting Doppler of the STAP processor as a scalar. This property applies when you set
the DopplerSource property to 'Property'. This property can be specified as single or double
precision.

Default: 0

WeightsOutputPort

Output processing weights

To obtain the weights used in the STAP processor, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

PreDopplerOutput

Output pre-Doppler result

Set this property to true to output the processing result before applying the Doppler filtering. Set
this property to false to output the processing result after the Doppler filtering.

Default: false

NumGuardCells

Number of guard cells
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Specify the number of guard cells used in the training as an even integer. This property specifies the
total number of cells on both sides of the cell under test. This property can be specified as single or
double precision.

Default: 2, indicating that there is one guard cell at both the front and back of the cell under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in the training as an even integer. Whenever possible, the
training cells are equally divided before and after the cell under test. This property can be specified
as single or double precision.

Default: 2, indicating that there is one training cell at both the front and back of the cell under test

Methods

step Perform ADPCA processing on input data

Common to All System Objects
release Allow System object property value changes

Examples

Process Radar Data Cube Using ADPCA Processor

Process a radar data cube using an ADPCA processor. Weights are calculated for the 71st cell of the
data cube. Set the look direction to (0,0) degrees and the Doppler shift to 12.980 kHz.

Load radar data file and compute weights

load STAPExampleData;
canceller = phased.ADPCACanceller('SensorArray',STAPEx_HArray,...
    'PRF',STAPEx_PRF,...
    'PropagationSpeed',STAPEx_PropagationSpeed,...
    'OperatingFrequency',STAPEx_OperatingFrequency,...
    'NumTrainingCells',100,...
    'WeightsOutputPort',true,...
    'DirectionSource','Input port',...
    'DopplerSource','Input port');
[y,w] = canceller(STAPEx_ReceivePulse,71,[0; 0],12.980e3);

Create AnglerDoppler System object and plot response

sAngeDop = phased.AngleDopplerResponse(...
    'SensorArray',canceller.SensorArray,...
    'OperatingFrequency',canceller.OperatingFrequency,...
    'PRF',canceller.PRF,...
    'PropagationSpeed',canceller.PropagationSpeed);
plotResponse(sAngeDop,w)
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Algorithms
Single Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,” Technical Report
1015, MIT Lincoln Laboratory, December, 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
phased.AngleDopplerResponse | phased.DPCACanceller | phased.STAPSMIBeamformer |
phitheta2azel | uv2azel

Introduced in R2011a
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step
System object: phased.ADPCACanceller
Package: phased

Perform ADPCA processing on input data

Syntax
Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,ANG)
Y = step(H,X,CUTIDX,DOP)
Y = step(H,X,CUTIDX,PRF)
[Y,W] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X,CUTIDX) applies the ADPCA pulse cancellation algorithm to the input data X. The
algorithm calculates the processing weights according to the range cell specified by CUTIDX. This
syntax is available when the DirectionSource property is 'Property' and the DopplerSource
property is 'Property'. The receiving mainlobe direction is the Direction property value. The
output Y contains the result of pulse cancellation either before or after Doppler filtering, depending
on the PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving main lobe direction. This syntax is available
when the DirectionSource property is 'Input port' and the DopplerSource property is
'Property'.

Y = step(H,X,CUTIDX,DOP) uses DOP as the targeting Doppler frequency. This syntax is available
when the DopplerSource property is 'Input port'.

Y = step(H,X,CUTIDX,PRF) uses PRF as the pulse repetition frequency. This syntax is available
when the PRFSource property is 'Input port'.

[Y,W] = step( ___ ) also returns the processing weights, W. This syntax is available when the
WeightsOutputPort property is true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric array whose dimensions are (range,
channels, pulses). You can specify this argument as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

CUTIDX

Range cell. You can specify this argument as single or double precision.

PRF

Pulse repetition frequency specified as a positive scalar. To enable this argument, set the PRFSource
property to 'Input port'. You can specify this argument as single or double precision. Units are in
Hertz.

ANG

Receiving main lobe direction. ANG must be a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle], in degrees. The azimuth angle must be between –180 and 180. The elevation
angle must be between –90 and 90. You can specify this argument as single or double precision.

Default: Direction property of H

DOP

Targeting Doppler frequency in hertz. DOP must be a scalar. You can specify this argument as single
or double precision.

Default: Doppler property of H

Output Arguments
Y

Result of applying pulse cancelling to the input data. The meaning and dimensions of Y depend on the
PreDopplerOutput property of H:

• If PreDopplerOutput is true, Y contains the pre-Doppler data. Y is an M-by-(P–1) matrix. Each
column in Y represents the result obtained by cancelling the two successive pulses.

• If PreDopplerOutput is false, Y contains the result of applying an FFT-based Doppler filter to
the pre-Doppler data. The targeting Doppler is the Doppler property value. Y is a column vector
of length M.

 step
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W

Processing weights the pulse canceller used to obtain the pre-Doppler data. The dimensions of W
depend on the PreDopplerOutput property of H:

• If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The columns in W correspond to
successive pulses in X.

• If PreDopplerOutput is false, W is a column vector of length (N*P).

Examples

Plot Response of ADPCA Processor with Quantized Weights

Process a radar data cube using an ADPCA processor. Weights are calculated for the 71st cell of the
data cube. Load the data cube from STAPExampleData.mat. Quantize the weights to 4 bits. Set the
look direction to (0,0) degrees and the Doppler shift to 12.980 kHz.

load STAPExampleData;
sADPCA = phased.ADPCACanceller('SensorArray',STAPEx_HArray,...
    'PRF',STAPEx_PRF,...
    'PropagationSpeed',STAPEx_PropagationSpeed,...
    'OperatingFrequency',STAPEx_OperatingFrequency,...
    'NumTrainingCells',100,...
    'WeightsOutputPort',true,...
    'DirectionSource','Input port',...
    'DopplerSource','Input port',...
    'NumPhaseShifterBits',4);
[y,w] = step(sADPCA,STAPEx_ReceivePulse,71,[0; 0],12.980e3);
sAngDop = phased.AngleDopplerResponse(...
    'SensorArray',sADPCA.SensorArray,...
    'OperatingFrequency',sADPCA.OperatingFrequency,...
    'PRF',sADPCA.PRF,...
    'PropagationSpeed',sADPCA.PropagationSpeed);
plotResponse(sAngDop,w);
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See Also
phitheta2azel | uv2azel
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phased.AngleDopplerResponse
Package: phased

Angle-Doppler response

Description
The AngleDopplerResponse object calculates the angle-Doppler response of input data.

To compute the angle-Doppler response:

1 Define and set up your angle-Doppler response calculator. See “Construction” on page 1-12.
2 Call step to compute the angle-Doppler response of the input signal according to the properties

of phased.AngleDopplerResponse. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.AngleDopplerResponse creates an angle-Doppler response System object, H. This
object calculates the angle-Doppler response of the input data.

H = phased.AngleDopplerResponse(Name,Value) creates angle-Doppler object, H, with each
specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Sensor array

Sensor array specified as an array System object belonging to the phased package. A sensor array
can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

PRFSource

Source of PRF values

Source of the PRF values for the STAP processor, specified as 'Property' or 'Input port'. When
you set this property to 'Property', the PRF is determined by the value of the PRF property. When
you set this property to 'Input port', the PRF is determined by an input argument to the step
method at execution time.

Default: 'Property'

PRF

Pulse repetition frequency

Specify the pulse repetition frequency (PRF) in hertz of the input signal as a positive scalar. This
property applies when you set the PRFSource property to 'Property'. You can specify this
property as single or double precision.

Default: 1

ElevationAngleSource

Source of elevation angle

Specify whether the elevation angle comes from the ElevationAngle property of this object or from
an input argument in step. Values of this property are:

'Property' The ElevationAngle property of this object specifies the
elevation angle.

'Input port' An input argument in each invocation of step specifies the
elevation angle.

Default: 'Property'

ElevationAngle

Elevation angle

Specify the elevation angle in degrees used to calculate the angle-Doppler response as a scalar. The
angle must be between –90 and 90. This property applies when you set the ElevationAngleSource
property to 'Property'. You can specify this property as single or double precision.

Default: 0

 phased.AngleDopplerResponse
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NumAngleSamples

Number of samples in angular domain

Specify the number of samples in the angular domain used to calculate the angle-Doppler response as
a positive integer. This value must be greater than 2. You can specify this property as single or double
precision.

Default: 256

NumDopplerSamples

Number of samples in Doppler domain

Specify the number of samples in the Doppler domain used to calculate the angle-Doppler response
as a positive integer. This value must be greater than 2. You can specify this property as single or
double precision.

Default: 256

Methods

plotResponse Plot angle-Doppler response
step Calculate angle-Doppler response

Common to All System Objects
release Allow System object property value changes

Examples

Calculate Angle-Doppler Response

Calculate the angle-Doppler response of the 190th cell of a collected data cube.

Load data cube and construct a phased.AngleDopplerResponse System object™.

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(190,:,:));
response = phased.AngleDopplerResponse(...
    'SensorArray',STAPEx_HArray,...
    'OperatingFrequency',STAPEx_OperatingFrequency,...
    'PropagationSpeed',STAPEx_PropagationSpeed,...
    'PRF',STAPEx_PRF);

Plot angle-Doppler response.

[resp,ang_grid,dop_grid] = response(x);
contour(ang_grid,dop_grid,abs(resp))
xlabel('Angle')
ylabel('Doppler')
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Algorithms
Response Computation

phased.AngleDopplerResponse generates the response using a conventional beamformer and an
FFT-based Doppler filter. For further details, see [1].

Single Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 phased.AngleDopplerResponse
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ADPCACanceller | phased.DPCACanceller | phased.STAPSMIBeamformer |
phitheta2azel | uv2azel

Introduced in R2011a
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plotResponse
System object: phased.AngleDopplerResponse
Package: phased

Plot angle-Doppler response

Syntax
plotResponse(H,X)
plotResponse(H,X,ELANG)
plotResponse(H,X,PRF)
plotResponse( ___ ,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,X) plots the angle-Doppler response of the data in X in decibels. This syntax is
available when the ElevationAngleSource property is 'Property'.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

plotResponse(H,X,ELANG) plots the angle-Doppler response calculated using the specified
elevation angle ELANG. This syntax is available when the ElevationAngleSource property is
'Input port'.

plotResponse(H,X,PRF) plots the angle-Doppler response calculated using the specified pulse
repetition frequency PRF. This syntax is available when the PRFSource property is 'Input port'.

plotResponse( ___ ,Name,Value) plots the angle-Doppler response with additional options
specified by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns the handle of the image in the figure window, using any of
the input arguments in the previous syntaxes.

Input Arguments
H

Angle-Doppler response object.

X

Input data.

ELANG

Elevation angle in degrees.

Default: Value of Elevation property of H

 plotResponse
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PRF

Pulse repetition frequency specified as a positive scalar. To enable this argument, set the PRFSource
property to 'Input port'. Units are in Hertz.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

NormalizeDoppler

Set this value to true to normalize the Doppler frequency. Set this value to false to plot the angle-
Doppler response without normalizing the Doppler frequency.

Default: false

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples

Plot Angle-Doppler Response

Plot the angle-Doppler response of the 190th cell of a collected data cube.

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(190,:,:));
hadresp = phased.AngleDopplerResponse(...
    'SensorArray',STAPEx_HArray,...
    'OperatingFrequency',STAPEx_OperatingFrequency,...
    'PropagationSpeed',STAPEx_PropagationSpeed,...
    'PRF',STAPEx_PRF);
plotResponse(hadresp,x,'NormalizeDoppler',true);
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See Also
phitheta2azel | uv2azel
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step
System object: phased.AngleDopplerResponse
Package: phased

Calculate angle-Doppler response

Syntax
[RESP,ANG_GRID,DOP_GRID] = step(H,X)
[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG)
RESP,ANG_GRID,DOP_GRID = step(H,X,PRF)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[RESP,ANG_GRID,DOP_GRID] = step(H,X) calculates the angle-Doppler response of the data X.
RESP is the complex angle-Doppler response. ANG_GRID and DOP_GRID provide the angle samples
and Doppler samples, respectively, at which the angle-Doppler response is evaluated. This syntax is
available when the ElevationAngleSource property is 'Property'.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

[RESP,ANG_GRID,DOP_GRID] = step(H,X,ELANG) calculates the angle-Doppler response using
the specified elevation angle ELANG. This syntax is available when the ElevationAngleSource
property is 'Input port'.

RESP,ANG_GRID,DOP_GRID = step(H,X,PRF) uses PRF as the pulse repetition frequency. This
syntax is available when the PRFSource property is 'Input port'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Angle-Doppler response object.
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X

Input data as a matrix or column vector.

If X is a matrix, the number of rows in the matrix must equal the number of elements of the array
specified in the SensorArray property of H.

If X is a vector, the number of rows must be an integer multiple of the number of elements of the
array specified in the SensorArray property of H. In addition, the multiple must be at least 2.

ELANG

Elevation angle in degrees. You can specify this argument as single or double precision.

Default: Value of Elevation property of H

PRF

Pulse repetition frequency specified as a positive scalar. To enable this argument, set the PRFSource
property to 'Input port'. Units are in Hertz. You can specify this argument as single or double
precision.

Output Arguments
RESP

Complex angle-Doppler response of X. RESP is a P-by-Q matrix. P is determined by the
NumDopplerSamples property of H and Q is determined by the NumAngleSamples property.

ANG_GRID

Angle samples at which the angle-Doppler response is evaluated. ANG_GRID is a column vector of
length Q.

DOP_GRID

Doppler samples at which the angle-Doppler response is evaluated. DOP_GRID is a column vector of
length P.

Examples

Calculate Angle-Doppler Response

Calculate the angle-Doppler response of the 190th cell of a collected data cube.

Load data cube and construct a phased.AngleDopplerResponse System object™.

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(190,:,:));
response = phased.AngleDopplerResponse(...
    'SensorArray',STAPEx_HArray,...
    'OperatingFrequency',STAPEx_OperatingFrequency,...
    'PropagationSpeed',STAPEx_PropagationSpeed,...
    'PRF',STAPEx_PRF);
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Plot angle-Doppler response.

[resp,ang_grid,dop_grid] = response(x);
contour(ang_grid,dop_grid,abs(resp))
xlabel('Angle')
ylabel('Doppler')

Algorithms
phased.AngleDopplerResponse generates the response using a conventional beamformer and an
FFT-based Doppler filter. For further details, see [1].

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

See Also
azel2phitheta | azel2uv | phitheta2azel | uv2azel
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phased.ArrayGain
Package: phased

Sensor array gain

Description
The ArrayGain object calculates the array gain for a sensor array. The array gain on page 1-24 is
defined as the signal to noise ratio (SNR) improvement between the array output and the individual
channel input, assuming the noise is spatially white. It is related to the array response but is not the
same.

To compute the SNR gain of the antenna for specified directions:

1 Define and set up your array gain calculator. See “Construction” on page 1-23.
2 Call step to estimate the gain according to the properties of phased.ArrayGain. The behavior

of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ArrayGain creates an array gain System object, H. This object calculates the array
gain of a 2-element uniform linear array for specified directions.

H = phased.ArrayGain(Name,Value) creates and array-gain object, H, with the specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Sensor array

Sensor array specified as an array System object belonging to the phased package. A sensor array
can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light
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WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the corresponding input argument when you
invoke step. If you do not want to specify weights, set this property to false.

Default: false

Methods

step Calculate array gain of sensor array

Common to All System Objects
release Allow System object property value changes

Examples

Array Gain of 4-Element ULA

Calculate the array gain for a 4-element uniform linear array (ULA) in the direction 30° azimuth and
20° elevation. The array operating frequency is 300 MHz.

fc = 300e6;
array = phased.ULA(4);
gain = phased.ArrayGain('SensorArray',array);
g = gain(fc,[30;20])

g = -17.1783

More About
Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement between the array output
and the individual channel input, assuming the noise is spatially white. You can express the array gain
as follows:

SNRout
SNRin

=
wHvsvHw

wHNw
s
N

= wHvvHw
wHw

In this equation:

• w is the vector of weights applied on the sensor array. When you use phased.ArrayGain, you
can optionally specify weights by setting the WeightsInputPort property to true and specifying
the W argument in the step method syntax.

• v is the steering vector representing the array response toward a given direction. When you call
the step method, the ANG argument specifies the direction.
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• s is the input signal power.
• N is the noise power.
• H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array gain is the square of the array
response normalized by the number of elements in the array.

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support arrays containing polarized antenna elements, that is, the
phased.ShortDipoleAntennaElement or phased.CrossedDipoleAntennaElement
antennas.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ArrayResponse | phased.ElementDelay | phased.SteeringVector

Introduced in R2011a
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step
System object: phased.ArrayGain
Package: phased

Calculate array gain of sensor array

Syntax
G = step(H,FREQ,ANG)
G = step(H,FREQ,ANG,WEIGHTS)
G = step(H,FREQ,ANG,STEERANGLE)
G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)
G = step(H,FREQ,ANG,WS)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

G = step(H,FREQ,ANG) returns the array gain on page 1-29 G of the array for the operating
frequencies specified in FREQ and directions specified in ANG.

G = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on the sensor array. This syntax is
available when you set the WeightsInputPort property to true.

G = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle. This
syntax is available when you configure H so that H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

G = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input arguments. This syntax is
available when you configure H so that H.WeightsInputPort is true, H.Sensor is an array that
contains subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

G = step(H,FREQ,ANG,WS) uses WS as weights applied to each element within each subarray. To
use this syntax, set the SensorArray property to an array that supports subarrays and set the
SubarraySteering property of the array to 'Custom'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
H

Array gain object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of the sensor element. The element is H.SensorArray.Element,
H.SensorArray.Array.Element, or H.SensorArray.Subarray.Element, depending on the
type of array. The frequency range property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has zero response at frequencies outside
that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L matrix or a column vector of length N.
N is the number of subarrays if H.SensorArray contains subarrays, or the number of elements
otherwise. L is the number of frequencies specified in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the weights at the corresponding
frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in FREQ.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, and the elevation angle must be between –90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation angle is
assumed to be 0.

WS

Subarray element weights

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.
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Subarray element weights
Sensor Array Subarray weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray Subarrays may not have the same dimensions and
sizes. In this case, you can specify subarray
weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the SensorArray property to an array that contains subarrays and set
the SubarraySteering property of the array to 'Custom'.

Output Arguments
G

Gain of sensor array, in decibels. G is an M-by-L matrix. G contains the gain at the M angles specified
in ANG and the L frequencies specified in FREQ.

Examples

Array Gain of 6-Element ULA

Construct a uniform linear array (ULA) having six elements and operating at 1 GHz. The array
elements are spaced at one-half the operating wavelength. Find the array gain in dB in the direction
45° azimuth and 10° elevation.

Create the phased.ArrayGain System object™.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',6,'ElementSpacing',lambda/2);
gain = phased.ArrayGain('SensorArray',array);

Determine array gain at the specified operating frequency and angle.
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arraygain = gain(fc,[45;10])

arraygain = -17.9275

More About
Array Gain

The array gain is defined as the signal to noise ratio (SNR) improvement between the array output
and the individual channel input, assuming the noise is spatially white. You can express the array gain
as follows:

SNRout
SNRin

=
wHvsvHw

wHNw
s
N

= wHvvHw
wHw

In this equation:

• w is the vector of weights applied on the sensor array. When you use phased.ArrayGain, you
can optionally specify weights by setting the WeightsInputPort property to true and specifying
the W argument in the step method syntax.

• v is the steering vector representing the array response toward a given direction. When you call
the step method, the ANG argument specifies the direction.

• s is the input signal power.
• N is the noise power.
• H denotes the complex conjugate transpose.

For example, if a rectangular taper is used in the array, the array gain is the square of the array
response normalized by the number of elements in the array.

See Also
phitheta2azel | uv2azel
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phased.ArrayResponse
Package: phased

Sensor array response

Description
The ArrayResponse object calculates the complex-valued response of a sensor array.

To compute the response of the array for specified directions:

1 Define and set up your array response calculator. See “Construction” on page 1-30.
2 Call step to estimate the response according to the properties of phased.ArrayResponse. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ArrayResponse creates an array response System object, H. This object calculates the
response of a sensor array for the specified directions. By default, a 2-element uniform linear array
(ULA) is used.

H = phased.ArrayResponse(Name,Value) creates object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array used to calculate response

Specify the sensor array as a handle. The sensor array must be an array object in the phased
package. The array can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light
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WeightsInputPort

Add input to specify weights

To specify weights, set this property to true and use the corresponding input argument when you
invoke step. If you do not want to specify weights, set this property to false.

Default: false

EnablePolarization

Enable polarization simulation

Set this property to true to let the array response simulate polarization. Set this property to false
to ignore polarization. This property applies only when the array specified in the SensorArray
property is capable of simulating polarization.

Default: false

Methods

step Calculate array response of sensor array

Common to All System Objects
release Allow System object property value changes

Examples

Plot Array Response

Calculate array response for a 4-element uniform linear array (ULA) in the direction of 30 degrees
azimuth and 20 degrees elevation. Assume the array's operating frequency is 300 MHz.

Construct ULA and ArrayResponse System objects

fc = 300e6;
c = physconst('LightSpeed');
array = phased.ULA(4);
response = phased.ArrayResponse('SensorArray',array);
resp = response(fc,[30;20])

resp = 0.2768

Plot the array response in dB

Plot the normalized power in db as an azimuth cut at 0 degrees elevation.

pattern(array,fc,[-180:180],0,'PropagationSpeed',c,'CoordinateSystem','rectangular','Type','powerdb')
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References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ArrayGain | phased.ConformalArray | phased.ElementDelay |
phased.SteeringVector | phased.ULA | phased.URA

Introduced in R2011a
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step
System object: phased.ArrayResponse
Package: phased

Calculate array response of sensor array

Syntax
RESP = step(H,FREQ,ANG)
RESP = step(H,FREQ,ANG,WEIGHTS)
RESP = step(H,FREQ,ANG,STEERANGLE)
RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE)
RESP = step(H,FREQ,ANG,WS)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the array response RESP at operating frequencies specified in
FREQ and directions specified in ANG.

RESP = step(H,FREQ,ANG,WEIGHTS) applies weights WEIGHTS on the sensor array. This syntax is
available when you set the WeightsInputPort property to true.

RESP = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle. This
syntax is available when you configure H so that H.Sensor is an array that contains subarrays, and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

RESP = step(H,FREQ,ANG,WEIGHTS,STEERANGLE) combines all input arguments. This syntax is
available when you configure H so that H.WeightsInputPort is true, H.Sensor is an array that
contains subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

RESP = step(H,FREQ,ANG,WS) uses WS as weights applied to each element within each subarray.
To use this syntax, set the SensorArray property to an array that supports subarrays and set the
SubarraySteering property of the array to 'Custom'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
H

Array response object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of the sensor element. The element is H.SensorArray.Element,
H.SensorArray.Array.Element, or H.SensorArray.Subarray.Element, depending on the
type of array. The frequency range property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has zero response at frequencies outside
that range. The element has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.

WEIGHTS

Weights on the sensor array. WEIGHTS can be either an N-by-L matrix or a column vector of length N.
N is the number of subarrays if H.SensorArray contains subarrays, or the number of elements
otherwise. L is the number of frequencies specified in FREQ.

If WEIGHTS is a matrix, each column of the matrix represents the weights at the corresponding
frequency in FREQ.

If WEIGHTS is a vector, the weights apply at all frequencies in FREQ.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth angle must be
between –180 and 180 degrees, and the elevation angle must be between –90 and 90 degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation angle is
assumed to be 0.

WS

Subarray element weights

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.
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Subarray element weights

Sensor Array Subarray weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray Subarrays may not have the same dimensions and
sizes. In this case, you can specify subarray
weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the SensorArray property to an array that contains subarrays and set
the SubarraySteering property of the array to 'Custom'.

Output Arguments
RESP

Voltage response of the sensor array. The response depends on whether the EnablePolarization
property is set to true or false.

• If the EnablePolarization property is set to false, the voltage response, RESP, has the
dimensions M-by-L. M represents the number of angles specified in the input argument ANG while
L represents the number of frequencies specified in FREQ.

• If the EnablePolarization property is set to true, the voltage response, RESP, is a MATLAB®

struct containing two fields, RESP.H and RESP.V. The RESP.H field represents the array’s
horizontal polarization response, while RESP.V represents the array’s vertical polarization
response. Each field has the dimensions M-by-L. M represents the number of angles specified in
the input argument, ANG, while L represents the number of frequencies specified in FREQ.

Examples

 step
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Array Response of ULA

Find the response of a 6-element uniform linear array operating at 1 GHz. The array elements are
spaced one-half wavelength apart. The incident signal direction is 45° azimuth and 10° elevation.
Obtain the response at this direction.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;

Create the ULA array.

array = phased.ULA('NumElements',6,'ElementSpacing',lambda/2);

Create the array response System object™.

response = phased.ArrayResponse('SensorArray',array);
resp = response(fc,[45;10]);

See Also
phitheta2azel | uv2azel
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backscatterBicyclist
Backscatter radar signals from bicyclist

Description
The backscatterBicyclist object simulates backscattered radar signals reflected from a moving
bicyclist. The bicyclist consists of both the bicycle and its rider. The object models the motion of the
bicyclist and computes the sum of all reflected signals from multiple discrete scatterers on the
bicyclist. The model ignores internal occlusions within the bicyclist. The reflected signals are based
on a multi-scatterer model developed from a 77 GHz radar system.

Scatterers are located on five major bicyclist components:

• Bicycle frame and rider
• Bicycle pedals
• Upper and lower legs of the rider
• Front wheel
• Back wheel

Excluding the wheels, there are 114 scatterers on the bicyclist. The wheels contain scatterers on the
rim and spokes. The number of scatterers on the wheels depends on the number of spokes per wheel.
The number of spokes is specified using the NumWheelSpokes property.

You can obtain the current bicyclist position and velocity by calling the move object function. Calling
this function also updates the position and velocity for the next time epoch. To obtain the reflected
signal, call the reflect object function. You can plot the instantaneous position of the bicyclist using
the plot object function.

Creation

Syntax
bicyclist = backscatterBicyclist
bicyclist = backscatterBicyclist(Name,Value,...)

Description

bicyclist = backscatterBicyclist creates a backscatterBicyclist object, bicyclist,
having default property values.

bicyclist = backscatterBicyclist(Name,Value,...) creates a backscatterBicyclist
object, bicyclist, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Any
unspecified properties take default values. For example,

bicyclist = backscatterBicyclist( ...
              'NumWheelSpokes',18,'Speed',10.0, ...
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              'InitialPosition',[0;0;0],'InitialHeading',90, ...
              'GearTransmissionRatio',5.5);

models a bicycle with 18 spokes on each wheel that is moving along the positive y-axis at 10 meters
per second. The gear transmission ratio of 5.5 indicates that there are 5.5 wheel rotations for each
pedal rotation. The bicyclist is heading along the y-axis.

This figure illustrates a bicyclist starting to turn left.

Properties
NumWheelSpokes — Number of spokes per wheel
20 (default) | positive integer

Number of spokes per wheel of the bicycle, specified as a positive integer from 3 to 50, inclusive.
Data Types: double

GearTransmissionRatio — Ratio of wheel rotations to pedal rotations
1.5 (default) | positive scalar

1 Objects

1-38



Ratio of wheel rotations to pedal rotations, specified as a positive scalar. The gear ratio must be in the
range from 0.5 through 6. Units are dimensionless.
Data Types: double

OperatingFrequency — Carrier frequency of narrowband signals
77e9 (default) | positive scalar

Carrier frequency of the narrowband incident signals, specified as a positive scalar. Units are in Hz.
Example: 900e6
Data Types: double

InitialPosition — Initial position of bicyclist
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the bicyclist, specified as a 3-by-1 real-valued vector in the form of [x;y;z] in global
coordinates. Units are in meters. The initial position corresponds to the location of the origin of the
bicycle coordinates. The origin is at the center of mass of the scatterers of the default bicyclist
configuration projected onto the ground.
Data Types: double

InitialHeading — Initial heading of bicyclist
0 (default) | scalar

Initial heading of bicyclist, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Heading is with respect to global coordinates. Units are in degrees.
Data Types: double

Speed — Speed of bicyclist
4 (default) | nonnegative scalar

Speed of bicyclist, specified as a nonnegative scalar. The motion model limits the speed to a maximum
of 60 m/s (216 kph). Speed is defined with respect to global coordinates. Units are in meters per
second.
Data Types: double

Coast — Set bicycle coasting state
false (default) | true

Set bicycle coasting state, specified as false or true. If set to true, the bicyclist is not pedaling,
but the wheels are still rotating (freewheeling). If set to false, the bicyclist is pedaling, and the
GearTransmissionRatio determines the wheel rotations to pedal rotations.
Data Types: logical

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
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Data Types: double

AzimuthAngles — Radar cross-section azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Radar cross-section azimuth angles, specified as a 1-by-P or P-by-1 real-valued vector. This property
defines the azimuth coordinates of each column of the radar cross-section matrix specified by the
RCSPattern property. P must be greater than two. Angle units are in degrees.
Example: [-45:0.1:45]
Data Types: double

ElevationAngles — Radar cross-section elevation angles
0 (default) | scalar | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector

Radar cross-section elevation angles, specified as a 1-by-Q or Q-by-1 real-valued vector. This property
defines the elevation coordinates of each row of the radar cross-section matrix specified by the
RCSPattern property. Q must be greater than two. Angle units are in degrees.
Example: [-30:0.1:30]
Data Types: double

RCSPattern — Radar cross-section pattern
1-by-361 real-valued matrix (default) | Q-by-P real-valued vector | 1-by-P real-valued vector

Radar cross-section (RCS) pattern, specified as a Q-by-P real-valued matrix or a 1-by-P real-valued
vector. Matrix rows represent constant elevation, and columns represent constant azimuth. Q is the
length of the vector defined by the ElevationAngles property. P is the length of the vector defined
by the AzimuthAngles property. Units are in square meters.

You can also specify the pattern as a 1-by-P real-valued vector of azimuth angles for a single
elevation.

The default value of this property is a 1-by-361 matrix containing values derived from 77 GHz radar
measurements of a bicyclist. The default values of AzimuthAngles and ElevationAngles
correspond to the default RCS matrix.
Example: [1,.5;.5,1]
Data Types: double

Object Functions

Specific to This Object
getNumScatterers Number of scatterers on bicyclist
move Position, velocity, and orientation of moving bicyclist
plot Display locations of scatterers on bicyclist
reflect Reflected signal from moving bicyclist

Common to All Objects
clone Create identical object
release Release resources and allow changes to object property values and input characteristics
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reset Reset object state and property values

Examples

Radar Signal Backscattered by Bicyclist

Compute the backscattered radar signal from a bicyclist moving along the x-axis at 5 m/s away from a
radar. Assume that the radar is located at the origin. The radar transmits an LFM signal at 24 GHz
with a 300-MHz bandwidth. A signal is reflected at the moment the bicyclist starts to move and then
one second later.

Initialize Bicyclist, Waveform, and Propagation Channel Objects

Initialize the backscatterBicyclist, phased.LinearFMWaveform, and phased.FreeSpace
objects. Assume a 300 MHz sampling frequency. The initial position of the bicyclist lies on the x-axis
30 meters from the radar.

bw = 300e6;
fs = bw;
fc = 24e9;
radarpos = [0;0;0];
bpos = [30;0;0];
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',15, ...
    'InitialPosition',bpos,'Speed',5.0, ...
    'InitialHeading',0.0);
lfmwav = phased.LinearFMWaveform( ...
    'SampleRate',fs, ...
    'SweepBandwidth',bw);
sig = lfmwav();
chan = phased.FreeSpace(...
    'OperatingFrequency',fc,...
    'SampleRate',fs,...
    'TwoWayPropagation',true);

Plot Initial Bicyclist Position

Using the move object function, obtain the initial scatterer positions, velocities and the orientation of
the bicyclist. Plot the initial position of the bicyclist. The dt argument of the move object function
determines that the next call to move returns the bicyclist state of motion dt seconds later.

dt = 1.0;
[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)
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Obtain First Reflected Signal

Propagate the signal to all scatterers and obtain the cumulative reflected return signal.

N = getNumScatterers(bicyclist);
sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[rngs,ang] = rangeangle(radarpos,bpos,bax);
y0 = reflect(bicyclist,sigtrns,ang);

Plot Bicyclist Position After Position Update

After the bicyclist has moved, obtain the scatterer positions and velocities and then move the bicycle
along its trajectory for another second.

[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)
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Obtain Second Reflected Signal

Propagate the signal to all scatterers at their new positions and obtain the cumulative reflected
return signal.

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[~,ang] = rangeangle(radarpos,bpos,bax);
y1 = reflect(bicyclist,sigtrns,ang);

Match Filter Reflected Signals

Match filter the reflected signals and plot them together.

mfsig = getMatchedFilter(lfmwav);
nsamp = length(mfsig);
mf = phased.MatchedFilter('Coefficients',mfsig);
ymf = mf([y0 y1]);
fdelay = (nsamp-1)/fs;
t = (0:size(ymf,1)-1)/fs - fdelay;
c = physconst('LightSpeed');
plot(c*t/2,mag2db(abs(ymf)))
ylim([-200 -50])
xlabel('Range (m)')
ylabel('Magnitude (dB)')
ax = axis;
axis([0,100,ax(3),ax(4)])
grid
legend('First pulse','Second pulse')
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Compute the difference in range between the maxima of the two pulses.

[maxy,idx] = max(abs(ymf));
dpeaks = t(1,idx(2)) - t(1,idx(1));
drng = c*dpeaks/2

drng = 4.9965

The range difference is 5 m, as expected given the bicyclist speed.

Display Micro-Doppler Shift from Moving Bicyclist

Display a spectrogram showing the micro-Doppler effect on radar signals reflected from the
scatterers on a moving bicyclist target. A stationary radar transmits 1000 pulses of an FMCW radar
wave with a bandwidth of 250 MHz and of 1 μsec duration. The radar operates at 24 GHz. The
bicyclist starts 5 m from the radar and moves away at 4 m/s.

Set up the waveform, channel, transmitter, receiver, and platform System objects.

bw = 250e6;
fs = 2*bw;
fc = 24e9;
c = physconst('Lightspeed');
tm = 1e-6;
wav = phased.FMCWWaveform('SampleRate',fs,'SweepTime',tm, ...
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    'SweepBandwidth',bw);
chan = phased.FreeSpace('PropagationSpeed',c,'OperatingFrequency',fc, ...
    'TwoWayPropagation',true,'SampleRate',fs);
radarplt = phased.Platform('InitialPosition',[0;0;0], ...
    'OrientationAxesOutputPort',true);
trx = phased.Transmitter('PeakPower',1,'Gain',25);
rcvx = phased.ReceiverPreamp('Gain',25,'NoiseFigure',10);

Create a bicyclist object moving at 4 meters/second.

bicyclistSpeed = 4;
bicyclist = backscatterBicyclist('InitialPosition',[5;0;0],'Speed',bicyclistSpeed, ...
    'PropagationSpeed',c,'OperatingFrequency',fc,'InitialHeading',0.0);
lambda = c/fc;
fmax = 2*bicyclist.GearTransmissionRatio*bicyclistSpeed/lambda;
tsamp = 1/(2*fmax);

Loop over 1000 pulses. Find the angle of incidence of the radar. Propagate the wave to each
scatterer, and then reflect the wave from the scatterers back to the radar.

npulse = 1000;
xr = complex(zeros(round(fs*tm),npulse));
for m = 1:npulse
    [posr,velr,axr] = radarplt(tsamp);
    [post,velt,axt] = move(bicyclist,tsamp,0);
    [~,angrt] = rangeangle(posr,post,axt);
    x = trx(wav());
    xt = chan(repmat(x,1,size(post,2)),posr,post,velr,velt);
    xr(:,m) = rcvx(reflect(bicyclist,xt,angrt));
end

Process the arriving signals. First, dechirp the signal and then pass the signal into a Kaiser-windowed
short-time Fourier transform.

xd = conj(dechirp(xr,x));
M = 128;
beta = 6;
w = kaiser(M,beta);
R = floor(1.7*(M-1)/(beta+1));
noverlap = M - R;
[S,F,T] = stft(sum(xd),1/tsamp,'Window',w,'FFTLength',M*2, ...
    'OverlapLength',noverlap);
maxval = max(10*log10(abs(S)));
pcolor(T,-F*lambda/2,10*log10(abs(S))-maxval);
shading flat;
colorbar
xlabel('Time (sec)')
ylabel('Speed (m/s)')
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Backscatter Bicyclist With Custom RCS Pattern

Create a custom RCS pattern to use with the backscatterBicyclist object.

The RCS pattern is computed from cosines raised to the fourth power.

az = [-180:180];
el = [-90:90];
caz = cosd(az').^4;
cel = cosd(el).^4;
rcs = (caz*cel)';
imagesc(az,el,rcs)
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar
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bicyclist = backscatterBicyclist( ...
    'NumWheelSpokes',18,'Speed',10.0, ...
    'InitialPosition',[0;0;0],'InitialHeading',90, ...
    'GearTransmissionRatio',5.5,'AzimuthAngles',az, ...
    'ElevationAngles',el,'RCSPattern',rcs);

Algorithms
Bicycle Model

The bicyclist consists of five primary components: bicycle frame and rider, pedals, rider legs, front
wheel, and rear wheel. Each component contains many scatterers. All components move with a
velocity determined by the specified speed and heading properties. In addition, the legs, pedals, and
wheels undergo cyclical motion determined by the speed.
Motion of Scatterers on Frame and Rider

Scatterers on the frame and rider are fixed with respect to the bicyclist and move with the ego
velocity

υ ego = υcosHi + υsinH j

where v is the speed of the bicyclist specified by the Speed property and H is the heading specified
by the InitialHeading property. These properties can be changed by calling the move function.

This figure shows the location of the scatterers on the bicycle frame and rider.
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Motion of Scatterers on Pedals

Scatterers on the pedals move with the bicyclist but can also revolve around the crank spindle with a
radius of rotation Rped. There are two possible motions of the pedals depending upon whether the
bicycle is coasting (freewheeling) or not coasting:

• When the bicycle is coasting, the pedals do not revolve around the crank spindle and the velocity
of the pedal scatterers equals the bicyclist velocity. Their positions relative to the bicyclist are
fixed. Coasting is turned on by setting the Coast property to true or by setting the coast
argument of the move object function to true. The speed of the pedal is

υ ped,tot = υ ego

• When the bicycle is not coasting, the rider is pedaling. The angular velocity of the pedals is
related to the angular velocity of the wheels by

ωwh = Gωped

where G is the gear ratio defined by the GearTransmissionRatio property. The speed of a
pedal scatterer equals the rotational speed of the pedal multiplied by the distance from pedal to
crank spindle. The vector form of this relationship is:

υ ped = ωped × r ped

The velocity of the pedal with respect to the bicyclist is then

υ ped,tot = ωped × r ped + υ ego = Gωwh × r ped + υ ego
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Coasting is turned off by setting the Coast property to false or by setting the coast argument
of the move object function to false.

This figure shows the locations of the pedal scatterers.

Motion of Scatterers on Riders Legs

Scatterers on the upper and lower legs of the rider move with the bicycle with an added cyclical
motion. There are two possible motions of the legs depending upon whether the bicycle is coasting or
not coasting:

• When the bicycle is coasting, the legs are not moving with the respect to the bicycle and the
scatterers move with the velocity of the bicyclist. Coasting is turned on by setting the Coast
property to true or by setting the coast argument of the move object function to true.

• When the bicycle is not coasting, the upper and lower legs execute reciprocating motion. The
upper legs partially rotate around the hip of the rider. The foot is attached to the pedal and rotates
with the pedal. The knee connects the lower and upper legs. The locations of the foot and hips of
the rider determine the locations of the knees and the motion of the scatterers on the legs.

Coasting is turned off by setting the Coast property to false or by setting the coast argument
of the move object function to false.

This figure shows the locations of the scatterers on the upper and lower legs of the rider.
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Motion of Scatterers on Bicycle Wheels

Scatterers are on the spokes and rims of the wheels and revolve around the wheel axle at varying
distances, rspk, from the axle. The velocity of the scatterers in the bicyclist frame of reference is

υ spk = ωwh × r spk

The absolute velocity of a spoke or rim scatterer is

υ spk = ωwh × r spk + υ ego

This figure shows the locations of the scatterers on the wheel rims and spokes.
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Radar Cross-Section

The value of the radar cross-section (RCS) of a scatterer generally depends upon the incident angle of
the reflected radiation. The backscatterBicyclist object uses a simplified RCS model: the RCS
pattern of an individual scatterer equals the total bicyclist pattern divided by the number of
scatterers. The value of the RCS is computed from the RCS pattern evaluated at an average over all
scatterers of the azimuth and elevation incident angles. Therefore, the RCS value is the same for all
scatterers. You can specify the RCS pattern using the RCSPattern property of the
backscatterBicyclist object or use the default value.

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
backscatterPedestrian | getNumScatterers | move | phased.BackscatterRadarTarget |
phased.BackscatterSonarTarget | phased.RadarTarget |
phased.WidebandBackscatterRadarTarget | plot | reflect

Introduced in R2019b
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getNumScatterers
Number of scatterers on bicyclist

Syntax
N = getNumScatterers(bicyclist)

Description
N = getNumScatterers(bicyclist) returns the number of scatterers, N, on the bicyclist.

Examples

Find Number of Bicyclist Scatterers

Use the getNumScatterers object function to find the number of scatterers on a bicyclist with 25
spokes. Create the backscatterBicyclist object and then call getNumScatterers.

fc = 77e9;
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',25, ...
    'InitialPosition',[5;0;0]);
N = getNumScatterers(bicyclist)

N = 359

Input Arguments
bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

Output Arguments
N — Number of scatterers
positive integer

Number of scatterers on bicyclist, returned as a positive integer.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
move | plot | reflect
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move
Position, velocity, and orientation of moving bicyclist

Syntax
[bpos,bvel,bax] = move(bicyclist,T,angh)
[bpos,bvel,bax] = move(bicyclist,T,angh,speed)
[bpos,bvel,bax] = move(bicyclist,T,angh,speed,coast)

Description
[bpos,bvel,bax] = move(bicyclist,T,angh) returns the current positions, bpos, and current
velocities, bvel, of the scatterers and the current orientation axes, bax, of the bicyclist. The
positions, velocities, and axes are then updated for the next time interval T. angh specifies the
heading angle of the bicyclist.

[bpos,bvel,bax] = move(bicyclist,T,angh,speed) also specifies the speed of the bicyclist.

[bpos,bvel,bax] = move(bicyclist,T,angh,speed,coast) also specifies the coasting state,
coast, of the bicyclist.

Examples

Display Bicyclist Scatterer Positions

Plot the positions of all bicyclist scatterers. Assume there are 15 spokes per wheel.

Create a backscatterBicyclist object for a radar system operating at 77 GHz and having a
bandwidth of 300 MHz. The sampling rate is twice the bandwidth. The bicyclist is initially 5 meters
away from the radar.

bw = 300e6;
fs = 2*bw;
fc = 77e9;
rpos = [0;0;0];
bpos = [5;0;0];
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',15, ...
    'InitialPosition',bpos);

Obtain the initial position of the scatterers and advance the motion by 1 second.

[bpos,bvel,bax] = move(bicyclist,1,0);

Obtain the number of scatterers and the indices of the wheel scatterers.

N = getNumScatterers(bicyclist);
Nsw = (N-114+1)/2;
idxfrontwheel = (114:(114 + Nsw - 1));
idxrearwheel = (114 + Nsw):N;
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Plot the locations of the scatterers.

plot3(bpos(1,1:90),bpos(2,1:90),bpos(3,1:90), ...
    'LineStyle','none','Color',[0.5,0,0],'Marker','.')
axis equal
hold on
plot3(bpos(1,91:99),bpos(2,91:99),bpos(3,91:99), ...
    'LineStyle','none','Color',[0,0,0.7],'Marker','.')
plot3(bpos(1,100:113),bpos(2,100:113),bpos(3,100:113), ...
    'LineStyle','none','Color',[0,0,0],'Marker','.')
plot3(bpos(1,idxfrontwheel),bpos(2,idxfrontwheel),bpos(3,idxfrontwheel), ...
    'LineStyle','none','Color',[0,0.5,0],'Marker','.')
plot3(bpos(1,idxrearwheel),bpos(2,idxrearwheel),bpos(3,idxrearwheel), ...
    'LineStyle','none','Color',[0.5,0.5,0.5],'Marker','.')
hold off
legend('Frame and rider','Pedals','Rider legs','Front wheel','Rear wheel')

Model Bicyclist Moving along Arc

Display an animation of a bicyclist riding in a quarter circle. Use the default property values of the
backscatterBicyclist object. The motion is updated at 30 millisecond intervals for 500 steps.

dt = 0.03;
M = 500;
angstep = 90/M;

1 Objects

1-56



bicycle = backscatterBicyclist;

for m = 1:M
    [bpos,bvel,bang] = move(bicycle,dt,angstep*m);
    plot(bicycle)
end

Input Arguments
bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

T — Duration of next motion interval
scalar

Duration of next motion interval, specified as a positive scalar. The scatterer positions and velocities
and bicyclist orientation are updated over this time duration. Units are in seconds.
Example: 0.75
Data Types: double

angh — Bicyclist heading
0.0 | scalar
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Heading of the bicyclist, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Units are in degrees.
Example: -34
Data Types: double

speed — Bicyclist speed
value Speed property (default) | nonnegative scalar

Bicyclist speed, specified as a nonnegative scalar. The motion model limits the speed to 60 m/s. Units
are in meters per second. Alternatively, you can specify the bicyclist speed using the Speed property
of the backscatterBicyclist object.
Example: 8
Data Types: double

coast — Set bicyclist coasting state
value of Coast property (default) | false | true

Set bicyclist coasting state, specified as false or true. If set to true, the bicyclist is not pedaling,
but the wheels are still rotating (freewheeling). If set to false, the bicyclist is pedaling, and the
GearTransmissionRatio determines the ratio of wheel rotations to pedal rotations. Alternatively,
you can specify the bicyclist coasting state using the Coast property of the
backscatterBicyclist object.
Data Types: logical

Output Arguments
bpos — Positions of bicyclist scatterers
real-valued 3-by-N matrix

Positions of bicyclist scatterers, returned as a real-valued 3-by-N matrix. Each column represents the
Cartesian position, [x;y;z], of one of the bicyclist scatterers. N represents the number of scatterers
and can be obtained using the getNumScatterers object function. Units are in meters. See “Bicycle
Scatterer Indices” on page 1-59 for the column representing the position of each scatterer.
Data Types: double

bvel — Velocities of bicyclist scatterers
real-valued 3-by-N matrix

Velocities of bicyclist scatterers, returned as a real-valued 3-by-N matrix. Each column represents the
Cartesian velocity, [vx;vy;vz], of one of the bicyclist scatterers. N represents the number of scatterers
and can be obtained using the getNumScatterers object function. Units are in meters per second.
See “Bicycle Scatterer Indices” on page 1-59 for the column representing the velocity of each
scatterer.
Data Types: double

bax — Orientation axes of bicyclist
real-valued 3-by-3 matrix

Orientation axes of bicyclist, returned as a real-valued 3-by-3 matrix. Units are dimensionless.
Data Types: double

1 Objects

1-58



More About
Bicycle Scatterer Indices

Bicyclist scatterer indices define which columns in the scatterer position or velocity matrices contain
the position and velocity data for a specific scatterer. For example, column 92 of bpos specifies the 3-
D position of one of the scatterers on a pedal.

The wheel scatterers are equally divided between the wheels. You can determine the total number of
wheel scatterers, N, by subtracting 113 from the output of the getNumScatterers function. The
number of scatterers per wheel is Nsw = N/2.

Bicyclist Scatterer Indices

Bicyclist Component Bicyclist Scatterer Index
Frame and rider 1 … 90
Pedals 91 … 99
Rider legs 100 … 113
Front wheel 114 … 114 + Nsw - 1
Rear wheel 114 + Nsw … 114 + N - 1

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
getNumScatterers | plot | reflect

Introduced in R2019b
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plot
Display locations of scatterers on bicyclist

Syntax
plot(bicyclist)
fhndl = plot(bicyclist)
fhndl = plot(bicyclist,'Parent',ax)

Description
plot(bicyclist) displays the positions of all scatterers on a bicyclist at the current time. To
display the current position of the bicyclist, call the plot object function after calling the move object
function. Calling plot before any call to move displays the bicyclist at the origin.

fhndl = plot(bicyclist) returns the figure handle of the display window.

fhndl = plot(bicyclist,'Parent',ax) also specifies the plot axes for the bicyclist plot.

Examples

Radar Signal Backscattered by Bicyclist

Compute the backscattered radar signal from a bicyclist moving along the x-axis at 5 m/s away from a
radar. Assume that the radar is located at the origin. The radar transmits an LFM signal at 24 GHz
with a 300-MHz bandwidth. A signal is reflected at the moment the bicyclist starts to move and then
one second later.

Initialize Bicyclist, Waveform, and Propagation Channel Objects

Initialize the backscatterBicyclist, phased.LinearFMWaveform, and phased.FreeSpace
objects. Assume a 300 MHz sampling frequency. The initial position of the bicyclist lies on the x-axis
30 meters from the radar.

bw = 300e6;
fs = bw;
fc = 24e9;
radarpos = [0;0;0];
bpos = [30;0;0];
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',15, ...
    'InitialPosition',bpos,'Speed',5.0, ...
    'InitialHeading',0.0);
lfmwav = phased.LinearFMWaveform( ...
    'SampleRate',fs, ...
    'SweepBandwidth',bw);
sig = lfmwav();
chan = phased.FreeSpace(...
    'OperatingFrequency',fc,...
    'SampleRate',fs,...
    'TwoWayPropagation',true);
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Plot Initial Bicyclist Position

Using the move object function, obtain the initial scatterer positions, velocities and the orientation of
the bicyclist. Plot the initial position of the bicyclist. The dt argument of the move object function
determines that the next call to move returns the bicyclist state of motion dt seconds later.

dt = 1.0;
[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)

Obtain First Reflected Signal

Propagate the signal to all scatterers and obtain the cumulative reflected return signal.

N = getNumScatterers(bicyclist);
sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[rngs,ang] = rangeangle(radarpos,bpos,bax);
y0 = reflect(bicyclist,sigtrns,ang);

Plot Bicyclist Position After Position Update

After the bicyclist has moved, obtain the scatterer positions and velocities and then move the bicycle
along its trajectory for another second.

[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)
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Obtain Second Reflected Signal

Propagate the signal to all scatterers at their new positions and obtain the cumulative reflected
return signal.

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[~,ang] = rangeangle(radarpos,bpos,bax);
y1 = reflect(bicyclist,sigtrns,ang);

Match Filter Reflected Signals

Match filter the reflected signals and plot them together.

mfsig = getMatchedFilter(lfmwav);
nsamp = length(mfsig);
mf = phased.MatchedFilter('Coefficients',mfsig);
ymf = mf([y0 y1]);
fdelay = (nsamp-1)/fs;
t = (0:size(ymf,1)-1)/fs - fdelay;
c = physconst('LightSpeed');
plot(c*t/2,mag2db(abs(ymf)))
ylim([-200 -50])
xlabel('Range (m)')
ylabel('Magnitude (dB)')
ax = axis;
axis([0,100,ax(3),ax(4)])
grid
legend('First pulse','Second pulse')
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Compute the difference in range between the maxima of the two pulses.

[maxy,idx] = max(abs(ymf));
dpeaks = t(1,idx(2)) - t(1,idx(1));
drng = c*dpeaks/2

drng = 4.9965

The range difference is 5 m, as expected given the bicyclist speed.

Input Arguments
bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

ax — Plot axes
axes handle

Plot axes, specified as an axes handle.
Data Types: double
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Output Arguments
fhndl — figure handle
figure handle

Figure handle of plot window.

See Also
getNumScatterers | move | reflect

Introduced in R2019b
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reflect
Reflected signal from moving bicyclist

Syntax
Y = reflect(bicyclist,X,ang)

Description
Y = reflect(bicyclist,X,ang) returns the total reflected signal, Y, from a bicyclist. The total
reflected signal is the sum of all reflected signals from the bicyclist scatterers. X represents the
incident signals at each scatterer. ang defines the directions of the incident and reflected signals with
respect to the each scatterers.

The reflected signal strength depends on the value of the radar cross-section at the incident angle.
This simplified model uses the same value for all scatterers.

Examples

Radar Signal Backscattered by Bicyclist

Compute the backscattered radar signal from a bicyclist moving along the x-axis at 5 m/s away from a
radar. Assume that the radar is located at the origin. The radar transmits an LFM signal at 24 GHz
with a 300-MHz bandwidth. A signal is reflected at the moment the bicyclist starts to move and then
one second later.

Initialize Bicyclist, Waveform, and Propagation Channel Objects

Initialize the backscatterBicyclist, phased.LinearFMWaveform, and phased.FreeSpace
objects. Assume a 300 MHz sampling frequency. The initial position of the bicyclist lies on the x-axis
30 meters from the radar.

bw = 300e6;
fs = bw;
fc = 24e9;
radarpos = [0;0;0];
bpos = [30;0;0];
bicyclist = backscatterBicyclist( ...
    'OperatingFrequency',fc,'NumWheelSpokes',15, ...
    'InitialPosition',bpos,'Speed',5.0, ...
    'InitialHeading',0.0);
lfmwav = phased.LinearFMWaveform( ...
    'SampleRate',fs, ...
    'SweepBandwidth',bw);
sig = lfmwav();
chan = phased.FreeSpace(...
    'OperatingFrequency',fc,...
    'SampleRate',fs,...
    'TwoWayPropagation',true);
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Plot Initial Bicyclist Position

Using the move object function, obtain the initial scatterer positions, velocities and the orientation of
the bicyclist. Plot the initial position of the bicyclist. The dt argument of the move object function
determines that the next call to move returns the bicyclist state of motion dt seconds later.

dt = 1.0;
[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)

Obtain First Reflected Signal

Propagate the signal to all scatterers and obtain the cumulative reflected return signal.

N = getNumScatterers(bicyclist);
sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[rngs,ang] = rangeangle(radarpos,bpos,bax);
y0 = reflect(bicyclist,sigtrns,ang);

Plot Bicyclist Position After Position Update

After the bicyclist has moved, obtain the scatterer positions and velocities and then move the bicycle
along its trajectory for another second.

[bpos,bvel,bax] = move(bicyclist,dt,0);
plot(bicyclist)
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Obtain Second Reflected Signal

Propagate the signal to all scatterers at their new positions and obtain the cumulative reflected
return signal.

sigtrns = chan(repmat(sig,1,N),radarpos,bpos,[0;0;0],bvel);
[~,ang] = rangeangle(radarpos,bpos,bax);
y1 = reflect(bicyclist,sigtrns,ang);

Match Filter Reflected Signals

Match filter the reflected signals and plot them together.

mfsig = getMatchedFilter(lfmwav);
nsamp = length(mfsig);
mf = phased.MatchedFilter('Coefficients',mfsig);
ymf = mf([y0 y1]);
fdelay = (nsamp-1)/fs;
t = (0:size(ymf,1)-1)/fs - fdelay;
c = physconst('LightSpeed');
plot(c*t/2,mag2db(abs(ymf)))
ylim([-200 -50])
xlabel('Range (m)')
ylabel('Magnitude (dB)')
ax = axis;
axis([0,100,ax(3),ax(4)])
grid
legend('First pulse','Second pulse')
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Compute the difference in range between the maxima of the two pulses.

[maxy,idx] = max(abs(ymf));
dpeaks = t(1,idx(2)) - t(1,idx(1));
drng = c*dpeaks/2

drng = 4.9965

The range difference is 5 m, as expected given the bicyclist speed.

Input Arguments
bicyclist — Bicyclist target
backscatterBicyclist object

Bicyclist, specified as a backscatterBicyclist object.

X — Incident radar signals
complex-valued M-by-N matrix

Incident radar signals on each bicyclist scatterer, specified as a complex-valued M-by-N matrix. M is
the number of samples in the signal. N is the number of point scatterers on the bicyclist and is
determined partly from the number of spokes in each wheel, Nws. See “Bicycle Scatterer Indices” on
page 1-69 for the column representing the incident signal at each scatterer.
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The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double
Complex Number Support: Yes

ang — Directions of incident signals
real-valued 2-by-P matrix

Directions of incident signals on the bicyclist scatterers, specified as a real-valued 2-by-N matrix. N
equals the number of columns in X. Each column of Ang specifies the incident direction of the signal
to a scatterer taking the form of an azimuth-elevation pair, [AzimuthAngle;ElevationAngle]. Units are
in degrees. See “Bicycle Scatterer Indices” on page 1-69 for the column representing the incident
direction at each scatterer.
Data Types: double

Output Arguments
Y — Total reflected radar signals
complex-valued M-by-1 column vector

Total reflected radar signals, returned as a complex-valued M-by-1 column vector. M equals the
number of samples in the input signal, X.
Data Types: double
Complex Number Support: Yes

More About
Bicycle Scatterer Indices

Bicyclist scatterer indices define which columns in the scatterer position or velocity matrices contain
the position and velocity data for a specific scatterer. For example, column 92 of bpos specifies the 3-
D position of one of the scatterers on a pedal.

The wheel scatterers are equally divided between the wheels. You can determine the total number of
wheel scatterers, N, by subtracting 113 from the output of the getNumScatterers function. The
number of scatterers per wheel is Nsw = N/2.

Bicyclist Scatterer Indices

Bicyclist Component Bicyclist Scatterer Index
Frame and rider 1 … 90
Pedals 91 … 99
Rider legs 100 … 113
Front wheel 114 … 114 + Nsw - 1
Rear wheel 114 + Nsw … 114 + N - 1
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Algorithms
Radar Cross-Section

The value of the radar cross-section (RCS) of a scatterer generally depends upon the incident angle of
the reflected radiation. The backscatterBicyclist object uses a simplified RCS model: the RCS
pattern of an individual scatterer equals the total bicyclist pattern divided by the number of
scatterers. The value of the RCS is computed from the RCS pattern evaluated at an average over all
scatterers of the azimuth and elevation incident angles. Therefore, the RCS value is the same for all
scatterers. You can specify the RCS pattern using the RCSPattern property of the
backscatterBicyclist object or use the default value.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
getNumScatterers | move | plot

Introduced in R2019b
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backscatterPedestrian
Backscatter radar signals from pedestrian

Description
backscatterPedestrian creates an object that simulates signals reflected from a walking pedestrian.
The pedestrian walking model coordinates the motion of 16 body segments to simulate natural
motion. The model also simulates the radar reflectivity of each body segment. From this model, you
can obtain the position and velocity of each segment and the total backscattered radiation as the
body moves.

After creating the pedestrian, you can move the pedestrian by calling the move object function. To
obtain the reflected signal, call the reflect object function. You can plot the instantaneous position
of the body segments using the plot object function.

Creation

Syntax
pedestrian = backscatterPedestrian
pedestrian = backscatterPedestrian(Name,Value,...)

Description

pedestrian = backscatterPedestrian creates a pedestrian target model object, pedestrian.
The pedestrian model includes 16 body segments – left and right feet, left and right lower legs, left
and right upper legs, left and right hip, left and right lower arms, left and right upper arms, left and
right shoulders, neck, and head.

pedestrian = backscatterPedestrian(Name,Value,...) creates a pedestrian object,
pedestrian, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Any
unspecified properties take default values. For example,

pedestrian = backscatterPedestrian( ...
              'Height',2,'WalkingSpeed',0.5, ...
              'InitialPosition',[0;0;0],'InitialHeading',90);

models a two-meter tall woman or man moving along the positive y-axis at one-half meter per second.

Properties
Height — Height of pedestrian
1.65 (default) | positive scalar

Height of pedestrian, specified as a positive scalar. Units are in meters.
Data Types: double
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WalkingSpeed — Walking speed of pedestrian
1.4 times pedestrian height (default) | non-negative scalar

Walking speed of pedestrian, specified as a non-negative scalar. The motion model limits the walking
speed to 1.4 times the pedestrian height set in the Height property. Units are in meters per second.
Data Types: double

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Carrier frequency
300e6 (default) | positive scalar

Carrier frequency of narrowband incident signals, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

InitialPosition — Initial position of pedestrian
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the pedestrian, specified as a 3-by-1 real-valued vector in the form of [x;y;z].
Units are in meters.
Data Types: double

InitialHeading — Initial heading of pedestrian
0 (default) | scalar

Initial heading of pedestrian, specified as a scalar. Heading is measured in the xy-plane from the x-
axis towards y-axis. Units are in degrees.
Data Types: double

Object Functions

Specific to This Object
move Position and velocity of walking pedestrian
plot Display stick figure showing the positions of all body segments of pedestrian
reflect Reflected signal from walking pedestrian

Common to All Objects
clone Create identical object
release Release resources and allow changes to object property values and input characteristics
reset Reset object state and property values
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Examples

Reflected Signal from Moving Pedestrian

Compute the reflected radar signal from a pedestrian moving along the x-axis away from the origin.
The radar operates at 24 GHz and is located at the origin. The pedestrian is initially 100 meters from
the radar. Transmit a linear FM waveform having a 300 MHz bandwidth. The reflected signal is
captured at the moment the pedestrian starts to move and at two seconds into the motion.

Create a linear FM waveform and a free space channel to propagate the waveform.

c = physconst('Lightspeed');
bw = 300.0e6;
fs = bw;
fc = 24.0e9;
wav = phased.LinearFMWaveform('SampleRate',fs,'SweepBandwidth',bw);
x = wav();
channel = phased.FreeSpace('OperatingFrequency',fc,'SampleRate',fs, ...
    'TwoWayPropagation',true);

Create the pedestrian object. Set the initial position of the pedestrian to 100 m on the x-axis with
initial heading along the positive x-direction. The pedestrian height is 1.8 m and the pedestrian is
walking at 0.5 meters per second.

pedest = phased.BackscatterPedestrian( 'Height',1.8, ...
    'OperatingFrequency',fc,'InitialPosition',[100;0;0], ...
    'InitialHeading',0,'WalkingSpeed',0.5);

The first call to the move function returns the initial position, initial velocity, and initial orientation of
all body segments and then advances the pedestrian motion two seconds ahead.

[bppos,bpvel,bpax] = move(pedest,2,0);

Transmit the first pulse to the pedestrian. Create 16 replicas of the signal and propagate them to the
positions of the pedestrian body segments. Use the rangeangle function to compute the arrival
angle of each replica at the corresponding body segment. Then use the reflect function to return
the coherent sum of all the reflected signals from the body segments at the pedestrian initial position.

radarpos = [0;0;0];
xp = channel(repmat(x,1,16),radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);
y0 = reflect(pedest,xp,ang);

Obtain the position, velocity, and orientation of each body segment then advance the pedestrian
motion another two seconds.

[bppos,bpvel,bpax] = move(pedest,2,0);

Transmit and propagate the second pulse to the new position of the pedestrian.

radarpos = [0;0;0];
xp = channel(repmat(x,1,16),radarpos,bppos,[0;0;0],bpvel);
[~,ang] = rangeangle(radarpos,bppos,bpax);
y1 = reflect(pedest,xp,ang);

Match-filter and plot both of the reflected pulses. The plot shows the increased delay of the matched
filter output as the pedestrian walks away.
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filter = phased.MatchedFilter('Coefficients',getMatchedFilter(wav));
ymf = filter([y0 y1]);
t = (0:size(ymf,1)-1)/fs;
plot(t*1e6,abs(ymf))
xlabel('Time (microsec)')
ylabel('Magnitude')
title('Match-Filtered Reflected Signals')
legend('Signal 1','Signal 2')

Zoom in and show the time delays for each signal.

plot(t*1e6,abs(ymf))
xlabel('Time (microsec)')
ylabel('Magnitude')
title('Matched-Filtered Reflected Signals')
axis([50.65 50.7 0 .0026])
legend('Signal 1','Signal 2')
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Plot Arm Motion of Walking Pedestrian

Create a pedestrian object. Set the initial position of the pedestrian to 100 m on the x-axis with initial
heading along the positive x-direction. The pedestrian height is 1.8 m and the pedestrian is walking at
1.5 meters per second.

fc = 24.0e9;
pedest = phased.BackscatterPedestrian( 'Height',1.8, ...
    'OperatingFrequency',fc,'InitialPosition',[100;0;0], ...
    'InitialHeading',0,'WalkingSpeed',1.5);

Obtain and plot the detailed motion of the right and left lower arms of the pedestrian by capturing
their positions every 1/10th of a second.

blla = zeros(3,100);
brla = blla;
t = zeros(1,100);
T = .1;
for k = 1:100
    [bppos,bpvel,bpax] = move(pedest,T,0);
    blla(:,k) = bppos(:,9);
    brla(:,k) = bppos(:,10);
    t(k) = T*(k-1);
end
plot(t,brla(1,:),t,blla(1,:))

 backscatterPedestrian

1-75



title('Pedestrian Arm Motion')
xlabel('Time (sec)')
ylabel('Distance (m)')
legend('Right Lower Arm','Left Lower Arm')

Plot Pedestrian Motion

Display the motion of a pedestrian walking a square path. Create the pedestrian using a
phased.BackscatterPedestrian object with default values except for height which is 1.7 meters.
Advance and display the pedestrian position every 3 milliseconds. First, the pedestrian moves along
the positive x-axis, then along the positive y-axis, along the negative x-axis, and finally along the
negative y-axis to return to the starting point.

ped = phased.BackscatterPedestrian('Height',1.7);
dt = 0.003;
N = 3600;
for m = 1:N
    if (m < N/4)
        angstep = 0.0;
    end
    if (m >= N/4)
        angstep = 90.0;
    end
    if (m >= N/2)
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        angstep = 180.0;
    end
    if (m >= 3*N/4)
        angstep = 270.0;
    end
    move(ped,dt,angstep);
    plot(ped)
end

References
[1] Victor Chen, The Micro-Doppler Effect in Radar, Artech House, 2011.

[2] Ronan Boulic, Nadia Magnenat-Thalmann, Daniel Thalmann, A Global Human Walking Model with
Real-time Kinematic Personification, The Visual Computer: International Journal of Computer
Graphics, Vol. 6, Issue 6, Dec 1990.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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See Also
move | phased.BackscatterRadarTarget | phased.BackscatterSonarTarget |
phased.RadarTarget | phased.WidebandBackscatterRadarTarget | plot | reflect

Introduced in R2019a
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move
Position and velocity of walking pedestrian

Syntax
[BPPOS,BPVEL,BPAX] = move(pedestrian,T,ANGH)

Description
[BPPOS,BPVEL,BPAX] = move(pedestrian,T,ANGH) returns the position, BPPOS, velocity,
BPVEL, and orientation axes, BPAX, of body segments of a moving pedestrian. The object then
simulates the walking motion for the next duration, specified in T. ANGH specifies the current heading
angle.

Input Arguments
pedestrian — Pedestrian target
backscatterPedestrian object

Pedestrian target model, specified as a backscatterPedestrian object.

T — Duration of next walking interval
scalar

Duration of next walking interval, specified as a positive scalar. Units are in seconds.
Example: 0.75
Data Types: double

ANGH — Pedestrian heading
scalar

Heading of the pedestrian, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Units are in degrees.
Example: -34
Data Types: double

Output Arguments
BPPOS — Positions of body segments
real-valued 3-by-16 matrix

Positions of body segments, returned as a real-valued 3-by-16 matrix. Each column represents the
Cartesian position, [x;y;z], of one of 16 body segments. Units are in meters. See “Body Segment
Indices” on page 1-80 for the column representing the position of each body segment.
Data Types: double
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BPVEL — Velocity of body segments
real-valued 3-by-16 matrix

Velocity of body segments, returned as a real-valued 3-by-16 matrix. Each column represents the
Cartesian velocity vector, [vx;vy;vz], of one of 16 body segments. Units are in meters per second.
See “Body Segment Indices” on page 1-80 for the column representing the velocity of each body
segment.
Data Types: double

BPAX — Orientation of body segments
real-valued 3-by-3-by-16 array

Orientation axes of body segments, returned as a real-valued 3-by-3-by-16 array. Each page
represents the 3-by-3 orientation axes of one of 16 body segments. Units are dimensionless. See
“Body Segment Indices” on page 1-80 for the page representing the orientation of each body
segment.
Data Types: double

More About
Body Segment Indices

Body segment indices define which columns in BPPOS and BPVEL contain the position and velocity
data for a specific body segment. The indices also point to the page of BPAX containing the
orientation matrix for a specific body segment. For example, column three of BPPOS contains the 3-D
position of the left lower leg. Page three of BPAX contains the orientation matrix of the left lower leg.
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Body Segment Indices

Body segment Body segment index
left foot 1
right foot 2
left lower leg 3
right lower leg 4
left upper leg 5
right upper leg 6
left hip 7
right hip 8
left lower arm 9
right lower arm 10
left upper arm 11
right upper arm 12
left shoulder 13
right shoulder 14
neck 15
head 16

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
backscatterPedestrian | plot | reflect

Topics
“Reflected Signal from Moving Pedestrian” on page 1-73

Introduced in R2019a
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reflect
Reflected signal from walking pedestrian

Syntax
Y = reflect(pedestrian,X,ANG)

Description
Y = reflect(pedestrian,X,ANG) returns the reflected signal, Y, from incident signals, X, on a
pedestrian. The reflected signal is the sum of signals from all body segments. ANG defines the
directions of the incident and reflected signals with respect to the body segments.

Input Arguments
pedestrian — Pedestrian target
backscatterPedestrian object

Pedestrian target model, specified as a backscatterPedestrian object.

X — Incident radar signals
complex-valued M-by-16 matrix

Incident radar signals on each body segment, specified as a complex-valued M-by-16 matrix. M is the
number of samples in the signal. See “Body Segment Indices” on page 1-83 for the column
representing the incident signal at each body segment.
Data Types: double
Complex Number Support: Yes

ANG — Directions of incident signals
real-valued 2-by-16 matrix

Directions of incident signals on the body segments, specified as a real-valued 2-by-16 matrix. Each
column of ANG specifies the incident direction of the signal to the corresponding body part. Each
column takes the form of an azimuth-elevation pair, [AzimuthAngle;ElevationAngle]. Units are
in degrees. See “Body Segment Indices” on page 1-83 for the column representing the incident
direction at each body segment.
Data Types: double

Output Arguments
Y — Combined reflected radar signals
complex-valued M-by-1 column vector

Combined reflected radar signals, returned as a complex-valued M-by-1 column vector. M equals the
same number of samples as in the input signal, X.
Data Types: double
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Complex Number Support: Yes

More About
Body Segment Indices

Body segment indices define which columns in X and ANG contain the data for a specific body
segment. For example, column 3 of X contains sample data for the left lower leg. Column 3 of ANG
contains the arrival angle of the signal at the left lower leg.

Body Segment Indices

Body segment Body segment index
left foot 1
right foot 2
left lower leg 3
right lower leg 4
left upper leg 5
right upper leg 6
left hip 7
right hip 8
left lower arm 9
right lower arm 10
left upper arm 11
right upper arm 12
left shoulder 13
right shoulder 14
neck 15
head 16

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
backscatterPedestrian | move | plot

Topics
“Reflected Signal from Moving Pedestrian” on page 1-73

Introduced in R2019a
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plot
Display stick figure showing the positions of all body segments of pedestrian

Syntax
plot(pedestrian)
fhndl = plot(pedestrian)

Description
plot(pedestrian) displays a stick figure showing the positions of all body segments of a
pedestrian. The lines of the figure represent body segments while the dots represent the joints
connecting body segments.

fhndl = plot(pedestrian) returns the figure handle of the display window.

Examples

Plot Pedestrian Motion

Display the motion of a pedestrian walking a square path. Create the pedestrian using a
phased.BackscatterPedestrian object with default values except for height which is 1.7 meters.
Advance and display the pedestrian position every 3 milliseconds. First, the pedestrian moves along
the positive x-axis, then along the positive y-axis, along the negative x-axis, and finally along the
negative y-axis to return to the starting point.

ped = phased.BackscatterPedestrian('Height',1.7);
dt = 0.003;
N = 3600;
for m = 1:N
    if (m < N/4)
        angstep = 0.0;
    end
    if (m >= N/4)
        angstep = 90.0;
    end
    if (m >= N/2)
        angstep = 180.0;
    end
    if (m >= 3*N/4)
        angstep = 270.0;
    end
    move(ped,dt,angstep);
    plot(ped)
end
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Input Arguments
pedestrian — Pedestrian target
backscatterPedestrian object

Pedestrian target, specified as a backscatterPedestrian object.

Output Arguments
fhndl — figure handle
figure handle

Figure handle of plot window

See Also
backscatterPedestrian | move | reflect

Topics
“Reflected Signal from Moving Pedestrian” on page 1-73

Introduced in R2019b
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clone
Create identical object

Syntax
object_clone = clone(original_object)

Description
object_clone = clone(original_object) creates a copy, object_clone, of the input object,
original_object, with identical property values.

Input Arguments
original_object — Object to be cloned
object

Object to be cloned.

Output Arguments
object_clone — Object clone
object

Object clone, returned as an object of the same class as original_object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2019a
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reset
Reset object state and property values

Syntax
reset(obj)

Description
reset(obj) resets the internal state and input properties of the object obj.

• If obj writes or reads a file, reset resets the object to the beginning of the file.
• If obj changes properties, reset resets the properties to their initial default values.
• If obj uses a random number generation seed, reset resets the seed property.

Input Arguments
obj — Object to reset
object

Object whose state you want to reset.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2019a
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release
Release resources and allow changes to object property values and input characteristics

Syntax
release(obj)

Description
release(obj) releases system resources such as memory, file handles, or hardware connections,
and allows you to change properties and input characteristics of obj.

Input Arguments
obj — Object to release
object

Object you want to release.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2019a
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phased.BackscatterRadarTarget
Package: phased

Backscatter radar target

Description
The phased.BackscatterRadarTarget System object models the backscattering of a signal from a
target. Backscattering is a special case of radar target scattering when the incident and reflected
angles are the same. This type of scattering applies to monostatic radar configurations. The radar
cross-section determines the backscattering response of a target to an incoming signal. This System
object lets you specify an angle-dependent radar cross-section model that covers a range of incident
angles.

The phased.BackscatterRadarTarget System object creates a backscattered signal for polarized
and nonpolarized signals. While electromagnetic radar signals are polarized, you can often ignore
polarization in your simulation and process the signals as scalar signals. To ignore polarization,
specify the EnablePolarization property as false. To employ polarization, specify the
EnablePolarization property as true.

For nonpolarized signals, you specify the radar cross section as an array of radar cross-section (RCS)
values at discrete azimuth and elevation points. The System object interpolates values for incident
angles between array points. For polarized signals, you specify the radar scattering matrix using
three arrays defined at discrete azimuth and elevation points. These three arrays correspond to the
HH, HV, and VV polarization components. The VH component is computed from the conjugate
symmetry of the HV component.

For both nonpolarized and polarized signal cases, you can employ one of four Swerling models to
generate random fluctuations in the RCS or radar scattering matrix. Choose the model using the
Model property. Then, use the SeedSource and Seed properties to control the fluctuations.

EnablePolarization Use these properties
false RCSPattern
true ShhPattern, SvvPattern, and ShvPattern

To model a backscattered radar signal:

1 Define and set up your radar target. You can set phased.BackscatterRadarTarget System
object properties at construction time or leave them to their default values. See “Construction”
on page 1-90. Some properties that you set at construction time can be changed later. These
properties are tunable.

2 To compute the reflected signal, call the step method of phased.BackscatterRadarTarget.
The output of the method depends on the properties of the phased.BackscatterRadarTarget
System object. You can change tunable properties at any time.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.
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Construction
target = phased.BackscatterRadarTarget creates a backscatter radar target System object,
target.

target = phased.BackscatterRadarTarget(Name,Value) creates a backscatter radar target
System object, target, with each specified property Name set to the specified Value. You can specify
additional name and value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
EnablePolarization — Enable polarized signals
false (default) | true

Option to enable processing of polarized signals, specified as false or true. Set this property to
true to allow the target to simulate the reflection of polarized radiation. Set this property to false
to ignore polarization.
Example: true
Data Types: logical

AzimuthAngles — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Azimuth angles used to define the angular coordinates of each column of the matrices specified by
the RCSPattern, ShhPattern, ShvPattern, or SvvPattern properties. Specify the azimuth angles
as a length P vector. P must be greater than two. Angle units are in degrees.
Example: [-45:0.1:45]
Data Types: double

ElevationAngles — Elevation angles
[-90:90] (default) | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector

Elevation angles used to define the angular coordinates of each row of the matrices specified by the
RCSPattern, ShhPattern, ShvPattern, or SvvPattern properties. Specify the elevation angles as
a length Q vector. Q must be greater than two. Angle units are in degrees.
Example: [-30:0.1:30]
Data Types: double

RCSPattern — Radar cross-section pattern
ones(181,361) (default) | Q-by-P real-valued matrix | Q-by-P-by-M real-valued array | 1-by-P real-
valued vector | M-by-P real-valued matrix

Radar cross-section (RCS) pattern, specified as a Q-by-P real-valued matrix or a Q-by-P-by-M real-
valued array. Q is the length of the vector in the ElevationAngles property. P is the length of the
vector in the AzimuthAngles property. M is the number of target patterns. The number of patterns
corresponds to the number of signals passed into the step method. You can, however, use a single
pattern to model multiple signals reflecting from a single target. Pattern units are square-meters.

You can also specify the pattern as a function only of azimuth for a single elevation. In this case,
specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a separate pattern.
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This property applies when the EnablePolarization property is false.
Example: [1,.5;.5,1]
Data Types: double

ShhPattern — Radar-scattering matrix HH polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-valued array | 1-by-
P complex-valued vector | M-by-P complex-valued matrix

Radar scattering matrix HH polarization component, specified as a Q-by-P complex-valued matrix or a
Q-by-P-by-M complex-valued array. Q is the length of the vector in the ElevationAngles property. P
is the length of the vector in the AzimuthAngles property. M is the number of target patterns. The
number of patterns corresponds to the number of signals passed into the step method. You can,
however, use a single pattern to model multiple signals reflecting from a single target. Scattering
matrix units are meters.

You can also specify the pattern as a function only of azimuth for a single elevation. Then, specify the
pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a separate pattern.

This property applies when the EnablePolarization property is true.
Example: [1,1;1i,1i]
Data Types: double
Complex Number Support: Yes

SvvPattern — Radar scattering matrix VV polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-valued array | 1-by-
P complex-valued vector | M-by-P complex-valued matrix

Radar scattering matrix VV polarization component, specified as a Q-by-P complex-valued matrix or a
Q-by-P-by-M complex-valued array. Q is the length of the vector in the ElevationAngles property. P
is the length of the vector in the AzimuthAngles property. M is the number of target patterns. The
number of patterns corresponds to the number of signals passed into the step method. You can,
however, use a single pattern to model multiple signals reflecting from a single target. Scattering
matrix units are meters.

You can also specify the pattern as a function only of azimuth for a single elevation. In this case,
specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a separate pattern.

This property applies when the EnablePolarization property is true.
Example: [1,1;1i,1i]
Data Types: double
Complex Number Support: Yes

ShvPattern — Radar scattering matrix HV polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-M complex-valued array | 1-by-
P complex-valued vector | M-by-P complex-valued matrix

Radar scattering matrix HV polarization component, specified as a Q-by-P complex-valued matrix or a
Q-by-P-by-M complex-valued array. Q is the length of the vector in the ElevationAngles property. P
is the length of the vector in the AzimuthAngles property. M is the number of target patterns. The
number of patterns corresponds to the number of signals passed into the step method. You can,
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however, use a single pattern to model multiple signals reflecting from a single target. Scattering
matrix units are meters.

You can also specify the pattern as a function only of azimuth for a single elevation. In this case,
specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a separate pattern.

This property applies when the EnablePolarization property is true.
Example: [1,1;1i,1i]
Data Types: double
Complex Number Support: Yes

Model — Target fluctuation model
'Nonfluctuating' (default) | 'Swerling1' | 'Swerling2' | 'Swerling3' | 'Swerling4'

Target fluctuation model, specified as 'Nonfluctuating', 'Swerling1', 'Swerling2',
'Swerling3', or 'Swerling4'. If you set this property to a value other than 'Nonfluctuating',
use the update input argument when calling step.
Example: 'Swerling3'
Data Types: char

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

SeedSource — Seed source of random number generator for RCS fluctuation model
'Auto' (default) | 'Property'

Seed source of random number generator for RCS fluctuation model, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the System object generates random numbers
using the default MATLAB random number generator. When you set this property to 'Property',
you specify the random number generator seed using the Seed property. This property applies when
you set the Model property to'Swerling1', 'Swerling2', 'Swerling3', or 'Swerling4'. When
you use this object with Parallel Computing Toolbox™ software, you set this property to 'Auto'.
Example: 'Property'
Data Types: char

Seed — Random number generator seed
0 (default) | nonnegative integer less than 232
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Random number generator seed, specified as a nonnegative integer less than 232. This property
applies when the SeedSource property is set to 'Property'.
Example: 32301
Data Types: double

Methods
reset Reset states of System object
step Backscatter incoming signal

Common to All System Objects
release Allow System object property value changes

Examples

Backscatter Nonpolarized Signal

Calculate the reflected radar signal from a nonfluctuating point target with a peak RCS of 10.0 m2.
Use a simplified expression of an RCS pattern of a target for illustrative purposes. Real RCS patterns
are more complicated. The RCS pattern covers a range of angles from 10°–30° in azimuth and 5°–15°
in elevation. The RCS peaks at 20° azimuth and 10° elevation. Assume that the radar operating
frequency is 1 GHz and that the signal is a sinusoid at 1 MHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create and plot the RCS pattern.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:30.0];
elpatangs = [5.0:0.1:15.0];
rcspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
imagesc(azpatangs,elpatangs,rcspattern)
axis image
axis tight
title('RCS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
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Generate and plot 50 samples of the radar signal.

foper = 1.0e9;
freq = 1.0e6;
fs = 10*freq;
nsamp = 50;
t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);
plot(t*1e6,sig)
xlabel('Time (\mu seconds)')
ylabel('Signal Amplitude')
grid
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Create the phased.BackscatterRadarTarget System object™.

target = phased.BackscatterRadarTarget('Model','Nonfluctuating',...
    'AzimuthAngles',azpatangs,'ElevationAngles',elpatangs,...
    'RCSPattern',rcspattern,'OperatingFrequency',foper);

For a sequence of incident angles at constant elevation angle, find and plot the scattered signal
amplitude.

az0 = 13.0;
el = 10.0;
naz = 20;
az = az0 + [0:2:20];
naz = length(az);
ss = zeros(1,naz);
for k = 1:naz
    y = target(sig,[az(k);el]);
    ss(k) = max(abs(y));
end
plot(az,ss,'.')
xlabel('Azimuth (deg)')
ylabel('Scattered Signal Amplitude')
grid
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Backscatter Polarized Signal

Calculate the polarized radar signal scattered from a Swerling1 fluctuating point target. Assume the
target axis is rotated from the global coordinate system. Use simple expressions for the scattering
patterns for illustration. Real scattering patterns are more complicated. For polarized signals, you
need to specify the HH, HV, and VV components of the scattering matrix for a range of incident
angles. In this example, the patterns cover the range 10°–30° in azimuth and 5°–15° in elevation.
Angles are with respect to the target local coordinate system. Assume that the radar operating
frequency is 1 GHz and that the signal is a sinusoid with a frequency of 1 MHz. The incident angle is
13.0° azimuth and 14.0° elevation with respect to the target orientation.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create and plot the scattering matrix patterns.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:35.0];
elpatangs = [5.0:0.1:15.0];
shhpat = cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
shvpat = 1i*cosd(4*(elpatangs - elmax))'*sind(4*(azpatangs - azmax));
svvpat = sind(4*(elpatangs - elmax))'*sind(4*(azpatangs - azmax));
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subplot(1,3,1)
imagesc(azpatangs,elpatangs,abs(shhpat))
axis image
axis tight
title('HH')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
subplot(1,3,2)
imagesc(azpatangs,elpatangs,abs(shvpat))
axis image
axis tight
title('HV')
xlabel('Azimuth (deg)')
subplot(1,3,3)
imagesc(azpatangs,elpatangs,abs(svvpat))
axis image
axis tight
title('VV')
xlabel('Azimuth (deg)')

Create the phased.BackscatterRadarTarget System object™.

target = phased.BackscatterRadarTarget('EnablePolarization',true,...
    'Model','Swerling1','AzimuthAngles',azpatangs,...
    'ElevationAngles',elpatangs,'ShhPattern',shhpat,'ShvPattern',shvpat,...
    'SvvPattern',svvpat);

Generate 50 samples of a polarized radar signal.
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foper = 1.0e9;
freq = 1.0e6;
fs = 10*freq;
nsamp = 50;
t = [0:(nsamp-1)]'/fs;
signal.X = exp(1i*2*pi*freq*t);
signal.Y = exp(1i*2*pi*freq*t + pi/3);
signal.Z = zeros(size(signal.X));
tgtaxes = azelaxes(60,10);
ang = [13.0;14.0];

Reflect the signal from the target and plot its components.

refl_signal = target(signal,ang,tgtaxes,true);
figure
plot(t*1e6,real(refl_signal.X))
hold on
plot(t*1e6,real(refl_signal.Y))
plot(t*1e6,real(refl_signal.Z))
hold off
xlabel('Time \mu seconds')
ylabel('Amplitude')
grid
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More About
Backscattered Radiation

For a narrowband nonpolarized signal, the reflected signal, Y, is

Y = G ⋅ X,

where:

• X is the incoming signal.
• G is the target gain factor, a dimensionless quantity given by

G = 4πσ
λ2 .

• σ is the mean radar cross-section (RCS) of the target.
• λ is the wavelength of the incoming signal.

The incident signal on the target is scaled by the square root of the gain factor.

For narrowband polarized waves, the single scalar signal, X, is replaced by a vector signal, (EH, EV),
with horizontal and vertical components. The scattering matrix, S, replaces the scalar cross-section,
σ. Through the scattering matrix, the incident horizontal and vertical polarized signals are converted
into the reflected horizontal and vertical polarized signals.

EH
(scat)

EV
(scat)

= 4π
λ2

SHH SVH
SHV SVV

EH
(inc)

EV
(inc)

= 4π
λ2 S

EH
(inc)

EV
(inc)

For further details, see [1] or [2].
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
backscatterBicyclist | backscatterPedestrian | phased.BackscatterSonarTarget |
phased.RadarTarget | phased.WidebandBackscatterRadarTarget
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Topics
“Modeling Target Radar Cross Section”
“Designing a Basic Monostatic Pulse Radar”
“Swerling Target Models”

Introduced in R2016a
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reset
System object: phased.BackscatterRadarTarget
Package: phased

Reset states of System object

Syntax
reset(sBSTgt)

Description
reset(sBSTgt) resets the internal state of the phased.BackscatterRadarTarget object,
sBSTgt. This method resets the random number generator state if SeedSource is a property of this
System object and has the value 'Property'.

Input Arguments
sBSTgt — Backscatter radar target
System object

Backscatter radar target, specified as a System object.
Example: phased.BackscatterRadarTarget

Introduced in R2016a
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step
System object: phased.BackscatterRadarTarget
Package: phased

Backscatter incoming signal

Syntax
refl_sig = step(target,sig,ang)
refl_sig = step(target,sig,ang,update)

refl_sig = step(target,sig,ang,laxes)
refl_sig = step(target,sig,ang,laxes,update)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

refl_sig = step(target,sig,ang) returns the reflected signal, refl_sig, of an incident
nonpolarized signal, sig, arriving at the target from the angle, ang. This syntax applies when you set
the EnablePolarization property to false and the Model property to 'Nonfluctuating'. In
this case, the values specified in the RCSPattern property are used to compute the RCS values for
the incident and reflected directions, ang.

refl_sig = step(target,sig,ang,update) uses update to control whether to update the RCS
values. This syntax applies when you set the EnablePolarization property to false and the
Model property to one of the fluctuating RCS models: 'Swerling1', 'Swerling2', 'Swerling3',
or 'Swerling4'. If update is true, a new RCS value is generated. If update is false, the previous
RCS value is used.

refl_sig = step(target,sig,ang,laxes) returns the reflected signal, refl_sig, of an
incident polarized signal, sig. The matrix, laxes, specifies the local target coordinate system. This
syntax applies when you set EnablePolarization to true and the Model property to
'Nonfluctuating'. The values specified in the ShhPattern, SvvPattern, and ShvPattern
properties are used to compute the scattering matrices for the incident and reflected directions, ang.

refl_sig = step(target,sig,ang,laxes,update) uses the update argument to control
whether to update the scattering matrix values. This syntax applies when you set the
EnablePolarization property to true and the Model property to one of the fluctuating RCS
models: 'Swerling1', 'Swerling2', 'Swerling3', or 'Swerling4'. If update is true, a new
RCS value is generated. If update is false, the previous RCS value is used.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
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issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
target — Backscatter target
System object

Backscatter target, specified as a System object.
Example: phased.BackscatterRadarTarget

sig — Narrowband signal
N-by-M complex-valued matrix | 1-by-M struct array containing complex-valued fields

• Narrowband nonpolarized signal, specified as an N-by-M complex-valued matrix. The quantity N is
the number of signal samples and M is the number of signals reflecting off the target. Each
column corresponds to an independent signal incident at a different reflecting angle.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

• Narrowband polarized signal, specified as a 1-by-M struct array containing complex-valued
fields. Each struct element contains three N-by-1 column vectors of electromagnetic field
components (sig.X,sig.Y,sig.Z) representing the polarized signal that reflects from the
target.

For polarized fields, the struct element contains three N-by-1 complex-valued column vectors,
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a
changing signal length such as a pulse waveform with variable pulse repetition frequency.

Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

ang — Incident signal direction
2-by-1 positive real-valued column vector | 2-by-M positive real-valued column matrix

Incident signal direction, specified as a 2-by-1 positive real-valued column vector or a 2-by-M positive
real-valued column matrix. Each column of ang specifies the incident direction of the corresponding
signal in the form of an [AzimuthAngle;ElevationAngle] pair. Units are degrees. The number of
columns in ang must match the number of independent signals in sig.
Example: [30;45]
Data Types: double

update — Update RCS
false (default) | true
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Allow the RCS values for fluctuation models to update, specified as false or true. When update is
true, a new RCS value is generated with each call to the step method. If update is false, the RCS
remains unchanged with each call to step.
Example: true
Data Types: logical

laxes — Local coordinate matrix
eye(3,3) (default) | 3-by-3 real-valued orthonormal matrix | 3-by-3-by-M real-valued array

Local coordinate system matrix, specified as a 3-by-3 real-valued orthonormal matrix or a 3-by-3-by-M
real-valued array. The matrix columns specify the local coordinate system orthonormal x-axis, y-axis,
and z-axis, respectively. Each axis is a vector of the form (x;y;z) with respect to the global coordinate
system. When sig has only one signal, laxes is a 3-by-3 matrix. When sig has multiple signals, you
can use a single 3-by-3 matrix for multiple signals in sig. In this case, all targets have the same local
coordinate systems. When you specify laxes as a 3-by-3-by-M MATLAB array, each page (third index)
defines a 3-by-3 local coordinate matrix for the corresponding target.
Example: [1,0,0;0,0.7071,-0.7071;0,0.7071,0.7071]
Data Types: double

Output Arguments
refl_sig — Narrowband reflected signal
N-by-M complex-valued matrix | 1-by-M struct array containing complex-valued fields

• Narrowband nonpolarized signal, specified as an N-by-M complex-valued matrix. Each column
contains an independent signal reflected from the target.

The quantity N is the number of signal samples and M is the number of signals reflecting off the
target. Each column corresponds to a reflecting angle.

• Narrowband polarized signal, specified as a 1-by-M struct array containing complex-valued
fields. Each struct element contains three N-by-1 column vectors of electromagnetic field
components (sig.X,sig.Y,sig.Z) representing the polarized signal that reflects from the
target.

For polarized fields, the struct element contains three N-by-1 complex-valued column vectors,
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The output refl_sig contains signal samples arriving at the signal destination within the current
input time frame. When the propagation time from source to destination exceeds the current time
frame duration, the output does not contain all contributions from the input of the current time
frame. The remaining output appears in the next call to step.

Examples

Backscatter Nonpolarized Signal

Calculate the reflected radar signal from a nonfluctuating point target with a peak RCS of 10.0 m2.
Use a simplified expression of an RCS pattern of a target for illustrative purposes. Real RCS patterns
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are more complicated. The RCS pattern covers a range of angles from 10°–30° in azimuth and 5°–15°
in elevation. The RCS peaks at 20° azimuth and 10° elevation. Assume that the radar operating
frequency is 1 GHz and that the signal is a sinusoid at 1 MHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create and plot the RCS pattern.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:30.0];
elpatangs = [5.0:0.1:15.0];
rcspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
imagesc(azpatangs,elpatangs,rcspattern)
axis image
axis tight
title('RCS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')

Generate and plot 50 samples of the radar signal.

foper = 1.0e9;
freq = 1.0e6;
fs = 10*freq;
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nsamp = 50;
t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);
plot(t*1e6,sig)
xlabel('Time (\mu seconds)')
ylabel('Signal Amplitude')
grid

Create the phased.BackscatterRadarTarget System object™.

target = phased.BackscatterRadarTarget('Model','Nonfluctuating',...
    'AzimuthAngles',azpatangs,'ElevationAngles',elpatangs,...
    'RCSPattern',rcspattern,'OperatingFrequency',foper);

For a sequence of incident angles at constant elevation angle, find and plot the scattered signal
amplitude.

az0 = 13.0;
el = 10.0;
naz = 20;
az = az0 + [0:2:20];
naz = length(az);
ss = zeros(1,naz);
for k = 1:naz
    y = target(sig,[az(k);el]);
    ss(k) = max(abs(y));
end
plot(az,ss,'.')
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xlabel('Azimuth (deg)')
ylabel('Scattered Signal Amplitude')
grid

Backscatter Polarized Signal

Calculate the polarized radar signal scattered from a Swerling1 fluctuating point target. Assume the
target axis is rotated from the global coordinate system. Use simple expressions for the scattering
patterns for illustration. Real scattering patterns are more complicated. For polarized signals, you
need to specify the HH, HV, and VV components of the scattering matrix for a range of incident
angles. In this example, the patterns cover the range 10°–30° in azimuth and 5°–15° in elevation.
Angles are with respect to the target local coordinate system. Assume that the radar operating
frequency is 1 GHz and that the signal is a sinusoid with a frequency of 1 MHz. The incident angle is
13.0° azimuth and 14.0° elevation with respect to the target orientation.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create and plot the scattering matrix patterns.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:35.0];
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elpatangs = [5.0:0.1:15.0];
shhpat = cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
shvpat = 1i*cosd(4*(elpatangs - elmax))'*sind(4*(azpatangs - azmax));
svvpat = sind(4*(elpatangs - elmax))'*sind(4*(azpatangs - azmax));
subplot(1,3,1)
imagesc(azpatangs,elpatangs,abs(shhpat))
axis image
axis tight
title('HH')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
subplot(1,3,2)
imagesc(azpatangs,elpatangs,abs(shvpat))
axis image
axis tight
title('HV')
xlabel('Azimuth (deg)')
subplot(1,3,3)
imagesc(azpatangs,elpatangs,abs(svvpat))
axis image
axis tight
title('VV')
xlabel('Azimuth (deg)')

Create the phased.BackscatterRadarTarget System object™.

target = phased.BackscatterRadarTarget('EnablePolarization',true,...
    'Model','Swerling1','AzimuthAngles',azpatangs,...
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    'ElevationAngles',elpatangs,'ShhPattern',shhpat,'ShvPattern',shvpat,...
    'SvvPattern',svvpat);

Generate 50 samples of a polarized radar signal.

foper = 1.0e9;
freq = 1.0e6;
fs = 10*freq;
nsamp = 50;
t = [0:(nsamp-1)]'/fs;
signal.X = exp(1i*2*pi*freq*t);
signal.Y = exp(1i*2*pi*freq*t + pi/3);
signal.Z = zeros(size(signal.X));
tgtaxes = azelaxes(60,10);
ang = [13.0;14.0];

Reflect the signal from the target and plot its components.

refl_signal = target(signal,ang,tgtaxes,true);
figure
plot(t*1e6,real(refl_signal.X))
hold on
plot(t*1e6,real(refl_signal.Y))
plot(t*1e6,real(refl_signal.Z))
hold off
xlabel('Time \mu seconds')
ylabel('Amplitude')
grid
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See Also
phased.RadarTarget | phased.WidebandBackscatterRadarTarget

Introduced in R2016a
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phased.BackscatterSonarTarget
Package: phased

Sonar target backscatter

Description
The phased.BackscatterSonarTarget System object models the backscattering of a signal from
an underwater or surface target. Backscattering is a special case of sonar target scattering when the
incident and reflected angles are the same. This type of scattering applies to monostatic sonar
configurations. The sonar target strength (TS) determines the backscattering response of a target to
an incoming signal. This object lets you specify an angle-dependent sonar target strength model that
covers a range of incident angles.

The object lets you specify the target strength as an array of values at discrete azimuth and elevation
points. The object interpolates values for incident angles between array points.

You can employ one of four Swerling models to generate random fluctuations in the target strength.
Choose the fluctuation model using the Model property. Then, use the SeedSource and Seed
properties to control the fluctuations.

To model a backscattered reflected sonar signal:

1 Define and set up your sonar target. You can set phased.BackscatterSonarTarget System
object properties at construction time or leave them to their default values. See “Construction”
on page 1-111. Some properties that you set at construction time can be changed later. These
properties are tunable.

2 To compute the reflected signal, call the step method of phased.BackscatterSonarTarget.
The output of the method depends on the properties of the phased.BackscatterSonarTarget
System object. You can change tunable properties at any time.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
target = phased.BackscatterSonarTarget creates a backscatter sonar target System object,
target.

target = phased.BackscatterSonarTarget(Name,Value) creates a backscatter sonar target
System object, target, with each specified property Name set to the specified Value. You can specify
additional name and value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
AzimuthAngles — Target strength azimuth angles
[-180:180] (default) | real-valued 1-by-P row vector | real-valued P-by-1 column vector
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Target strength azimuth angles, specified as a real-valued 1-by-P row vector or P-by-1 column vector.
These angles define the azimuth coordinates of each column of the matrix specified by the
TSPattern property. P must be greater than two. Angle units are in degrees.
Example: [-45:0.1:45]
Data Types: double

ElevationAngles — Elevation angles
[-90:90] (default) | real-valued 1-by-Q row vector | real-valued Q-by-1 column vector

Target strength elevation angles, specified as a real-valued 1-by-Q row vector or Q-by-1 column
vector. These angles define the elevation coordinates of each row of the matrix specified by the
TSPattern property. Q must be greater than two. Angle units are in degrees.
Example: [-30:0.1:30]
Data Types: double

TSPattern — Sonar target strength pattern
zeros(181,361) (default) | Q-by-P real-valued matrix | Q-by-P-by-M real-valued array | 1-by-P real-
valued vector | M-by-P real-valued matrix

Sonar target strength (TS) pattern, specified as a real-valued Q-by-P matrix or Q-by-P-by-M array. Q is
the length of the vector in the ElevationAngles property. P is the length of the vector in the
AzimuthAngles property. M is the number of target patterns. The number of patterns corresponds
to the number of signals passed into the step method. You can, however, use a single pattern to
model multiple signals reflecting from a single target. Pattern units are dB.

You can also specify the pattern as a function only of azimuth for a single elevation. In this case,
specify the pattern as either a 1-by-P vector or an M-by-P matrix. Each row is a separate pattern.
Example: [1,2;3,4]
Data Types: double

Model — Target fluctuation model
'Nonfluctuating' (default) | 'Swerling1' | 'Swerling2' | 'Swerling3' | 'Swerling4'

Target fluctuation model, specified as 'Nonfluctuating', 'Swerling1', 'Swerling2',
'Swerling3', or 'Swerling4'. If you set this property to a value other than 'Nonfluctuating',
use the update input argument when calling the step method.
Example: 'Swerling3'
Data Types: char

SeedSource — Seed source of random number generator for TS fluctuation model
'Auto' (default) | 'Property'

Seed source of random number generator for TS fluctuation model, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the System object generates random numbers
using the default MATLAB random number generator. When you set this property to 'Property',
you specify the random number generator seed using the Seed property. This property applies when
you set the Model property to'Swerling1', 'Swerling2', 'Swerling3', or 'Swerling4'. When
you use this object with Parallel Computing Toolbox software, you set this property to 'Auto'.
Example: 'Property'
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Data Types: char

Seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 32301

Dependencies

To enable this property, set the SeedSource property to 'Property'.
Data Types: double

Methods

reset Reset states of System object
step Backscatter incoming sonar signal

Common to All System Objects
release Allow System object property value changes

Examples

Backscatter Sonar Signal from Nonfluctuating Target

Calculate the reflected sonar signal from a nonfluctuating point target with a peak target strength
(TS) of 10.0 db. For illustrative purposes, use a simplified expression for the TS pattern of a target.
Real TS patterns are more complicated. The TS pattern covers a range of angles from 10° to 30° in
azimuth and from 5° to 15° in elevation. The TS peaks at 20° azimuth and 10° elevation. Assume that
the sonar operating frequency is 10 kHz and that the signal is a sinusoid at 9500 kHz.

Create and plot the TS pattern.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:35.0];
elpatangs = [5.0:0.1:15.0];
tspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
tspatterndb = 10*log10(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar
axis image
axis tight
title('TS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
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Generate and plot 50 samples of the sonar signal.

freq = 9.5e3;
fs = 100*freq;
nsamp = 500;
t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);
plot(t*1e6,sig)
xlabel('Time (\mu seconds)')
ylabel('Signal Amplitude')
grid
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Create the phased.BackscatterSonarTarget System object™.

target = phased.BackscatterSonarTarget('Model','Nonfluctuating', ...
    'AzimuthAngles',azpatangs,'ElevationAngles',elpatangs, ...
    'TSPattern',tspattern);

For a sequence of different azimuth incident angles (at constant elevation angle), plot the maximum
scattered signal amplitude.

az0 = 13.0;
el = 10.0;
naz = 20;
az = az0 + [0:1:20];
naz = length(az);
ss = zeros(1,naz);
for k = 1:naz
    y = target(sig,[az(k);el]);
    ss(k) = max(abs(y));
end
plot(az,ss,'o')
xlabel('Azimuth (deg)')
ylabel('Backscattered Signal Amplitude')
grid
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Backscatter Sonar Signal from Fluctuating Target

Calculate the reflected sonar signal from a Swerling2 fluctuating point target with a peak target
strength (TS) of 10.0 db. For illustrative purposes, use a simplified expression for the TS pattern of a
target. Real TS patterns are more complicated. The TS pattern covers a range of angles from 10°to
30° in azimuth and from 5° ro 15° in elevation. The TS peaks at 20° azimuth and 10° elevation.
Assume that the sonar operating frequency is 10 kHz and that the signal is a sinusoid at 9500 kHz.

Create and plot the TS pattern.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:35.0];
elpatangs = [5.0:0.1:15.0];
tspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
tspatterndb = 10*log10(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar
axis image
axis tight
title('TS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
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Generate the sonar signal.

freq = 9.5e3;
fs = 10*freq;
nsamp = 50;
t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);

Create the phased.BackscatterSonarTarget System object™.

target = phased.BackscatterSonarTarget('Model','Nonfluctuating',...
    'AzimuthAngles',azpatangs,'ElevationAngles',elpatangs,...
    'TSPattern',tspattern,'Model','Swerling2');

Compute and plot the fluctuating signal amplitude for 20 time steps.

az = 20.0;
el = 10.0;
nsteps = 20;
ss = zeros(1,nsteps);
for k = 1:nsteps
    y = target(sig,[az;el],true);
    ss(k) = max(abs(y));
end
plot([0:(nsteps-1)]*1000/fs,ss,'o')
xlabel('Time (msec)')
ylabel('Backscattered Signal Amplitude')
grid
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More About
Backscattered Sound Radiation

For narrowband acoustic signals, the reflected signal, Y, is given by

Y = G ⋅ X,

where

• X is the incoming signal.
• G is the target gain factor given by 10TS/10 where TS is the target strength in dB. Specify target

strength using the TSPattern property.

For a more detailed explanation of target strength, see “[1] [2]” on page 1-118.

References
[1] Urick, R.J. Principles of Underwater Sound, 3rd Edition. New York: Peninsula Publishing, 1996.

[2] Sherman, C.S. and J.Butler Transducers and Arrays for Underwater Sound. New York: Springer,
2007.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
backscatterBicyclist | backscatterPedestrian | phased.BackscatterRadarTarget |
phased.IsoSpeedUnderwaterPaths | phased.RadarTarget |
phased.WidebandBackscatterRadarTarget

Topics
“Underwater Target Detection with an Active Sonar System”
“Locating an Acoustic Beacon with a Passive Sonar System”
“Swerling Target Models”

Introduced in R2017a
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reset
System object: phased.BackscatterSonarTarget
Package: phased

Reset states of System object

Syntax
reset(target)

Description
reset(target) resets the internal state of the phased.BackscatterSonarTarget object,
target. This method resets the random number generator state if SeedSource is a property of this
System object and has the value 'Property'.

Input Arguments
target — Backscatter sonar target
phased.BackscatterSonarTarget System object

Backscatter sonar target, specified as a phased.BackscatterSonarTarget System object.
Example: phased.BackscatterSonarTarget

Introduced in R2017a
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step
System object: phased.BackscatterSonarTarget
Package: phased

Backscatter incoming sonar signal

Syntax
refl_sig = step(target,sig,ang)
refl_sig = step(target,sig,ang,update)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

refl_sig = step(target,sig,ang) returns the reflected signal, refl_sig, of an incident sonar
signal, sig, arriving at the target from the angle, ang.

refl_sig = step(target,sig,ang,update) uses update to control whether to update the
target strength (TS) values. This syntax applies when you set the Model property to one of the
fluctuating TS models: 'Swerling1', 'Swerling2', 'Swerling3', or 'Swerling4'. If update is
true, a new TS value is generated. If update is false, the previous TS value is used.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
target — Backscatter sonar target
phased.BackscatterSonarTarget System object

Backscatter sonar target, specified as a phased.BackscatterSonarTarget System object.

sig — Sonar signal
N-by-M complex-valued matrix

Sonar signal, specified as an N-by-M complex-valued matrix. The quantity N is the number of signal
samples and M is the number of signals reflecting off the target. Each column corresponds to an
independent signal incident at a different reflecting angle.

When you specify the TSPattern property as a Q-by-P-by-M, a separate pattern is used for each
signal. When you specify TSPattern as a Q-by-Pmatrix, the same pattern is used for every signal.
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The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

ang — Incident signal direction
2-by-1 positive real-valued column vector | 2-by-M positive real-valued column matrix

Incident signal direction, specified as a 2-by-1 positive real-valued column vector or a 2-by-M positive
real-valued column matrix. Each column of ang specifies the incident direction of the corresponding
signal in the form of an [AzimuthAngle;ElevationAngle] pair. Units are degrees. The number of
columns in ang must match the number of independent signals in sig.
Example: [30;45]
Data Types: double

update — Update target strength
false (default) | true

Allow the TS values for fluctuation models to update, specified as false or true. When update is
true, a new TS value is generated with each call to the step method. If update is false, TS
remains unchanged with each call to step.
Example: true
Data Types: logical

Output Arguments
refl_sig — Narrowband reflected sonar signal
N-by-M complex-valued matrix

Narrowband reflected sonar signal, specified as an N-by-M complex-valued matrix. Each column
contains an independent signal reflected from the target.

The quantity N is the number of signal samples and M is the number of signals reflecting off the
target. Each column corresponds to a reflecting angle.

The output refl_sig contains signal samples arriving at the signal destination within the current
input time frame. When the propagation time from source to destination exceeds the current time
frame duration, the output will not contain all contributions from the input of the current time frame.
The remaining output appears in the next call to step.

Examples

Backscatter Sonar Signal from Nonfluctuating Target

Calculate the reflected sonar signal from a nonfluctuating point target with a peak target strength
(TS) of 10.0 db. For illustrative purposes, use a simplified expression for the TS pattern of a target.
Real TS patterns are more complicated. The TS pattern covers a range of angles from 10° to 30° in
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azimuth and from 5° to 15° in elevation. The TS peaks at 20° azimuth and 10° elevation. Assume that
the sonar operating frequency is 10 kHz and that the signal is a sinusoid at 9500 kHz.

Create and plot the TS pattern.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:35.0];
elpatangs = [5.0:0.1:15.0];
tspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
tspatterndb = 10*log10(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar
axis image
axis tight
title('TS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')

Generate and plot 50 samples of the sonar signal.

freq = 9.5e3;
fs = 100*freq;
nsamp = 500;
t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);
plot(t*1e6,sig)
xlabel('Time (\mu seconds)')
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ylabel('Signal Amplitude')
grid

Create the phased.BackscatterSonarTarget System object™.

target = phased.BackscatterSonarTarget('Model','Nonfluctuating', ...
    'AzimuthAngles',azpatangs,'ElevationAngles',elpatangs, ...
    'TSPattern',tspattern);

For a sequence of different azimuth incident angles (at constant elevation angle), plot the maximum
scattered signal amplitude.

az0 = 13.0;
el = 10.0;
naz = 20;
az = az0 + [0:1:20];
naz = length(az);
ss = zeros(1,naz);
for k = 1:naz
    y = target(sig,[az(k);el]);
    ss(k) = max(abs(y));
end
plot(az,ss,'o')
xlabel('Azimuth (deg)')
ylabel('Backscattered Signal Amplitude')
grid
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Backscatter Sonar Signal from Fluctuating Target

Calculate the reflected sonar signal from a Swerling2 fluctuating point target with a peak target
strength (TS) of 10.0 db. For illustrative purposes, use a simplified expression for the TS pattern of a
target. Real TS patterns are more complicated. The TS pattern covers a range of angles from 10°to
30° in azimuth and from 5° ro 15° in elevation. The TS peaks at 20° azimuth and 10° elevation.
Assume that the sonar operating frequency is 10 kHz and that the signal is a sinusoid at 9500 kHz.

Create and plot the TS pattern.

azmax = 20.0;
elmax = 10.0;
azpatangs = [10.0:0.1:35.0];
elpatangs = [5.0:0.1:15.0];
tspattern = 10.0*cosd(4*(elpatangs - elmax))'*cosd(4*(azpatangs - azmax));
tspatterndb = 10*log10(tspattern);
imagesc(azpatangs,elpatangs,tspatterndb)
colorbar
axis image
axis tight
title('TS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
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Generate the sonar signal.

freq = 9.5e3;
fs = 10*freq;
nsamp = 50;
t = [0:(nsamp-1)]'/fs;
sig = sin(2*pi*freq*t);

Create the phased.BackscatterSonarTarget System object™.

target = phased.BackscatterSonarTarget('Model','Nonfluctuating',...
    'AzimuthAngles',azpatangs,'ElevationAngles',elpatangs,...
    'TSPattern',tspattern,'Model','Swerling2');

Compute and plot the fluctuating signal amplitude for 20 time steps.

az = 20.0;
el = 10.0;
nsteps = 20;
ss = zeros(1,nsteps);
for k = 1:nsteps
    y = target(sig,[az;el],true);
    ss(k) = max(abs(y));
end
plot([0:(nsteps-1)]*1000/fs,ss,'o')
xlabel('Time (msec)')
ylabel('Backscattered Signal Amplitude')
grid
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Introduced in R2017a
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phased.BarrageJammer
Package: phased

Barrage jammer

Description
The BarrageJammer object implements a white Gaussian noise jammer.

To obtain the jamming signal:

1 Define and set up your barrage jammer. See “Construction” on page 1-128.
2 Call step to compute the jammer output according to the properties of

phased.BarrageJammer. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.BarrageJammer creates a barrage jammer System object, H. This object generates a
complex white Gaussian noise jamming signal.

H = phased.BarrageJammer(Name,Value) creates object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.BarrageJammer(E,Name,Value) creates a barrage jammer object, H, with the ERP
property set to E and other specified property Names set to the specified Values.

Properties
ERP

Effective radiated power

Specify the effective radiated power (ERP) (in watts) of the jamming signal as a positive scalar.

Default: 5000

SamplesPerFrameSource

Source of number of samples per frame

Specify whether the number of samples of the jamming signal comes from the SamplesPerFrame
property of this object or from an input argument in step. Values of this property are:
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'Property' The SamplesPerFrame property of this object specifies the
number of samples of the jamming signal.

'Input port' An input argument in each invocation of step specifies the
number of samples of the jamming signal.

Default: 'Property'

SamplesPerFrame

Number of samples per frame

Specify the number of samples in the output jamming signal as a positive integer. This property
applies when you set the SamplesPerFrameSource property to 'Property'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces the
random numbers. Use 'Auto' if you are using this object with
Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator to
produce random numbers. The Seed property of this object
specifies the seed of the random number generator. Use
'Property' if you want repeatable results and are not using this
object with Parallel Computing Toolbox software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–1. This
property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

reset Reset random number generator for noise generation
step Generate noise jamming signal

Common to All System Objects
release Allow System object property value changes
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Examples

Plot Barrage Jammer Output

Create a barrage jammer with an effective radiated power of 1000W. Then plot the magnitude of the
jammer output. Your plot might vary because of random numbers.

Hjammer = phased.BarrageJammer('ERP',1000);
x = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

References

[1] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,” Technical Report
1015, MIT Lincoln Laboratory, December, 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.Platform | phased.RadarTarget

Introduced in R2011a
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reset
System object: phased.BarrageJammer
Package: phased

Reset random number generator for noise generation

Syntax
reset(H)

Description
reset(H) resets the states of the BarrageJammer object, H. This method resets the random number
generator state if the SeedSource property is set to 'Property'.
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step
System object: phased.BarrageJammer
Package: phased

Generate noise jamming signal

Syntax
Y = step(H)
Y = step(H,N)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H) returns a column vector, Y, that is a complex white Gaussian noise jamming signal.
The power of the jamming signal is specified by the ERP property. The length of the jamming signal is
specified by the SamplesPerFrame property. This syntax is available when the
SamplesPerFrameSource property is 'Property'.

Y = step(H,N) returns the jamming signal with length N. This syntax is available when the
SamplesPerFrameSource property is 'Input port'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Plot Barrage Jammer Output

Create a barrage jammer with an effective radiated power of 1000W. Then plot the magnitude of the
jammer output. Your plot might vary because of random numbers.

Hjammer = phased.BarrageJammer('ERP',1000);
x = step(Hjammer);
plot(abs(x)); xlabel('Samples'); ylabel('Magnitude');

 step
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phased.BeamscanEstimator
Package: phased

Beamscan spatial spectrum estimator for ULA

Description
The phased.BeamscanEstimator System object calculates a beamscan spatial spectrum estimate
for a uniform linear array (ULA). The object estimates the incoming signal spatial spectrum using a
narrowband conventional beamformer.

To estimate the spatial spectrum:

1 Create the phased.BeamscanEstimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
estimator = phased.BeamscanEstimator
estimator = phased.BeamscanEstimator(Name,Value)

Description

estimator = phased.BeamscanEstimator creates a beamscan spatial spectrum estimator
System object.

estimator = phased.BeamscanEstimator(Name,Value) creates an object, estimator, with
each specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorArray — ULA sensor array
phased.ULA System object (default)

ULA sensor array, specified as a phased.ULA System object. If you do not specify any name-value
pair properties for the ULA sensor array, the default properties of the array are used.
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PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: single | double

NumPhaseShifterBits — Number of phase shifter quantization bits
0 (default) | non-negative scalar

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights, specified as a non-negative integer. A value of zero indicates that no quantization is
performed.
Example: 5
Data Types: single | double

ForwardBackwardAveraging — Enable forward-backward averaging
false (default) | true

Enable forward-backward averaging, specified as false or true. Set this property to true to use
forward-backward averaging to estimate the covariance matrix for sensor arrays with a conjugate
symmetric array manifold.
Data Types: logical

SpatialSmoothing — Enable spatial smoothing
0 (default) | nonnegative integer

Option to enable spatial smoothing, specified as a nonnegative integer. Use spatial smoothing to
compute the arrival directions of coherent signals. A value of zero specifies no spatial smoothing. A
positive value represents the number of subarrays used to compute the smoothed (averaged) source
covariance matrix. Each increment in this value lets you handle one additional coherent source, but
reduces the effective number of array elements by one. The length of the smoothing aperture, L,
depends on the array length, M, and the averaging number, K, by L = M – K + 1. The maximum value
of K is M – 2.
Example: 5
Data Types: double

ScanAngles — Broadside scan angles
[-90:90] (default) | real-valued K-length vector
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Broadside scan angles, specified as a real-valued vector. Units are in degrees. Broadside angles are
between the search direction and the ULA array axis. The angles lie between –90° and 90°, inclusive.
Specify the angles in increasing value.
Example: [-20:20]
Data Types: single | double

DOAOutputPort — Enable directions of arrival output
false (default) | true

Option to enable directions-of-arrival (DOA) output, specified as false or true. To obtain the DOA of
signals, set this property to true. The DOAs are returned in the second output argument when the
object is executed.
Data Types: logical

NumSignals — Number of arriving signals
1 (default) | positive integer

Number of arriving signals for DOA estimation, specified as a positive integer.
Example: 3

Dependencies

To enable this property, set the DOAOutputPort property to true.
Data Types: single | double

Usage

Syntax
Y = estimator(X)
[Y,ANG] = estimator(X)

Description

Y = estimator(X) estimates the spatial spectrum from data X.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

[Y,ANG] = estimator(X) returns the directions of arrival, ANG, of the signals. To enable this
syntax, set the DOAOutputPort property to true. ANG is a row vector of the estimated broadside
angles (in degrees). You can specify ANG as single or double precision. If the object cannot identify a
signal direction, it will return NaN.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments

X — Channel data
complex-valued matrix

Channel data, specified as a complex-valued matrix. Columns of the data matrix correspond to
channels.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

Y — Magnitude of estimated spatial spectrum
real-valued 1-by-L column vector

Magnitude of the estimated spatial spectrum, returned as a real-valued 1-by-L column vector. L is the
number of scan angles specified by the ScanAngles property.
Data Types: single | double

ANG — Estimated broadside angles
real-valued 1-by-K row vector | NaN

Estimated broadside angles of signal arrivals, returned as a real-valued 1-by-K row vector. Units are
in degrees. The NaN value in any vector element indicates that an estimate could not be found.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to spectral estimation
plotSpectrum Plot spatial spectrum

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Directions of Arrival of Two Signals

Estimate the DOA's of two signals received by a 10-element ULA with element spacing of 1 meter.
The antenna operating frequency is 150 MHz. The actual direction of the first signal is 10° in azimuth
and 20° in elevation. The direction of the second signal is 60° in azimuth and -5° in elevation.
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Create the signals and array.

fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6 300e6]);
array = phased.ULA('Element',antenna,'NumElements',10,'ElementSpacing',1);
fc = 150e6;
x = collectPlaneWave(array,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x)) + 1i*randn(size(x)));

Solve for the DOAs.

estimator = phased.BeamscanEstimator('SensorArray',array, ...
    'OperatingFrequency',fc,'DOAOutputPort',true,'NumSignals',2);
[~,doas] = estimator(x + noise);
doas = broadside2az(sort(doas),[20 -5]);
disp(doas)

    9.5829   60.3813

Because the default values for the ScanAngles property has a granularity of 1∘, the DOA estimates
are not accurate. Improve the accuracy by choosing a finer grid.

estimator2 = phased.BeamscanEstimator('SensorArray',array, ...
    'OperatingFrequency',fc,'ScanAngles',-60:0.1:60, ...
    'DOAOutputPort',true,'NumSignals',2);
[~,doas] = estimator2(x + noise);
doas = broadside2az(sort(doas),[20 -5]);
disp(doas)

   10.0093   59.9751

Plot the beamscan spectrum

plotSpectrum(estimator)
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Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002, pp. 1142–1143.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
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precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
broadside2az | phased.BeamscanEstimator2D

Introduced in R2011a
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phased.BeamscanEstimator2D
Package: phased

2-D beamscan spatial spectrum estimator

Description
The phased.BeamscanEstimator2D System object calculates a beamscan 2-D spatial spectrum
estimate for an arbitrary array (ULA). The object estimates the incoming signal spatial spectrum
using a narrowband conventional beamformer.

To estimate the spatial spectrum:

1 Create the phased.BeamscanEstimator2D object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
estimator = phased.BeamscanEstimator2D
estimator = phased.BeamscanEstimator2D(Name,Value)

Description

estimator = phased.BeamscanEstimator2D creates a beamscan 2-D spatial spectrum estimator
System object.

estimator = phased.BeamscanEstimator2D(Name,Value) creates an object, estimator, with
each specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorArray — Sensor array
phased.ULA array with default array properties (default) | Phased Array System Toolbox array System
object

Sensor array, specified as a Phased Array System Toolbox array System object.
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Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: single | double

NumPhaseShifterBits — Number of phase shifter quantization bits
0 (default) | non-negative scalar

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights, specified as a non-negative integer. A value of zero indicates that no quantization is
performed.
Example: 5
Data Types: single | double

ForwardBackwardAveraging — Enable forward-backward averaging
false (default) | true

Enable forward-backward averaging, specified as false or true. Set this property to true to use
forward-backward averaging to estimate the covariance matrix for sensor arrays with a conjugate
symmetric array manifold.
Data Types: logical

AzimuthScanAngles — Azimuth scan angles
[-90:90] (default) | real-valued row vector

Azimuth scan angles, specified as a or real-valued row vector. Angle units are in degrees. The angle
values must lie between –180° and 180°, inclusive, and be in ascending order.
Example: [-30:20]
Data Types: single | double

ElevationScanAngles — Elevation scan angles
0 (default) | real-valued row vector

Elevation scan angles, specified as a real-valued row vector. Angle units are in degrees. The angle
values must lie between –90° and 90°, inclusive, and be in ascending order.
Example: [-70:75]
Data Types: single | double
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DOAOutputPort — Enable directions of arrival output
false (default) | true

Option to enable directions-of-arrival (DOA) output, specified as false or true. To obtain the DOA of
signals, set this property to true. The DOAs are returned in the second output argument when the
object is executed.
Data Types: logical

NumSignals — Number of arriving signals
1 (default) | positive integer

Number of arriving signals for DOA estimation, specified as a positive integer.
Example: 3
Dependencies

To enable this property, set the DOAOutputPort property to true.
Data Types: single | double

Usage

Syntax
Y = estimator(X)
[Y,ANG] = estimator(X)

Description

Y = estimator(X) estimates the spatial spectrum from data X.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

[Y,ANG] = estimator(X) returns the directions of arrival, ANG, of the signals. To enable this
syntax, set the DOAOutputPort property to true. ANG is a 2-by-N matrix of the estimated azimuths
and elevations of the signal direction. N is specified by the NumSignals property. If the object cannot
identify a signal direction, it will return NaN.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments

X — Array data
complex-valued matrix

Array data, specified as a complex-valued matrix. Columns of the data matrix correspond to channels.
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Data Types: single | double
Complex Number Support: Yes

Output Arguments

Y — Magnitude of estimated spatial spectrum
positive, real-valued, K-by-L matrix

Magnitude of the estimated spatial spectrum, returned as a positive, real-valued, K-by-L matrix.
Data Types: single | double

ANG — Estimated direction angles of signal arrivals
real-valued 2-by-K matrix | NaN

Estimated direction angles of signal arrivals, returned as a real-valued 2-by-K matrix. Each column
has the form [azimuth;elevation]. The NaN value in any matrix element indicates that an
estimate could not be found. Units are in degrees.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to spectral estimation
plotSpectrum Plot spatial spectrum

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Estimate Directions of Arrival of Two Signals

Estimate the DOAs of two signals received by a 50-element URA with a rectangular lattice. The
antenna operating frequency is 150 MHz. The actual direction of the first signal is -37° in azimuth
and 0° in elevation. The direction of the second signal is 17° in azimuth and 20° in elevation.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6 300e6]);
array = phased.URA('Element',antenna,'Size',[5 10],'ElementSpacing',[1 0.6]);
fc = 150e6;
lambda = physconst('LightSpeed')/fc;
ang1 = [-37.5; 10.2];
ang2 = [17.4; 20.6];
x = sensorsig(getElementPosition(array)/lambda,8000,[ang1 ang2],0.2);
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estimator = phased.BeamscanEstimator2D('SensorArray',array,'OperatingFrequency',fc, ...
    'DOAOutputPort',true,'NumSignals',2,'AzimuthScanAngles',-50:50,'ElevationScanAngles',-30:30);
[~,doas] = estimator(x);
disp(doas)

    17   -37
    20    10

Because the values for the AzimuthScanAngles and ElevationScanAngles properties have a
granularity of 1∘, the DOA estimates are not accurate. Improve the accuracy by choosing a finer grid

estimator2 = phased.BeamscanEstimator2D('SensorArray',array,'OperatingFrequency',fc, ...
    'DOAOutputPort',true,'NumSignals',2,'AzimuthScanAngles',-50:0.05:50,'ElevationScanAngles',-30:0.05:30);
[~,doas] = estimator2(x);
disp(doas)

   17.3000  -37.4000
   20.5000   10.3000

Plot the beamscan spatial spectrum

plotSpectrum(estimator)
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Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
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precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
phased.BeamscanEstimator | phitheta2azel | uv2azel

Introduced in R2011a
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plotSpectrum
System object: phased.BeamscanEstimator2D
Package: phased

Plot spatial spectrum

Syntax
plotSpectrum(estimator)
plotSpectrum(estimator,Name,Value)
hl = plotSpectrum( ___ )

Description
plotSpectrum(estimator) plots the spatial spectrum resulting from the most recent execution of
the object.

plotSpectrum(estimator,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

hl = plotSpectrum( ___ ) returns the line handle in the figure.

Input Arguments
H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

NormalizeResponse

Set this value to true to plot the normalized spectrum. Setting this value to false plots the
spectrum without normalization.

Default: false

Title

Character vector to use as figure title.

Default: ''

Unit

Plot units, specified as 'db', 'mag', or 'pow'.
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Default: 'db'

Examples

Estimate Directions of Arrival of Two Signals

Estimate the DOAs of two signals received by a 50-element URA with a rectangular lattice. The
antenna operating frequency is 150 MHz. The actual direction of the first signal is -37° in azimuth
and 0° in elevation. The direction of the second signal is 17° in azimuth and 20° in elevation.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[100e6 300e6]);
array = phased.URA('Element',antenna,'Size',[5 10],'ElementSpacing',[1 0.6]);
fc = 150e6;
lambda = physconst('LightSpeed')/fc;
ang1 = [-37.5; 10.2];
ang2 = [17.4; 20.6];
x = sensorsig(getElementPosition(array)/lambda,8000,[ang1 ang2],0.2);
estimator = phased.BeamscanEstimator2D('SensorArray',array,'OperatingFrequency',fc, ...
    'DOAOutputPort',true,'NumSignals',2,'AzimuthScanAngles',-50:50,'ElevationScanAngles',-30:30);
[~,doas] = estimator(x);
disp(doas)

    17   -37
    20    10

Because the values for the AzimuthScanAngles and ElevationScanAngles properties have a
granularity of 1∘, the DOA estimates are not accurate. Improve the accuracy by choosing a finer grid

estimator2 = phased.BeamscanEstimator2D('SensorArray',array,'OperatingFrequency',fc, ...
    'DOAOutputPort',true,'NumSignals',2,'AzimuthScanAngles',-50:0.05:50,'ElevationScanAngles',-30:0.05:30);
[~,doas] = estimator2(x);
disp(doas)

   17.3000  -37.4000
   20.5000   10.3000

Plot the beamscan spatial spectrum

plotSpectrum(estimator)
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reset
System object: phased.BeamscanEstimator2D
Package: phased

Reset states of 2-D beamscan spatial spectrum estimator object

Syntax
reset(H)

Description
reset(H) resets the states of the BeamscanEstimator2D object, H.
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step
System object: phased.BeamscanEstimator2D
Package: phased

Perform 2-D spatial spectrum estimation

Syntax
Y = step(H,X)
[Y,ANG] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) estimates the spatial spectrum from X using the estimator H. X is a matrix whose
columns correspond to channels. Y is a matrix representing the magnitude of the estimated 2-D
spatial spectrum. Y has a row dimension equal to the number of elevation angles specified in
ElevationScanAngles and a column dimension equal to the number of azimuth angles specified in
AzimuthScanAngles. You can specify X as single or double precision.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s direction of arrival (DOA)
when the DOAOutputPort property is true. ANG is a two row matrix where the first row represents
the estimated azimuth and the second row represents the estimated elevation (in degrees).

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Estimate DOAs of Two Sinusoidal Signals

Estimate the DOAs of two sinusoidal signals received by a 50-element URA with a rectangular lattice.
The antenna operating frequency is 150 MHz. The actual direction of the first signal is -37° in
azimuth and 0° in elevation. The direction of the second signal is 17° in azimuth and 20° in elevation.

Create the signals and solve for the DOA's.
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fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(array,[x1 x2],[-37 0; 17 20]',fc);
noise = 0.1*(randn(size(x)) + 1i*randn(size(x)));
estimator = phased.BeamscanEstimator2D('SensorArray',array, ...
    'OperatingFrequency',fc, ...
    'DOAOutputPort',true,'NumSignals',2, ...
    'AzimuthScanAngles',-50:50, ...
    'ElevationScanAngles',-30:30);
[~,doas] = estimator(x + noise)

doas = 2×2

   -37    17
     0    20

Plot the spatial spectrum.

plotSpectrum(estimator)
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See Also
azel2phitheta | azel2uv
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phased.BeamspaceESPRITEstimator
Package: phased

Beamspace ESPRIT direction of arrival (DOA) estimator for ULA

Description
The BeamspaceESPRITEstimator object computes a DOA estimate for a uniform linear array. The
computation uses the estimation of signal parameters via rotational invariance techniques (ESPRIT)
algorithm in beamspace.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page 1-156.
2 Call step to estimate the DOA according to the properties of

phased.BeamspaceESPRITEstimator. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.BeamspaceESPRITEstimator creates a beamspace ESPRIT DOA estimator System
object, H. The object estimates the signal's direction of arrival using the beamspace ESPRIT algorithm
with a uniform linear array (ULA).

H = phased.BeamspaceESPRITEstimator(Name,Value) creates object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.
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Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance matrix as a
nonnegative integer. Each additional smoothing handles one extra coherent source, but reduces the
effective number of element by 1. The maximum value of this property is M–2, where M is the number
of sensors. You can specify this property as single or double precision.

Default: 0, indicating no spatial smoothing

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto' or 'Property'. If you set this property
to 'Auto', the number of signals is estimated by the method specified by the NumSignalsMethod
property. You can specify this property as single or double precision.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of 'AIC' or 'MDL'. 'AIC' uses the
Akaike Information Criterion and 'MDL' uses Minimum Description Length Criterion. This property
applies when you set the NumSignalsSource property to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you set the
NumSignalsSource property to 'Property'. You can specify this property as single or double
precision.

Default: 1

Method

Type of least square method
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Specify the least squares method used for ESPRIT as one of 'TLS' or 'LS'. 'TLS' refers to total
least squares and 'LS' refers to least squares.

Default: 'TLS'

BeamFanCenter

Beam fan center direction (in degrees)

Specify the direction of the center of the beam fan (in degrees) as a real scalar value between –90
and 90. You can specify this property as single or double precision. This property is tunable.

Default: 0

NumBeamsSource

Source of number of beams

Specify the source of the number of beams as one of 'Auto' or 'Property'. If you set this property
to 'Auto', the number of beams equals N–L, where N is the number of array elements and L is the
value of the SpatialSmoothing property.

Default: 'Auto'

NumBeams

Number of beams

Specify the number of beams as a positive scalar integer. The lower the number of beams, the greater
the reduction in computational cost. This property applies when you set the NumBeamsSource to
'Property'. You can specify this property as single or double precision.

Default: 2

Methods

step Perform DOA estimation

Common to All System Objects
release Allow System object property value changes

Examples

Estimate DOA of Two Signals Using Beamspace ESPRIT

Estimate the directions of arrival (DOA) of two signals received by a standard 10-element ULA with
element spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the
first signal is 10° in azimuth and 20° in elevation. The direction of the second signal is 45° in azimuth
and 60° in elevation.

Create the two signals arriving at the array.
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fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(array,[x1 x2],[10 20;45 60]',fc);
noise = 0.1/sqrt(2)*(randn(size(x)) + 1i*randn(size(x)));

Set up the beamspace ESPRIT estimator and solve for the DOAs.

estimator = phased.BeamspaceESPRITEstimator('SensorArray',array, ...
    'OperatingFrequency',fc,'NumSignalsSource','Property','NumSignals',2);
doas = estimator(x + noise);
az = broadside2az(sort(doas),[20 60])

az = 1×2

    9.9972   45.0061

Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
broadside2az | phased.ESPRITEstimator
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Introduced in R2011a
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step
System object: phased.BeamspaceESPRITEstimator
Package: phased

Perform DOA estimation

Syntax
ANG = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

ANG = step(H,X) estimates the DOAs from X using the DOA estimator H. X is a matrix whose
columns correspond to channels. ANG is a row vector of the estimated broadside angles (in degrees).
You can specify the input data X as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Estimate DOA of Two Signals Using Beamspace ESPRIT

Estimate the directions of arrival (DOA) of two signals received by a standard 10-element ULA with
element spacing 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the
first signal is 10° in azimuth and 20° in elevation. The direction of the second signal is 45° in azimuth
and 60° in elevation.

Create the two signals arriving at the array.

fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
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array.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(array,[x1 x2],[10 20;45 60]',fc);
noise = 0.1/sqrt(2)*(randn(size(x)) + 1i*randn(size(x)));

Set up the beamspace ESPRIT estimator and solve for the DOAs.

estimator = phased.BeamspaceESPRITEstimator('SensorArray',array, ...
    'OperatingFrequency',fc,'NumSignalsSource','Property','NumSignals',2);
doas = estimator(x + noise);
az = broadside2az(sort(doas),[20 60])

az = 1×2

    9.9972   45.0061
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phased.CFARDetector
Package: phased

Constant false alarm rate (CFAR) detector

Description
The CFARDetector object implements a one-dimensional constant false-alarm rate (CFAR) detector.
Detection processing is performed on selected elements (called cells) of the input data. A detection is
declared when an image cell value exceeds a threshold. To maintain a constant false alarm-rate, the
threshold is set to a multiple of the image noise power. The detector estimates noise power for a cell-
under-test (CUT) from surrounding cells using one of three cell averaging methods, or an order
statistics method. The cell-averaging methods are cell averaging (CA), greatest-of cell averaging
(GOCA), or smallest-of cell averaging (SOCA).

For more information about CFAR detectors, see [1].

For each test cell, the detector:

1 estimates the noise statistic from the cell values in the training band surrounding the CUT cell.
2 computes the threshold by multiplying the noise estimate by the threshold factor.
3 compares the CUT cell value to the threshold to determine whether a target is present or absent.

If the value is greater than the threshold, a target is present.

To run the detector

1 Define and set up your CFAR detector. See “Construction” on page 1-163.
2 Call step to perform CFAR detection according to the properties of phased.CFARDetector.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.CFARDetector creates a CFAR detector System object, H. The object performs CFAR
detection on input data.

H = phased.CFARDetector(Name,Value) creates the object, H, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties
Method

CFAR algorithm
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Specify the CFAR detector algorithm as one of

'CA' Cell-averaging CFAR
'GOCA' Greatest-of cell-averaging CFAR
'OS' Order statistic CFAR
'SOCA' Smallest-of cell-averaging CFAR

Default: 'CA'

Rank

Rank of order statistic

Specify the rank of the order statistic as a positive integer scalar. The value must be less than or
equal to the value of the NumTrainingCells property. This property applies only when you set the
Method property to 'OS'. This property supports single and double precision,

Default: 1

NumGuardCells

Number of guard cells

Specify the number of guard cells used in training as an even integer. This property specifies the total
number of cells on both sides of the cell under test. This property supports single and double
precision,

Default: 2, indicating that there is one guard cell at both the front and back of the cell under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in training as an even integer. Whenever possible, the
training cells are equally divided before and after the cell under test. This property supports single
and double precision, This property supports single and double precision,

Default: 2, indicating that there is one training cell at both the front and back of the cell under test

ThresholdFactor

Methods of obtaining threshold factor

Specify whether the threshold factor comes from an automatic calculation, the
CustomThresholdFactor property of this object, or an input argument in step. Values of this
property are:

'Auto' The application calculates the threshold factor automatically
based on the desired probability of false alarm specified in
the ProbabilityFalseAlarm property. The calculation
assumes each independent signal in the input is a single pulse
coming out of a square law detector with no pulse integration.
The calculation also assumes the noise is white Gaussian.
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'Custom' The CustomThresholdFactor property of this object
specifies the threshold factor.

'Input port' An input argument in each invocation of step specifies the
threshold factor.

Default: 'Auto'

ProbabilityFalseAlarm

Desired probability of false alarm

Specify the desired probability of false alarm as a scalar between 0 and 1 (not inclusive). This
property applies only when you set the ThresholdFactor property to 'Auto'.

Default: 0.1

CustomThresholdFactor

Custom threshold factor

Specify the custom threshold factor as a positive scalar. This property applies only when you set the
ThresholdFactor property to 'Custom'. This property is tunable. This property supports single
and double precision,

Default: 1

OutputFormat

Format of detection results

Format of detection results returned by the step method, specified as 'CUT result' or
'Detection index'.

• When set to 'CUT result', the results are logical detection values (1 or 0) for each tested cell. 1
indicates that the value of the tested cell exceeds a detection threshold.

• When set to 'Detection index', the results form a vector or matrix containing the indices of
tested cells which exceed a detection threshold. You can use this format as input to the
phased.RangeEstimator and phased.DopplerEstimator System objects.

Default: 'CUT result'

ThresholdOutputPort

Output detection threshold

To obtain the detection threshold, set this property to true and use the corresponding output
argument when invoking step. If you do not want to obtain the detection threshold, set this property
to false.

Default: false

NoisePowerOutputPort

Output estimated noise
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To obtain the estimated noise, set this property to true and use the corresponding output argument
when invoking step. If you do not want to obtain the estimated noise, set this property to false.

Default: false

NumDetectionsSource

Source of the number of detections

Source of the number of detections, specified as 'Auto' or 'Property'. When you set this property
to 'Auto', the number of detection indices reported is the total number of cells under test that have
detections. If you set this property to 'Property', the number of reported detections is determined
by the value of the NumDetections property.

Dependencies

To enable this property, set the OutputFormat property to 'Detection index'.

Default: 'Auto'

NumDetections

Maximum number of detections to report

Maximum number of detection indices to report, specified as a positive integer.

Dependencies

To enable this property, set the OutputFormat property to 'Detection index' and the
NumDetectionsSource property to 'Property'.

Default: 1

Methods
step Perform CFAR detection

Common to All System Objects
release Allow System object property value changes

Examples

Compute PFA Using CFAR Detector On Noise

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired probability of
false alarm (pfa) of 0.1. Assume that the data comes from a square law detector and no pulse
integration is performed. Use 50 cells to estimate the noise level and 1 cell to separate the test cell
and training cells. Perform the detection on all cells of the input.

detector = phased.CFARDetector('NumTrainingCells',50,...
    'NumGuardCells',2,'ProbabilityFalseAlarm',0.1);
N = 1000;
x = 1/sqrt(2)*(randn(N,1) + 1i*randn(N,1));
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dets = detector(abs(x).^2,1:N);
pfa = sum(dets)/N

pfa = 0.1140

Compute CFAR Detection Indices

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired probability of
false alarm (pfa) of 0.005. Assume that the data comes from a square law detector and no pulse
integration is performed. Perform the detection on all cells of the input. Use 50 cells to estimate the
noise level and 1 cell to separate the test cell and training cells. Display the detection indices.

rng default;
detector = phased.CFARDetector('NumTrainingCells',50,'NumGuardCells',2, ...
    'ProbabilityFalseAlarm',0.005,'OutputFormat','Detection index');
N = 1000;
x1 = 1/sqrt(2)*(randn(N,1) + 1i*randn(N,1));
x2 = 1/sqrt(2)*(randn(N,1) + 1i*randn(N,1));
x = [x1,x2];
cutidx = 1:N;
dets = detector(abs(x).^2,cutidx)

dets = 2×11

   339   537   538   734   786   827   979   136   418   539   874
     1     1     1     1     1     1     1     2     2     2     2

Algorithms
CFAR Detection

phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise estimate. The next table indicates
how the detector forms the noise estimate, depending on the Method property value.

Method Noise Estimate
'CA' Use the average of the values in all the training cells.
'GOCA' Select the greater of the averages in the front training cells and

rear training cells.
'OS' Sort the values in the training cells in ascending order. Select the

Nth item, where N is the value of the Rank property.
'SOCA' Select the smaller of the averages in the front training cells and

rear training cells.
2 Multiply the noise estimate by the threshold factor to form the threshold.
3 Compare the value in the test cell against the threshold to determine whether the target is

present or absent. If the value is greater than the threshold, the target is present.
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Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
npwgnthresh | phased.MatchedFilter | phased.TimeVaryingGain

Introduced in R2011a
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step
System object: phased.CFARDetector
Package: phased

Perform CFAR detection

Syntax
Y = step(H,X,cutidx)
[Y,th] = step( ___ )
[Y,noise] = step( ___ )
Y = step(H,X,cutidx,thfac)
[Y,TH,N] = step(H,X,cutidx,thfac)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X,cutidx) performs CFAR detection on specified elements of the input data, X. X can
either be a real-valued M-by-1 column vector or a real-valued M-by-N matrix. cutidx is a length-D
vector of indices specifying the input elements or cells under test (CUT) on which to perform
detection processing. When X is a vector, cutidx specifies the element. When X is a matrix, cutidx
specifies the row of the element. The same index applies to all columns of the matrix. Detection is
performed independently along each column of X for the indices specified in cutidx. You can specify
the input arguments as single or double precision.

The output argument Y contains detection results. The format of Y depends on the OutputFormat
property.

• When OutputFormat is 'Cut result', Y is a D-by-1 vector or a D-by-N matrix containing
logical detection results. D is the length of cutidx and N is the number of columns of X. The rows
of Y correspond to the rows in cutidx. For each row, Y contains 1 in a column if there is a
detection in the corresponding column of X. Otherwise, Y contains a 0.

• When OutputFormat is 'Detection report', Y is a 1-by-L vector or a 2-by-L matrix containing
detections indices. L is the number of detections found in the input data. When X is a column
vector, Y contains the index for each detection in X. When X is a matrix, Y contains the row and
column indices of each detection in X. Each column of Y has the form [detrow;detcol]. When
the NumDetectionsSource property is set to 'Property', L equals the value of the
NumDetections property. If the number of actual detections is less than this value, columns
without detections are set to NaN.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

[Y,th] = step( ___ ) also returns the detection threshold, th, applied to detected cells under test.
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• When OutputFormat is 'CUT result', th returns the detection threshold whenever an element
of Y is 1 and NaN whenever an element of Y is 0. th has the same size as Y.

• When OutputFormat is 'Detection index', th returns a detection threshold for each
corresponding detection in Y. When the NumDetectionsSource property is set to 'Property',
L equals the value of the NumDetections property. If the number of actual detections is less than
this value, columns without detections are set to NaN.

To enable this syntax, set the ThresholdOutputPort property to true.

[Y,noise] = step( ___ ) also returns the estimated noise power, noise, for each detected cell
under test in X.

• When OutputFormat is 'CUT result', noise returns a noise power estimate when Y is 1 and
NaN whenever Y is zero. noise has the same size as Y.

• When OutputFormat is 'Detection index', noise returns a noise power estimate for each
corresponding detection in Y. When the NumDetectionsSource property is set to 'Property',
L equals the value of the NumDetections property. If the number of actual detections is less than
this value, columns without detections are set to NaN.

To enable this syntax, set the NoisePowerOutputPort property to true.

Y = step(H,X,cutidx,thfac), in addition, specifies thfac as the threshold factor used to
calculate the detection threshold. thfac must be a positive scalar. To enable this syntax, set the
ThresholdFactor property to 'Input port'.

You can combine optional input and output arguments when their enabling properties are set.
Optional inputs and outputs must be listed in the same order as the order of the enabling properties.
For example, [Y,TH,N] = step(H,X,cutidx,thfac).

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Compute PFA Using CFAR Detector On Noise

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired probability of
false alarm (pfa) of 0.1. Assume that the data comes from a square law detector and no pulse
integration is performed. Use 50 cells to estimate the noise level and 1 cell to separate the test cell
and training cells. Perform the detection on all cells of the input.

detector = phased.CFARDetector('NumTrainingCells',50,...
    'NumGuardCells',2,'ProbabilityFalseAlarm',0.1);
N = 1000;
x = 1/sqrt(2)*(randn(N,1) + 1i*randn(N,1));
dets = detector(abs(x).^2,1:N);
pfa = sum(dets)/N

pfa = 0.1140
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Compute CFAR Detection Indices

Perform cell-averaging CFAR detection on a given Gaussian noise vector with a desired probability of
false alarm (pfa) of 0.005. Assume that the data comes from a square law detector and no pulse
integration is performed. Perform the detection on all cells of the input. Use 50 cells to estimate the
noise level and 1 cell to separate the test cell and training cells. Display the detection indices.

rng default;
detector = phased.CFARDetector('NumTrainingCells',50,'NumGuardCells',2, ...
    'ProbabilityFalseAlarm',0.005,'OutputFormat','Detection index');
N = 1000;
x1 = 1/sqrt(2)*(randn(N,1) + 1i*randn(N,1));
x2 = 1/sqrt(2)*(randn(N,1) + 1i*randn(N,1));
x = [x1,x2];
cutidx = 1:N;
dets = detector(abs(x).^2,cutidx)

dets = 2×11

   339   537   538   734   786   827   979   136   418   539   874
     1     1     1     1     1     1     1     2     2     2     2

Algorithms
phased.CFARDetector uses cell averaging in three steps:

1 Identify the training cells from the input, and form the noise estimate. The next table indicates
how the detector forms the noise estimate, depending on the Method property value.

Method Noise Estimate
'CA' Use the average of the values in all the training cells.
'GOCA' Select the greater of the averages in the front training cells and

rear training cells.
'OS' Sort the values in the training cells in ascending order. Select the

Nth item, where N is the value of the Rank property.
'SOCA' Select the smaller of the averages in the front training cells and

rear training cells.
2 Multiply the noise estimate by the threshold factor to form the threshold.
3 Compare the value in the test cell against the threshold to determine whether the target is

present or absent. If the value is greater than the threshold, the target is present.

For details, see [1].

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.
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phased.CFARDetector2D
Package: phased

Two-dimensional CFAR detector

Description
phased.CFARDetector2D System object implements a constant false-alarm rate detector (CFAR) for
selected elements (called cells) of two-dimensional image data. A detection is declared when an
image cell value exceeds a threshold. To maintain a constant false alarm-rate, the threshold is set to a
multiple of the image noise power. The detector estimates noise power for a cell-under-test (CUT)
from surrounding cells using one of three cell averaging methods, or an order statistics method. The
cell-averaging methods are cell averaging (CA), greatest-of cell averaging (GOCA), or smallest-of cell
averaging (SOCA).

For each test cell, the detector:

1 estimates the noise statistic from the cell values in the training band surrounding the CUT cell.
2 computes the threshold by multiplying the noise estimate by the threshold factor.
3 compares the CUT cell value to the threshold to determine whether a target is present or absent.

If the value is greater than the threshold, a target is present.

To run the detector

1 Define and set up your 2-D CFAR detector. You can set the phased.CFARDetector2D System
object properties when you create the object, or leave them set to their default values. See
“Construction” on page 1-172. Some properties that you set at construction time can be changed
later. These properties are tunable.

2 Find the detections by calling the step method. The output of this method depends on the
properties of the phased.CFARDetector2D System object.

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
detector = phased.CFARDetector2D creates a 2-D CFAR detector System object, detector.

detector = phased.CFARDetector2D(Name,Value) creates a 2-D CFAR System object,
detector, with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Method — Two-dimensional CFAR averaging method
'CA' (default) | 'GOCA' | 'SOCA' | 'OS'

1 Objects

1-172



Two-dimensional CFAR averaging method, specified as 'CA', 'GOCA', 'SOCA', or 'OS'. For 'CA',
'GOCA', 'SOCA', the noise power is the sample mean derived from the training band. For 'OS', the
noise power is the kth cell value obtained from numerically ordering all training cell values. Set k
using the Rank property.

Averaging Method Description
CA — Cell-averaging algorithm Computes the sample mean of all training cells

surrounding the CUT cell.
GOCA — Greatest-of cell-averaging algorithm Splits the 2-D training window surrounding the

CUT cell into left and right halves. Then, the
algorithm computes the sample mean for each
half and selects the largest mean.

SOCA — Smallest-of cell-averaging algorithm Splits the 2-D training window surrounding the
CUT cell into left and right halves. Then, the
algorithm computes the sample mean for each
half and selects the smallest mean.

OS — Order statistic algorithm Sorts training cells in ascending order of numeric
values. Then the algorithm selects the kth value
from the list. k is the rank specified by the Rank
parameter.

Example: 'OS'
Data Types: char

GuardBandSize — Widths of guard band
[1 1] (default) | nonnegative integer | 2-element vector of nonnegative integers

The number of rows and columns of the guard band cells on each side of the CUT cell, specified as
nonnegative integers. The first element specifies the guard band size along the row dimension. The
second element specifies the guard band size along the column dimension. Specifying this property as
a single integer is equivalent to specifying a guard band with the same value for both dimensions. For
example, a value of [1 1], indicates that there is a one guard-cell-wide region surrounding each CUT
cell. A value of zero indicates there are no guard cells.
Example: [2 3]
Data Types: single | double

TrainingBandSize — Widths of training band
[1 1] (default) | positive integer | 2-element vector of positive integers

The number of rows and columns of the training band cells on each side of the CUT cell, specified as
a positive integer or a 1-by-2 matrix of positive integers. The first element specifies the training band
size along the row dimension. The second element specifies the training band size along the column
dimension. Specifying this property as a scalar is equivalent to specifying a training band with the
same value for both dimensions. For example, a value of [1 1] indicates a 1 training-cell-wide region
surrounding the CUT cell.
Example: [-30:0.1:30]
Data Types: single | double

Rank — Rank of order statistic
1 (default) | positive integer
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Rank of the order statistic used in the 2-D CFAR algorithm, specified as a positive integer. The value
of this property must lie between 1 and Ntrain, where Ntrain is the number of training cells. A value of 1
selects the smallest value in the training region.
Example: 5

Dependencies

To enable this property, set the Method property to 'OS'.
Data Types: single | double

ThresholdFactor — Threshold factor method
'Auto' (default) | 'Input port' | 'Custom'

Threshold factor method, specified as 'Auto', 'Input port', or 'Custom'.

When you set the ThresholdFactor property to 'Auto', the threshold factor is calculated from the
desired probability of false alarm set in the ProbabilityFalseAlarm property. The calculation
assumes that each independent signal in the input is a single pulse coming out of a square law
detector with no pulse integration. In addition, the noise is assumed to be white Gaussian.

When you set the ThresholdFactor property to 'Input port', the threshold factor is obtained
from an input argument of the step method.

When you set the ThresholdFactor property to 'Custom', the threshold factor is obtained from
the value of the CustomThresholdFactor property.
Example: 'Custom'
Data Types: char

ProbabilityFalseAlarm — Required probability of false alarm
0.1 (default) | positive scalar between 0 and 1

Required probability of false alarm, specified as a real positive scalar between 0 and 1. The algorithm
calculates the threshold factor from the required probability of false alarm.
Example: 0.001

Dependencies

To enable this property, set the ThresholdFactor property to 'Auto'.
Data Types: single | double

CustomThresholdFactor — Custom threshold factor
1 (default) | positive scalar

Custom threshold factor, specified as a real positive scalar. This property is tunable.

Dependencies

To enable this property, set the ThresholdFactor property to 'Custom'.
Data Types: single | double

OutputFormat — Format of detection results
'CUT result' (default) | 'Detection index'
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Format of detection results returned by the step method, specified as 'CUT result' or
'Detection index'.

• When set to 'CUT result', the results are logical detection values (1 or 0) for each tested cell.
• When set to 'Detection index', the results form a vector or matrix containing the indices of

tested cells that exceed a detection threshold. You can use this format as input to the
phased.RangeEstimator and phased.DopplerEstimator System objects.

Data Types: char

ThresholdOutputPort — Enable detection threshold output
false (default) | true

Option to enable detection threshold output, specified as false or true. Setting this property to
true returns the detection threshold via an output argument, th, of the step method.
Data Types: logical

NoisePowerOutputPort — Enable noise power output
false (default) | true

Option to enable output of noise power, specified as false or true. Setting this property to true
returns the noise power via the output argument, noise, of the step method.
Data Types: logical

NumDetectionsSource — Source of the number of detections
'Auto' (default) | 'Property'

Source of the number of detections, specified as 'Auto' or 'Property'. When you set this property
to 'Auto', the number of detection indices reported is the total number of cells under test that have
detections. If you set this property to 'Property', the number of reported detections is determined
by the value of the NumDetections property.

Dependencies

To enable this property, set the OutputFormat property to 'Detection index'.
Data Types: char

NumDetections — Maximum number of detection indices to report
1 (default) | positive integer

Maximum number of detection indices to report, specified as a positive integer.

Dependencies

To enable this property, set the OutputFormat property to 'Detection index' and the
NumDetectionsSource property to 'Property'.
Data Types: double
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Methods
reset Reset states of System object
step Two-dimensional CFAR detection

Common to All System Objects
release Allow System object property value changes

Examples

Set 2-D CFAR Threshold for Noise-Only Data

This example shows how to set a 2-D CFAR threshold based upon a required probability of false alarm
(pfa).

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Perform cell-averaging CFAR detection on a 41-by-41 matrix of cells containing Gaussian noise.
Estimate the empirical pfa and compare it to the required pfa. To get a good estimate, perform this
simulation on 1000 similar matrices. First, set a threshold using the required pfa. In this case, there
are no targets and the pfa can be estimated from the number of cells that exceed the threshold.
Assume that the data is processed through a square-law detector and that no pulse integration is
performed. Use a training-cell band of 3 cells in width and 4 cells in height. Use a guard band of 3
cells in width and 2 cells in height to separate the cells under test (CUT) from the training cells.
Specify a required pfa of 5.0e-4.

p = 5e-4;
rs = RandStream.create('mt19937ar','Seed',5);
N = 41;
ntrials = 1000;
detector = phased.CFARDetector2D('TrainingBandSize',[4,3], ...
    'ThresholdFactor','Auto','GuardBandSize',[2,3], ...
    'ProbabilityFalseAlarm',p,'Method','SOCA','ThresholdOutputPort',true);

Create a 41-by-41 image containing random complex data. Then, square the data to simulate a
square-law detector.

x = 2/sqrt(2)*(randn(rs,N,N,ntrials) + 1i*randn(rs,N,N,ntrials));
x2 = abs(x).^2;

Process all the cells in each image. To do this, find the row and column of each CUT cell whose
training region falls entirely within each image.

Ngc = detector.GuardBandSize(2);
Ngr = detector.GuardBandSize(1);
Ntc = detector.TrainingBandSize(2);
Ntr = detector.TrainingBandSize(1);
cutidx = [];
colstart = Ntc + Ngc + 1;
colend = N - ( Ntc + Ngc);
rowstart = Ntr + Ngr + 1;
rowend = N - ( Ntr + Ngr);
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for m = colstart:colend
    for n = rowstart:rowend
        cutidx = [cutidx,[n;m]];
    end
end
ncutcells = size(cutidx,2);

Display the CUT cells.

cutimage = zeros(N,N);
for k = 1:ncutcells
    cutimage(cutidx(1,k),cutidx(2,k)) = 1;
end
imagesc(cutimage)
axis equal

Perform the detection on all CUT cells. Return the detection classification and the threshold used to
classify the cell.

[dets,th] = detector(x2,cutidx);

Find and display an image with a false alarm for illustration.

di = [];
for k = 1:ntrials
    d = dets(:,k);
    if (any(d) > 0)
        di = [di,k];
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    end
end
idx = di(1);
detimg = zeros(N,N);
for k = 1:ncutcells
    detimg(cutidx(1,k),cutidx(2,k)) = dets(k,idx);
end
imagesc(detimg)
axis equal

Compute the empirical pfa.

pfa = sum(dets(:))/ntrials/ncutcells

pfa = 4.5898e-04

The empirical and specified pfa agree.

Display the average empirical threshold value over all images.

mean(th(:))

ans = 31.7139

Compute the theoretical threshold factor for the required pfa.

threshfactor = npwgnthresh(p,1,'noncoherent');
threshfactor = 10^(threshfactor/10);
disp(threshfactor)
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    7.6009

The theoretical threshold factor multiplied by the noise variance should agree with the measured
threshold.

noisevar = mean(x2(:));
disp(threshfactor*noisevar);

   30.4118

The theoretical threshold and empirical threshold agree to within an acceptable difference.

Detect Targets in Background Noise

Perform cell-averaging CFAR detection on a 41-by-41 matrix of cells containing five closely-spaced
targets in Gaussian noise. Perform this detection on a simulation of 1000 images. Use two detectors
with different guard band regions. Set the thresholds manually using the Custom threshold factor.
Assume that the data is processed through a square law-detector and that no pulse integration is
performed. Use a training cell band of 2 cells in width and 2 cells in height. For the first detector, use
a guard band of 1 cell all around to separate the CUT cells from the training cells. For the second
detector, use a guard band of 8 cells all around.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

p = 5e-4;
rs = RandStream.create('mt19937ar','Seed',5);
N = 41;
ntrials = 1000;

Create 1000 41-by-41 images of complex random noise with standard deviation of 1.

s = 1;
x = s/sqrt(2)*(randn(rs,N,N,ntrials) + 1i*randn(rs,N,N,ntrials));

Set the target cells values to 1.5. Then, square the cell values.

A = 1.5;
x(23,20,:) = A;
x(23,18,:) = A;
x(23,23,:) = A;
x(20,22,:) = A;
x(21,18,:) = A;
x2 = abs(x).^2;

Display the target cells.

xtgt = zeros(N,N);
xtgt(23,20,:) = A;
xtgt(23,18,:) = A;
xtgt(23,23,:) = A;
xtgt(20,22,:) = A;
xtgt(21,18,:) = A;
imagesc(xtgt)
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axis equal
axis tight

Set the CUT cells to be the target cells.

cutidx(1,1) = 23;
cutidx(2,1) = 20;
cutidx(1,2) = 23;
cutidx(2,2) = 18;
cutidx(1,3) = 23;
cutidx(2,3) = 23;
cutidx(1,4) = 20;
cutidx(2,4) = 22;
cutidx(1,5) = 21;
cutidx(2,5) = 18;

Perform the detection on all CUT cells using two CFAR 2-D detectors. The first detector has a small
guard band region. The training region can include neighboring targets which can affect the
computation of the noise power. The second detector has a larger guard band region, which
precludes target cells from being used in the noise computation.

Create the two CFAR detectors.

detector1 = phased.CFARDetector2D('TrainingBandSize',[2,2], ...
    'GuardBandSize',[1,1],'ThresholdFactor','Custom','Method','CA', ...
    'CustomThresholdFactor',2,'ThresholdOutputPort',true);
detector2 = phased.CFARDetector2D('TrainingBandSize',[2,2], ...
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    'GuardBandSize',[8,8],'ThresholdFactor','Custom','Method','CA', ...
    'CustomThresholdFactor',2,'ThresholdOutputPort',true);

Return the detection classifications and the thresholds used to classify the cells. Then, compute the
probabilities of detection.

[dets1,th1] = detector1(x2,cutidx);
ndets = numel(dets1(:));
pd1 = sum(dets1(:))/ndets

pd1 = 0.6416

[dets2,th2] = detector2(x2,cutidx);
pd2 = sum(dets2(:))/ndets

pd2 = 0.9396

The detector with the larger guard-band region has a higher pfa because the noise is more accurately
estimated.

More About
Training Cells

CFAR 2-D requires an estimate of the noise power. Noise power is computed from cells that are
assumed not to contain any target signal. These cells are the training cells. Training cells form a band
around the cell-under-test (CUT) cell but may be separated from the CUT cell by a guard band. The
detection threshold is computed by multiplying the noise power by the threshold factor.
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For GOCA and SOCA averaging, the noise power is derived from the mean value of one of the left or
right halves of the training cell region.

Because the number of columns in the training region is odd, the cells in the middle column are
assigned equally to either the left or right half.

When using the order-statistic method, the rank cannot be larger than the number of cells in the
training cell region, Ntrain. You can compute Ntrain.

• NTC is the number of training band columns.
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• NTR is the number of training band rows.
• NGC is the number of guard band columns.
• NGR is the number of guard band rows.

The total number of cells in the combined training region, guard region, and CUT cell is Ntotal = (2NTC
+ 2NGC + 1)(2NTR+ 2NGR + 1).

The total number of cells in the combined guard region and CUT cell is Nguard = (2NGC + 1)(2NGR + 1).

The number of training cells is Ntrain = Ntotal – Nguard.

By construction, the number of training cells is always even. Therefore, to implement a median filter,
you can choose a rank of Ntrain/2 or Ntrain/2 + 1.

Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Mott, H. Antennas for Radar and Communications. New York: John Wiley & Sons, 1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
Functions
npwgnthresh | rocpfa

Objects
phased.CFARDetector
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Blocks
2-D CFAR Detector | CFAR Detector

Topics
“Modeling Target Radar Cross Section”
“Designing a Basic Monostatic Pulse Radar”

Introduced in R2016b
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reset
System object: phased.CFARDetector2D
Package: phased

Reset states of System object

Syntax
reset(detector)

Description
reset(detector) resets the internal state of the phased.CFARDetector2Dobject, detector.

Input Arguments
detector — Two-dimensional CFAR detector
phased.CFARDetector2D System object

Two-dimensional CFAR detector, specified as a phased.CFARDetector2D System object.

Introduced in R2016b
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step
System object: phased.CFARDetector2D
Package: phased

Two-dimensional CFAR detection

Syntax
Y = step(detector,X,cutidx)
Y = step(detector,X,cutidx,K)
[Y,th] = step( ___ )
[Y,noise] = step( ___ )

Description

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(detector,X,cutidx) performs 2-D CFAR detection on input image data, X, for the
image cells under test (CUT) specified by cutidx. Y contains the detection results for the CUT cells.

Y = step(detector,X,cutidx,K) also specifies a threshold factor, K, for setting the detection
threshold. This syntax applies when the ThresholdFactor property of the detector is set to 'Input
port'.

[Y,th] = step( ___ ) also returns the detection threshold, th, applied to detected cells under test.
To enable this syntax, set the ThresholdOutputPort property to true.

[Y,noise] = step( ___ ) also returns the estimated noise power, noise, applied to detected cells
under test. To enable this syntax, set the NoisePowerOutputPort property to true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
detector — Two-dimensional CFAR detector
phased.CFARDetector2D System object

Two-dimensional CFAR detector, specified as a phased.CFARDetector2D System object.

X — Input image
real M-by-N matrix | real M-by-N-by-P array
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Input image, specified as a real M-by-N matrix or a real M-by-N-by-P array. M and N represent the
rows and columns of a matrix. Each page is an independent 2-D signal.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1,1;2.5,1;0.5,0.1]
Data Types: single | double

cutidx — Test cells
2-by-D matrix of positive integers

Test cells, specified as a 2-by-D matrix of positive integers, where D is the number of test cells. Each
column of cutidx specifies the row and column indices of a CUT cell. The same indices apply to all
pages in the input array. You must restrict the locations of CUT cells so that their training regions lie
completely within the input images.
Example: [10,15;11,15;12,15]
Data Types: single | double

K — Detection threshold factor
positive scalar

Threshold factor used to calculate the detection threshold, specified as a positive scalar.

Dependencies

To enable this input argument, set the ThresholdFactor property of the detector object to 'Input
port'

Data Types: single | double

Output Arguments
Y — Detection results
L-by-P logical matrix

Detection results, whose format depends on the OutputFormat property

• When OutputFormat is 'Cut result', Y is a D-by-P matrix containing logical detection results
for cells under test. D is the length of cutidx and P is the number of pages of X. The rows of Y
correspond to the rows of cutidx. For each row, Y contains 1 in a column if there is a detection in
the corresponding cell in X. Otherwise, Y contains a 0.

• When OutputFormat is 'Detection report', Y is a K-by-L matrix containing detections
indices. K is the number of dimensions of X. L is the number of detections found in the input data.
When X is a matrix, Y contains the row and column indices of each detection in X in the form
[detrow;detcol]. When X is an array, Y contains the row, column, and page indices of each
detection in X in the form [detrow;detcol;detpage]. When the NumDetectionsSource
property is set to 'Property', L equals the value of the NumDetections property. If the number
of actual detections is less than this value, columns without detections are set to NaN.

Data Types: single | double
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th — Computed detection threshold
real-valued matrix

Computed detection threshold for each detected cell, returned as a real-valued matrix. Th has the
same dimensions as Y.

• When OutputFormat is 'CUT result', Th returns the detection threshold whenever an element
of Y is 1 and NaN whenever an element of Y is 0.

• When OutputFormat is 'Detection index', th returns a detection threshold for each
corresponding detection in Y. When the NumDetectionsSource property is set to 'Property',
L equals the value of the NumDetections property. If the number of actual detections is less than
this value, columns without detections are set to NaN.

Dependencies

To enable this output argument, set the ThresholdOutputPort to true.
Data Types: single | double

noise — Estimated noise power
real-valued matrix

Estimated noise power for each detected cell, returned as a real-valued matrix. noise has the same
dimensions as Y.

• When OutputFormat is 'CUT result', noise returns the noise power whenever an element of
Y is 1 and NaN whenever an element of Y is 0.

• When OutputFormat is 'Detection index', noise returns a noise power for each
corresponding detection in Y. When the NumDetectionsSource property is set to 'Property',
L equals the value of the NumDetections property. If the number of actual detections is less than
this value, columns without detections are set to NaN.

Dependencies

To enable this output argument, set the NoisePowerOutputPort to true.
Data Types: single | double

Examples

Set 2-D CFAR Threshold for Noise-Only Data

This example shows how to set a 2-D CFAR threshold based upon a required probability of false alarm
(pfa).

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Perform cell-averaging CFAR detection on a 41-by-41 matrix of cells containing Gaussian noise.
Estimate the empirical pfa and compare it to the required pfa. To get a good estimate, perform this
simulation on 1000 similar matrices. First, set a threshold using the required pfa. In this case, there
are no targets and the pfa can be estimated from the number of cells that exceed the threshold.
Assume that the data is processed through a square-law detector and that no pulse integration is
performed. Use a training-cell band of 3 cells in width and 4 cells in height. Use a guard band of 3

1 Objects

1-188



cells in width and 2 cells in height to separate the cells under test (CUT) from the training cells.
Specify a required pfa of 5.0e-4.

p = 5e-4;
rs = RandStream.create('mt19937ar','Seed',5);
N = 41;
ntrials = 1000;
detector = phased.CFARDetector2D('TrainingBandSize',[4,3], ...
    'ThresholdFactor','Auto','GuardBandSize',[2,3], ...
    'ProbabilityFalseAlarm',p,'Method','SOCA','ThresholdOutputPort',true);

Create a 41-by-41 image containing random complex data. Then, square the data to simulate a
square-law detector.

x = 2/sqrt(2)*(randn(rs,N,N,ntrials) + 1i*randn(rs,N,N,ntrials));
x2 = abs(x).^2;

Process all the cells in each image. To do this, find the row and column of each CUT cell whose
training region falls entirely within each image.

Ngc = detector.GuardBandSize(2);
Ngr = detector.GuardBandSize(1);
Ntc = detector.TrainingBandSize(2);
Ntr = detector.TrainingBandSize(1);
cutidx = [];
colstart = Ntc + Ngc + 1;
colend = N - ( Ntc + Ngc);
rowstart = Ntr + Ngr + 1;
rowend = N - ( Ntr + Ngr);
for m = colstart:colend
    for n = rowstart:rowend
        cutidx = [cutidx,[n;m]];
    end
end
ncutcells = size(cutidx,2);

Display the CUT cells.

cutimage = zeros(N,N);
for k = 1:ncutcells
    cutimage(cutidx(1,k),cutidx(2,k)) = 1;
end
imagesc(cutimage)
axis equal
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Perform the detection on all CUT cells. Return the detection classification and the threshold used to
classify the cell.

[dets,th] = detector(x2,cutidx);

Find and display an image with a false alarm for illustration.

di = [];
for k = 1:ntrials
    d = dets(:,k);
    if (any(d) > 0)
        di = [di,k];
    end
end
idx = di(1);
detimg = zeros(N,N);
for k = 1:ncutcells
    detimg(cutidx(1,k),cutidx(2,k)) = dets(k,idx);
end
imagesc(detimg)
axis equal
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Compute the empirical pfa.

pfa = sum(dets(:))/ntrials/ncutcells

pfa = 4.5898e-04

The empirical and specified pfa agree.

Display the average empirical threshold value over all images.

mean(th(:))

ans = 31.7139

Compute the theoretical threshold factor for the required pfa.

threshfactor = npwgnthresh(p,1,'noncoherent');
threshfactor = 10^(threshfactor/10);
disp(threshfactor)

    7.6009

The theoretical threshold factor multiplied by the noise variance should agree with the measured
threshold.

noisevar = mean(x2(:));
disp(threshfactor*noisevar);

   30.4118
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The theoretical threshold and empirical threshold agree to within an acceptable difference.

Detect Targets in Background Noise

Perform cell-averaging CFAR detection on a 41-by-41 matrix of cells containing five closely-spaced
targets in Gaussian noise. Perform this detection on a simulation of 1000 images. Use two detectors
with different guard band regions. Set the thresholds manually using the Custom threshold factor.
Assume that the data is processed through a square law-detector and that no pulse integration is
performed. Use a training cell band of 2 cells in width and 2 cells in height. For the first detector, use
a guard band of 1 cell all around to separate the CUT cells from the training cells. For the second
detector, use a guard band of 8 cells all around.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

p = 5e-4;
rs = RandStream.create('mt19937ar','Seed',5);
N = 41;
ntrials = 1000;

Create 1000 41-by-41 images of complex random noise with standard deviation of 1.

s = 1;
x = s/sqrt(2)*(randn(rs,N,N,ntrials) + 1i*randn(rs,N,N,ntrials));

Set the target cells values to 1.5. Then, square the cell values.

A = 1.5;
x(23,20,:) = A;
x(23,18,:) = A;
x(23,23,:) = A;
x(20,22,:) = A;
x(21,18,:) = A;
x2 = abs(x).^2;

Display the target cells.

xtgt = zeros(N,N);
xtgt(23,20,:) = A;
xtgt(23,18,:) = A;
xtgt(23,23,:) = A;
xtgt(20,22,:) = A;
xtgt(21,18,:) = A;
imagesc(xtgt)
axis equal
axis tight
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Set the CUT cells to be the target cells.

cutidx(1,1) = 23;
cutidx(2,1) = 20;
cutidx(1,2) = 23;
cutidx(2,2) = 18;
cutidx(1,3) = 23;
cutidx(2,3) = 23;
cutidx(1,4) = 20;
cutidx(2,4) = 22;
cutidx(1,5) = 21;
cutidx(2,5) = 18;

Perform the detection on all CUT cells using two CFAR 2-D detectors. The first detector has a small
guard band region. The training region can include neighboring targets which can affect the
computation of the noise power. The second detector has a larger guard band region, which
precludes target cells from being used in the noise computation.

Create the two CFAR detectors.

detector1 = phased.CFARDetector2D('TrainingBandSize',[2,2], ...
    'GuardBandSize',[1,1],'ThresholdFactor','Custom','Method','CA', ...
    'CustomThresholdFactor',2,'ThresholdOutputPort',true);
detector2 = phased.CFARDetector2D('TrainingBandSize',[2,2], ...
    'GuardBandSize',[8,8],'ThresholdFactor','Custom','Method','CA', ...
    'CustomThresholdFactor',2,'ThresholdOutputPort',true);
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Return the detection classifications and the thresholds used to classify the cells. Then, compute the
probabilities of detection.

[dets1,th1] = detector1(x2,cutidx);
ndets = numel(dets1(:));
pd1 = sum(dets1(:))/ndets

pd1 = 0.6416

[dets2,th2] = detector2(x2,cutidx);
pd2 = sum(dets2(:))/ndets

pd2 = 0.9396

The detector with the larger guard-band region has a higher pfa because the noise is more accurately
estimated.

See Also
phased.CFARDetector

Introduced in R2016b
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phased.Collector
Package: phased

Narrowband signal collector

Description
The phased.Collector System object implements a narrowband signal collector. A collector
converts incident narrowband wave fields arriving from specified directions into signals to be further
processed. Wave fields are incident on antenna and microphone elements, sensor arrays, or
subarrays. The object collects signals in one of two ways controlled by the Wavefront property.

• If the Wavefront property is set to 'Plane', the collected signals at each element or subarray are
formed from the coherent sum of all incident plane wave fields sampled at each array element or
subarray.

• If the Wavefront property is set to 'Unspecified', the collected signals are formed from an
independent field incident on each individual sensor element.

You can use this object to

• model arriving signals as polarized or nonpolarized fields depending upon whether the element or
array supports polarization and the value of the Polarization property. Using polarization, you can
receive a signal as a polarized electromagnetic field, or receive two independent signals using
dual (i.e. orthogonal) polarization directions.

• model incoming acoustic fields by using nonpolarized microphone and sonar transducer array
elements and by setting the “Polarization” on page 1-0  to 'None'. You must also set the
PropagationSpeed to a value appropriate for the medium.

• collect fields at subarrays created by the phased.ReplicatedSubarray and
phased.PartitionedArray objects. You can steer all subarrays in the same direction using the
steering angle argument, STEERANG, or steer each subarray in a different direction using the
subarray element weights argument, WS. You cannot set the Wavefront property to
'Unspecified' for subarrays.

To collect arriving signals at the elements or arrays:

1 Create the phased.Collector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
collector = phased.Collector
collector = phased.Collector(Name,Value)
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Description

collector = phased.Collector creates a narrowband signal collector object, collector, with
default property values.

collector = phased.Collector(Name,Value) creates a narrowband signal collector with each
property Name set to a specified Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: collector =
phased.collector('Sensor',phased.URA,'OperatingFrequency',300e6) sets the sensor
array to a uniform rectangular array (URA) with default URA property values. The beamformer has
an operating frequency of 300 MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Sensor — Sensor element or sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox sensor or
array

Sensor element or sensor array, specified as a System object belonging to Phased Array System
Toolbox. A sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

Wavefront — Type of incoming wavefront
'Plane' (default) | 'Unspecified'

The type of incoming wavefront, specified as 'Plane' or 'Unspecified':
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• 'Plane' — input signals are multiple plane waves impinging on the entire array. Each plane wave
is received by all collecting elements.

• 'Unspecified' — collected signals are independent fields incident on individual sensor
elements. If the Sensor property is an array that contains subarrays, you cannot set the
Wavefront property to 'Unspecified'.

Data Types: char

SensorGainMeasure — Specify sensor gain
'dB' (default) | 'dBi'

Sensor gain measure, specified as 'dB' or 'dBi'.

• When you set this property to 'dB', the input signal power is scaled by the sensor power pattern
(in dB) at the corresponding direction and then combined.

• When you set this property to 'dBi', the input signal power is scaled by the directivity pattern (in
dBi) at the corresponding direction and then combined. This option is useful when you want to
compare results with the values predicted by the radar equation that uses dBi to specify the
antenna gain. The computation using the 'dBi' option is expensive as it requires an integration
over all directions to compute the total radiated power of the sensor.

Dependencies

To enable this property, set the Wavefront property to 'Plane'.
Data Types: char

Polarization — Polarization configuration
'None' (default) | 'Combined' | 'Dual'

Polarization configuration, specified as 'None', 'Combined', or 'Dual'. When you set this property
to 'None', the incident fields are considered scalar fields. When you set this property to
'Combined', the incident fields are polarized and represent a single arriving signal whose
polarization reflects the sensor's inherent polarization. When you set this property to 'Dual', the H
and V polarization components of the fields are independent signals.
Example: 'Dual'
Data Types: char

WeightsInputPort — Enable weights input
false (default) | true

Enable weights input, specified as false or true. When true, use the object input argument W to
specify weights. Weights are applied to individual array elements (or at the subarray level when
subarrays are supported).
Data Types: logical

Usage

Syntax
Y = collector(X,ANG)
Y = collector(X,ANG,LAXES)
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[YH,YV] = collector(X,ANG,LAXES)
[ ___ ] = collector( ___ ,W)
[ ___ ] = collector( ___ ,STEERANG)
[ ___ ] = collector( ___ ,WS)

Description

Y = collector(X,ANG) collects the signals, X, arriving from the directions specified by ANG. Y
contains the collected signals.

Y = collector(X,ANG,LAXES) also specifies LAXES as the local coordinate system axes
directions. To use this syntax, set the Polarization property to 'Combined'.

[YH,YV] = collector(X,ANG,LAXES) returns an H-polarization component of the field, YH, and a
V-polarization component, YV. To use this syntax, set the Polarization property to 'Dual'.

[ ___ ] = collector( ___ ,W) also specifies W as array element or subarray weights. To use this
syntax, set the WeightsInputPort property to true.

[ ___ ] = collector( ___ ,STEERANG) also specifies STEERANG as the subarray steering angle. To
use this syntax, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of that array to either 'Phase' or 'Time'.

[ ___ ] = collector( ___ ,WS) also specifies WS as the weights applied to each element within
each subarray. To use this syntax, set the Sensor property to an array that supports subarrays and set
the SubarraySteering of that array to 'Custom'.

Input Arguments

X — Arriving signals
complex-valued M-by-L matrix | complex-valued 1-by-L cell array of structures

Arriving signals, specified as a complex-valued M-by-L matrix or complex-valued 1-by-L cell array of
structures. M is the number of signal samples and L is the number of arrival angles. This argument
represents the arriving fields.

• If the Polarization property value is set to 'None', X is an M-by-L matrix.
• If the Polarization property value is set to 'Combined' or 'Dual', X is a 1-by-L cell array of

structures. Each cell corresponds to a separate arriving signal. Each struct contains three
column vectors containing the X, Y, and Z components of the polarized fields defined with respect
to the global coordinate system.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined'.
Data Types: double
Complex Number Support: Yes

ANG — Arrival directions of signals
real-valued 2-by-L matrix
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Arrival directions of signals, specified as a real-valued 2-by-L matrix. Each column specifies an arrival
direction in the form [AzimuthAngle;ElevationAngle]. The azimuth angle must lie between –
180° and 180°, inclusive. The elevation angle must lie between –90° and 90°, inclusive. When the
Wavefront property is false, the number of angles must equal the number of array elements, N.
Units are in degrees.
Example: [30,20;45,0]
Data Types: double

LAXES — Local coordinate system
real-valued 3-by-3 orthogonal matrix

Local coordinate system, specified as a real-valued 3-by-3 orthogonal matrix. The matrix columns
specify the local coordinate system's orthonormal x, y, and z axes with respect to the global
coordinate system.
Example: rotx(30)

Dependencies

To enable this argument, set the Polarization property to 'Combined' or 'Dual'.
Data Types: double

W — Element or subarray weights
N-by-1 column vector

Element or subarray weights, specified as a complex-valued N-by-1 column vector where N is the
number of array elements (or subarrays when the array supports subarrays).

Dependencies

To enable this argument, set the WeightsInputPort property to true.
Data Types: double
Complex Number Support: Yes

WS — Subarray element weights
complex-valued NSE-by-N matrix | 1-by-N cell array

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.
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Subarray element weights

Sensor Array Subarray weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray Subarrays may not have the same dimensions and
sizes. In this case, you can specify subarray
weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and set the
SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

STEERANG — Subarray steering angle
real-valued 2-by-1 vector

Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuthAngle;elevationAngle]. The azimuth angle must be between –180° and 180°,
inclusive. The elevation angle must be between –90° and 90°, inclusive. Units are in degrees.
Example: [20;15]

Dependencies

To enable this argument, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of that array to either 'Phase' or 'Time'
Data Types: double

Output Arguments

Y — Collected signal
complex-valued M-by-N matrix

Collected signal, returned as a complex-valued M-by-N matrix. M is the length of the input signal. N
is the number of array elements (or subarrays when subarrays are supported). Each column
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corresponds to the signal collected by the corresponding array element (or corresponding subarrays
when subarrays are supported).

Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined'.
Data Types: double

YH — Collected horizontal polarization signal
complex-valued M-by-N matrix

Collected horizontal polarization signal, returned as a complex-valued M-by-N matrix. M is the length
of the input signal. N is the number of array elements (or subarrays when subarrays are supported).
Each column corresponds to the signal collected by the corresponding array element (or
corresponding subarrays when subarrays are supported).

Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double

YV — Collected vertical polarization signal
complex-valued M-by-N matrix

Collected horizontal polarization signal, returned as a complex-valued M-by-N matrix. M is the length
of the input signal. N is the number of array elements (or subarrays when subarrays are supported).
Each column corresponds to the signal collected by the corresponding array element (or
corresponding subarrays when subarrays are supported).

Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Collect Wideband Signal at Single Antenna

Use the phased.Collector System object™ to construct a signal arriving at a single isotropic
antenna from 10° azimuth and 30° elevation.

antenna = phased.IsotropicAntennaElement;
collector = phased.Collector('Sensor',antenna);
x = [1;0;-1];
incidentAngle = [10;30];
y = collector(x,incidentAngle)

y = 3×1

     1
     0
    -1

Collect Signal at Uniform Linear Array

Collect a far-field signal arriving at a 3-element uniform linear array (ULA) of isotropic antenna
elements.

antenna = phased.ULA('NumElements',3);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',1e9);
x = [1;0;-1];
incidentAngle = [10 30]';
y = collector(x,incidentAngle)

y = 3×3 complex

  -0.0051 - 1.0000i   1.0000 + 0.0000i  -0.0051 + 1.0000i
   0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 + 0.0000i
   0.0051 + 1.0000i  -1.0000 + 0.0000i   0.0051 - 1.0000i

Collect Different Signals at Array Elements

Collect different signals at a three-element array. Each input signal comes from a different direction.

array = phased.ULA('NumElements',3);
collector = phased.Collector('Sensor',array,'OperatingFrequency',1e9,...
    'Wavefront','Unspecified');

Each column is a signal for one element

x = rand(10,3)

x = 10×3

    0.8147    0.1576    0.6557
    0.9058    0.9706    0.0357
    0.1270    0.9572    0.8491
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    0.9134    0.4854    0.9340
    0.6324    0.8003    0.6787
    0.0975    0.1419    0.7577
    0.2785    0.4218    0.7431
    0.5469    0.9157    0.3922
    0.9575    0.7922    0.6555
    0.9649    0.9595    0.1712

Specify three incident angles.

incidentAngles = [10 0; 20 5; 45 2]';
y = collector(x,incidentAngles)

y = 10×3

    0.8147    0.1576    0.6557
    0.9058    0.9706    0.0357
    0.1270    0.9572    0.8491
    0.9134    0.4854    0.9340
    0.6324    0.8003    0.6787
    0.0975    0.1419    0.7577
    0.2785    0.4218    0.7431
    0.5469    0.9157    0.3922
    0.9575    0.7922    0.6555
    0.9649    0.9595    0.1712

Collect Plane Wave at ULA

Construct a 4-element uniform linear array (ULA). The array operating frequency is 1 GHz. The array
element spacing is one half the corresponding wavelength. Model the collection of a 200 Hz sinusoid
from the far field incident on the array at 45° azimuth and 10° elevation.

Create the array.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);

Create the sinusoid signal.

t = linspace(0,1,1e3);
x = cos(2*pi*200*t)';

Construct the collector object and obtain the received signal.

collector = phased.Collector('Sensor',array, ...
    'PropagationSpeed',physconst('LightSpeed'),'Wavefront','Plane', ...
    'OperatingFrequency',fc);
incidentangle = [45;10];
receivedsig = collector(x,incidentangle);
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Measure Target Scattering Matrix Using Dual Polarization

Use a dual-polarization system to obtain target scattering information. Simulate a transmitter and
receiver where the vertical and horizontal components are transmitted successively using the input
ports of the transmitter. The signals from the two polarization output ports of the receiver is then
used to determine the target scattering matrix.

scmat = [0 1i; 1i 2];
radiator = phased.Radiator('Sensor', ...
    phased.CustomAntennaElement('SpecifyPolarizationPattern',true), ...
    'Polarization','Dual');
target = phased.RadarTarget('EnablePolarization',true,'ScatteringMatrix', ...
    scmat);
collector = phased.Collector('Sensor', ...
    phased.CustomAntennaElement('SpecifyPolarizationPattern',true), ...
    'Polarization','Dual');
xh = 1;
xv = 1;

Transmit a horizontal component and display the reflected Shh and Svh polarization components.

x = radiator(xh,0,[0;0],eye(3));
xrefl = target(x,[0;0],eye(3));
[Shh,Svh] = collector(xrefl,[0;0],eye(3))

Shh = 0

Svh = 0.0000 + 3.5474i

Transmit a vertical component and display the reflected Shv and Svv polarization components.

x = radiator(0,xv,[0;0],eye(3));
xrefl = target(x,[0;0],eye(3));
[Shv,Svv] = collector(xrefl,[0;0],eye(3))

Shv = 0.0000 + 3.5474i

Svv = 7.0947

Algorithms
If the Wavefront property value is 'Plane', phased.Collector collects each plane wave signal
using the phase approximation of the time delays across collecting elements in the far field.

If the Wavefront property value is 'Unspecified', phased.Collector collects each channel
independently.

For further details, see [1].

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.Radiator | phased.WidebandCollector | phased.WidebandRadiator

Introduced in R2011a
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step
System object: phased.Collector
Package: phased

Collect signals

Syntax
Y = step(H,X,ANG)
Y = step(H,X,ANG,LAXES)
Y = step(H,X,ANG,WEIGHTS)
Y = step(H,X,ANG,STEERANGLE)
Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X,ANG) collects signals X arriving from directions ANG. The collection process depends
on the Wavefront property of H, as follows:

• If Wavefront has the value 'Plane', each collecting element collects all the far field signals in X.
Each column of Y contains the output of the corresponding element in response to all the signals
in X.

• If Wavefront has the value 'Unspecified', each collecting element collects only one impinging
signal from X. Each column of Y contains the output of the corresponding element in response to
the corresponding column of X. The 'Unspecified' option is available when the Sensor
property of H does not contain subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate system axes directions. This syntax
is available when you set the EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This syntax is available when
you set the WeightsInputPort property to true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle. This syntax is
available when you configure H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all input arguments. This syntax is
available when you configure H so that H.WeightsInputPort is true, H.Sensor is an array that
contains subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
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the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Collector object.

X

Arriving signals. Each column of X represents a separate signal. The specific interpretation of X
depends on the Wavefront property of H.

Wavefront Property
Value

Description

'Plane' Each column of X is a far field signal.
'Unspecified' Each column of X is the signal impinging on the corresponding element.

In this case, the number of columns in X must equal the number of
collecting elements in the Sensor property.

• If the EnablePolarization property value is set to false, X is a matrix. The number of
columns of the matrix equals the number of separate signals.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

• If the EnablePolarization property value is set to true, X is a row vector of MATLAB struct
type. The dimension of the struct array equals the number of separate signals. Each struct
member contains three column-vector fields, X, Y, and Z, representing the x, y, and z components
of the polarized wave vector signals in the global coordinate system.

The size of the first dimension of the matrix fields within the struct can vary to simulate a
changing signal length such as a pulse waveform with variable pulse repetition frequency.

ANG

Incident directions of signals, specified as a two-row matrix. Each column specifies the incident
direction of the corresponding column of X. Each column of ANG has the form [azimuth; elevation], in
degrees. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns specify the local coordinate
system's orthonormal x, y, and z axes, respectively. Each axis is specified in terms of [x;y;z] with
respect to the global coordinate system. This argument is only used when the EnablePolarization
property is set to true.
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WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where M is the number of collecting
elements.

Default: ones(M,1)

STEERANGLE

Subarray steering angle, specified as a length-2 column vector. The vector has the form [azimuth;
elevation], in degrees. The azimuth angle must be between –180 and 180 degrees, inclusive. The
elevation angle must be between –90 and 90 degrees, inclusive.

Output Arguments
Y

Collected signals. Each column of Y contains the output of the corresponding element. The output is
the response to all the signals in X, or one signal in X, depending on the Wavefront property of H.

Examples

Collect Plane Wave at ULA

Construct a 4-element uniform linear array (ULA). The array operating frequency is 1 GHz. The array
element spacing is one half the corresponding wavelength. Model the collection of a 200 Hz sinusoid
from the far field incident on the array at 45° azimuth and 10° elevation.

Create the array.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',4,'ElementSpacing',lambda/2);

Create the sinusoid signal.

t = linspace(0,1,1e3);
x = cos(2*pi*200*t)';

Construct the collector object and obtain the received signal.

collector = phased.Collector('Sensor',array, ...
    'PropagationSpeed',physconst('LightSpeed'),'Wavefront','Plane', ...
    'OperatingFrequency',fc);
incidentangle = [45;10];
receivedsig = collector(x,incidentangle);

Algorithms
If the Wavefront property value is 'Plane', phased.Collector collects each plane wave signal
using the phase approximation of the time delays across collecting elements in the far field.
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If the Wavefront property value is 'Unspecified', phased.Collector collects each channel
independently.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel
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clusterDBSCAN

Data clustering

Description
clusterDBSCAN clusters data points belonging to a P-dimensional feature space using the density-
based spatial clustering of applications with noise (DBSCAN) algorithm. The clustering algorithm
assigns points that are close to each other in feature space to a single cluster. For example, a radar
system can return multiple detections of an extended target that are closely spaced in range, angle,
and Doppler. clusterDBSCAN assigns these detections to a single detection.

• The DBSCAN algorithm assumes that clusters are dense regions in data space separated by
regions of lower density and that all dense regions have similar densities.

• To measure density at a point, the algorithm counts the number of data points in a neighborhood
of the point. A neighborhood is a P-dimensional ellipse (hyperellipse) in the feature space. The
radii of the ellipse are defined by the P-vector ε. ε can be a scalar, in which case, the hyperellipse
becomes a hypersphere. Distances between points in feature space are calculated using the
Euclidean distance metric. The neighborhood is called an ε-neighborhood. The value of ε is
defined by the Epsilon property. Epsilon can either be a scalar or P-vector:

• A vector is used when different dimensions in feature space have different units.
• A scalar applies the same value to all dimensions.

• Clustering starts by finding all core points. If a point has a sufficient number of points in its ε-
neighborhood, the point is called a core point. The minimum number of points required for a point
to become a core point is set by the MinNumPoints property.

• The remaining points in the ε-neighborhood of a core point can be core points themselves. If not,
they are border points. All points in the ε-neighborhood are called directly density reachable from
the core point.

• If the ε-neighborhood of a core point contains other core points, the points in the ε-neighborhoods
of all the core points merge together to form a union of ε-neighborhoods. This process continues
until no more core points can be added.

• All points in the union of ε-neighborhoods are density reachable from the first core point. In
fact, all points in the union are density reachable from all core points in the union.

• All points in the union of ε-neighborhoods are also termed density connected even though
border points are not necessarily reachable from each other. A cluster is a maximal set of
density-connected points and can have an arbitrary shape.

• Points that are not core or border points are noise points. They do not belong to any cluster.
• The clusterDBSCAN object can estimate ε using a k-nearest neighbor search, or you can specify

values. To let the object estimate ε, set the EpsilonSource property to 'Auto'.
• The clusterDBSCAN object can disambiguate data containing ambiguities. Range and Doppler

are examples of possibly ambiguous data. Set EnableDisambiguation property to true to
disambiguate data.

To cluster detections:
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1 Create the clusterDBSCAN object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
clusterer = clusterDBSCAN
clusterer = clusterDBSCAN(Name,Value)

Description

clusterer = clusterDBSCAN creates a clusterDBSCAN object, clusterer, object with default
property values.

clusterer = clusterDBSCAN(Name,Value) creates a clusterDBSCAN object, clusterer, with
each specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). Any unspecified properties take
default values. For example,

clusterer = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
'EnableDisambiguation',true,'AmbiguousDimension',[1 2]);

creates a clusterer with the EnableDisambiguation property set to true and the
AmbiguousDimension set to [1,2].

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

EpsilonSource — Source of epsilon
'Property' (default) | 'Auto'

Source of epsilon values defining an ε-neighborhood, specified as 'Property' or 'Auto'.

• When you set the EpsilonSource property to 'Property', ε is obtained from the Epsilon
property.

• When you set the EpsilonSource property to 'Auto', ε is estimated automatically using a k-
nearest neighbor (k-NN) search over a range of k values from kmin to kmax.

kmin = MinNumPoints− 1
kmax = MaxNumPoints− 1
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The subtraction of one is needed because the number of neighbors of a point does not include the
point itself, whereas MinNumPoints and MaxNumPoints refer to the total number of points in a
neighborhood.

Data Types: char | string

Epsilon — Radius for neighborhood search
10.0 (default) | positive scalar | positive, real-valued 1-by-P row vector

Radius for a neighborhood search, specified as a positive scalar or positive, real-valued 1-by-P row
vector. P is the number of features in the input data, X.

Epsilon defines the radii of an ellipse around any point to create an ε-neighborhood. When Epsilon
is a scalar, the same radius applies to all feature dimensions. You can apply different epsilon values
for different features by specifying a positive, real-valued 1-by-P row vector. A row vector creates a
multidimensional ellipse (hyperellipse) search area, useful when the data features have different
physical meanings, such as range and Doppler. See “Estimate Epsilon” on page 1-225 for more
information about this property.

You can use the clusterDBSCAN.estimateEpsilon or clusterDBSCAN.discoverClusters
object functions to help estimate a scalar value for epsilon.
Example: [11 21.0]

Tunable: Yes

Dependencies

To enable this property, set the EpsilonSource property to 'Property'.
Data Types: double

MinNumPoints — Minimum number of points required for cluster
3 (default) | positive integer

Minimum number of points in an ε-neighborhood of a point for that point to become a core point,
specified as a positive integer. See “Choosing the Minimum Number of Points” on page 1-228 for
more information. When the object automatically estimates epsilon using a k-NN search, the starting
value of k (kmin) is MinNumPoints - 1.
Example: 5
Data Types: double

MaxNumPoints — Set end of k-NN search range
10 (default) | positive integer

Set end of k-NN search range, specified as a positive integer. When the object automatically
estimates epsilon using a k-NN search, the ending value of k (kmax) is MaxNumPoints - 1.
Example: 13

Dependencies

To enable this property, set the EpsilonSource property to 'Auto'.
Data Types: double
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EpsilonHistoryLength — Length of cluster threshold epsilon history
10 (default) | positive integer

Length of the stored epsilon history, specified as a positive integer. When set to one, the history is
memory-less, meaning that each epsilon estimate is immediately used and no moving-average
smoothing occurs. When greater than one, epsilon is averaged over the history length specified.
Example: 5
Dependencies

To enable this property, set the EpsilonSource property to 'Auto'.
Data Types: double

EnableDisambiguation — Enable disambiguation of dimensions
false (default) | true

Switch to enable disambiguation of dimensions, specified as false or true. When true, clustering
can occur across boundaries defined by the input amblims at execution. Use the
AmbiguousDimensions property to specify the column indices of X in which ambiguities can occur.
You can disambiguate up to two dimensions. Turning on disambiguation is not recommended for large
data sets.
Data Types: logical

AmbiguousDimension — Indices of ambiguous dimensions
1 (default) | positive integer | 1-by-2 vector of positive integers

Indices of ambiguous dimensions, specified as a positive integer or 1-by-2 vector of positive integers.
This property specifies the column of X in which to apply disambiguation. A positive integer indicates
a single ambiguous dimension in the input data matrix X. A 1-by-2 row vector specifies two
ambiguous dimensions. The size and order of AmbiguousDimension must be consistent with the
object input amblims.
Example: [3 4]
Dependencies

To enable this property, set the EnableDisambiguation property to true.
Data Types: double

Usage

Syntax
idx = clusterer(X)
[idx,clusterids] = clusterer(X)
[ ___ ] = clusterer(X,amblims)
[ ___ ] = clusterer(X,update)
[ ___ ] = clusterer(X,amblims,update)

Description

idx = clusterer(X) clusters the points in the input data, X. idx contains a list of IDs identifying
the cluster to which each row of X belongs. Noise points are assigned as '–1'.
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[idx,clusterids] = clusterer(X) also returns an alternate set of cluster IDs, clusterids,
for use in the phased.RangeEstimator and phased.DopplerEstimator objects. clusterids
assigns a unique ID to each noise point.

[ ___ ] = clusterer(X,amblims) also specifies the minimum and maximum ambiguity limits,
amblims, to apply to the data.

To enable this syntax, set the EnableDisambiguation property to true.

[ ___ ] = clusterer(X,update) automatically estimates epsilon from the input data matrix, X,
when update is set to true. The estimation uses a k-NN search to create a set of search curves. For
more information, see “Estimate Epsilon” on page 1-239. The estimate is an average of the L most
recent Epsilon values where L is specified in EpsilonHistoryLength

To enable this syntax, set the EpsilonSource property to 'Auto', optionally set the MaxNumPoints
property, and also optionally set the EpsilonHistoryLength property.

[ ___ ] = clusterer(X,amblims,update) sets ambiguity limits and estimates epsilon when
update is set to true. To enable this syntax, set EnableDisambiguation to true and set
EpsilonSource to 'Auto'.

Input Arguments

X — Input feature data
real-valued N-by-P matrix

Input feature data, specified as a real-valued N-by-P matrix. The N rows correspond to feature points
in a P-dimensional feature space. The P columns contain the values of the features over which
clustering takes place. The DBSCAN algorithm can cluster any type of data with appropriate
MinNumPoints and Epsilon settings. For example, a two-column input can contain the xy Cartesian
coordinates, or range and Doppler.
Data Types: double

amblims — Ambiguity limits
1-by-2 real-valued vector (default) | 2-by-2 real-valued matrix

Ambiguity limits, specified as a real-valued 1-by-2 vector or real-valued 2-by-2 matrix. For a single
ambiguity dimension, specify the limits as a 1-by-2 vector
[MinAmbiguityLimitDimension1,MaxAmbiguityLimitDimension1]. For two ambiguity dimensions,
specify the limits as a 2-by-2 matrix [MinAmbiguityLimitDimension1, MaxAmbiguityLimitDimension1;
MinAmbiguityLimitDimension2,MaxAmbiguityLimitDimension2]. Ambiguity limits allow clustering
across boundaries to ensure that ambiguous detections are appropriately clustered.

The ambiguous columns of X are defined in the AmbiguousDimension property. amblims defines
the minimum and maximum ambiguity limits in the same units as the data in the
AmbiguousDimension columns of X.
Example: [0 20; -40 40]

Dependencies

To enable this argument, set EnableDisambiguation to true and set the AmbiguousDimension
property.
Data Types: double
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update — Enable automatic update of epsilon
false (default) | true

Enable automatic update of the epsilon estimate, specified as false or true.

• When true, the epsilon threshold is first estimated as the average of the knees of k-NN search
curves. The estimate is then added to a buffer whose length L is set in the
EpsilonHistoryLength property. The final epsilon that is used is calculated as the average of
the L-length epsilon history buffer. If EpsilonHistoryLength is set to 1, the estimate is
memory-less. Memory-less means that each epsilon estimate is immediately used and no moving-
average smoothing occurs.

• When false, a previous epsilon estimate is used. Estimating epsilon is computationally intensive
and not recommended for large data sets.

Dependencies

To enable this argument, set the EpsilonSource property to 'Auto' and specify the
MaxNumPoints property.
Data Types: double

Output Arguments

idx — Cluster indices
N-by-1 integer-valued column vector

Cluster indices, returned as an integer-valued N-by-1 column vector. idx represents the clustering
results of the DBSCAN algorithm. Positive idx values correspond to clusters that satisfy the DBSCAN
clustering criteria. A value of '-1' indicates a DBSCAN noise point.
Data Types: double

clusterids — Alternative cluster IDs
1-by-N integer-valued row vector

Alternative cluster IDs, returned as a 1-by-N row vector of positive integers. Each value is a unique
identifier indicating a hypothetical target cluster. This argument contains unique positive cluster IDs
for all points including noise. In contrast, the idx output argument labels noise points with '–1'. Use
clusterids as the input to Phased Array System Toolbox objects such as
phased.RangeEstimator and phased.DopplerEstimator.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to clusterDBSCAN
clusterDBSCAN.discoverClusters Find cluster hierarchy in data
clusterDBSCAN.estimateEpsilon Estimate neighborhood clustering threshold
plot Plot clusters
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Cluster Detections in Range and Doppler

Create detections of extended objects with measurements in range and Doppler. Assume the
maximum unambiguous range is 20 m and the unambiguous Doppler span extends from −30 Hz to 30
Hz. The data matrix is contained in the dataClusterDBSCAN.mat file. The first column represents
range and the second column represents Doppler.

The input data contains the following extended targets and false alarms:

• an unambiguous target located at 10, 15
• an ambiguous target in Doppler located at 10, − 30
• an ambiguous target in range located at 20, 15
• an ambiguous target in range and Doppler located at 20, 30
• 5 false alarms

Create a clusterDBSCAN object and specify that disambiguation is not performed by setting
EnableDisambiguation to false. Solve for the cluster indices.

load('dataClusterDBSCAN.mat');
cluster1 = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
    'EnableDisambiguation',false);
idx = cluster1(x);

Use the clusterDBSCAN plot object function to display the clusters.

plot(cluster1,x,idx)
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The plot indicates that there are 8 apparent clusters and 6 noise points. The 'Dimension 1' label
corresponds to range and the 'Dimension 2' label corresponds to Doppler.

Next, create another clusterDBSCAN object and set EnableDisambiguation to true to specify
that clustering is performed across the range and Doppler ambiguity boundaries.

cluster2 = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
    'EnableDisambiguation',true,'AmbiguousDimension',[1 2]);

Perform the clustering using ambiguity limits and then plot the clustering results. The DBSCAN
clustering results correctly show four clusters and five noise points. For example, the points at ranges
close to zero are clustered with points near 20 m because the maximum unambiguous range is 20 m.

amblims = [0 maxRange; minDoppler maxDoppler];
idx = cluster2(x,amblims);
plot(cluster2,x,idx)
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Effect of Epsilon on Clustering

Cluster two-dimensional Cartesian position data using clusterDBSCAN. To illustrate how the choice
of epsilon affects clustering, compare the results of clustering with Epsilon set to 1 and Epsilon
set to 3.

Create random target position data in xy Cartesian coordinates.

x = [rand(20,2)+12; rand(20,2)+10; rand(20,2)+15];
plot(x(:,1),x(:,2),'.')
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Create a clusterDBSCAN object with the Epsilon property set to 1 and the MinNumPoints
property set to 3.

clusterer = clusterDBSCAN('Epsilon',1,'MinNumPoints',3);

Cluster the data when Epsilon equals 1.

idxEpsilon1 = clusterer(x);

Cluster the data again but with Epsilon set to 3. You can change the value of Epsilon because it is
a tunable property.

clusterer.Epsilon = 3;
idxEpsilon2 = clusterer(x);

Plot the clustering results side-by-side. Do this by passing in the axes handles and titles into the plot
method. The plot shows that for Epsilon set to 1, three clusters appear. When Epsilon is 3, the two
lower clusters are merged into one.

hAx1 = subplot(1,2,1);
plot(clusterer,x,idxEpsilon1, ...
    'Parent',hAx1,'Title','Epsilon = 1')
hAx2 = subplot(1,2,2);
plot(clusterer,x,idxEpsilon2, ...
    'Parent',hAx2,'Title','Epsilon = 3')
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Algorithms
Clustering Algorithm
Clustering Overview

This section illustrates the basic principles of cluster formation. The figure shows points in a two-
dimensional feature space. The clusters are compact and well-separated. A few noise points appear.
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Clusters Formed from a Single ε-Neighborhood

• Clusters start from core points. The first step in the algorithm is identifying all core points.

The figure here shows the point P1 and its ε-neighborhood Nε(P1). The ε-neighborhood has eight
points (including itself) within a radius ε. Using the MinNumPoints property to set the threshold
to 8 means that P1 is a core point. The blue points that lie within Nε are called border points.
These border points are directly density reachable from the core point P1.

• No other points in the figure have enough neighboring points in their ε-neighborhood to become a
core point. P2 is not a core point because it has only five points within its neighborhood. P2 is
directly density reachable from P1. The reverse is not true because P2 is not a core point. The one-
way arrow connecting the two points shows this asymmetry.

• Points that fall outside Nε(P1) are noise points (red) and do not belong to the cluster.
• Because no other points are core points, the core point and border points are a maximal set of

density-connected points and therefore form a cluster.

Cluster of Points from Two ε-Neighborhoods

• The next figure shows a larger set of points containing two core points, P1 and P2. P2 is a border
point of P1 but P2 also has enough points in its own neighborhood to become a core point. Because
they are both core points, P1 is directly density reachable from P2, and P1 is directly density
reachable from P2. The two-way arrow connecting them shows this symmetry.
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• P3 is directly density reachable from P2 but not from P1 (as indicated by the one-way arrow).
However, P3 is called simply density reachable from P1.

• Because no other points are core points, the two core points and their border points form a
maximal set of density-connected points and form one cluster.

1 Objects

1-222



Cluster Points in Adjacent ε-Neighborhoods

• This process of growing a cluster can be extended from core point to core point until there are no
more core points to add. The core points and the border points belong to the same cluster. In
general, a point Pn is density reachable from point P1 when there is a chain of core points, P1,P2,
P3, …, Pn-1 such that each core point Pi+1 is directly density reachable from Pi, and Pn is directly
density reachable from Pn-1.
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Density Connectivity

The next figure illustrates some properties of density connectivity.

• A cluster can have multiple branching chains, for example (P1, P2, P3, P4) and (P1, P2, P5, P6).
• Two points, P6 and P4, are density connected when there is a third point P2 such that P6 and P4 are

density reachable from P2.
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• Two density connected points are not necessarily density reachable from one another.
• A maximal set of density connected points define a cluster. It does not matter which core point is

the starting core point.
• All points in a cluster are density reachable from all core points.

Estimate Epsilon

DBSCAN clustering requires a value for the neighborhood size parameter ε. The clusterDBSCAN
object and the clusterDBSCAN.estimateEpsilon function use a k-nearest-neighbor search to
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estimate a scalar epsilon. Let D be the distance of any point P to its kth nearest neighbor. Define a
Dk(P)-neighborhood as a neighborhood surrounding P that contains its k-nearest neighbors. There are
k + 1 points in the Dk(P)-neighborhood including the point P itself. An outline of the estimation
algorithm is:

• For each point, find all the points in its Dk(P)-neighborhood
• Accumulate the distances in all Dk(P)-neighborhoods for all points into a single vector.
• Sort the vector by increasing distance.
• Plot the sorted k-dist graph, which is the sorted distance against point number.
• Find the knee of the curve. The value of the distance at that point is an estimate of epsilon.

The figure here shows distance plotted against point index for k = 20. The knee occurs at
approximately 1.5. Any points below this threshold belong to a cluster. Any points above this value
are noise.

There are several methods to find the knee of the curve. clusterDBSCAN and
clusterDBSCAN.estimateEpsilon first define the line connecting the first and last points of the
curve. The ordinate of the point on the sorted k-dist graph furthest from the line and perpendicular to
the line defines epsilon.

1 Objects

1-226



When you specify a range of k values, the algorithm averages the estimate epsilon values for all
curves. This figure shows that epsilon is fairly insensitive to k for k ranging from 14 through 19.

To create a single k-NN distance graph, set the MinNumPoints property equal to the MaxNumPoints
property.
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Choosing the Minimum Number of Points

The purpose of MinNumPoints is to smooth the density estimates. Because a cluster is a maximal set
of density-connected points, choose smaller values when the expected number of detections in a
cluster is unknown. However, smaller values make the DBSCAN algorithm more susceptible to noise.
A general guideline for choosing MinNumPoints is:

• Generally, set MinNumPoints = 2P where P is the number of feature dimensions in X.
• For data sets that have one or more of the following properties:

• many noise points
• large number of points, N
• large dimensionality, P
• many duplicates

increasing MinNumPoints can often improve clustering results.

Ambiguous Data

The clustering algorithm is general enough to process ambiguities in any feature, but applying
clustering to range and Doppler ambiguities in radar are important applications.
Range Ambiguity

The time delay between pulse transmission and reception determines the range, R, of a target. R is
proportional to time delay, t, by

R = ct
2

where c is the speed of light. Time is measured from the transmission time of the pulse. If only one
pulse is transmitted, the equation accurately determines the range.

Often, the radar transmits multiple pulses spaced at intervals T, the pulse repetition interval (PRI).
Range ambiguities occur when the echoes from one pulse are not received before the next pulse is
transmitted. Range is computed from the time difference of the arrival of the received pulse from the
transmission time of the most recent transmitted pulse. Therefore the range can be incorrect by some
integer multiple of the unambiguous range. The unambiguous range of a radar system is the
maximum range at which a target can be located to guarantee that the reflected pulse from that
target corresponds to the most recent transmitted pulse. The PRI determines the unambiguous range.

Rmax = cT
2

The range of a detection less than Rmax is an unambiguous range. Range disambiguation clusters
detections that cross ambiguous range boundaries.

Turn on disambiguation by setting the EnableDisambiguation to true. Then, use the
AmbiguousDimension property to select the column in the input data corresponding to range. Set
the actual ambiguity limits for range using the amblims argument at execution time.
Doppler Ambiguity

Doppler aliasing occurs when echoes arrive from targets that move fast enough for the Doppler
frequency to exceed the pulse repetition frequency (PRF). If the Doppler shift is greater than ½ PRF
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or less than –½ PRF, the Doppler shift is aliased into the range (–½ PRF, ½ PRF). This range is called
the unambiguous Doppler. Turn on disambiguation by setting the EnableDisambiguation to true.
Then, use the AmbiguousDimension property to select the column in the input data corresponding
to Doppler. Set the actual ambiguity limits for Doppler using the amblims argument at execution
time. Doppler ambiguity implies radial speed ambiguity as well. Make sure that amblims matches the
interpretation of the feature.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
clusterDBSCAN.discoverClusters | clusterDBSCAN.estimateEpsilon | plot

Introduced in R2019b
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clusterDBSCAN.discoverClusters
Find cluster hierarchy in data

Syntax
[order,reachdist] = clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints)
clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints)

Description
[order,reachdist] = clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints)
returns a cluster-ordered list of points, order, and the reachability distances, reachdist, for each
point in the data X. Specify the maximum epsilon, maxepsilon, and the minimum number of points,
minnumpoints. The method implements the Ordering Points To Identify the Clustering Structure
(OPTICS) algorithm. The OPTICS algorithm is useful when clusters have varying densities.

clusterDBSCAN.discoverClusters(X,maxepsilon,minnumpoints) displays a bar graph
representing the cluster hierarchy.

Examples

Display Cluster Hierarchy

Create target data with random detections in xy Cartesian coordinates. Use the
clusterDBSCAN.discoverClusters object functions to reveal the underlying cluster hierarchy.

First, set clusterDBSCAN.discoverClusters parameters.

maxEpsilon = 10;
minNumPoints = 6;

Create random target data.

X = [randn(20,2) + [11.5,11.5]; randn(20,2) + [25,15]; randn(20,2) + [8,20]; 10*rand(10,2) + [20,20]];
plot(X(:,1),X(:,2),'.')
axis equal
grid
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Plot the cluster hierarchy.

clusterDBSCAN.discoverClusters(X,maxEpsilon,minNumPoints)
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From a visual inspection of the plot, choose Epsilon as 2 and then perform the clustering using the
clusterDBSCAN object and plot the resultant clusters.

clusterer = clusterDBSCAN('MinNumPoints',6,'Epsilon',2, ...
    'EnableDisambiguation',false);
[idx,cidx] = clusterer(X);
plot(clusterer,X,idx)
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Input Arguments
X — Input feature data
real-valued N-by-P matrix

Input feature data, specified as a real-valued N-by-P matrix. The N rows correspond to feature points
in a P-dimensional feature space. The P columns contain the values of the features over which
clustering takes place. The DBSCAN algorithm can cluster any type of data with appropriate
MinNumPoints and Epsilon settings. For example, a two-column input can contain the xy Cartesian
coordinates, or range and Doppler.
Data Types: double

maxepsilon — Maximum epsilon size
positive scalar

Maximum epsilon size to use in the cluster hierarchy search, specified as a positive scalar. The
epsilon parameter defines the clustering neighborhood around a point. Reducing maxepsilon results
in shorter run times. Setting maxepsilon to inf identifies all possible clusters.

The OPTICS algorithm is relatively insensitive to parameter settings, but choosing larger parameters
can improve results.
Example: 5.0
Data Types: double
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minnumpoints — Minimum number of points
positive integer

Minimum number of points used as a threshold, specified as a positive integer. The threshold sets the
minimum number of points for a cluster.

The OPTICS algorithm is relatively insensitive to parameter settings, but choosing larger parameters
can improve results.
Example: 10
Data Types: double

Output Arguments
order — Cluster hierarchy
integer-valued 1-by-N row vector

Cluster ordered list of sample indices, returned as an integer-valued 1-by-N row vector.N is the
number of rows in the input data matrix X.

reachdist — Reachability distance
positive, real-valued 1-by-N row vector

Reachability distance, returned as a positive, real-valued 1-by-N row vector. N is the number of rows
in the input data matrix X.
Data Types: double

Algorithms
The outputs of clusterDBSCAN.discoverClusters let you create a reachability-plot from which
the hierarchical structure of the clusters can be visualized. A reachability-plot contains ordered
points on the x-axis and the reachability distances on the y-axis. Use the outputs to examine the
cluster structure over a broad range of parameter settings. You can use the output to help estimate
appropriate epsilon clustering thresholds for the DBSCAN algorithm. Points belonging to a cluster
have small reachability distances to their nearest neighbor, and clusters appear as valleys in the
reachability plot. Deeper valleys correspond to denser clusters. Determine epsilon from the ordinate
of the bottom of the valleys.

OPTICS assumes that dense clusters are entirely contained by less dense clusters. OPTICS processes
data in the correct order by tracking the point density neighborhoods. This process is performed by
ordering data points by the shortest reachability distances, guaranteeing that clusters with higher
density are identified first.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Code generation is not supported for graphics output.
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See Also
clusterDBSCAN | clusterDBSCAN.estimateEpsilon | plot

Introduced in R2019b
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clusterDBSCAN.estimateEpsilon
Estimate neighborhood clustering threshold

Syntax
epsilon = clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints)
clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints)

Description
epsilon = clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints) returns an
estimate of the neighborhood clustering threshold, epsilon, used in the density-based spatial
clustering of applications with noise (DBSCAN)algorithm. epsilon is computed from input data X
using a k-nearest neighbor (k-NN) search. MinNumPoints and MaxNumPoints set a range of k-
values for which epsilon is calculated. The range extends from MinNumPoints – 1 through
MaxNumPoints – 1. k is the number of neighbors of a point, which is one less than the number of
points in a neighborhood.

clusterDBSCAN.estimateEpsilon(X,MinNumPoints,MaxNumPoints) displays a figure
showing the k-NN search curves and the estimated epsilon.

Examples

Estimate Epsilon from Data

Create simulated target data and use the clusterDBSCAN.estimateEpsilon function to calculate
an appropriate epsilon threshold.

Create the target data as xy Cartesian coordinates.

X = [randn(20,2) + [11.5,11.5]; randn(20,2) + [25,15]; ...
    randn(20,2) + [8,20]; 10*rand(10,2) + [20,20]];

Set the range of values for the k-NN search.

minNumPoints = 15;
maxNumPoints = 20;

Estimate the clustering threshold epsilon and display its value on a plot.

clusterDBSCAN.estimateEpsilon(X,minNumPoints,maxNumPoints)
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Use the estimated Epsilon value, 3.62, in the clusterDBSCAN clusterer. Then, plot the clusters.

clusterer = clusterDBSCAN('MinNumPoints',6,'Epsilon',3.62, ...
    'EnableDisambiguation',false);
[idx,cidx] = clusterer(X);
plot(clusterer,X,idx)
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Input Arguments
X — Input feature data
real-valued N-by-P matrix

Input feature data, specified as a real-valued N-by-P matrix. The N rows correspond to feature points
in a P-dimensional feature space. The P columns contain the values of the features over which
clustering takes place. The DBSCAN algorithm can cluster any type of data with appropriate
MinNumPoints and Epsilon settings. For example, a two-column input can contain the xy Cartesian
coordinates, or range and Doppler.
Data Types: double

MinNumPoints — Starting value of k-NN search range
positive integer

The starting value of the k-NN search range, specified as a positive integer. MinNumPoints is used to
specify the starting value of k in the k-NN search range. The starting value of k is one less than
MinNumPoints.
Example: 10
Data Types: double

MaxNumPoints — Set end value of k-NN search range
positive integer
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The end value of k-NN search range, specified as a positive integer. MaxNumPoints is used to specify
the ending value of k in the k-NN search range. The ending value of k is one less than
MaxNumPoints.

Output Arguments
epsilon — Estimated epsilon
positive scalar

Estimated epsilon, returned as a positive scalar.

Algorithms
Estimate Epsilon

DBSCAN clustering requires a value for the neighborhood size parameter ε. The clusterDBSCAN
object and the clusterDBSCAN.estimateEpsilon function use a k-nearest-neighbor search to
estimate a scalar epsilon. Let D be the distance of any point P to its kth nearest neighbor. Define a
Dk(P)-neighborhood as a neighborhood surrounding P that contains its k-nearest neighbors. There are
k + 1 points in the Dk(P)-neighborhood including the point P itself. An outline of the estimation
algorithm is:

• For each point, find all the points in its Dk(P)-neighborhood
• Accumulate the distances in all Dk(P)-neighborhoods for all points into a single vector.
• Sort the vector by increasing distance.
• Plot the sorted k-dist graph, which is the sorted distance against point number.
• Find the knee of the curve. The value of the distance at that point is an estimate of epsilon.

The figure here shows distance plotted against point index for k = 20. The knee occurs at
approximately 1.5. Any points below this threshold belong to a cluster. Any points above this value
are noise.
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There are several methods to find the knee of the curve. clusterDBSCAN and
clusterDBSCAN.estimateEpsilon first define the line connecting the first and last points of the
curve. The ordinate of the point on the sorted k-dist graph furthest from the line and perpendicular to
the line defines epsilon.

When you specify a range of k values, the algorithm averages the estimate epsilon values for all
curves. This figure shows that epsilon is fairly insensitive to k for k ranging from 14 through 19.
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To create a single k-NN distance graph, set the MinNumPoints property equal to the MaxNumPoints
property.

Choosing the Minimum and Maximum Number of Points

The purpose of MinNumPoints is to smooth the density estimates. Because a cluster is a maximal set
of density-connected points, choose smaller values when the expected number of detections in a
cluster is unknown. However, smaller values make the DBSCAN algorithm more susceptible to noise.
A general guideline for choosing MinNumPoints is:

• Generally, set MinNumPoints = 2P where P is the number of feature dimensions in X.
• For data sets that have one or more of the following properties:

• many noise points
• large number of points, N
• large dimensionality, P
• many duplicates

increasing MinNumPoints can often improve clustering results.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Code generation is not supported for graphics output.
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See Also
clusterDBSCAN | clusterDBSCAN.discoverClusters | plot

Introduced in R2019b
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plot
Plot clusters

Syntax
fh = plot(clusterer,X,idx)
fh = plot( ___ ,'Parent',ax)
fh = plot( ___ ,'Title',titlestr)

Description
fh = plot(clusterer,X,idx) displays a plot of DBSCAN clustering results and returns a figure
handle, fh. Inputs are the cluster object, clusterer, the input data matrix, X, and cluster indices,
idx.

fh = plot( ___ ,'Parent',ax) also specifies the axes, ax, of the cluster results plot.

fh = plot( ___ ,'Title',titlestr) also specifies the title, titlestr, of the cluster results
plot.

Examples

Cluster Detections in Range and Doppler

Create detections of extended objects with measurements in range and Doppler. Assume the
maximum unambiguous range is 20 m and the unambiguous Doppler span extends from −30 Hz to 30
Hz. The data matrix is contained in the dataClusterDBSCAN.mat file. The first column represents
range and the second column represents Doppler.

The input data contains the following extended targets and false alarms:

• an unambiguous target located at 10, 15
• an ambiguous target in Doppler located at 10, − 30
• an ambiguous target in range located at 20, 15
• an ambiguous target in range and Doppler located at 20, 30
• 5 false alarms

Create a clusterDBSCAN object and specify that disambiguation is not performed by setting
EnableDisambiguation to false. Solve for the cluster indices.

load('dataClusterDBSCAN.mat');
cluster1 = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
    'EnableDisambiguation',false);
idx = cluster1(x);

Use the clusterDBSCAN plot object function to display the clusters.

plot(cluster1,x,idx)
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The plot indicates that there are 8 apparent clusters and 6 noise points. The 'Dimension 1' label
corresponds to range and the 'Dimension 2' label corresponds to Doppler.

Next, create another clusterDBSCAN object and set EnableDisambiguation to true to specify
that clustering is performed across the range and Doppler ambiguity boundaries.

cluster2 = clusterDBSCAN('MinNumPoints',3,'Epsilon',2, ...
    'EnableDisambiguation',true,'AmbiguousDimension',[1 2]);

Perform the clustering using ambiguity limits and then plot the clustering results. The DBSCAN
clustering results correctly show four clusters and five noise points. For example, the points at ranges
close to zero are clustered with points near 20 m because the maximum unambiguous range is 20 m.

amblims = [0 maxRange; minDoppler maxDoppler];
idx = cluster2(x,amblims);
plot(cluster2,x,idx)
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Input Arguments
clusterer — Clusterer object
clusterDBSCAN object

Clusterer object, specified as a clusterDBSCAN object.

X — Input data to cluster
real-valued N-by-P matrix

Input data, specified as a real-valued N-by-P matrix. The N rows correspond to points in a P-
dimensional feature space. The P columns contain the values of the features over which clustering
takes place. For example, a two-column input can contain Cartesian coordinates x and y, or range and
Doppler.
Data Types: double

idx — Cluster indices
N-by-1 integer-valued column vector

Cluster indices, specified as an N-by-1 integer-valued column vector. Cluster indices represent the
clustering results of the DBSCAN algorithm contained in the first output argument of
clusterDBSCAN. idx values start at one and are consecutively numbered. The plot object function
labels each cluster with the cluster index. A value of –1 in idx indicates a DBSCAN noise point. Noise
points are not labeled.
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Data Types: double

ax — Axes of plot
Axes handle

Axes of plot, specified as an Axes object handle.
Data Types: double

titlestr — Plot title
character vector | string

Plot title, specified as a character vector or string.
Example: 'Range-Doppler Clusters'
Data Types: char | string

Output Arguments
fh — Figure handle of plot
positive scalar

Figure handle of plot, returned as a positive scalar.

See Also
clusterDBSCAN | clusterDBSCAN.discoverClusters | clusterDBSCAN.estimateEpsilon

Introduced in R2019b
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phased.ConformalArray
Package: phased

Conformal array

Description
The ConformalArray object constructs a conformal array. A conformal array can have elements in
any position pointing in any direction.

To compute the response for each element in the array for specified directions:

1 Define and set up your conformal array. See “Construction” on page 1-247.
2 Call step to compute the response according to the properties of phased.ConformalArray.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ConformalArray creates a conformal array System object, H. The object models a
conformal array formed with identical sensor elements.

H = phased.ConformalArray(Name,Value) creates object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.ConformalArray(POS,NV,Name,Value) creates a conformal array object, H, with
the ElementPosition property set to POS, the ElementNormal property set to NV, and other
specified property Names set to the specified Values. POS and NV are value-only arguments. When
specifying a value-only argument, specify all preceding value-only arguments. You can specify name-
value arguments in any order.

Properties
Element

Element of array

Specify the element of the sensor array as a handle. The element must be an element object in the
phased package.

Default: Isotropic antenna element with default properties

ElementPosition

Element positions
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ElementPosition specifies the positions of the elements in the conformal array. ElementPosition
must be a 3-by-N matrix, where N indicates the number of elements in the conformal array. Each
column of ElementPosition represents the position, in the form [x; y; z] (in meters), of a single
element in the local coordinate system of the array. The local coordinate system has its origin at an
arbitrary point. The default value of this property represents a single element at the origin of the
local coordinate system.

Default: [0; 0; 0]

ElementNormal

Element normal directions

ElementNormal specifies the normal directions of the elements in the conformal array. Angle units
are degrees. The value assigned to ElementNormal must be either a 2-by-N matrix or a 2-by-1
column vector. The variable N indicates the number of elements in the array. If the value of
ElementNormal is a matrix, each column specifies the normal direction of the corresponding
element in the form [azimuth;elevation] with respect to the local coordinate system. The local
coordinate system aligns the positive x-axis with the direction normal to the conformal array. If the
value of ElementNormal is a 2-by-1 column vector, it specifies the same pointing direction for all
elements in the array.

You can use the ElementPosition and ElementNormal properties to represent any arrangement in
which pairs of elements differ by certain transformations. The transformations can combine
translation, azimuth rotation, and elevation rotation. However, you cannot use transformations that
require rotation about the normal.

Default: [0; 0]

Taper

Element taper or weighting

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector, or N-by-1
column vector. Weights are applied to each element in the sensor array. N is the number of elements
along in the array as determined by the size of the ElementPosition property. If the Taper
parameter is a scalar, the same taper value is applied to all elements. If the value of Taper is a
vector, each taper values is applied to the corresponding element.

Default: 1

Methods
Specific to phased.ConformalArray Object
beamwidth Compute and display beamwidth of an array
collectPla
neWave

Simulate received plane waves

directivit
y

Directivity of conformal array

getElement
Normal

Normal vector to array elements
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Specific to phased.ConformalArray Object
getElement
Position

Positions of array elements

getNumElem
ents

Number of elements in array

getTaper Array element tapers
isPolariza
tionCapabl
e

Polarization capability

pattern Plot conformal array pattern
patternAzi
muth

Plot conformal array directivity or pattern versus azimuth

patternEle
vation

Plot conformal array directivity or pattern versus elevation

plotRespon
se

Plot response pattern of array

step Output responses of array elements
viewArray View array geometry

Common to All System Objects
release Allow System object property value changes

Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array (UCA) of
isotropic antenna elements. Plot a normalized azimuth power pattern at 0 degrees elevation. Assume
the operating frequency is 1 GHz and the wave propagation speed is the speed of light.

N = 8;
azang = (0:N-1)*360/N-180;
sCA = phased.ConformalArray(...
    'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal',[azang;zeros(1,N)]);
fc = 1e9;
c = physconst('LightSpeed');
pattern(sCA,fc,[-180:180],0,...
    'PropagationSpeed',c,'Type','powerdb',...
    'CoordinateSystem','polar')
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Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the ConformalArray
System object. Assume the array is one meter in diameter. Using the ElevationAngles parameter,
restrict the display to +/-40 degrees in 0.1 degree increments. Assume the operating frequency is 4
kHz. A typical value for the speed of sound in seawater is 1500.0 m/s.

Construct the array

N = 31;
theta = (0:N-1)*360/N-180;
Radius = 0.5;
sMic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[0,10000],'BackBaffled',true);
sArray = phased.ConformalArray('Element',sMic,...
    'ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)],...
    'ElementNormal',[ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;
c = 1500.0;
pattern(sArray,fc,0,[-40:0.1:40],...
    'PropagationSpeed',c,...
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    'CoordinateSystem','polar',...
    'Type','efield')

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40],...
    'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Type','directivity')
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References

[1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and Design. Piscataway, NJ: IEEE
Press, 2006.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, plotResponse, and viewArray methods are
not supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.CosineAntennaElement | phased.CustomAntennaElement |
phased.IsotropicAntennaElement | phased.PartitionedArray |
phased.ReplicatedSubarray | phased.UCA | phased.ULA | phased.URA | phitheta2azel |
uv2azel
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Topics
Phased Array Gallery

Introduced in R2011a
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directivity
System object: phased.ConformalArray
Package: phased

Directivity of conformal array

Syntax
D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)

Description
D = directivity(H,FREQ,ANGLE) computes the “Directivity” on page 1-257 of a conformal array
of antenna or microphone elements, H, at frequencies specified by the FREQ and in angles of direction
specified by the ANGLE.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
H — Conformal array
System object

Conformal array specified as a phased.ConformalArray System object.
Example: H = phased.ConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double
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ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
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In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Conformal Array

Compute the directivity of a circular array constructed using a conformal array System object™.

Construct a 21-element uniform circular sonar array (UCA) of backbaffled omnidirectional
microphones. The array is one meter in diameter. Set the operating frequency to 4 kHz. A typical
value for the speed of sound in seawater is 1500.0 m/s.

N = 21;
theta = (0:N-1)*360/N-180;
Radius = 0.5;
myMic = phased.OmnidirectionalMicrophoneElement;
myMicFrequencyRange = [0,5000];
myMic.BackBaffled = true;
myArray = phased.ConformalArray;
myArray.Element = myMic;
myArray.ElementPosition = Radius*[zeros(1,N);cosd(theta);sind(theta)];
myArray.ElementNormal = [ones(1,N);zeros(1,N)];
c = 1500.0;
fc = 4000;

Steer the array to 30 degrees in azimuth and compute the directivity in the steering direction.

lambda = c/fc;
ang = [30;0];
w = steervec(getElementPosition(myArray)/lambda,ang);
d = directivity(myArray,fc,ang,...
    'PropagationSpeed',c,...
    'Weights',w)

d = 15.1633
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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collectPlaneWave
System object: phased.ConformalArray
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H, when the
input signals indicated by X arrive at the array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal carrier
frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal propagation speed in
C.

Input Arguments
H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an individual
incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the corresponding signal in
X. Each column of ANG is in the form [azimuth; elevation]. The azimuth angle must be between
–180° and 180°, inclusive. The elevation angle must be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this case, the
corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8
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C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments
Y

Received signals. Y is an N-column matrix, where N is the number of elements in the array H. Each
column of Y is the received signal at the corresponding array element, with all incoming signals
combined.

Examples

Simulate Received Signals at Conformal Array

Simulate two received signals at an 8-element uniform circular array. The signals arrive from 10° and
30° azimuth, respectively. Both signals have an elevation angle of 0°. Assume the propagation speed
is the speed of light and the carrier frequency of the signal is 100 MHz.

N = 8;
azang = (0:N-1)*360/N-180;
array = phased.ConformalArray('ElementPosition', ...
    [cosd(azang);sind(azang);zeros(1,N)],'ElementNormal',[azang;zeros(1,N)]);
y = collectPlaneWave(array,randn(4,2),[10 30],100e6);

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the delay caused by
the direction of arrival. The method does not account for the response of individual elements in the
array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel
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getElementNormal
System object: phased.ConformalArray
Package: phased

Normal vector to array elements

Syntax
normvec = getElementNormal(sConfArray)
normvec = getElementNormal(sConfArray,elemidx)

Description
normvec = getElementNormal(sConfArray) returns the normal vectors of the array elements of
the phased.sConfArray System object, sConfArray. The output argument normvec is a 2-by-N
matrix, where N is the number of elements in array, sConfArray. Each column of normvec defines
the normal direction of an element in the local coordinate system in the form[az;el]. Units are
degrees. The origin of the local coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sConfArray,elemidx) returns only the normal vectors of the
elements specified in the element index vector, elemidx. This syntax can use any of the input
arguments in the previous syntax.

Input Arguments
sConfArray — Conformal array
phased.ConformalArray System object

Conformal array, specified as a phased.ConformalArray System object.
Example: phased.ConformalArray

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1 column vector

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range 1 to N where N
is the number of elements of the array. When elemidx is specified, getElementNormal returns the
normal vectors of the elements contained in elemidx.
Example: [1,5,4]

Output Arguments
normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of normvec takes the
form [az,el]. When elemidx is not specified, P equals the array dimension. When elemidx is
specified, P equals the length of elemidx, M.
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Examples

Conformal Array Element Normals

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System object. Assume
the operating frequency is 4 kHz. A typical value for the speed of sound in seawater is 1500.0 m/s.
Display the array normal vectors.

N = 5;
fc = 4000;
c = 1500.0;
lam = c/fc;
x = zeros(1,N);
y = [-1,0,1,0,0]*lam/2;
z = [0,0,0,-1,1]*lam/2;
sMic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[0,10000],'BackBaffled',true);
sConformArray = phased.ConformalArray('Element',sMic,...
    'ElementPosition',[x;y;z],...
    'ElementNormal',[45*ones(1,N);zeros(1,N)]);
pos = getElementPosition(sConformArray)

pos = 3×5

         0         0         0         0         0
   -0.1875         0    0.1875         0         0
         0         0         0   -0.1875    0.1875

normvec = getElementNormal(sConformArray)

normvec = 2×5

    45    45    45    45    45
     0     0     0     0     0

Introduced in R2016a
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getElementPosition
System object: phased.ConformalArray
Package: phased

Positions of array elements

Syntax
POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description
POS = getElementPosition(H) returns the element positions of the conformal array H. POS is an
3xN matrix where N is the number of elements in H. Each column of POS defines the position of an
element in the local coordinate system, in meters, using the form [x; y; z].

For details regarding the local coordinate system of the conformal array, enter
phased.ConformalArray.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the elements that are specified
in the element index vector ELEIDX.

Examples

Element Positions of Conformal Array

Construct a three-element conformal array and obtain the element positions.

array = phased.ConformalArray('ElementPosition',[-1,0,1;0,0,0;0,0,0]);
pos = getElementPosition(array)

pos = 3×3

    -1     0     1
     0     0     0
     0     0     0
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getNumElements
System object: phased.ConformalArray
Package: phased

Number of elements in array

Syntax
N = getNumElements(H)

Description
N = getNumElements(H) returns the number of elements, N, in the conformal array object H.

Examples

Number of Elements of Conformal Array

Construct a three-element conformal array and obtain the number of elements.

array = phased.ConformalArray('ElementPosition',[-1,0,1;0,0,0;0,0,0]);
N = getNumElements(array)

N = 3
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getTaper
System object: phased.ConformalArray
Package: phased

Array element tapers

Syntax
wts = getTaper(h)

Description
wts = getTaper(h) returns the tapers applied to each element of a conformal array, h. Tapers are
often referred to as weights.

Input Arguments
h — Conformal array
phased.ConformalArray System object

Conformal array specified as a phased.ConformalArray System object.

Output Arguments
wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector, where N is the number of
elements in the array.

Examples

Create and View a Tapered Array

Create a two-ring tapered disk array

Create a two-ring disk array and set the taper values on the outer ring to be smaller than those on the
inner ring.

elemAngles = ([0:5]*360/6);
elemPosInner = 0.5*[zeros(size(elemAngles));...
    cosd(elemAngles);...
    sind(elemAngles)];
elemPosOuter = [zeros(size(elemAngles));...
    cosd(elemAngles);...
    sind(elemAngles)];
elemNorms = repmat([0;0],1,12);
taper =  [ones(size(elemAngles)),0.3*ones(size(elemAngles))];

1 Objects

1-264



ha = phased.ConformalArray(...
    [elemPosInner,elemPosOuter],elemNorms,'Taper',taper);

Display the taper values

w = getTaper(ha)

w = 12×1

    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    0.3000
    0.3000
    0.3000
    0.3000
      ⋮

View the array

viewArray(ha,'ShowTaper',true,'ShowIndex','all');

 getTaper

1-265



isPolarizationCapable
System object: phased.ConformalArray
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the array
supports polarization. An array supports polarization if all of its constituent sensor elements support
polarization.

Input Arguments
h — Conformal array

Conformal array specified as a phased.ConformalArray System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the array supports polarization or false
if it does not.

Examples

Conformal Array of Short-Dipole Antennas Supports Polarization

Show that a circular conformal array of phased.ShortDipoleAntennaElement antenna elements
supports polarization.

N = 8;
azang = (0:N-1)*360/N-180;
antenna = phased.ShortDipoleAntennaElement;
array = phased.ConformalArray(...
    'Element',antenna,'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal',[azang;zeros(1,N)]);
isPolarizationCapable(array)

ans = logical
   1

The returned value 1 shows that this array supports polarization.
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pattern
System object: phased.ConformalArray
Package: phased

Plot conformal array pattern

Syntax
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array specified in
sArray. The operating frequency is specified in FREQ.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the array pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-275 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sArray — Conformal array
System object

Conformal array, specified as a phased.ConformalArray System object.
Example: sArray= phased.ConformalArray;
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FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
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'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component
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Example: 'V'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT correspond to the
dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector
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Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array (UCA) of
isotropic antenna elements. Plot a normalized azimuth power pattern at 0 degrees elevation. Assume
the operating frequency is 1 GHz and the wave propagation speed is the speed of light.

N = 8;
azang = (0:N-1)*360/N-180;
sCA = phased.ConformalArray(...
    'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal',[azang;zeros(1,N)]);
fc = 1e9;
c = physconst('LightSpeed');
pattern(sCA,fc,[-180:180],0,...
    'PropagationSpeed',c,'Type','powerdb',...
    'CoordinateSystem','polar')
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Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the ConformalArray
System object. Assume the array is one meter in diameter. Using the ElevationAngles parameter,
restrict the display to +/-40 degrees in 0.1 degree increments. Assume the operating frequency is 4
kHz. A typical value for the speed of sound in seawater is 1500.0 m/s.

Construct the array

N = 31;
theta = (0:N-1)*360/N-180;
Radius = 0.5;
sMic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[0,10000],'BackBaffled',true);
sArray = phased.ConformalArray('Element',sMic,...
    'ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)],...
    'ElementNormal',[ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;
c = 1500.0;
pattern(sArray,fc,0,[-40:0.1:40],...
    'PropagationSpeed',c,...
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    'CoordinateSystem','polar',...
    'Type','efield')

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40],...
    'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Type','directivity')
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.
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The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.ConformalArray
Package: phased

Plot conformal array directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus azimuth (in dBi) for
the array sArray at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternAzimuth(sArray,FREQ,EL), in addition, plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When EL is a vector,
multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the array pattern. PAT is a matrix whose entries represent
the pattern at corresponding sampling points specified by the 'Azimuth' parameter and the EL
input argument.

Input Arguments
sArray — Conformal array
System object

Conformal array, specified as a phased.ConformalArray System object.
Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension N is the
number of elevation angles, as determined by the EL input argument.

Examples

Plot Azimuth Pattern of 5-Element Cross Sonar Array

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System object. Assume
the operating frequency is 4 kHz. A typical value for the speed of sound in seawater is 1500.0 m/s.
Plot the array patterns at two different elevation angles.

Construct and view array

N = 5;
fc = 4000;
c = 1500.0;
lam = c/fc;
x = zeros(1,N);
y = [-1,0,1,0,0]*lam/2;
z = [0,0,0,-1,1]*lam/2;
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sMic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[0,10000],'BackBaffled',true);
sArray = phased.ConformalArray('Element',sMic,...
    'ElementPosition',[x;y;z],...
    'ElementNormal',[zeros(1,N);zeros(1,N)]);
viewArray(sArray)

Plot azimuth pattern for magnitude

fc = 4000;
c = 1500.0;
patternAzimuth(sArray,fc,[0,20],...
    'PropagationSpeed',c,...
    'Type','efield')
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Plot azimuth pattern for directivity

patternAzimuth(sArray,fc,[0,20],...
    'PropagationSpeed',c,...
    'Type','directivity')
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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patternElevation
System object: phased.ConformalArray
Package: phased

Plot conformal array array directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus elevation (in dBi)
for the array sArray at zero degrees azimuth angle. When AZ is a vector, multiple overlaid plots are
created. The argument FREQ specifies the operating frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the array pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sArray — Conformal array
System object

Conformal array, specified as a phased.ConformalArray System object.
Example: sArray= phased.ConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of elevation angles determined by the 'Elevation' name-value pair argument. The dimension N is
the number of azimuth angles determined by the AZ argument.

Examples

Plot Elevation Pattern of 5-Element Cross Sonar Array

Construct a 5-element acoustic cross array (UCA) using the ConformalArray System object. Assume
the operating frequency is 4 kHz. A typical value for the speed of sound in seawater is 1500.0 m/s.
Plot the array patterns at two different azimuth angles.

Construct and view array

N = 5;
fc = 4000;
c = 1500.0;
lam = c/fc;
x = zeros(1,N);
y = [-1,0,1,0,0]*lam/2;
z = [0,0,0,-1,1]*lam/2;
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sMic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[0,10000],'BackBaffled',true);
sArray = phased.ConformalArray('Element',sMic,...
    'ElementPosition',[x;y;z],...
    'ElementNormal',[zeros(1,N);zeros(1,N)]);
viewArray(sArray)

Plot magnitude elevation pattern

fc = 4000;
c = 1500.0;
patternElevation(sArray,fc,[0,90],...
    'PropagationSpeed',c,...
    'Type','efield')
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Plot directivity elevation pattern

Plot the pattern for elevation angles between -60 and 6- degrees at 0.1 degree resolution.

patternElevation(sArray,fc,[0,90],...
    'PropagationSpeed',c,...
    'Type','directivity',...
    'Elevation',[-60:0.1:60])

 patternElevation

1-291



More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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plotResponse
System object: phased.ConformalArray
Package: phased

Plot response pattern of array

Syntax
plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ. The propagation speed is specified
in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie within the
range specified by a property of H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has no response at frequencies outside
that range. If you set the 'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a
row vector, plotResponse draws multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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CutAngle

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If RespCut is
'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be between –180
and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the array response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This parameter is not
applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.
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• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.

Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

Weights

Weight values applied to the array, specified as a length-N column vector or N-by-M matrix. The
dimension N is the number of elements in the array. The interpretation of M depends upon whether
the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose
N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for the

same single frequency or all M
frequencies.

N-by-M matrix

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

AzimuthAngles

Azimuth angles for plotting array response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting array response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
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Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When yous set the RespCut parameter to '3D',
you can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting array response, specified as a row vector. The UGrid parameter sets
the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting array response, specified as a row vector. The VGrid parameter sets
the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Plot Power Pattern of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array (UCA) of
isotropic antenna elements. Plot a normalized azimuth power pattern at 0 degrees elevation. Assume
the operating frequency is 1 GHz and the wave propagation speed is the speed of light.

N = 8;
azang = (0:N-1)*360/N-180;
sCA = phased.ConformalArray(...
    'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal',[azang;zeros(1,N)]);
fc = 1e9;
c = physconst('LightSpeed');
pattern(sCA,fc,[-180:180],0,...
    'PropagationSpeed',c,'Type','powerdb',...
    'CoordinateSystem','polar')

 plotResponse
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Plot Pattern of 31-Element Uniform Circular Sonar Array

Construct a 31-element acoustic uniform circular sonar array (UCA) using the ConformalArray
System object. Assume the array is one meter in diameter. Using the ElevationAngles parameter,
restrict the display to +/-40 degrees in 0.1 degree increments. Assume the operating frequency is 4
kHz. A typical value for the speed of sound in seawater is 1500.0 m/s.

Construct the array

N = 31;
theta = (0:N-1)*360/N-180;
Radius = 0.5;
sMic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[0,10000],'BackBaffled',true);
sArray = phased.ConformalArray('Element',sMic,...
    'ElementPosition',Radius*[zeros(1,N);cosd(theta);sind(theta)],...
    'ElementNormal',[ones(1,N);zeros(1,N)]);

Plot the magnitude pattern

fc = 4000;
c = 1500.0;
pattern(sArray,fc,0,[-40:0.1:40],...
    'PropagationSpeed',c,...
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    'CoordinateSystem','polar',...
    'Type','efield')

Plot the directivity pattern

pattern(sArray,fc,0,[-40:0.1:40],...
    'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Type','directivity')

 plotResponse
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See Also
azel2uv | uv2azel
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step
System object: phased.ConformalArray
Package: phased

Output responses of array elements

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the response of the array elements, RESP, at operating
frequencies specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of H.Element. That property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array. The element has zero response at
frequencies outside that range.

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must lie between –180° and 180°, inclusive. The elevation angle
must lie between –90° and 90°, inclusive.
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If ANG is a row vector of length M, each element specifies the azimuth angle of the direction. In this
case, the corresponding elevation angle is assumed to be 0°.

Output Arguments
RESP

Voltage responses of the phased array. The output depends on whether the array supports
polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP, has the
dimensions N-by-M-by-L. N is the number of elements in the array. The dimension M is the
number of angles specified in ANG. L is the number of frequencies specified in FREQ. For any
element, the columns of RESP contain the responses of the array elements for the corresponding
direction specified in ANG. Each of the L pages of RESP contains the responses of the array
elements for the corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a MATLAB
struct containing two fields, RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents the array’s vertical polarization
response. Each field has the dimensions N-by-M-by-L. N is the number of elements in the array,
and M is the number of angles specified in ANG. L is the number of frequencies specified in FREQ.
Each column of RESP contains the responses of the array elements for the corresponding direction
specified in ANG. Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples

Response of 8-Element Uniform Circular Array

Using the ConformalArray System object, construct an 8-element uniform circular array (UCA) of
isotropic antenna elements. The radius of the array is one meter. Assume the operating frequency is 1
GHz and the wave propagation speed is the speed of light.

N = 8;
azang = (0:N-1)*360/N-180;
sCA = phased.ConformalArray(...
    'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal',[azang;zeros(1,N)]);

Get the element response at 35 degrees azimuth and 5 degrees elevation.

fc = 1e9;
ang = [30;5];
resp = step(sCA,fc,ang)

resp = 8×1

     1
     1
     1
     1
     1
     1
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See Also
phitheta2azel | uv2azel
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viewArray
System object: phased.ConformalArray
Package: phased

View array geometry

Syntax
viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray( ___ )

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options specified by
one or more Name,Value pair arguments.

hPlot = viewArray( ___ ) returns the handle of the array elements in the figure window. All input
arguments described for the previous syntaxes also apply here.

Input Arguments
H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each number in the vector must be an
integer between 1 and the number of elements. You can also specify the value 'All' to show the
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

Set this value to true to show the normal directions of all elements of the array. Set this value to
false to plot the elements without showing normal directions.

Default: false
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ShowTaper

Set this value to true to specify whether to change the element color brightness in proportion to the
element taper magnitude. When this value is set to false, all elements are drawn with the same
color.

Default: false

Title

Character vector specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handle of array elements in figure window.

Examples

View Uniform Circular Array

Display the element positions and normal directions of all elements of an 8-element uniform circular
array.

Create the uniform circular array

N = 8;
azang = (0:N-1)*360/N - 180;
ha = phased.ConformalArray(...
    'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal',[azang;zeros(1,N)]);

Display the positions and normal directions of the elements

viewArray(ha,'ShowNormals',true);
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See Also
phased.ArrayResponse

Topics
Phased Array Gallery
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phased.ConstantGammaClutter
Package: phased

Constant gamma clutter simulation

Description
The ConstantGammaClutter object simulates clutter.

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on page 1-307.
2 Call step to simulate the clutter return for your system according to the properties of

phased.ConstantGammaClutter. The behavior of step is specific to each object in the
toolbox.

The clutter simulation that ConstantGammaClutter provides is based on these assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates how

frequently the software changes the set of random numbers in the clutter simulation.
• Because the signal is narrowband, the spatial response and Doppler shift can be approximated by

phase shifts.
• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ConstantGammaClutter creates a constant gamma clutter simulation System object,
H. This object simulates the clutter return of a monostatic radar system using the constant gamma
model.

H = phased.ConstantGammaClutter(Name,Value) creates a constant gamma clutter simulation
object, H, with additional options specified by one or more Name,Value pair arguments. Name is a
property name on page 1-308, and Value is the corresponding value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.
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Properties
Sensor

Handle of sensor

Specify the sensor as an antenna element object or as an array object whose Element property value
is an antenna element object. If the sensor is an array, it can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz.

Default: 3e8

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1 MHz.

Default: 1e6

PRF

Pulse repetition frequency

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. ThePRF must satisfy
these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval. For the phase-
coded waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to any element of PRF must be an integer. This condition expresses the
requirement that the number of samples in one pulse repetition interval is an integer.

You can select the value of PRF using property settings alone or using property settings in
conjunction with the prfidx input argument of the step method.

• When PRFSelectionInputPort is false, you set the PRF using properties only. You can
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• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-valued entries.

Then, each call to the step method uses successive elements of this vector for the PRF. If the
last element of the vector is reached, the process continues cyclically with the first element of
the vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by specifying PRF
as a row vector with positive real-valued entries. But this time, when you execute the step
method, select a PRF by passing an argument specifying an index into the PRF vector.

In all cases, the number of output samples is fixed when you set the OutputFormat property to
'Samples'. When you use a varying PRF and set the OutputFormat property to 'Pulses', the
number of samples can vary.

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property to false,
the step method uses the values set in the PRF property. When you set this property to true, you
pass an index argument into the step method to select a value from the PRF vector.

Default: false

Gamma

Terrain gamma value

Specify the γ value used in the constant γ clutter model, as a scalar in decibels. The γ value depends
on both terrain type and the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of | 'Flat' | 'Curved' |. When you set this
property to 'Flat', the earth is assumed to be a flat plane. When you set this property to 'Curved',
the earth is assumed to be a sphere.

Default: 'Flat'

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward from the surface as a nonnegative
scalar.

Default: 300
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PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in meters per second.

Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle] in degrees. The default value of this property indicates that the platform moves
perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local coordinate system of the radar antenna
or antenna array. Azimuth angle must be between –180 and 180 degrees. Elevation angle must be
between –90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle

Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the radar antenna array. This value is a
scalar. The broadside is defined as zero degrees azimuth and zero degrees elevation. The depression
angle is measured downward from horizontal.

Default: 0

MaximumRange

Maximum range for clutter simulation

Specify the maximum range in meters for the clutter simulation as a positive scalar. The maximum
range must be greater than the value specified in the PlatformHeight property.

Default: 5000

AzimuthCoverage

Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The clutter simulation covers a region
having the specified azimuth span, symmetric to 0 degrees azimuth. Typically, all clutter patches have
their azimuth centers within the region, but the PatchAzimuthWidth value can cause some patches
to extend beyond the region.

Default: 60

PatchAzimuthWidth

Azimuth span of each clutter patch
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Specify the azimuth span of each clutter patch in degrees as a positive scalar.

Default: 1

TransmitSignalInputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit signal in the step syntax. Set this
property to false omit the transmit signal in the step syntax. The false option is less
computationally expensive; to use this option, you must also specify the TransmitERP property.

Default: false

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the radar system in watts as a positive
scalar. This property applies only when you set the TransmitSignalInputPort property to false.

Default: 5000

CoherenceTime

Clutter coherence time

Specify the coherence time in seconds for the clutter simulation as a positive scalar. After the
coherence time elapses, the step method updates the random numbers it uses for the clutter
simulation at the next pulse. A value of inf means the random numbers are never updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses' | 'Samples' |. When you set the
OutputFormat property to 'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the NumPulses property.

When you set the OutputFormat property to 'Samples', the output of the step method is in the
form of multiple samples. In this case, the number of samples is the value of the NumSamples
property. In staggered PRF applications, you might find the 'Samples' option more convenient
because the step output always has the same matrix size.

Default: 'Pulses'

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Pulses'.

Default: 1
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NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer. Typically, you
use the number of samples in one pulse. This property applies only when you set the OutputFormat
property to 'Samples'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces the
random numbers. Use 'Auto' if you are using this object with
Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator to
produce random numbers. The Seed property of this object
specifies the seed of the random number generator. Use
'Property' if you want repeatable results and are not using this
object with Parallel Computing Toolbox software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–1. This
property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

reset Reset random numbers and time count for clutter simulation
step Simulate clutter using constant gamma model

Common to All System Objects
release Allow System object property value changes

Examples

Simulate Clutter for System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective transmitted power
of the radar system is 5 kW.
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Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set up the characteristics of the radar system. This system uses a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2 km/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300.0e6;
lambda = c/fc;
array = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1.0e6;
prf = 10.0e3;
height = 1000.0;
direction = [90;0];
speed = 2.0e3;
depang = 30.0;

Create the clutter simulation object. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is ±60°.

Rmax = 5000.0;
Azcov = 120.0;
tergamma = 0.0;
tpower = 5000.0;
clutter = phased.ConstantGammaClutter('Sensor',array,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitERP',tpower,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
    'AzimuthCoverage',Azcov,'SeedSource','Property',...
    'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    sig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',array,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)),'NormalizeDoppler',true)
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Simulate Clutter Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the transmit signal of
the radar system when creating clutter. In this case, you do not use the TransmitERP property.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set up the characteristics of the radar system. This system has a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2 km/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300.0e6;
lambda = c/fc;
ula = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1.0e6;
prf = 10.0e3;
height = 1.0e3;
direction = [90;0];
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speed = 2.0e3;
depang = 30;

Create the clutter simulation object and configure it to accept an transmit signal as an input
argument. The configuration assumes the earth is flat. The maximum clutter range of interest is 5 km,
and the maximum azimuth coverage is ±60°.

Rmax = 5000.0;
Azcov = 120.0;
tergamma = 0.0;
clutter = phased.ConstantGammaClutter('Sensor',ula,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitSignalInputPort',true,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
    'AzimuthCoverage',Azcov,'SeedSource','Property',...
    'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an input argument.
The software computes the effective transmitted power of the signal. The transmit signal is a
rectangular waveform with a pulse width of 2 μs.

tpower = 5.0e3;
pw = 2.0e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    sig(:,:,m) = step(clutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',ula,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)),'NormalizeDoppler',true)
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
phased.BarrageJammer | phased.gpu.ConstantGammaClutter | phitheta2azel |
surfacegamma | uv2azel

Topics
Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“DPCA Pulse Canceller to Reject Clutter”
“Clutter Modeling”

Introduced in R2011b
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reset
System object: phased.ConstantGammaClutter
Package: phased

Reset random numbers and time count for clutter simulation

Syntax
reset(H)

Description
reset(H) resets the states of the ConstantGammaClutter object, H. This method resets the
random number generator state if the SeedSource property is set to 'Property'. This method
resets the elapsed coherence time. Also, if the PRF property is a vector, the next call to step uses the
first PRF value in the vector.
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step
System object: phased.ConstantGammaClutter
Package: phased

Simulate clutter using constant gamma model

Syntax
Y = step(H)
Y = step(H,X)
Y = step(H,STEERANGLE)
Y = step(H,X,WS)
Y = step(H,PRFIDX)
Y = step(H,X,STEERANGLE)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H) computes the collected clutter return at each sensor. This syntax is available when you
set the TransmitSignalInputPort property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal refers to the output of the
transmitter while it is on during a given pulse. This syntax is available when you set the
TransmitSignalInputPort property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering angle. This syntax is
available when you configure H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,WS) uses WS as weights applied to each element within each subarray. To use this
syntax, set the Sensor property to an array that supports subarrays and set the SubarraySteering
property of the array to 'Custom'.

Y = step(H,PRFIDX) uses the index, PRFIDX, to select the PRF from a predetermined list of PRFs
specified by the PRF property. To enable this syntax, set the PRFSelectionInputPort to true.

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax is available when you
configure H so that H.TransmitSignalInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Input Arguments
H

Constant gamma clutter object.
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X

Transmit signal, specified as a column vector.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth angle must be
between –180 degrees and 180 degrees, and the elevation angle must be between –90 degrees and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation angle is
assumed to be 0.

WS

Subarray element weights

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.

Subarray Element Weights

Sensor Array Subarray Weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray When subarrays do not have the same dimensions
and sizes, you can specify subarray weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and set the
SubarraySteering property of the array to 'Custom'.

PRFIDX

Index of pulse repetition frequency, specified as a positive integer. The index selects one of the
entries specified in the PRF property as the PRF for the next transmission.
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Example: 3

Dependencies

To enable this argument, set the PRFSelectionInputPort to true.

Output Arguments
Y

Collected clutter return at each sensor. Y has dimensions N-by-M matrix. If H.Sensor contains
subarrays, M is the number of subarrays in the radar system. Otherwise it is the number of sensors.
When you set the OutputFormat property to 'Samples', N is defined by the NumSamples property.
When you set the OutputFormat property to 'Pulses', N is the total number of samples in the next
L pulses. In this case, L is defined by the NumPulses property.

Examples

Simulate Clutter for System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective transmitted power
of the radar system is 5 kW.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set up the characteristics of the radar system. This system uses a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2 km/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300.0e6;
lambda = c/fc;
array = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1.0e6;
prf = 10.0e3;
height = 1000.0;
direction = [90;0];
speed = 2.0e3;
depang = 30.0;

Create the clutter simulation object. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is ±60°.

Rmax = 5000.0;
Azcov = 120.0;
tergamma = 0.0;
tpower = 5000.0;
clutter = phased.ConstantGammaClutter('Sensor',array,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...

 step
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    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitERP',tpower,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
    'AzimuthCoverage',Azcov,'SeedSource','Property',...
    'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    sig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',array,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)),'NormalizeDoppler',true)

Simulate Clutter Using Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the transmit signal of
the radar system when creating clutter. In this case, you do not use the TransmitERP property.
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Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set up the characteristics of the radar system. This system has a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2 km/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300.0e6;
lambda = c/fc;
ula = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1.0e6;
prf = 10.0e3;
height = 1.0e3;
direction = [90;0];
speed = 2.0e3;
depang = 30;

Create the clutter simulation object and configure it to accept an transmit signal as an input
argument. The configuration assumes the earth is flat. The maximum clutter range of interest is 5 km,
and the maximum azimuth coverage is ±60°.

Rmax = 5000.0;
Azcov = 120.0;
tergamma = 0.0;
clutter = phased.ConstantGammaClutter('Sensor',ula,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitSignalInputPort',true,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
    'AzimuthCoverage',Azcov,'SeedSource','Property',...
    'Seed',40547);

Simulate the clutter return for 10 pulses. At each step, pass the transmit signal as an input argument.
The software computes the effective transmitted power of the signal. The transmit signal is a
rectangular waveform with a pulse width of 2 μs.

tpower = 5.0e3;
pw = 2.0e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
sig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    sig(:,:,m) = step(clutter,X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',ula,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(sig(20,:,:)),'NormalizeDoppler',true)

 step
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Tips
The clutter simulation that ConstantGammaClutter provides is based on these assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates how

frequently the software changes the set of random numbers in the clutter simulation.
• Because the signal is narrowband, the spatial response and Doppler shift can be approximated by

phase shifts.
• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

See Also
Topics
Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“DPCA Pulse Canceller to Reject Clutter”
“Clutter Modeling”
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phased.CosineAntennaElement
Package: phased

Cosine antenna element

Description
The CosineAntennaElement object models an antenna with a cosine response on page 1-337 in
both azimuth and elevation. The main response axis (MRA) points to 0° azimuth and 0° elevation in
the antenna coordinate system. When placed in a linear array, the MRA is normal to the array axis
(see, for example, phased.ULA). When placed in a planar array, the MRA points along the array
normal (see, for example, phased.URA).

To compute the response of the antenna element for specified directions:

1 Create the phased.CosineAntennaElement object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

This antenna element does not support polarization.

Creation

Syntax
antenna = phased.CosineAntennaElement
antenna = phased.CosineAntennaElement(Name,Value)

Description

antenna = phased.CosineAntennaElement creates a cosine antenna System object, antenna.
This object models an antenna element whose response is a cosine function raised to nonnegative
powers in the azimuth and elevation directions.

antenna = phased.CosineAntennaElement(Name,Value) creates a cosine antenna object,
antenna, with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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FrequencyRange — Operating frequency range
[0 1e20] (default) | nonnegative, real-valued, 1-by-2 row vector

Operating frequency range of the antenna, specified as a nonnegative, real-valued, 1-by-2 row vector
in the form [LowerBound HigherBound]. The antenna element has no response outside the
specified frequency range. Units are in Hz.
Data Types: double

CosinePower — Exponent of cosine pattern
[1.5 1.5] (default) | non-negative scalar | non-negative, real-valued, 1-by-2 vector

Exponents of the cosine pattern, specified as a non-negative scalar or a non-negative, real-valued, 1-
by-2 vector. Exponent values must be real numbers greater than or equal to zero. When you set
CosinePower to a scalar, both the azimuth direction cosine pattern and the elevation direction
cosine pattern are raised to the same power. When you set CosinePower to a 1-by-2 vector, the first
element is the exponent for the azimuth direction cosine pattern. The second element is the exponent
for the elevation direction cosine pattern.
Example: [1.5 1.3]
Data Types: double

Usage

Syntax
RESP = antenna(FREQ,ANG)

Description

RESP = antenna(FREQ,ANG) returns the antenna voltage response RESP at operating frequencies
specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments

FREQ — Operating frequency of antenna element
nonnegative scalar | nonnegative, real-valued, 1-by-L row vector

Operating frequency of antenna element, specified as a nonnegative scalar or nonnegative, real-
valued, 1-by-L row vector. Frequency units are in Hz.

FREQ must lie within the range of values specified by the FrequencyRange or the
FrequencyVector property of the element. Otherwise, the element produces no response and the
response is returned as –Inf. Most elements objects use the FrequencyRange property except for
phased.CustomAntennaElement, which uses the FrequencyVector property.
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Example: [1e8 2e6]
Data Types: double

ANG — Azimuth and elevation angles of response directions
real-valued, 1-by-M row vector | real-valued, 2-by-M matrix

Azimuth and elevation angles of response directions, specified as a real-valued, 1-by-M row vector or
a real-valued, 2-by-M matrix, where M is the number of angular directions. Angle units are in
degrees. The azimuth angle must lie in the range –180° to 180°, inclusive. The elevation angle must
lie in the range –90° to 90°, inclusive.

• If ANG is a 1-by-M vector, each element specifies the azimuth angle of the direction. In this case,
the corresponding elevation angle is assumed to be zero.

• If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation].

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy-plane. This angle is positive when measured towards
the z-axis. See the definition of “Azimuth and Elevation Angles”.
Example: [110 125; 15 10]
Data Types: double

Output Arguments

RESP — Voltage response of antenna
complex-valued M-by-L matrix

Voltage response of antenna element, returned as a complex-valued M-by-L matrix. In this matrix, M
represents the number of angles specified in ANG and L represents the number of frequencies
specified in FREQ.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Antenna and Transducer Element System Objects
beamwidth Compute and display beamwidth of sensor element pattern
directivity Directivity of antenna or transducer element
isPolarizationCapable Antenna element polarization capability
pattern Plot antenna or transducer element directivity and patterns
patternAzimuth Plot antenna or transducer element directivity and pattern versus azimuth
patternElevation Plot antenna or transducer element directivity and pattern versus elevation
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Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Cosine Antenna Response

Construct a cosine antenna element and find its response in one direction. The cosine response is
raised to a power of 1.5 in both azimuth and elevation. The antenna frequency range lies in the X
band (from 8 to 12 GHz) at 10 GHz. Obtain the antenna's response for an incident angle of 30°
azimuth and 5° elevation.

antenna = phased.CosineAntennaElement('FrequencyRange',[8e9 12e9], ...
    'CosinePower',1.5);
fc = 10.0e9;
ang = [30;5];
resp = antenna(fc,ang)

resp = 0.8013

Plot Power Response of Cosine Antenna

Construct a cosine pattern antenna and calculate its response at boresight (0 degrees azimuth and 0
degrees elevation). Then, plot the antenna pattern. Assume the antenna works between 800 MHz and
1.2 GHz and its operating frequency is 1 GHz. Set the azimuth exponent to 1.5 and elevation
exponent to 2.5.

antenna = phased.CosineAntennaElement('FrequencyRange',[800e6 1.2e9],...
    'CosinePower',[1.5 2.5]);
fc = 1e9;
resp = antenna(fc,[0;0]);
pattern(antenna,fc,0,-90:90,'Type','powerdb','CoordinateSystem','polar')
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pattern(antenna,fc,-180:180,0,'Type','powerdb','CoordinateSystem','polar')
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Plot 3-D Polar Pattern of Cosine Antenna

Construct a cosine antenna element using default parameters. Assume the antenna operating
frequency is 1 GHz. Then, plot the antenna response in 3-D polar format.

antenna = phased.CosineAntennaElement;
fc = 1e9;
pattern(antenna,fc,[-180:180],[-90:90],'Type','powerdb', ...
    'CoordinateSystem','polar')
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Directivity of Cosine Antenna

Compute the directivity of a cosine antenna element at seven azimuth directions centered around
boresight (zero degrees azimuth and zero degrees elevation). All elevation angles are set to zero
degrees.

Create a cosine antenna element system object with the CosinePower exponents set to 1.8.

antenna = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);

Set the directivity angles so that the elevation angles are zero. Set the frequency to 1 GHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
freq = 1e9;

Compute the directivity

d = directivity(antenna,freq,ang)

d = 7×1

    7.3890
    8.6654
    9.3985
    9.6379
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    9.3985
    8.6654
    7.3890

The maximum directivity is at boresight.

Plot Azimuth-Cut of Cosine Antenna Response Pattern

Construct a cosine antenna element using default parameters. Then, plot the pattern of the field
magnitude. Assume the antenna operating frequency is 1 GHz. Restrict the response to the range of
azimuth angles from -30 to 30 degrees in 0.1 degree increments. The default elevation angle is 0
degrees.

antenna = phased.CosineAntennaElement;
fc = 1e9;
pattern(antenna,fc,[-30:0.1:30],0,'Type','efield', ...
    'CoordinateSystem','polar')
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Plot Directivity of Cosine Antenna

Construct a cosine-pattern antenna. Assume the antenna works between 1 and 2 GHz and its
operating frequency is 1.5 GHz. Set the azimuth angle cosine power to 2.5 and the elevation angle
cosine power to 3.5. Then, plot an elevation cut of its directivity.

antenna = phased.CosineAntennaElement('FrequencyRange', ...
    [1e9 2e9],'CosinePower',[2.5,3.5]);
fc = 1.5e9;
pattern(antenna,fc,0,-90:90,'Type','directivity', ...
    'CoordinateSystem','rectangular')

The directivity is maximum at 0 degrees elevation and attains a value of approximately 12 dB.

Limited-Angle Azimuth Pattern of Cosine Antenna

Plot constant-elevation azimuth directivity patterns of a cosine antenna element at 0 degrees and 10
degrees elevation. Assume the operating frequency is 500 MHz.

fc = 500e6;
antenna = phased.CosineAntennaElement('FrequencyRange',[100,900]*1e6, ...
    'CosinePower',[3,2]);
patternAzimuth(antenna,fc,[0 30])
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Plot a limited range of azimuth angles by specifying the Azimuth parameter. Note the change in
scale.

patternAzimuth(antenna,fc,[0 30],'Azimuth',-20:20)
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Limited-Angle Elevation Pattern of Cosine Antenna

Plot constant-azimuth elevation directivity patterns of a cosine antenna element at 45 and 55 degrees
azimuth. Assume the operating frequency is 500 MHz.

fc = 500e6;
antenna = phased.CosineAntennaElement('FrequencyRange',[100,900]*1e6, ...
    'CosinePower',[3,2]);
patternElevation(antenna,fc,[45 55])
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Plot a limited range of elevation angles using the Elevation parameter. Note the change in scale.

patternElevation(antenna,fc,[45 55],'Elevation',-20:20)
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Cosine Antenna Does Not Support Polarization

Create a cosine antenna element using the phased.CosineAntennaElement System object™ and
show that it does not support polarization.

antenna = phased.CosineAntennaElement('FrequencyRange',[1.0,10]*1e9);
isPolarizationCapable(antenna)

ans = logical
   0

The returned value 0 shows that the antenna element does not support polarization.

More About
Cosine Response

The object returns the field response (also called field pattern)

f (az, el) = cosm(az)cosn(el)

of the cosine antenna element.
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In this expression

• az is the azimuth angle.
• el is the elevation angle.
• The exponents m and n are real numbers greater than or equal to zero.

The response is defined for azimuth and elevation angles between –90° and 90°, inclusive, and is
always positive. There is no response at the backside of a cosine antenna. The cosine response
pattern achieves a maximum value of 1 at 0° azimuth and 0° elevation. Larger exponent values
narrow the response pattern of the element and increase the directivity.

The power response (or power pattern) is the squared value of the field response.

P(az, el) = cos2m(az)cos2n(el)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The pattern, patternAzimuth, and patternElevation object functions are not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CrossedDipoleAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement |
phased.ShortDipoleAntennaElement | phased.UCA | phased.ULA | phased.URA |
phitheta2azel | uv2azel

Introduced in R2011a
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phased.CrossedDipoleAntennaElement
Package: phased

Crossed-dipole antenna element

Description
The phased.CrossedDipoleAntennaElement System object models a crossed-dipole antenna
element which is used to generate circularly polarized fields. A crossed-dipole antenna is formed from
two orthogonal short-dipole antennas. By default, one dipole lies along y-axis and the other along the
z-axis in the antenna local coordinate system. You can rotate the antenna in the yz-plane using the
RotationAngle property. This antenna object generates right hand or left hand circularly polarized
fields, or linearly polarized fields controlled using the Polarization property. These fields are pure
along the x-axis (defined by 0° azimuth and 0° elevation angles).

To compute the response of the antenna element:

1 Create the phased.CrossedDipoleAntennaElement object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
antenna = phased.CrossedDipoleAntennaElement
antenna = phased.CrossedDipoleAntennaElement(Name,Value)

Description

antenna = phased.CrossedDipoleAntennaElement creates a crossed-dipole antenna with
default property values.

antenna = phased.CrossedDipoleAntennaElement(Name,Value) creates a crossed-dipole
antenna with each specified property set to the specified value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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FrequencyRange — Operating frequency range
[0 1e20] (default) | nonnegative, real-valued, 1-by-2 row vector

Operating frequency range of the antenna, specified as a nonnegative, real-valued, 1-by-2 row vector
in the form [LowerBound HigherBound]. The antenna element has no response outside the
specified frequency range. Units are in Hz.
Data Types: double

RotationAngle — Crossed-dipole rotation angle
0 (default) | scalar between -45° and +45°

Crossed-dipole rotation angle, specified as a scalar between -45° and +45°. The rotation angle
specifies the angle of rotation of the two dipoles around the x-axis. The rotation angle is measured
counter-clockwise around the x-axis looking towards to origin. A default value of 0° corresponds to
the case where one dipole is along the z-axis and the other dipole is along the y-axis. Units are in
degrees.
Data Types: double

Polarization — Crossed-dipole field polarization
'RHCP' (default) | 'LHCP' | 'Linear'

Polarization of the field generated by the antenna, specified as 'RHCP', 'LHCP', or 'Linear'.

• 'RHCP' – right hand circularly polarize field. The horizontal field has a 90° phase advance
compared to the vertical field.

• 'LHCP' – left hand circularly polarize field. The horizontal field has a 90° delay compared to the
vertical field.

• 'Linear' – linearly polarized field. The horizontal and vertical fields are in phase.

Example: 'Linear'
Data Types: char | string

Usage

Syntax
RESP = antenna(FREQ,ANG)

Description

RESP = antenna(FREQ,ANG) returns the antenna voltage response, RESP, at the operating
frequencies specified in FREQ and in the directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments

FREQ — Operating frequency of antenna element
nonnegative scalar | nonnegative, real-valued, 1-by-L row vector

Operating frequency of antenna element, specified as a nonnegative scalar or nonnegative, real-
valued, 1-by-L row vector. Frequency units are in Hz.

FREQ must lie within the range of values specified by the FrequencyRange or the
FrequencyVector property of the element. Otherwise, the element produces no response and the
response is returned as –Inf. Most elements objects use the FrequencyRange property except for
phased.CustomAntennaElement, which uses the FrequencyVector property.
Example: [1e8 2e6]
Data Types: double

ANG — Azimuth and elevation angles of response directions
real-valued, 1-by-M row vector | real-valued, 2-by-M matrix

Azimuth and elevation angles of response directions, specified as a real-valued, 1-by-M row vector or
a real-valued, 2-by-M matrix, where M is the number of angular directions. Angle units are in
degrees. The azimuth angle must lie in the range –180° to 180°, inclusive. The elevation angle must
lie in the range –90° to 90°, inclusive.

• If ANG is a 1-by-M vector, each element specifies the azimuth angle of the direction. In this case,
the corresponding elevation angle is assumed to be zero.

• If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation].

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy-plane. This angle is positive when measured towards
the z-axis. See the definition of “Azimuth and Elevation Angles”.
Example: [110 125; 15 10]
Data Types: double

Output Arguments

RESP — Antenna voltage response
structure

Voltage response of the antenna, returned as a MATLAB structure with fields H and V. H and V contain
responses for the horizontal and vertical polarization components of the radiation fields, respectively.
Both H and V are complex-valued, M-by-L matrices. M represents the number of angles specified in
ANG, and L represents the number of frequencies specified in FREQ.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:
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release(obj)

Specific to Antenna and Transducer Element System Objects
beamwidth Compute and display beamwidth of sensor element pattern
directivity Directivity of antenna or transducer element
isPolarizationCapable Antenna element polarization capability
pattern Plot antenna or transducer element directivity and patterns
patternAzimuth Plot antenna or transducer element directivity and pattern versus azimuth
patternElevation Plot antenna or transducer element directivity and pattern versus elevation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Compute Crossed-Dipole Antenna Response

Find the response of a crossed-dipole antenna at boresight, 0° azimuth and 0° elevation, and off-
boresight at 30° azimuth and 0° elevation. The antenna operates at 250 MHz.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[100 900]*1e6);
ang = [0 30;0 0];
fc = 250e6;
resp = antenna(fc,ang);
disp(resp.H)

   0.0000 - 1.2247i
   0.0000 - 1.0607i

disp(resp.V)

   -1.2247
   -1.2247

Plot Response of a Crossed-Dipole Antenna

Plot the response patterns of a crossed-dipole antenna used in an L-band radar with a frequency
range between 1-2 GHz. First, set up the radar parameters, and obtain the vertical and horizontal
polarization responses in five different directions specified by elevation angles of -30, -15, 0, 15 and
30 degrees, all at 0 degrees azimuth angle. The responses are computed at an operating frequency of
1.5 GHz.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1,2]*1e9);
fc = 1.5e9;
resp = antenna(fc,[0,0,0,0,0;-30,-15,0,15,30]);
[resp.V, resp.H]

ans = 5×2 complex
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  -1.0607 + 0.0000i   0.0000 - 1.2247i
  -1.1830 + 0.0000i   0.0000 - 1.2247i
  -1.2247 + 0.0000i   0.0000 - 1.2247i
  -1.1830 + 0.0000i   0.0000 - 1.2247i
  -1.0607 + 0.0000i   0.0000 - 1.2247i

Next, draw a 3-D plot of the combined polarization response.

pattern(antenna,fc,-180:180,-90:90,'CoordinateSystem','polar', ...
    'Type','powerdb','Polarization','combined')

Directivity of Crossed-Dipole Antenna Element

Compute the directivity of a crossed-dipole antenna element in several different directions.

Create a crossed-dipole antenna element system object.

antenna = phased.CrossedDipoleAntennaElement;

Set the angles of interest to be at zero-degrees constant elevation angle. The seven azimuth angles
are centered around boresight (zero degrees azimuth and zero degrees elevation). Set the desired
frequency to 1 GHz.
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ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
freq = 1e9;

Compute the directivity along the constant elevation cut.

d = directivity(antenna,freq,ang)

d = 7×1

    1.1811
    1.4992
    1.6950
    1.7610
    1.6950
    1.4992
    1.1811

Plot 3-D Polar Patterns of Crossed-Dipole Antenna

Construct a crossed-dipole antenna element that operates in the frequency range from 100 MHz to
1.5 GHz. Then, plot the 3-D polar power pattern for the horizontal polarization component. Assume
the antenna operates at 1 GHz.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[100 1500]*1e6);
fc = 1e9;
pattern(antenna,fc,-180:180,-90:90,'Type','powerdb', ...
    'CoordinateSystem','polar','Polarization','H')
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Next, plot the vertical polarization component.

pattern(antenna,fc,-180:180,-90:90,'Type','powerdb', ...
    'CoordinateSystem','polar','Polarization','V')
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Plot Crossed-Dipole Antenna Pattern at Constant Elevation

Construct a crossed-dipole antenna element. Then, plot the pattern of the horizontal component of
the field magnitude at an elevation angle of 0 degrees. Assume the antenna operating frequency is 1
GHz. Restrict the response to the range of azimuth angles from -70 to 70 degrees in 0.1 degree
increments.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[0.5 1.5]*1e9);
fc = 1e9;
pattern(antenna,fc,-70:0.1:70,0,'Type','efield', ...
    'CoordinateSystem','polar','Polarization','combined')
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Plot Directivity of Crossed-Dipole Antenna

Create a crossed-dipole antenna. Assume the antenna works between 1 and 2 GHz and its operating
frequency is 1.5 GHz. Then, plot the directivity at a constant azimuth of 0∘.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1e9 2e9]);
fc = 1.5e9;
pattern(antenna,fc,0,-90:90,'Type','directivity', ...
    'CoordinateSystem','rectangular')
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The directivity is maximum at 0∘ elevation and attains a value of approximately 1.75 dB.

Plot Azimuth Pattern of Crossed-Dipole Antenna Element

Plot the azimuth directivity pattern of a crossed-dipole antenna at two different elevations: 0∘ and30∘.
Assume the operating frequency is 500 MHz.

fc = 500e6;
antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[100,900]*1e6);
patternAzimuth(antenna,fc,[0 30])
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Plot a limited range of azimuth angles using the Azimuth parameter. Notice the change in scale.

patternAzimuth(antenna,fc,[0 30],'Azimuth',[-20:20])
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Plot Elevation Pattern of Crossed-Dipole Antenna Element

Plot the elevation directivity pattern of a crossed-dipole antenna at two different azimuths: 45∘ and
55∘. Assume the operating frequency is 500 MHz.

fc = 500e6;
sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[100,900]*1e6);
patternElevation(sCD,fc,[45 55])
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Plot a reduced range of elevation angles using the Elevation parameter. Notice the change in scale.

patternElevation(sCD,fc,[45 55],'Elevation',-20:20)
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Vertical and Horizontal Responses of Crossed-Dipole Antenna

This example shows how to create a crossed-dipole antenna operating between 100 and 900 MHz and
then how to plot its vertical and horizontal polarization response at 250 MHz in the form of a 3-D
polar plot.

antenna = phased.CrossedDipoleAntennaElement(...
    'FrequencyRange',[100 900]*1e6);
pattern(antenna,250e6,-180:180,-90:90,'CoordinateSystem','polar','Polarization','V', ...
    'Type','powerdb')
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The antenna pattern of the vertical-polarization component is almost isotropic and has a maximum at
0∘ elevation and 0∘ azimuth, as shown in the figure above.

Plot the antenna's horizontal polarization response. The pattern of the horizontal polarization
response also has a maximum at 0∘ elevation and 0∘ azimuth but no response at ±90∘ azimuth.

pattern(antenna,250e6,-180:180,-90:90,'CoordinateSystem','polar','Polarization','H', ...
    'Type','powerdb')

 phased.CrossedDipoleAntennaElement

1-353



Crossed-Dipole Antenna Supports Polarization

Show that the phased.CrossedDipoleAntennaElement antenna element supports polarization.

antenna = phased.CrossedDipoleAntennaElement;
isPolarizationCapable(antenna)

ans = logical
   1

The returned value of 1 shows that the crossed-dipole antenna element supports polarization.

Plot 3-D Polar Patterns of Rotated Crossed-Dipole Antenna

Construct a crossed-dipole antenna element designed to operate in the frequency range from 100
MHz to 1.5 GHz. Assume the polarization is linear. Rotate the antenna by -45 degrees. Plot the 3-D
polar power pattern for the horizontal and vertical polarization components at 1 GHz.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[100 1500]*1e6, ...
   'RotationAngle',-45.0,'Polarization','Linear');
fc = 1e9;
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pattern(antenna,fc,-180:180,-90:90,'Type','powerdb','Normalize',false, ...
    'CoordinateSystem','polar','Polarization','H')

Next, plot the vertical polarization component.

pattern(antenna,fc,-180:180,-90:90,'Type','powerdb','Normalize',false, ...
    'CoordinateSystem','polar','Polarization','V')
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Algorithms
The total response of a crossed-dipole antenna element is a combination of its frequency response
and spatial response. phased.CrossedDipoleAntennaElement calculates both responses using
nearest neighbor interpolation, and then multiplies the responses to form the total response.

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The pattern, patternAzimuth, and patternElevation object functions are not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.IsotropicAntennaElement |
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phased.ShortDipoleAntennaElement | phased.UCA | phased.ULA | phased.URA |
phitheta2azel | phitheta2azelpat | uv2azel | uv2azelpat

Introduced in R2013a
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phased.CustomAntennaElement
Package: phased

Custom antenna element

Description
The phased.CustomAntennaElement System object models an antenna element with a custom
spatial response pattern. The response pattern can be defined for polarized or non-polarized fields.

To create a custom antenna element:

1 Create the phased.CustomAntennaElement object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
antenna = phased.CustomAntennaElement
antenna = phased.CustomAntennaElement(Name,Value)

Description

antenna = phased.CustomAntennaElement creates a System object, antenna, with default
property values. The default response pattern is spatially isotropic.

antenna = phased.CustomAntennaElement(Name,Value) creates a custom antenna object,
antenna, with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). For example, the
output response of the object depends on whether polarization is set or not.

• To create a nonpolarized response pattern, set the SpecifyPolarizationPattern property to
false (default). Then, use the MagnitudePattern and PhasePattern properties to define the
response pattern.

• To create a polarized response pattern, set the SpecifyPolarizationPattern property to
true. Then, use any or all of the HorizontalMagnitudePattern, HorizontalPhasePattern,
VerticalMagnitudePattern, and VerticalPhasePattern properties to define the response
pattern.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

FrequencyVector — Response and pattern frequency vector
[0 1e20] (default) | 1-by-L row vector

Frequencies at which the frequency response and antenna patterns are to be returned, specified as a
1-by-L row vector. The elements of the vector must be in increasing order. The antenna element has
no response outside the frequency range specified by the minimum and maximum elements of the
frequency vector. Units are in Hz.
Example: [200:50:300]*1e6
Data Types: double

FrequencyResponse — Frequency responses of antenna element
[0 0] (default) | real-valued 1-by-L vector

Frequency responses at the frequencies defined in FrequencyVector property, specified as a 1-by-L
row vector. L equals the length of the vector specified in the FrequencyVector property. Units are
in dB.
Example: [0 6 0]
Data Types: double

PatternCoordinateSystem — Coordinate system of custom antenna pattern
'az-el' (default) | 'phi-theta'

Coordinate system of custom antenna pattern, specified 'az-el' or 'phi-theta'. When you
specify 'az-el', use the AzimuthAngles and ElevationAngles properties to specify the pattern
coordinates system. When you specify 'phi-theta', use the PhiAngles and ThetaAngles
properties to specify the pattern coordinates system.
Data Types: char

AzimuthAngles — Azimuth angles
[-180:180] (default) | real-valued length-P vector

Specify the azimuth angles as a length-P vector. These angles are the azimuth angles where the
custom radiation pattern is specified. P must be greater than 2. The azimuth angles must lie between
–180° and 180° and be in strictly increasing order. Units are in degrees.
Example: [30 40 50]
Dependencies

To enable this property, set the PatternCoordinateSystem property to 'az-el'.
Data Types: double

ElevationAngles — Elevation angles
[-90:90] (default) | real-valued length-Q vector

Specify the elevation angles as a length-Q vector. These angles are the elevation angles where the
custom radiation pattern is specified. Q must be greater than 2. The elevation angles must lie
between –90° and 90° and be in strictly increasing order. Units are in degrees.
Example: [-30 0 +30]
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Dependencies

To enable this property, set the PatternCoordinateSystem property to 'az-el'.
Data Types: double

PhiAngles — Phi angles in phi-theta coordinates system
0:360 (default) | real-valued P-length vector

Phi angles in phi-theta coordinate system, specified as a real-valued P-length vector. These angles are
the phi angles where the custom pattern is specified. P must be greater than 2.
Example: [90:180]

Dependencies

To enable this property, set the PatternCoordinateSystem property to 'phi-theta'.
Data Types: double

ThetaAngles — Theta angles in phi-theta coordinate system
0:180 (default) | real-valued Q-length vector

Theta angles in phi-theta coordinate system, specified as a real-valued Q-length vector. These angles
are the theta angles where the custom pattern is specified. Q must be greater than 2.
Example: [40:80]

Dependencies

To enable this property, set the PatternCoordinateSystem property to 'phi-theta'.
Data Types: double

SpecifyPolarizationPattern — Polarized array response
false (default) | true

Polarized array response, specified as false or true.

• When the SpecifyPolarizationPattern property is set to false, the antenna element
transmits or receives non-polarized radiation. In this case, use the MagnitudePattern property
to set the antenna response pattern.

• When the SpecifyPolarizationPattern property is set to true, the antenna element
transmits or receives polarized radiation. In this case, use the HorizontalMagnitudePattern
and HorizontalPhasePattern properties to set the horizontal polarization response pattern
and the VerticalMagnitudePattern and VerticalPhasePattern properties to set the
vertical polarization response pattern.

Data Types: logical

MagnitudePattern — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

The magnitude of the combined polarization antenna radiation, pattern specified as a Q-by-P matrix
or a Q-by-P-by-L array. This property is used only when the SpecifyPolarizationPattern
property is set to false. Magnitude units are in dB.
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• If the value of this property is a Q-by-P matrix, the same pattern is applied to all frequencies
specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation direction, it is converted to -Inf,
indicating zero response in that direction. The custom antenna object uses interpolation to estimate
the response of the antenna at a given direction. To avoid interpolation errors, the custom response
pattern must contain azimuth angles in the range [–180,180] degrees. Set the range of elevation
angles to [–90,90] degrees.
Data Types: double

PhasePattern — Phase of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

The phase of the combined polarization antenna radiation pattern, specified as a Q-by-P matrix or a
Q-by-P-by-L array. This property is used only when the SpecifyPolarizationPattern property is
set to false. Units are in degrees.

• If the value of this property is a Q-by-P matrix, the same pattern is applied to all frequencies
specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna at a given
direction. To avoid interpolation errors, the custom response pattern must contain azimuth angles in
the range [–180°,180°]. Set the range of elevation angles to [–90°,90°].
Data Types: double

HorizontalMagnitudePattern — Magnitude of horizontal polarization component of
antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

The magnitude of the horizontal polarization component of the antenna radiation pattern, specified as
a real-valued Q-by-P matrix or real-valued a Q-by-P-by-L array. Magnitude units are in dB.

• If the value of this property is a Q-by-P matrix, the same pattern is applied to all frequencies
specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the FrequencyVector property.

If the magnitude pattern contains a NaN at any azimuth and elevation direction, it is converted to -
Inf, indicating zero response in that direction. The custom antenna object uses interpolation to
estimate the response of the antenna at a given direction. To avoid interpolation errors, the custom
response pattern must contain azimuth angles in the range [–180,180]° and elevation angles in the
range [–90,90]°.

Dependencies

To enable this property, set the SpecifyPolarizationPattern property to true.
Data Types: double
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HorizontalPhasePattern — Phase of horizontal polarization component of antenna
radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

The phase of the horizontal polarization component of the antenna radiation pattern, specified as a
real-valued Q-by-P matrix or a real-valued Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase units are in degrees.

• If the value of this property is a Q-by-P matrix, the same pattern is applied to all frequencies
specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna at a given
direction. To avoid interpolation errors, the custom response pattern must contain azimuth angles in
the range [–180,180]° and elevation angles in the range [–90,90]°.

Dependencies

To enable this property, set the SpecifyPolarizationPattern property to true.
Data Types: double

VerticalMagnitudePattern — Magnitude of vertical polarization component of antenna
radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

The magnitude of the vertical polarization component of the antenna radiation pattern specified as a
Q-by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Magnitude units are in dB.

• If the value of this property is a Q-by-P matrix, the same pattern is applied to all frequencies
specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the FrequencyVector property.

If the pattern contains a NaN at any azimuth and elevation direction, it is converted to -Inf,
indicating zero response in that direction. The custom antenna object uses interpolation to estimate
the response of the antenna at a given direction. To avoid interpolation errors, the custom response
pattern must contain azimuth angles in the range[–180,180]° and elevation angles in the range [–
90,90]°.

Dependencies

To enable this property, set the SpecifyPolarizationPattern property to true.
Data Types: double

VerticalPhasePattern — Phase of vertical polarization component of antenna radiation
pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

The phase of the vertical polarization component of the antenna radiation pattern, specified as a Q-
by-P matrix or a Q-by-P-by-L array. This property is used only when the
SpecifyPolarizationPattern property is set to true. Phase units are in degrees.
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• If the value of this property is a Q-by-P matrix, the same pattern is applied to all frequencies
specified in the FrequencyVector property.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the FrequencyVector property.

The custom antenna object uses interpolation to estimate the response of the antenna at a given
direction. To avoid interpolation errors, the custom response pattern must contain azimuth angles in
the range [–180,180]° and elevation angles in the range [–90,90]°.

Dependencies

To enable this property, set the SpecifyPolarizationPattern property to true.
Data Types: double

MatchArrayNormal — Match element normal to array normal
true (default) | false

Set this property to true to align the antenna element to an array normal. The antenna pattern is
rotated so that the x-axis of the element coordinate system points along the array normal. This
property is used only when the antenna element belongs to an array. Use the property in conjunction
with the ArrayNormal property of the phased.URA and phased.UCA System objects. Set this
property to false to use the element pattern without rotation. The default value is .
Data Types: logical

Usage

Syntax
RESP = antenna(FREQ,ANG)

Description

RESP = antenna(FREQ,ANG) returns the antenna’s voltage response RESP at operating
frequencies specified in FREQ and directions specified in ANG. The form of RESP depends upon
whether the antenna element supports polarization as determined by the
SpecifyPolarizationPattern property. If SpecifyPolarizationPattern is set to false,
RESP is an M-by-L matrix containing the antenna response at the M angles specified in ANG and at the
L frequencies specified in FREQ. If SpecifyPolarizationPattern is set to true, RESP is a
MATLAB struct containing two fields, RESP.H and RESP.V, representing the antenna's response in
horizontal and vertical polarization, respectively. Each field is an M-by-L matrix containing the
antenna response at the M angles specified in ANG and at the L frequencies specified in FREQ.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments

FREQ — Operating frequency of antenna element
nonnegative scalar | nonnegative, real-valued, 1-by-L row vector

Operating frequency of antenna element, specified as a nonnegative scalar or nonnegative, real-
valued, 1-by-L row vector. Frequency units are in Hz.

FREQ must lie within the range of values specified by the FrequencyRange or the
FrequencyVector property of the element. Otherwise, the element produces no response and the
response is returned as –Inf. Most elements objects use the FrequencyRange property except for
phased.CustomAntennaElement, which uses the FrequencyVector property.
Example: [1e8 2e6]
Data Types: double

ANG — Azimuth and elevation angles of response directions
real-valued, 1-by-M row vector | real-valued, 2-by-M matrix

Azimuth and elevation angles of response directions, specified as a real-valued, 1-by-M row vector or
a real-valued, 2-by-M matrix, where M is the number of angular directions. Angle units are in
degrees. The azimuth angle must lie in the range –180° to 180°, inclusive. The elevation angle must
lie in the range –90° to 90°, inclusive.

• If ANG is a 1-by-M vector, each element specifies the azimuth angle of the direction. In this case,
the corresponding elevation angle is assumed to be zero.

• If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation].

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy-plane. This angle is positive when measured towards
the z-axis. See the definition of “Azimuth and Elevation Angles”.
Example: [110 125; 15 10]
Data Types: double

Output Arguments

RESP — Voltage response of antenna
complex-valued M-by-L matrix

Voltage response of antenna element, returned as a complex-valued M-by-L matrix. In this matrix, M
represents the number of angles specified in ANG and L represents the number of frequencies
specified in FREQ.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)
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Specific to Antenna and Transducer Element System Objects
beamwidth Compute and display beamwidth of sensor element pattern
directivity Directivity of antenna or transducer element
isPolarizationCapable Antenna element polarization capability
pattern Plot antenna or transducer element directivity and patterns
patternAzimuth Plot antenna or transducer element directivity and pattern versus azimuth
patternElevation Plot antenna or transducer element directivity and pattern versus elevation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Response and Directivity of Custom Antenna

Create a user-defined antenna with a cosine pattern. Then, plot an elevation cut of the antenna's
power response.

The user-defined pattern is omnidirectional in the azimuth direction and has a cosine pattern in the
elevation direction. Assume the antenna operates at 1 GHz. Obtain the response at 20° azimuth and
30° elevation.

fc = 1e9;
azang = -180:180;
elang = -90:90;
magpattern = mag2db(repmat(cosd(elang)',1,numel(azang)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',azang, ...
    'ElevationAngles',elang,'MagnitudePattern',magpattern, ...
    'PhasePattern',phasepattern);
resp = antenna(fc,[20;30])

resp = 0.8660

Plot an elevation cut of the power response.

pattern(antenna,fc,20,-90:90,'CoordinateSystem','polar','Type','powerdb')
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Plot an elevation cut of the directivity.

pattern(antenna,fc,20,-90:90,'CoordinateSystem','polar','Type','directivity')
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Antenna Radiation Pattern in U-V Coordinates

Define a custom antenna in u-v space. Then, calculate and plot the response.

Define the radiation pattern (in dB) of an antenna in terms of u and v coordinates within the unit
circle.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Create an antenna with this radiation pattern. Convert u-v coordinates to azimuth and elevation
coordinates.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,v);
array = phased.CustomAntennaElement('AzimuthAngles',az,'ElevationAngles',el, ...
    'MagnitudePattern',mag2db(pat_azel),'PhasePattern',45*ones(size(pat_azel)));

Calculate the response in the direction u = 0.5, v = 0. Assume the antenna operates at 1 GHz. The
output of the step method is in linear units.

dir_uv = [0.5;0];
dir_azel = uv2azel(dir_uv);
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fc = 1e9;
resp = array(fc,dir_azel)

resp = 0.6124 + 0.6124i

Plot the 3D response in u-v coordinates.

pattern(array,fc,[-1:.01:1],[-1:.01:1],'CoordinateSystem','uv','Type','powerdb')

Display the antenna response as a line plot in u-v coordinates.

pattern(array,fc,[-1:.01:1],0,'CoordinateSystem','uv','Type','powerdb')
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Polarized Antenna Radiation Patterns

Model a short dipole antenna oriented along the x-axis of the local antenna coordinate system. For
this type of antenna, the horizontal and vertical components of the electric field are given by
EH = jωμIL

4πr sin(az) and EV = − jωμIL
4πr sin(el)cos(az).

Specify a normalized radiation pattern of a short dipole antenna terms of azimuth, az, and elevation,
el, coordinates. The vertical and horizontal radiation patterns are normalized to a maximum of unity.

az = [-180:180];
el = [-90:90];
[az_grid,el_grid] = meshgrid(az,el);
horz_pat_azel = ...
    mag2db(abs(sind(az_grid)));
vert_pat_azel = ...
    mag2db(abs(sind(el_grid).*cosd(az_grid)));

Set up the antenna. Specify the SpecifyPolarizationPattern property to produce polarized
radiation. In addition, use the HorizontalMagnitudePattern and VerticalMagnitudePattern
properties to specify the pattern magnitude values. The HorizontalPhasePattern and
VerticalPhasePattern properties take default values of zero.

antenna = phased.CustomAntennaElement(...
    'AzimuthAngles',az,'ElevationAngles',el,...
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    'SpecifyPolarizationPattern',true,...
    'HorizontalMagnitudePattern',horz_pat_azel,...
    'VerticalMagnitudePattern',vert_pat_azel);

Assume the antenna operates at 1 GHz.

fc = 1e9;

Display the vertical response pattern.

pattern(antenna,fc,[-180:180],[-90:90],...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'Polarization','V')

Display the horizontal response pattern.

pattern(antenna,fc,[-180:180],[-90:90],...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'Polarization','H')
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The combined polarization response, shown below, illustrates the x-axis null of the dipole.

pattern(antenna,fc,[-180:180],[-90:90],...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'Polarization','combined')
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Match Custom Antenna Normal to Array Normal

Define a custom antenna in u-v space. Show how the array response pattern is affected by the choice
of the MatchArrayNormal property of the phased.CustomAntennaElement.

Define the response pattern (in dB) of an antenna as a function of u and v coordinates within the unit
circle. The antenna operates at 1 GHz.

fc = 1e9;
c = physconst('LightSpeed');
u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Create a custom antenna with this pattern. Convert u-v coordinates to azimuth and elevation
coordinates. Set MatchArrayNormal to false.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,v);
antenna = phased.CustomAntennaElement('AzimuthAngles',az,'ElevationAngles',el, ...
    'MagnitudePattern',mag2db(pat_azel),'PhasePattern',45*ones(size(pat_azel)), ...
    "MatchArrayNormal",false);
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Construct a 3-by-3 URA with this element and display the antenna pattern in 3-D polar coordinates.
The element spacing is one-half wavelength. The array normal points along the y-axis.

lam = c/fc;
array = phased.URA('Element',antenna,'Size',[3 3],'ElementSpacing', ...
    [lam/2 lam/2],'ArrayNormal','y');
pattern(array,fc,-180:180,-90:90,'PropagationSpeed',c, ...
    'CoordinateSystem','polar','Type','powerdb','Normalize',true)

The pattern shows the interplay between the element pattern pointing along the x-axis and the array
pattern pointing along the y-axis.

Create another custom antenna with the same radiation pattern. Set MatchArrayNormal to true.
Then create another array with this element.

antenna2 = phased.CustomAntennaElement('AzimuthAngles',az,'ElevationAngles',el, ...
    'MagnitudePattern',mag2db(pat_azel),'PhasePattern',45*ones(size(pat_azel)), ...
    "MatchArrayNormal",true);
array2 = phased.URA('Element',antenna2,'Size',[3 3],'ElementSpacing', ...
    [lam/2 lam/2],'ArrayNormal','y');
pattern(array2,fc,-180:180,-90:90,'PropagationSpeed',c, ...
    'CoordinateSystem','polar','Type','powerdb','Normalize',true)
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This pattern shows the aligned element and array patterns pointing along the y-axis.

Custom Antenna Element Response at 30° Elevation

Construct a user-defined antenna with an omnidirectional response in azimuth and a cosine pattern in
elevation. The antenna operates at 1 GHz. Plot the response pattern. Then, find the antenna response
at 30°.

antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(repmat(cosd(antenna.ElevationAngles)',...
    1,numel(antenna.AzimuthAngles)));

Find the response at 30° elevation for an operating frequency of 1 GHz.

fc = 1.0e9;
resp = antenna(fc,[0;30])

resp = 0.8660
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Antenna with Custom Radiation Pattern

Create a custom antenna element object. The radiation pattern has a cosine dependence on elevation
angle but is independent of azimuth angle.

az = -180:90:180;
el = -90:45:90;
elresp = cosd(el);
magpattern = mag2db(repmat(elresp',1,numel(az)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',az,...
    'ElevationAngles',el,'MagnitudePattern',magpattern, ...
    'PhasePattern',phasepattern);

Display the radiation pattern.

disp(antenna.MagnitudePattern)

      -Inf      -Inf      -Inf      -Inf      -Inf
   -3.0103   -3.0103   -3.0103   -3.0103   -3.0103
         0         0         0         0         0
   -3.0103   -3.0103   -3.0103   -3.0103   -3.0103
      -Inf      -Inf      -Inf      -Inf      -Inf

Calculate the antenna response at the azimuth-elevation pairs (-30,0) and (-45,0) at 500 MHz.

ang = [-30 0; -45 0];
resp = antenna(500.0e6,ang);
disp(resp)

    0.7071
    1.0000

The following code illustrates how nearest-neighbor interpolation is used to find the antenna voltage
response in the two directions. The total response is the product of the angular response and the
frequency response.

g = interp2(deg2rad(antenna.AzimuthAngles),...
    deg2rad(antenna.ElevationAngles),...
    db2mag(antenna.MagnitudePattern),...
    deg2rad(ang(1,:))', deg2rad(ang(2,:))','nearest',0);
h = interp1(antenna.FrequencyVector,...
    db2mag(antenna.FrequencyResponse),500e6,'nearest',0);
antresp = h.*g;

Compare the value of antresp to the response of the antenna.

disp(mag2db(antresp))

   -3.0103
         0

Directivity of Custom Antenna

Compute the directivity of a custom antenna element.
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Define an antenna pattern for a custom antenna element in azimuth-elevation space. The pattern is
omnidirectional in the azimuth direction and has a cosine pattern in the elevation direction. Assume
the antenna operates at 1 GHz. Get the response at zero degrees azimuth and from -30 to 30 degrees
elevation.

fc = 1e9;
azang = [-180:180];
elang = [-90:90];
magpattern = mag2db(repmat(cosd(elang)',1,numel(azang)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',azang, ...
    'ElevationAngles',elang,'MagnitudePattern',magpattern, ...
    'PhasePattern',phasepattern);

Calculate the directivities as a function of elevation for 0° azimuth angle.

angs = [0,0,0,0,0,0,0;-30,-20,-10,0,10,20,30];
freq = 1e9;
d = directivity(antenna,freq,angs)

d = 7×1

    0.5115
    1.2206
    1.6279
    1.7609
    1.6279
    1.2206
    0.5115

The directivity is maximum at 0∘ elevation.

Custom Antenna Element Supports Polarization

Show that the CustomAntennaElement antenna element supports polarization when the
SpecifyPolarizationPattern property is set to true.

antenna = phased.CustomAntennaElement('SpecifyPolarizationPattern',true);
isPolarizationCapable(antenna)

ans = logical
   1

The returned value 1 shows that this antenna element supports polarization.

Power and Directivity Patterns of Custom Antenna

Create a custom antenna with a cosine pattern. Show the response at boresight. Then, plot the
antenna's field and directivity patterns.
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Create the antenna and calculate the response. The user-defined pattern is omnidirectional in the
azimuth direction and has a cosine pattern in the elevation direction. Assume the antenna works at 1
GHz.

fc = 1e9;
antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(repmat(cosd(antenna.ElevationAngles)', ...
    1,numel(antenna.AzimuthAngles)));
resp = antenna(fc,[0;0])

resp = 1

Plot an elevation cut of the magnitude response as a line plot.

pattern(antenna,fc,0,[-90:90],'CoordinateSystem','rectangular', ...
    'Type','efield')

Plot an elevation cut of the directivity as a line plot, showing that the maximum directivity is
approximately 2 dB.

pattern(antenna,fc,0,[-90:90],'CoordinateSystem','rectangular', ...
    'Type','directivity')
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Pattern of Custom Antenna Over Selected Range of Angles

Create an custom antenna System object. The user-defined pattern is omnidirectional in the azimuth
direction and has a cosine pattern in the elevation direction. Assume the antenna operates at a
frequency of 1 GHz. First show the response at boresight. Display the 3-D pattern for a 60 degree
range of azimuth and elevation angles centered at 0 degrees azimuth and 0 degrees elevation in 0.1
degree increments.

fc = 1e9;
azang = -180:180;
elang = -90:90;
magpattern = mag2db(repmat(cosd(elang)',1,numel(azang)));
antenna = phased.CustomAntennaElement('AzimuthAngles',azang, ...
    'ElevationAngles',elang,'MagnitudePattern',magpattern);
resp = antenna(fc,[0;0])

resp = 1

Plot the power pattern for a range of angles.

pattern(antenna,fc,[-30:0.1:30],[-30:0.1:30],'CoordinateSystem','polar', ...
    'Type','power')
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Reduced Azimuth Pattern of Custom Antenna Element

Create an antenna with a custom response. The user-defined pattern has a sine pattern in the
azimuth direction and a cosine pattern in the elevation direction. Assume the antenna operates at a
frequency of 500 MHz. Plot an azimuth cut of the power pattern of the custom antenna element at 0
and 30 degrees elevation. Assume the operating frequency is 500 MHz.

Create the antenna element.

fc = 500e6;
antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(abs(cosd(antenna.ElevationAngles)'*sind(antenna.AzimuthAngles)));
patternAzimuth(antenna,fc,[0 30],'Type','powerdb')
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Plot a reduced range of azimuth angles using the Azimuth parameter.

patternAzimuth(antenna,fc,[0 30],'Azimuth',[-45:45],'Type','powerdb')
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Reduced Elevation Pattern of Custom Antenna Element

Create an antenna with a custom response. The user-defined pattern has a sine pattern in the
azimuth direction and a cosine pattern in the elevation direction. Assume the antenna operates at a
frequency of 500 MHz. Plot an elevation cut of the power of the custom antenna element at 0 and 30
degrees elevation. Assume the operating frequency is 500 MHz.

Create the antenna element.

fc = 500e6;
antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(abs(cosd(antenna.ElevationAngles)'*sind(antenna.AzimuthAngles)));
patternElevation(antenna,fc,[0 30],'Type','powerdb')
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Plot a reduced range of elevation angles using the Azimuth parameter.

patternElevation(antenna,fc,[0 30],'Elevation',[-45:45],'Type','powerdb')
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Algorithms
The total response of a custom antenna element is a combination of its frequency response and
spatial response. phased.CustomAntennaElement calculates both responses using nearest
neighbor interpolation, and then multiplies the responses to form the total response.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, and plotResponse methods are not
supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement | phased.IsotropicAntennaElement |
phased.ShortDipoleAntennaElement | phased.ULA | phased.URA | phitheta2azel |
phitheta2azelpat | uv2azel | uv2azelpat
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Introduced in R2011a
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directivity
System object: phased.CustomAntennaElement
Package: phased

Directivity of custom antenna element

Syntax
D = directivity(H,FREQ,ANGLE)

Description
D = directivity(H,FREQ,ANGLE) returns the “Directivity” on page 1-387 of a custom antenna
element, H, at frequencies specified by FREQ and in direction angles specified by ANGLE.

Input Arguments
H — Custom antenna element
System object

Custom antenna element specified as a phased.CustomAntennaElement System object.
Example: H = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.
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If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Custom Antenna

Compute the directivity of a custom antenna element.

Define an antenna pattern for a custom antenna element in azimuth-elevation space. The pattern is
omnidirectional in the azimuth direction and has a cosine pattern in the elevation direction. Assume
the antenna operates at 1 GHz. Get the response at zero degrees azimuth and from -30 to 30 degrees
elevation.

fc = 1e9;
azang = [-180:180];
elang = [-90:90];
magpattern = mag2db(repmat(cosd(elang)',1,numel(azang)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',azang, ...
    'ElevationAngles',elang,'MagnitudePattern',magpattern, ...
    'PhasePattern',phasepattern);

Calculate the directivities as a function of elevation for 0° azimuth angle.

angs = [0,0,0,0,0,0,0;-30,-20,-10,0,10,20,30];
freq = 1e9;
d = directivity(antenna,freq,angs)

d = 7×1

    0.5115
    1.2206
    1.6279
    1.7609
    1.6279
    1.2206
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    0.5115

The directivity is maximum at 0∘ elevation.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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isPolarizationCapable
System object: phased.CustomAntennaElement
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(antenna)

Description
flag = isPolarizationCapable(antenna) returns a Boolean value, flag, indicating whether
the phased.CustomAntennaElement System object supports polarization. An antenna element
supports polarization if it can create or respond to polarized fields. This antenna object supports both
polarized and nonpolarized fields.

Input Arguments
antenna — Custom antenna element
phased.CustomAntennaElement System object

Custom antenna element, specified as a phased.CustomAntennaElement System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the antenna element supports polarization
or false if it does not. The returned value depends upon the value of the
SpecifyPolarizationPattern property. If SpecifyPolarizationPattern is true, then flag
is true. Otherwise it is false.

Examples

Custom Antenna Element Supports Polarization

Show that the CustomAntennaElement antenna element supports polarization when the
SpecifyPolarizationPattern property is set to true.

antenna = phased.CustomAntennaElement('SpecifyPolarizationPattern',true);
isPolarizationCapable(antenna)

ans = logical
   1

The returned value 1 shows that this antenna element supports polarization.
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pattern
System object: phased.CustomAntennaElement
Package: phased

Plot custom antenna element directivity and patterns

Syntax
pattern(sElem,FREQ)
pattern(sElem,FREQ,AZ)
pattern(sElem,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the element specified in
sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the element directivity pattern at the specified azimuth angle.

pattern(sElem,FREQ,AZ,EL) plots the element directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the element pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the element pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-397 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sElem — Custom antenna element
System object

Custom antenna element, specified as a phased.CustomAntennaElement System object.
Example: sElem = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector
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Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
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must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component

Example: 'V'
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Data Types: char

Output Arguments
PAT — Element pattern
N-by-M real-valued matrix

Element pattern, returned as an N-by-M real-valued matrix. The pattern is a function of azimuth and
elevation. The rows of PAT correspond to the azimuth angles in the vector specified by EL_ANG. The
columns correspond to the elevation angles in the vector specified by AZ_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Power and Directivity Patterns of Custom Antenna

Create a custom antenna with a cosine pattern. Show the response at boresight. Then, plot the
antenna's field and directivity patterns.

Create the antenna and calculate the response. The user-defined pattern is omnidirectional in the
azimuth direction and has a cosine pattern in the elevation direction. Assume the antenna works at 1
GHz.

fc = 1e9;
antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(repmat(cosd(antenna.ElevationAngles)', ...
    1,numel(antenna.AzimuthAngles)));
resp = antenna(fc,[0;0])

resp = 1

Plot an elevation cut of the magnitude response as a line plot.

pattern(antenna,fc,0,[-90:90],'CoordinateSystem','rectangular', ...
    'Type','efield')
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Plot an elevation cut of the directivity as a line plot, showing that the maximum directivity is
approximately 2 dB.

pattern(antenna,fc,0,[-90:90],'CoordinateSystem','rectangular', ...
    'Type','directivity')
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Pattern of Custom Antenna Over Selected Range of Angles

Create an custom antenna System object. The user-defined pattern is omnidirectional in the azimuth
direction and has a cosine pattern in the elevation direction. Assume the antenna operates at a
frequency of 1 GHz. First show the response at boresight. Display the 3-D pattern for a 60 degree
range of azimuth and elevation angles centered at 0 degrees azimuth and 0 degrees elevation in 0.1
degree increments.

fc = 1e9;
azang = -180:180;
elang = -90:90;
magpattern = mag2db(repmat(cosd(elang)',1,numel(azang)));
antenna = phased.CustomAntennaElement('AzimuthAngles',azang, ...
    'ElevationAngles',elang,'MagnitudePattern',magpattern);
resp = antenna(fc,[0;0])

resp = 1

Plot the power pattern for a range of angles.

pattern(antenna,fc,[-30:0.1:30],[-30:0.1:30],'CoordinateSystem','polar', ...
    'Type','power')
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

1 Objects

1-396



Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.CustomAntennaElement
Package: phased

Plot custom antenna element directivity or pattern versus azimuth

Syntax
patternAzimuth(sElem,FREQ)
patternAzimuth(sElem,FREQ,EL)
patternAzimuth(sElem,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus azimuth (in dBi)
for the element sElem at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity pattern versus
azimuth (in dBi) at the elevation angle specified by EL. When EL is a vector, multiple overlaid plots
are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Azimuth' parameter and
the EL input argument.

Input Arguments
sElem — Custom antenna element
System object

Custom antenna element, specified as a phased.CustomAntennaElement System object.
Example: sElem = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

 patternAzimuth

1-401



• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension
N is the number of elevation angles, as determined by the EL input argument.

Examples

Reduced Azimuth Pattern of Custom Antenna Element

Create an antenna with a custom response. The user-defined pattern has a sine pattern in the
azimuth direction and a cosine pattern in the elevation direction. Assume the antenna operates at a
frequency of 500 MHz. Plot an azimuth cut of the power pattern of the custom antenna element at 0
and 30 degrees elevation. Assume the operating frequency is 500 MHz.

Create the antenna element.

fc = 500e6;
antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(abs(cosd(antenna.ElevationAngles)'*sind(antenna.AzimuthAngles)));
patternAzimuth(antenna,fc,[0 30],'Type','powerdb')

Plot a reduced range of azimuth angles using the Azimuth parameter.

patternAzimuth(antenna,fc,[0 30],'Azimuth',[-45:45],'Type','powerdb')
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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Introduced in R2015a
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patternElevation
System object: phased.CustomAntennaElement
Package: phased

Plot custom antenna element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)
patternElevation(sElem,FREQ,AZ)
patternElevation(sElem,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus elevation (in
dBi) for the element sElem at zero degrees azimuth angle. The argument FREQ specifies the
operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity pattern versus
elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid plots
are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sElem — Custom antenna element
System object

Custom antenna element, specified as a phased.CustomAntennaElement System object.
Example: sElem = phased.CustomAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of elevation angles determined by the 'Elevation' name-value pair argument. The
dimension N is the number of azimuth angles determined by the AZ argument.

Examples

Reduced Elevation Pattern of Custom Antenna Element

Create an antenna with a custom response. The user-defined pattern has a sine pattern in the
azimuth direction and a cosine pattern in the elevation direction. Assume the antenna operates at a
frequency of 500 MHz. Plot an elevation cut of the power of the custom antenna element at 0 and 30
degrees elevation. Assume the operating frequency is 500 MHz.

Create the antenna element.

fc = 500e6;
antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(abs(cosd(antenna.ElevationAngles)'*sind(antenna.AzimuthAngles)));
patternElevation(antenna,fc,[0 30],'Type','powerdb')

Plot a reduced range of elevation angles using the Azimuth parameter.

patternElevation(antenna,fc,[0 30],'Elevation',[-45:45],'Type','powerdb')
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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plotResponse
System object: phased.CustomAntennaElement
Package: phased

Plot response pattern of antenna

Syntax
plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ) plots the element response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must lie within the
range specified by the FrequencyVector property of H. If you set the 'RespCut' property of H to
'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If
RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0
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Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the antenna response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This parameter is
not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.
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Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

AzimuthAngles

Azimuth angles for plotting element response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting element response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When you set the RespCut parameter to '3D', you
can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting element response, specified as a row vector. The UGrid parameter
sets the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting element response, specified as a row vector. The VGrid parameter
sets the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples
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Plot Response and Directivity of Custom Antenna

Create a custom antenna with a cosine pattern. Then, plot the antenna's response.

Create the antenna and calculate the response. The user-defined pattern is omnidirectional in the
azimuth direction and has a cosine pattern in the elevation direction. Assume the antenna works at 1
GHz.

fc = 1e9;
azang = [-180:180];
elang = [-90:90];
magpattern = mag2db(repmat(cosd(elang)',1,numel(azang)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',azang, ...
    'ElevationAngles',elang,'MagnitudePattern',magpattern, ...
    'PhasePattern',phasepattern);

Plot an elevation cut of the magnitude response as a line plot.

plotResponse(antenna,fc,'RespCut','El','ElevationAngles',[-90:0.1:90],...
    'Format','Line','Unit','mag')

Plot an elevation cut of the directivity as a line plot, showing that the maximum directivity is
approximately 2 dB.

plotResponse(antenna,fc,'RespCut','El','ElevationAngles',[-90:0.1:90],...
    'Format','Line','Unit','dbi')
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Plot Response of Custom Antenna Over Selected Range of Angles

Create an antenna with a custom response. The user-defined pattern is omnidirectional in the
azimuth direction and has a cosine pattern in the elevation direction. Assume the antenna operates at
a frequency of 1 GHz. Display the 3-D response for a 60 degree range of azimuth and elevation angles
centered at 0 degrees azimuth and 0 degrees elevation in 0.1 degree increments.

fc = 1e9;
azang = [-180:180];
elang = [-90:90];
magpattern = mag2db(repmat(cosd(elang)',1,numel(azang)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',azang, ...
    'ElevationAngles',elang,'MagnitudePattern',magpattern, ...
    'PhasePattern',phasepattern);
resp = antenna(fc,[0;0]);
plotResponse(antenna,fc,'RespCut','3D','AzimuthAngles',[-30:0.1:30],...
    'ElevationAngles',[-30:0.1:30],'Format','Polar','Unit','pow')
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See Also
azel2uv | uv2azel
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step
System object: phased.CustomAntennaElement
Package: phased

Output response of antenna element

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response RESP at operating frequencies
specified in FREQ and directions specified in ANG. The form of RESP depends upon whether the
antenna element supports polarization as determined by the SpecifyPolarizationPattern
property. If SpecifyPolarizationPattern is set to false, RESP is an M-by-L matrix containing
the antenna response at the M angles specified in ANG and at the L frequencies specified in FREQ. If
SpecifyPolarizationPattern is set to true, RESP is a MATLAB struct containing two fields,
RESP.H and RESP.V, representing the antenna's response in horizontal and vertical polarization,
respectively. Each field is an M-by-L matrix containing the antenna response at the M angles specified
in ANG and at the L frequencies specified in FREQ.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.
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If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.

Output Arguments
RESP

Voltage response of antenna element. The output depends on whether the antenna element supports
polarization or not.

• If the antenna element does not support polarization, RESP is an M-by-L matrix. In this matrix, M
represents the number of angles specified in ANG while L represents the number of frequencies
specified in FREQ.

• If the antenna element supports polarization, RESP is a MATLAB struct with fields RESP.H and
RESP.V containing responses for the horizontal and vertical polarization components of the
antenna radiation pattern. RESP.H and RESP.V are M-by-L matrices. In these matrices, M
represents the number of angles specified in ANG while L represents the number of frequencies
specified in FREQ.

Examples

Custom Antenna Element Response at 30° Elevation

Construct a user-defined antenna with an omnidirectional response in azimuth and a cosine pattern in
elevation. The antenna operates at 1 GHz. Plot the response pattern. Then, find the antenna response
at 30°.

antenna = phased.CustomAntennaElement;
antenna.AzimuthAngles = -180:180;
antenna.ElevationAngles = -90:90;
antenna.MagnitudePattern = mag2db(repmat(cosd(antenna.ElevationAngles)',...
    1,numel(antenna.AzimuthAngles)));

Find the response at 30° elevation for an operating frequency of 1 GHz.

fc = 1.0e9;
resp = antenna(fc,[0;30])

resp = 0.8660

Antenna with Custom Radiation Pattern

Create a custom antenna element object. The radiation pattern has a cosine dependence on elevation
angle but is independent of azimuth angle.

az = -180:90:180;
el = -90:45:90;
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elresp = cosd(el);
magpattern = mag2db(repmat(elresp',1,numel(az)));
phasepattern = zeros(size(magpattern));
antenna = phased.CustomAntennaElement('AzimuthAngles',az,...
    'ElevationAngles',el,'MagnitudePattern',magpattern, ...
    'PhasePattern',phasepattern);

Display the radiation pattern.

disp(antenna.MagnitudePattern)

      -Inf      -Inf      -Inf      -Inf      -Inf
   -3.0103   -3.0103   -3.0103   -3.0103   -3.0103
         0         0         0         0         0
   -3.0103   -3.0103   -3.0103   -3.0103   -3.0103
      -Inf      -Inf      -Inf      -Inf      -Inf

Calculate the antenna response at the azimuth-elevation pairs (-30,0) and (-45,0) at 500 MHz.

ang = [-30 0; -45 0];
resp = antenna(500.0e6,ang);
disp(resp)

    0.7071
    1.0000

The following code illustrates how nearest-neighbor interpolation is used to find the antenna voltage
response in the two directions. The total response is the product of the angular response and the
frequency response.

g = interp2(deg2rad(antenna.AzimuthAngles),...
    deg2rad(antenna.ElevationAngles),...
    db2mag(antenna.MagnitudePattern),...
    deg2rad(ang(1,:))', deg2rad(ang(2,:))','nearest',0);
h = interp1(antenna.FrequencyVector,...
    db2mag(antenna.FrequencyResponse),500e6,'nearest',0);
antresp = h.*g;

Compare the value of antresp to the response of the antenna.

disp(mag2db(antresp))

   -3.0103
         0

Algorithms
The total response of a custom antenna element is a combination of its frequency response and
spatial response. phased.CustomAntennaElement calculates both responses using nearest
neighbor interpolation, and then multiplies the responses to form the total response.

See Also
phitheta2azel | uv2azel
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phased.CustomMicrophoneElement
Package: phased

Custom microphone

Description
The CustomMicrophoneElement object creates a custom microphone element.

To compute the response of the microphone element for specified directions:

1 Define and set up your custom microphone element. See “Construction” on page 1-420.
2 Call step to compute the response according to the properties of

phased.CustomMicrophoneElement. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.CustomMicrophoneElement creates a custom microphone system object, H, that
models a custom microphone element.

H = phased.CustomMicrophoneElement(Name,Value) creates a custom microphone object, H,
with each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
FrequencyVector

Operating frequency vector

Specify the frequencies in hertz where the frequency responses of element are measured as a vector.
The elements of the vector must be increasing. The microphone element has no response outside the
specified frequency range.

Default: [0 1e20]

FrequencyResponse

Frequency responses

Specify the frequency responses in decibels measured at the frequencies defined in the
FrequencyVector property as a row vector. The length of the vector must equal the length of the
frequency vector specified in the FrequencyVector property.
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Default: [0 0]

PolarPatternFrequencies

Polar pattern measuring frequencies

Specify the measuring frequencies in hertz of the polar patterns as a row vector of length M. The
measuring frequencies must be within the frequency range specified in the FrequencyVector
property.

Default: 1e3

PolarPatternAngles

Polar pattern measuring angles

Specify the measuring angles in degrees of the polar patterns as a row vector of length N. The angles
are measured from the central pickup axis of the microphone, and must be between –180 and 180,
inclusive.

Default: [-180:180]

PolarPattern

Polar pattern

Specify the polar patterns of the microphone element as an M-by-N matrix. M is the number of
measuring frequencies specified in the PolarPatternFrequencies property. N is the number of
measuring angles specified in the PolarPatternAngles property. Each row of the matrix
represents the magnitude of the polar pattern (in decibels) measured at the corresponding frequency
specified in the PolarPatternFrequencies property and corresponding angles specified in the
PolarPatternAngles property. The pattern is assumed to be measured in the azimuth plane where
the elevation angle is 0 and where the central pickup axis is assumed to be 0 degrees azimuth and 0
degrees elevation. The polar pattern is assumed to be symmetric around the central axis and
therefore the microphone’s response pattern in 3-D space can be constructed from the polar pattern.

Default: An omnidirectional pattern with 0 dB response everywhere

Methods
Specific to phased.CustomMicrophoneElement Object
beamwidth Compute and display beamwidth of sensor element pattern
directivit
y

Directivity of custom microphone element

isPolariza
tionCapabl
e

Polarization capability

pattern Plot custom microphone element directivity and patterns
patternAzi
muth

Plot custom microphone element directivity or pattern versus azimuth
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Specific to phased.CustomMicrophoneElement Object
patternEle
vation

Plot custom microphone element directivity or pattern versus elevation

plotRespon
se

Plot response pattern of microphone

step Output response of microphone

Common to All System Objects
release Allow System object property value changes

Examples

Custom Cardioid Microphone Response

Create a custom cardioid microphone, and calculate the microphone response at 500, 1500, and 2000
Hz in two directions: (0,0) azimuth and elevation, and (40,50) azimuth and elevation.

sCustMic = phased.CustomMicrophoneElement;
sCustMic.PolarPatternFrequencies = [500 1000];
sCustMic.PolarPattern = mag2db([...
    0.5+0.5*cosd(sCustMic.PolarPatternAngles);...
    0.6+0.4*cosd(sCustMic.PolarPatternAngles)]);
resp = step(sCustMic,[500 1500 2000],[0 0; 40 50]')

resp = 2×3

    1.0000    1.0000    1.0000
    0.7424    0.7939    0.7939

pattern(sCustMic,500,[-180:180],0,'Type','powerdb')
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Algorithms
The total response of a custom microphone element is a combination of its frequency response and
spatial response. phased.CustomMicrophoneElement calculates both responses using nearest
neighbor interpolation and then multiplies them to form the total response. When the
PolarPatternFrequencies property value is nonscalar, the object specifies multiple polar
patterns. In this case, the interpolation uses the polar pattern that is measured closest to the
specified frequency.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, and plotResponse methods are not
supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.OmnidirectionalMicrophoneElement | phased.ULA |
phased.URA | phitheta2azel | uv2azel
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Introduced in R2011a
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directivity
System object: phased.CustomMicrophoneElement
Package: phased

Directivity of custom microphone element

Syntax
D = directivity(H,FREQ,ANGLE)

Description
D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-427 of a custom
microphone element, H, at frequencies specified by FREQ and in direction angles specified by ANGLE.

Input Arguments
H — Custom microphone element
System object

Custom microphone element specified as a phased.CustomMicrophoneElement System object.
Example: H = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.
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If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Custom Microphone Element

Compute the directivity of a custom microphone element. Create a custom cardioid microphone, and
plot the microphone's response at 700 Hz for elevations between -90 and +90 degrees.

Define the pattern for the custom microphone element. The System object's PolarPatternAngles
property has default value of [-180:180] degrees.

myAnt = phased.CustomMicrophoneElement;
myAnt.PolarPatternFrequencies = [500 1000];
myAnt.PolarPattern = mag2db([...
    0.5+0.5*cosd(myAnt.PolarPatternAngles);...
    0.6+0.4*cosd(myAnt.PolarPatternAngles)]);

Calculate the directivity as a function of elevation at zero degrees azimuth.

elev = [-90:5:90];
azm = zeros(size(elev));
ang = [azm;elev];
freq = 700;
d = directivity(myAnt,freq,ang);
plot(elev,d)
xlabel('Elevation (deg)')
ylabel('Directivity (dBi)')
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The directivity is maximum at 0∘ elevation.

More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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See Also
pattern | patternAzimuth | patternElevation
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isPolarizationCapable
System object: phased.CustomMicrophoneElement
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the
phased.CustomMicrophoneElement supports polarization. An element supports polarization if it
can create or respond to polarized fields. This microphone element, as with all microphone elements,
does not support polarization.

Input Arguments
h — Custom microphone element

Custom microphone element specified as a phased.CustomMicrophoneElement System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the microphone element supports
polarization or false if it does not. Because the phased.CustomMicrophoneElement object does
not support polarization, flag is always returned as false.

Examples

Custom Microphone Does Not Support Polarization

Show that the phased.CustomMicrophoneElement microphone element does not support
polarization.

microphone = phased.CustomMicrophoneElement;
isPolarizationCapable(microphone)

ans = logical
   0

The returned value 0 shows that the custom microphone element does not support polarization.
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pattern
System object: phased.CustomMicrophoneElement
Package: phased

Plot custom microphone element directivity and patterns

Syntax
pattern(sElem,FREQ)
pattern(sElem,FREQ,AZ)
pattern(sElem,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the element specified in
sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the element directivity pattern at the specified azimuth angle.

pattern(sElem,FREQ,AZ,EL) plots the element directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the element pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the element pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-437 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sElem — Custom microphone element
System object

Custom microphone element, specified as a phased.CustomMicrophoneElement System object.
Example: sElem = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector
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Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
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must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Output Arguments
PAT — Element pattern
N-by-M real-valued matrix

Element pattern, returned as an N-by-M real-valued matrix. The pattern is a function of azimuth and
elevation. The rows of PAT correspond to the azimuth angles in the vector specified by EL_ANG. The
columns correspond to the elevation angles in the vector specified by AZ_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.
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EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Azimuth Power Pattern and Directivity of Cardioid Microphone

Design a cardioid microphone to operate in the frequency range between 500 and 1000 Hz.

sCustMike = phased.CustomMicrophoneElement;
sCustMike.PolarPatternFrequencies = [500 1000];
sCustMike.PolarPattern = mag2db([...
    0.5+0.5*cosd(sCustMike.PolarPatternAngles);...
    0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Display a polar plot of an azimuth cut of the response at 500 Hz and 1000 Hz.

fc = 500;
pattern(sCustMike,[fc 2*fc],[-180:180],0,...
    'CoordinateSystem','polar',...
    'Type','powerdb');
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Plot the directivity as a line plot for the same two frequencies.

pattern(sCustMike,[fc 2*fc],[-180:180],0,...
    'CoordinateSystem','rectangular',...
    'Type','directivity');

Power Pattern of Cardioid Microphone in U/V Space

Plot a u-cut of the power pattern of a custom cardioid microphone designed to operate in the
frequency range 500-1000 Hz.

Create a cardioid microphone.

sCustMike = phased.CustomMicrophoneElement;
sCustMike.PolarPatternFrequencies = [500 1000];
sCustMike.PolarPattern = mag2db([...
    0.5+0.5*cosd(sCustMike.PolarPatternAngles);...
    0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the power pattern.

fc = 500;
pattern(sCustMike,fc,[-1:.01:1],0,...
    'CoordinateSystem','uv',...
    'Type','powerdb');
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3-D Pattern of Cardioid Microphone Over Restricted Range of Angles

Plot the 3-D magnitude pattern of a custom cardioid microphone with both the azimuth and elevation
angles restricted to the range -40 to 40 degrees in 0.1 degree increments.

Create a custom microphone element with a cardioid pattern.

sCustMike = phased.CustomMicrophoneElement;
sCustMike.PolarPatternFrequencies = [500 1000];
sCustMike.PolarPattern = mag2db([...
    0.5+0.5*cosd(sCustMike.PolarPatternAngles);...
    0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the 3-D magnitude pattern.

fc = 500;
pattern(sCustMike,fc,[-40:0.1:40],[-40:0.1:40],...
    'CoordinateSystem','polar',...
    'Type','efield');
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.CustomMicrophoneElement
Package: phased

Plot custom microphone element directivity or pattern versus azimuth

Syntax
patternAzimuth(sElem,FREQ)
patternAzimuth(sElem,FREQ,EL)
patternAzimuth(sElem,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus azimuth (in dBi)
for the element sElem at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity pattern versus
azimuth (in dBi) at the elevation angle specified by EL. When EL is a vector, multiple overlaid plots
are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Azimuth' parameter and
the EL input argument.

Input Arguments
sElem — Custom microphone element
System object

Custom microphone element, specified as a phased.CustomMicrophoneElement System object.
Example: sElem = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension
N is the number of elevation angles, as determined by the EL input argument.

Examples

Azimuth Pattern of Cardioid Microphone Over Reduced Angular Range

Plot the azimuth directivity pattern of a custom cardioid microphone at both 0 and 30 degrees
elevation.

Create a custom microphone element with a cardioid pattern.

sCustMike = phased.CustomMicrophoneElement;
sCustMike.PolarPatternFrequencies = [500 1000];
sCustMike.PolarPattern = mag2db([...
    0.5+0.5*cosd(sCustMike.PolarPatternAngles);...
    0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the directivity at 500 Hz.

fc = 500;
patternAzimuth(sCustMike,fc,[0 30])

Plot the directivity for a reduced range of azimuth angles using the Azimuth parameter. Notice the
change in scale.
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fc = 500;
patternAzimuth(sCustMike,fc,[0 30],...
    'Azimuth',[-40:.1:40])

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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See Also
pattern | patternElevation

Introduced in R2015a

 patternAzimuth

1-445



patternElevation
System object: phased.CustomMicrophoneElement
Package: phased

Plot custom microphone element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)
patternElevation(sElem,FREQ,AZ)
patternElevation(sElem,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus elevation (in
dBi) for the element sElem at zero degrees azimuth angle. The argument FREQ specifies the
operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity pattern versus
elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid plots
are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sElem — Custom microphone element
System object

Custom microphone element, specified as a phased.CustomMicrophoneElement System object.
Example: sElem = phased.CustomMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of elevation angles determined by the 'Elevation' name-value pair argument. The
dimension N is the number of azimuth angles determined by the AZ argument.

Examples

Elevation Pattern of Cardioid Microphone Over Reduced Angular Range

Plot the elevation directivity pattern of a custom cardioid microphone at both 0 and 45 degrees
azimuth.

Create a custom microphone element with a cardioid pattern.

sCustMike = phased.CustomMicrophoneElement;
sCustMike.PolarPatternFrequencies = [500 1000];
sCustMike.PolarPattern = mag2db([...
    0.5+0.5*cosd(sCustMike.PolarPatternAngles);...
    0.6+0.4*cosd(sCustMike.PolarPatternAngles)]);

Plot the directivity at 500 Hz.

fc = 500;
patternElevation(sCustMike,fc,[0 30])

Plot the directivity for a reduced range of azimuth angles using the Azimuth parameter. Notice the
change in scale.
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fc = 500;
patternElevation(sCustMike,fc,[0 45],...
    'Elevation',[-40:.1:40])

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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See Also
pattern | patternAzimuth

Introduced in R2015a
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plotResponse
System object: phased.CustomMicrophoneElement
Package: phased

Plot response pattern of microphone

Syntax
plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ) plots the element response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must lie within the
range specified by the FrequencyVector property of H. If you set the 'RespCut' property of H to
'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If
RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0
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Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the antenna response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This parameter is
not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.
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Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

AzimuthAngles

Azimuth angles for plotting element response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting element response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When you set the RespCut parameter to '3D', you
can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting element response, specified as a row vector. The UGrid parameter
sets the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting element response, specified as a row vector. The VGrid parameter
sets the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples
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Azimuth Response and Directivity of Cardioid Microphone

Design a cardioid microphone to operate in the frequency range between 500 and 1000 Hz.

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...
    0.5+0.5*cosd(h.PolarPatternAngles);...
    0.6+0.4*cosd(h.PolarPatternAngles)]);

Display a polar plot of an azimuth cut of the response at 500 Hz and 1000 Hz.

fc = 500;
plotResponse(h,[fc 2*fc],'RespCut','Az','Format','Polar');

Plot the directivity as a line plot for the same two frequencies.

plotResponse(h,[fc 2*fc],'RespCut','Az','Format','Line','Unit','dbi');
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Response of Cardioid Microphone in U/V Space

Plot a u-cut of the response of a custom cardioid microphone that is designed to operate in the
frequency range 500-1000 Hz.

Create a cardioid microphone.

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...
    0.5+0.5*cosd(h.PolarPatternAngles);...
    0.6+0.4*cosd(h.PolarPatternAngles)]);

Plot the response.

fc = 500;
plotResponse(h,fc,'Format','UV');
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3-D Response of Cardioid Microphone Over Restricted Range of Angles

Plot the 3-D response of a custom cardioid microphone in space but with both the azimuth and
elevation angles restricted to the range -40 to 40 degrees in 0.1 degree increments.

Create a custom microphone element with a cardioid pattern.

h = phased.CustomMicrophoneElement;
h.PolarPatternFrequencies = [500 1000];
h.PolarPattern = mag2db([...
    0.5+0.5*cosd(h.PolarPatternAngles);...
    0.6+0.4*cosd(h.PolarPatternAngles)]);

Plot the 3-D response.

fc = 500;
plotResponse(h,fc,'Format','polar','RespCut','3D',...
    'Unit','mag','AzimuthAngles',[-40:0.1:40],...
    'ElevationAngles',[-40:0.1:40]);

1 Objects

1-456



See Also
azel2uv | uv2azel
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step
System object: phased.CustomMicrophoneElement
Package: phased

Output response of microphone

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the microphone’s magnitude response, RESP, at frequencies
specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Microphone object.

FREQ

Frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.
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Output Arguments
RESP

Response of microphone. RESP is an M-by-L matrix that contains the responses of the microphone
element at the M angles specified in ANG and the L frequencies specified in FREQ.

Examples

Custom Microphone Response

Construct a custom cardioid microphone with an operating frequency of 500 Hz. Find the microphone
response in the directions: (0,0) degrees azimuth and elevation and (40,50) degrees azimuth and
elevation.

sCustMic = phased.CustomMicrophoneElement;
sCustMic.PolarPatternFrequencies = [500 1000];
sCustMic.PolarPattern = mag2db([...
    0.5+0.5*cosd(sCustMic.PolarPatternAngles);...
    0.6+0.4*cosd(sCustMic.PolarPatternAngles)]);
fc = 700;
ang = [0 0; 40 50]';
resp = step(sCustMic,fc,ang)

resp = 2×1

    1.0000
    0.7424

Algorithms
The total response of a custom microphone element is a combination of its frequency response and
spatial response. phased.CustomMicrophoneElement calculates both responses using nearest
neighbor interpolation and then multiplies them to form the total response. When the
PolarPatternFrequencies property value is nonscalar, the object specifies multiple polar
patterns. In this case, the interpolation uses the polar pattern that is measured closest to the
specified frequency.

See Also
phitheta2azel | uv2azel
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phased.DopplerEstimator
Package: phased

Doppler estimation

Description
The phased.DopplerEstimator System object estimates Doppler frequencies of targets. Input to
the estimator consists of detection locations output from a detector, and a range-Doppler response
data cube. When detections are clustered, the Doppler frequencies are computed using cluster
information. Clustering associates multiple detections into one extended detection.

To compute Doppler values for detections:

1 Define and set up your Doppler estimator using the “Construction” on page 1-460 procedure that
follows.

2 Call the step method to compute the Doppler of detections, using the properties you specify for
the phased.DopplerEstimator System object.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
estimator = phased.DopplerEstimator creates a Doppler estimator System object,
estimator.

estimator = phased.DopplerEstimator(Name,Value) creates a System object, estimator,
with each specified property Name set to the specified Value. You can specify additional name and
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
NumEstimatesSource — Source of requested number of Doppler estimates
'Auto' (default) | 'Property'

Source of the number of requested Doppler estimates, specified as 'Auto' or 'Property'.

If you set this property to 'Auto', the number of estimates equals the number of columns in the
detidx input argument of the step method. If cluster IDs are provided, the number of estimates
equals the number of unique cluster IDs.

If you set this property to 'Property', the number of reported estimates is obtained from the value
of the NumEstimates property.
Data Types: char
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NumEstimates — Maximum number of estimates
1 (default) | positive integer

The maximum number of estimates to report, specified as a positive integer. When the number of
requested estimates is greater than the number of columns in the detidx argument of the step
method, the remainder is filled with NaN.

Dependencies

To enable this property, set the NumEstimatesSource property to 'Property'.
Data Types: c | double

ClusterInputPort — Accept clusterids as input
false (default) | true

Option to accept clusterids as an input argument to the step method, specified as false or true.
Setting this property to true enables the clusterid input argument of the step method.
Data Types: logical

VarianceOutputPort — Enable output of Doppler variance estimates
false (default) | true

Option to enable output of Doppler variance estimate, specified as false or true. Doppler variances
estimates are returned in the dopvar output argument of the step method.
Data Types: logical

NumPulses — Number of pulses in Doppler-processed waveform
2 (default) | positive integer

The number of pulses in the Doppler processed data cube, specified as a positive integer.

Dependencies

To enable this property, set the VarianceOutputPort property to true.
Data Types: single | double

NoisePowerSource — Source of noise power values
'Property' (default) | 'Input port'

Source of noise power values, specified as 'Property' or 'Input port'. Noise power is used to
compute Doppler estimation variance and SNR. If you set this property to 'Property', the value of
the NoisePower property represents the noise power at the detection locations. If you set this
property to 'Input port', you can specify noise power using the noisepower input argument of
the step method.
Data Types: char

NoisePower — Noise power
1.0 (default) | positive scalar

Constant noise power value over the range-Doppler data cube, specified as a positive scalar. Noise
power units are linear. The same noise power value is applied to all detections.
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Dependencies

To enable this property, set the VarianceOutputPort property to true and set
NoisePowerSource to 'Property'.
Data Types: single | double

Methods
step Estimate target Doppler

Common to All System Objects
release Allow System object property value changes

Examples

Estimate Range and Speed of Three Targets

To estimate the range and speed of three targets, create a range-Doppler map using the
phased.RangeDopplerResponse System object™. Then use the phased.RangeEstimator and
phased.DopplerEstimator System objects to estimate range and speed. The transmitter and
receiver are collocated isotropic antenna elements forming a monostatic radar system.

The transmitted signal is a linear FM waveform with a pulse repetition interval (PRI) of 7.0 μs and a
duty cycle of 2%. The operating frequency is 77 GHz and the sample rate is 150 MHz.

fs = 150e6;
c = physconst('LightSpeed');
fc = 77.0e9;
pri = 7e-6;
prf = 1/pri;

Set up the scenario parameters. The transmitter and receiver are stationary and located at the origin.
The targets are 500, 530, and 750 meters from the radar along the x-axis. The targets move along the
x-axis at speeds of –60, 20, and 40 m/s. All three targets have a nonfluctuating radar cross-section
(RCS) of 10 dB. Create the target and radar platforms.

Numtgts = 3;
tgtpos = zeros(Numtgts);
tgtpos(1,:) = [500 530 750];
tgtvel = zeros(3,Numtgts);
tgtvel(1,:) = [-60 20 40];
tgtrcs = db2pow(10)*[1 1 1];
tgtmotion = phased.Platform(tgtpos,tgtvel);
target = phased.RadarTarget('PropagationSpeed',c,'OperatingFrequency',fc, ...
    'MeanRCS',tgtrcs);
radarpos = [0;0;0];
radarvel = [0;0;0];
radarmotion = phased.Platform(radarpos,radarvel);

Create the transmitter and receiver antennas.

txantenna = phased.IsotropicAntennaElement;
rxantenna = clone(txantenna);
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Set up the transmitter-end signal processing. Create an upsweep linear FM signal with a bandwidth
of one half the sample rate. Find the length of the PRI in samples and then estimate the rms
bandwidth and range resolution.

bw = fs/2;
waveform = phased.LinearFMWaveform('SampleRate',fs, ...
    'PRF',prf,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',fs/2, ...
    'DurationSpecification','Duty cycle','DutyCycle',0.02);
sig = waveform();
Nr = length(sig);
bwrms = bandwidth(waveform)/sqrt(12);
rngrms = c/bwrms;

Set up the transmitter and radiator System object properties. The peak output power is 10 W and the
transmitter gain is 36 dB.

peakpower = 10;
txgain = 36.0;
txgain = 36.0;
transmitter = phased.Transmitter( ...
    'PeakPower',peakpower, ...
    'Gain',txgain, ...
    'InUseOutputPort',true);
radiator = phased.Radiator( ...
    'Sensor',txantenna,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);

Set up the free-space channel in two-way propagation mode.

channel = phased.FreeSpace( ...
    'SampleRate',fs, ...    
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc, ...
    'TwoWayPropagation',true);

Set up the receiver-end processing. Set the receiver gain and noise figure.

collector = phased.Collector( ...
    'Sensor',rxantenna, ...
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc);
rxgain = 42.0;
noisefig = 1;
receiver = phased.ReceiverPreamp( ...
    'SampleRate',fs, ...
    'Gain',rxgain, ...
    'NoiseFigure',noisefig);

Loop over the pulses to create a data cube of 128 pulses. For each step of the loop, move the target
and propagate the signal. Then put the received signal into the data cube. The data cube contains the
received signal per pulse. Ordinarily, a data cube has three dimensions where the last dimension
corresponds to antennas or beams. Because only one sensor is used, the cube has only two
dimensions.

The processing steps are:
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1 Move the radar and targets.
2 Transmit a waveform.
3 Propagate the waveform signal to the target.
4 Reflect the signal from the target.
5 Propagate the waveform back to the radar. Two-way propagation enables you to combine the

return propagation with the outbound propagation.
6 Receive the signal at the radar.
7 Load the signal into the data cube.

Np = 128;
dt = pri;
cube = zeros(Nr,Np);
for n = 1:Np
    [sensorpos,sensorvel] = radarmotion(dt);
    [tgtpos,tgtvel] = tgtmotion(dt);
    [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
    sig = waveform();
    [txsig,txstatus] = transmitter(sig);
    txsig = radiator(txsig,tgtang);
    txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);    
    tgtsig = target(txsig);   
    rxcol = collector(tgtsig,tgtang);
    rxsig = receiver(rxcol);
    cube(:,n) = rxsig;
end

Display the data cube containing signals per pulse.

imagesc([0:(Np-1)]*pri*1e6,[0:(Nr-1)]/fs*1e6,abs(cube))
xlabel('Slow Time {\mu}s')
ylabel('Fast Time {\mu}s')
axis xy
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Create and display the range-Doppler image for 128 Doppler bins. The image shows range vertically
and speed horizontally. Use the linear FM waveform for match filtering. The image is here is the
range-Doppler map.

ndop = 128;
rangedopresp = phased.RangeDopplerResponse('SampleRate',fs, ...
    'PropagationSpeed',c,'DopplerFFTLengthSource','Property', ...
    'DopplerFFTLength',ndop,'DopplerOutput','Speed', ...
    'OperatingFrequency',fc);
matchingcoeff = getMatchedFilter(waveform);
[rngdopresp,rnggrid,dopgrid] = rangedopresp(cube,matchingcoeff);
imagesc(dopgrid,rnggrid,10*log10(abs(rngdopresp)))
xlabel('Closing Speed (m/s)')
ylabel('Range (m)')
axis xy
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Because the targets lie along the positive x-axis, positive velocity in the global coordinate system
corresponds to negative closing speed. Negative velocity in the global coordinate system corresponds
to positive closing speed.

Estimate the noise power after matched filtering. Create a constant noise background image for
simulation purposes.

mfgain = matchingcoeff'*matchingcoeff;
dopgain = Np;
noisebw = fs;
noisepower = noisepow(noisebw,receiver.NoiseFigure,receiver.ReferenceTemperature);
noisepowerprc = mfgain*dopgain*noisepower;
noise = noisepowerprc*ones(size(rngdopresp));

Create the range and Doppler estimator objects.

rangeestimator = phased.RangeEstimator('NumEstimatesSource','Auto', ...
    'VarianceOutputPort',true,'NoisePowerSource','Input port', ...
    'RMSResolution',rngrms);
dopestimator = phased.DopplerEstimator('VarianceOutputPort',true, ...
    'NoisePowerSource','Input port','NumPulses',Np);

Locate the target indices in the range-Doppler image. Instead of using a CFAR detector, for simplicity,
use the known locations and speeds of the targets to obtain the corresponding index in the range-
Doppler image.

detidx = NaN(2,Numtgts);
tgtrng = rangeangle(tgtpos,radarpos);
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tgtspd = radialspeed(tgtpos,tgtvel,radarpos,radarvel);
tgtdop = 2*speed2dop(tgtspd,c/fc);
for m = 1:numel(tgtrng)
    [~,iMin] = min(abs(rnggrid-tgtrng(m)));
    detidx(1,m) = iMin;
    [~,iMin] = min(abs(dopgrid-tgtspd(m)));
    detidx(2,m) = iMin;
end

Find the noise power at the detection locations.

ind = sub2ind(size(noise),detidx(1,:),detidx(2,:));

Estimate the range and range variance at the detection locations. The estimated ranges agree with
the postulated ranges.

[rngest,rngvar] = rangeestimator(rngdopresp,rnggrid,detidx,noise(ind))

rngest = 3×1

  499.7911
  529.8380
  750.0983

rngvar = 3×1
10-4 ×

    0.0273
    0.0276
    0.2094

Estimate the speed and speed variance at the detection locations. The estimated speeds agree with
the predicted speeds.

[spdest,spdvar] = dopestimator(rngdopresp,dopgrid,detidx,noise(ind))

spdest = 3×1

   60.5241
  -19.6167
  -39.5838

spdvar = 3×1
10-5 ×

    0.0806
    0.0816
    0.6188
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Algorithms
Estimation Algorithm

The phased.DopplerEstimator System object estimates the Doppler frequency of a detection by
following these steps of the Doppler estimator are

1 Input a Doppler-processed response data cube obtained from the
phased.RangeDopplerResponse System object. The first dimension of the cube represents the
fast-time or equivalent range of the returned signal samples. The second dimension represents
the spatial information, such as sensors or beams. The last dimension represents the response as
a function of Doppler frequency. Only this dimension is used to estimate detection Doppler
frequency. All others are ignored. See “Radar Data Cube”.

2 Input the matrix of detection indices that specify the location of detections in the data cube. Each
column denotes a separate detection. The row entries designate indices into the data cube. To
return these detection indices as an output of the phased.CFARDetector or
phased.CFARDetector2D detectors. To return these indices, set the detector OutputFormat
property of either CFAR detector to 'Detection index'.

3 Optionally input a row vector of cluster IDs. This vector is equal in length to the number of
detections. Each element of this vector assigns an ID to a corresponding detection. To form
clusters of detections, the same ID can be assigned to more than one detection. To enable this
option, set the ClusterInputPort property to true.

4 When ClusterInputPort is false, the object computes Doppler frequencies for each
detection. The algorithm finds the response values at the detection index and at two adjacent
indices in the cube along the Doppler dimension. Then, the algorithm fits a quadratic curve to the
magnitudes of the Doppler response at these three indices. The peak of the curve indicates the
detection location. When detections occur at the first or last sample in the Doppler dimension,
the object estimates the detection location from a two-point centroid. The centroid is formed
using the location of the detection index and the sample next to the detection index.

When the object computes Doppler frequencies for each cluster. The algorithm finds the indices
of the largest response value in the cluster. Then, the algorithm fits a quadratic curve to that
detection in the same way as for individual detections.

5 The object converts the fractional index values to Doppler frequency or speed by using
appropriate units from the dopgrid input argument of the step method. You can obtain values
for dopgrid using the phased.RangeDopplerResponse System object.

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Richards, M. Fundamentals of Radar Signal Processing. 2nd ed. McGraw-Hill Professional
Engineering, 2014.

[2] Richards, M., J. Scheer, and W. Holm, Principles of Modern Radar: Basic Principles. SciTech
Publishing, 2010.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
Functions
bw2range | dop2speed | range2bw | rangeangle | speed2dop

Objects
phased.CFARDetector | phased.CFARDetector2D | phased.RangeDopplerResponse |
phased.RangeEstimator

Topics
“Radar Data Cube”

Introduced in R2017a
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step
System object: phased.DopplerEstimator
Package: phased

Estimate target Doppler

Syntax
dopest = step(estimator,resp,dopgrid,detidx)
[dopest,dopvar] = step(estimator,resp,dopgrid,detidx,noisepower)
[dopest,dopvar] = step(estimator,resp,dopgrid,detidx,clusterids)
[dopest,dopvar] = step(estimator,resp,dopgrid,detidx,noisepower,clusterids)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

dopest = step(estimator,resp,dopgrid,detidx) estimates Doppler frequencies of
detections derived from the range-Doppler response data, resp. Doppler estimates are computed for
each detection position reported in detidx. The dopgrid argument sets the units for the Doppler
dimension of the response data cube.

[dopest,dopvar] = step(estimator,resp,dopgrid,detidx,noisepower) also specifies the
noise power. This syntax applies when you set the VarianceOutputPort property to true and the
NoisePowerSource property to 'Input port'.

[dopest,dopvar] = step(estimator,resp,dopgrid,detidx,clusterids) also specifies the
clusterids for the detections. This syntax applies when you set the ClusterInputPort property
to true.

You can combine optional input and output arguments when their enabling properties are set.
Optional inputs and outputs must be listed in the same order as the order of the enabling properties.
For example, [dopest,dopvar] = step(estimator,resp,dopgrid,detidx,noisepower,
clusterids).

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
estimator — Doppler estimator
phased.DopplerEstimator System object
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Doppler estimator, specified as a phased.DopplerEstimator System object.
Example: phased.DopplerEstimator

resp — Doppler-processed response data cube
complex-valued P-by-1 column vector | complex-valued M-by-P matrix | complex-valued M-by-N-by-P
array

Doppler-processed response data cube, specified as a complex-valued P-by-1 column vector, a
complex-valued M-by-P matrix, or a complex-valued M-by-N-by-P array. M represents the number of
fast-time or range samples. N is the number of spatial elements, such as sensor elements or beams. P
is the number of Doppler bins.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: single | double

dopgrid — Doppler grid values along Doppler dimension
real-valued P-by-1 column vector

Doppler grid values along the Doppler dimension of the resp argument, specified as a real-valued P-
by-1 column vector. dopgrid defines the Doppler values corresponding to the Doppler dimension of
the resp argument. Doppler values must be monotonically increasing and equally spaced. You can
specify the grid values to be velocity or frequency. Units are in hertz or meters/sec.
Example: [-0.3,-0.2,-0.1,0,0.1,0.2,0.3]
Data Types: single | double

detidx — Detection indices
real-valued Nd-by-Q matrix

Detection indices, specified as a real-valued Nd-by-Q matrix. Q is the number of detections and Nd is
the number of dimensions of the response data cube, resp. Each column of detidx contains the Nd
indices of the detection in the response data cube.

To generate detection indices, you can use the phased.CFARDetector or
phased.CFARDetector2D objects.
Data Types: single | double

noisepower — Noise power at detection locations
positive scalar | real-valued 1-by-Q row vector of positive values

Noise power at detection locations, specified as a positive scalar or real-valued 1-by-Q row vector of
positive values. Q is the number of detections specified in detidx.

Dependencies

To enable this input argument, set the NoisePowerSource property to Input port.
Data Types: single | double

clusterids — Cluster IDs
real-valued 1-by-Q row vector of positive values
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Cluster IDs, specified as a real-valued 1-by-Q row vector where Q is the number of detections
specified in detidx. Each element of clusterids corresponds to a column in detidx. Detections
with the same cluster ID belong to the same cluster.

Dependencies

To enable this input argument, set the ClusterInputPort property to true.
Data Types: single | double

Output Arguments
dopest — Doppler estimates
real-valued K-by-1 column vector

Doppler estimates, returned as a real-valued K-by-1 column vector.

• When ClusterInputPort is false, Doppler estimates are computed for each detection location
in the detidx argument. Then K equals the column dimension, Q, of detidx.

• When ClusterInputPort is true, Doppler estimates are computed for each cluster ID in the
clusterids argument. Then K equals the number of unique cluster IDs, Q.

Data Types: single | double

dopvar — Doppler estimation variance
positive, real-valued K-by-1 column vector

Doppler estimation variance, returned as a positive, real-valued K-by-1 column vector, where K is the
dimension of dopest. Each element of dopvar corresponds to an element of dopest. The estimator
variance is computed using the Ziv-Zakai bound.
Data Types: single | double

Examples

Estimate Range and Speed of Three Targets

To estimate the range and speed of three targets, create a range-Doppler map using the
phased.RangeDopplerResponse System object™. Then use the phased.RangeEstimator and
phased.DopplerEstimator System objects to estimate range and speed. The transmitter and
receiver are collocated isotropic antenna elements forming a monostatic radar system.

The transmitted signal is a linear FM waveform with a pulse repetition interval (PRI) of 7.0 μs and a
duty cycle of 2%. The operating frequency is 77 GHz and the sample rate is 150 MHz.

fs = 150e6;
c = physconst('LightSpeed');
fc = 77.0e9;
pri = 7e-6;
prf = 1/pri;

Set up the scenario parameters. The transmitter and receiver are stationary and located at the origin.
The targets are 500, 530, and 750 meters from the radar along the x-axis. The targets move along the
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x-axis at speeds of –60, 20, and 40 m/s. All three targets have a nonfluctuating radar cross-section
(RCS) of 10 dB. Create the target and radar platforms.

Numtgts = 3;
tgtpos = zeros(Numtgts);
tgtpos(1,:) = [500 530 750];
tgtvel = zeros(3,Numtgts);
tgtvel(1,:) = [-60 20 40];
tgtrcs = db2pow(10)*[1 1 1];
tgtmotion = phased.Platform(tgtpos,tgtvel);
target = phased.RadarTarget('PropagationSpeed',c,'OperatingFrequency',fc, ...
    'MeanRCS',tgtrcs);
radarpos = [0;0;0];
radarvel = [0;0;0];
radarmotion = phased.Platform(radarpos,radarvel);

Create the transmitter and receiver antennas.

txantenna = phased.IsotropicAntennaElement;
rxantenna = clone(txantenna);

Set up the transmitter-end signal processing. Create an upsweep linear FM signal with a bandwidth
of one half the sample rate. Find the length of the PRI in samples and then estimate the rms
bandwidth and range resolution.

bw = fs/2;
waveform = phased.LinearFMWaveform('SampleRate',fs, ...
    'PRF',prf,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',fs/2, ...
    'DurationSpecification','Duty cycle','DutyCycle',0.02);
sig = waveform();
Nr = length(sig);
bwrms = bandwidth(waveform)/sqrt(12);
rngrms = c/bwrms;

Set up the transmitter and radiator System object properties. The peak output power is 10 W and the
transmitter gain is 36 dB.

peakpower = 10;
txgain = 36.0;
txgain = 36.0;
transmitter = phased.Transmitter( ...
    'PeakPower',peakpower, ...
    'Gain',txgain, ...
    'InUseOutputPort',true);
radiator = phased.Radiator( ...
    'Sensor',txantenna,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);

Set up the free-space channel in two-way propagation mode.

channel = phased.FreeSpace( ...
    'SampleRate',fs, ...    
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc, ...
    'TwoWayPropagation',true);

Set up the receiver-end processing. Set the receiver gain and noise figure.
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collector = phased.Collector( ...
    'Sensor',rxantenna, ...
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc);
rxgain = 42.0;
noisefig = 1;
receiver = phased.ReceiverPreamp( ...
    'SampleRate',fs, ...
    'Gain',rxgain, ...
    'NoiseFigure',noisefig);

Loop over the pulses to create a data cube of 128 pulses. For each step of the loop, move the target
and propagate the signal. Then put the received signal into the data cube. The data cube contains the
received signal per pulse. Ordinarily, a data cube has three dimensions where the last dimension
corresponds to antennas or beams. Because only one sensor is used, the cube has only two
dimensions.

The processing steps are:

1 Move the radar and targets.
2 Transmit a waveform.
3 Propagate the waveform signal to the target.
4 Reflect the signal from the target.
5 Propagate the waveform back to the radar. Two-way propagation enables you to combine the

return propagation with the outbound propagation.
6 Receive the signal at the radar.
7 Load the signal into the data cube.

Np = 128;
dt = pri;
cube = zeros(Nr,Np);
for n = 1:Np
    [sensorpos,sensorvel] = radarmotion(dt);
    [tgtpos,tgtvel] = tgtmotion(dt);
    [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
    sig = waveform();
    [txsig,txstatus] = transmitter(sig);
    txsig = radiator(txsig,tgtang);
    txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);    
    tgtsig = target(txsig);   
    rxcol = collector(tgtsig,tgtang);
    rxsig = receiver(rxcol);
    cube(:,n) = rxsig;
end

Display the data cube containing signals per pulse.

imagesc([0:(Np-1)]*pri*1e6,[0:(Nr-1)]/fs*1e6,abs(cube))
xlabel('Slow Time {\mu}s')
ylabel('Fast Time {\mu}s')
axis xy

1 Objects

1-474



Create and display the range-Doppler image for 128 Doppler bins. The image shows range vertically
and speed horizontally. Use the linear FM waveform for match filtering. The image is here is the
range-Doppler map.

ndop = 128;
rangedopresp = phased.RangeDopplerResponse('SampleRate',fs, ...
    'PropagationSpeed',c,'DopplerFFTLengthSource','Property', ...
    'DopplerFFTLength',ndop,'DopplerOutput','Speed', ...
    'OperatingFrequency',fc);
matchingcoeff = getMatchedFilter(waveform);
[rngdopresp,rnggrid,dopgrid] = rangedopresp(cube,matchingcoeff);
imagesc(dopgrid,rnggrid,10*log10(abs(rngdopresp)))
xlabel('Closing Speed (m/s)')
ylabel('Range (m)')
axis xy
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Because the targets lie along the positive x-axis, positive velocity in the global coordinate system
corresponds to negative closing speed. Negative velocity in the global coordinate system corresponds
to positive closing speed.

Estimate the noise power after matched filtering. Create a constant noise background image for
simulation purposes.

mfgain = matchingcoeff'*matchingcoeff;
dopgain = Np;
noisebw = fs;
noisepower = noisepow(noisebw,receiver.NoiseFigure,receiver.ReferenceTemperature);
noisepowerprc = mfgain*dopgain*noisepower;
noise = noisepowerprc*ones(size(rngdopresp));

Create the range and Doppler estimator objects.

rangeestimator = phased.RangeEstimator('NumEstimatesSource','Auto', ...
    'VarianceOutputPort',true,'NoisePowerSource','Input port', ...
    'RMSResolution',rngrms);
dopestimator = phased.DopplerEstimator('VarianceOutputPort',true, ...
    'NoisePowerSource','Input port','NumPulses',Np);

Locate the target indices in the range-Doppler image. Instead of using a CFAR detector, for simplicity,
use the known locations and speeds of the targets to obtain the corresponding index in the range-
Doppler image.

detidx = NaN(2,Numtgts);
tgtrng = rangeangle(tgtpos,radarpos);

1 Objects

1-476



tgtspd = radialspeed(tgtpos,tgtvel,radarpos,radarvel);
tgtdop = 2*speed2dop(tgtspd,c/fc);
for m = 1:numel(tgtrng)
    [~,iMin] = min(abs(rnggrid-tgtrng(m)));
    detidx(1,m) = iMin;
    [~,iMin] = min(abs(dopgrid-tgtspd(m)));
    detidx(2,m) = iMin;
end

Find the noise power at the detection locations.

ind = sub2ind(size(noise),detidx(1,:),detidx(2,:));

Estimate the range and range variance at the detection locations. The estimated ranges agree with
the postulated ranges.

[rngest,rngvar] = rangeestimator(rngdopresp,rnggrid,detidx,noise(ind))

rngest = 3×1

  499.7911
  529.8380
  750.0983

rngvar = 3×1
10-4 ×

    0.0273
    0.0276
    0.2094

Estimate the speed and speed variance at the detection locations. The estimated speeds agree with
the predicted speeds.

[spdest,spdvar] = dopestimator(rngdopresp,dopgrid,detidx,noise(ind))

spdest = 3×1

   60.5241
  -19.6167
  -39.5838

spdvar = 3×1
10-5 ×

    0.0806
    0.0816
    0.6188

Introduced in R2017a
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phased.DPCACanceller
Package: phased

Displaced phase center array (DPCA) pulse canceller

Description
The DPCACanceller object implements a displaced phase center array pulse canceller for a uniform
linear array (ULA).

To compute the output signal of the space time pulse canceller:

1 Define and set up your DPCA pulse canceller. See “Construction” on page 1-478.
2 Call step to execute the DPCA algorithm according to the properties of

phased.DPCACanceller. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.DPCACanceller creates a displaced phase center array (DPCA) canceller System
object, H. The object performs two-pulse DPCA processing on the input data.

H = phased.DPCACanceller(Name,Value) creates a DPCA object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Uniform linear array

Uniform linear array, specified as a phased.ULA System object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

PRFSource

Source of pulse repetition frequency

Source of the PRF values for the STAP processor, specified as 'Property' or 'Input port'. When
you set this property to 'Property', the PRF is determined by the value of the PRF property. When
you set this property to 'Input port', the PRF is determined by an input argument to the step
method at execution time.

Default: 'Property'

PRF

Pulse repetition frequency

Pulse repetition frequency (PRF) of the received signal, specified as a positive scalar. Units are in
Hertz. This property can be specified as single or double precision.
Dependencies

To enable this property, set the PRFSource property to 'Property'.

Default: 1

DirectionSource

Source of receiving mainlobe direction

Specify whether the targeting direction for the STAP processor comes from the Direction property
of this object or from an input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the targeting
direction.

'Input port' An input argument in each invocation of step specifies the
targeting direction.

Default: 'Property'

Direction

Receiving mainlobe direction

Specify the receiving mainlobe direction of the receiving sensor array as a column vector of length 2.
The direction is specified in the format of [AzimuthAngle;ElevationAngle] (in degrees). The
azimuth angle should be between –180° and 180°. The elevation angle should be between –90° and
90°. This property applies when you set the DirectionSource property to 'Property'. You can
specify this argument as single or double precision.
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Default: [0; 0]

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed. You can specify this property as single or double precision.

Default: 0

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor comes from the Doppler property of
this object or from an input argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the Doppler.
'Input port' An input argument in each invocation of step specifies the Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency (hertz)

Specify the targeting Doppler of the STAP processor as a scalar. This property applies when you set
the DopplerSource property to 'Property'. You can specify this property as single or double
precision.

Default: 0

WeightsOutputPort

Output processing weights

To obtain the weights used in the STAP processor, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

PreDopplerOutput

Output pre-Doppler result

Set this property to true to output the processing result before applying the Doppler filtering. Set
this property to false to output the processing result after the Doppler filtering.

Default: false
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Methods
step Perform DPCA processing on input data

Common to All System Objects
release Allow System object property value changes

Examples

Process Data Cube Using DPCA

Process a data cube using a DPCA processor. The weights are calculated for the 71st cell of the
collected data cube. The look direction is (0,0) degrees and the Doppler shift is 12.980 kHz.

load STAPExampleData;
Hs = phased.DPCACanceller('SensorArray',STAPEx_HArray,...
    'PRF',STAPEx_PRF,...
    'PropagationSpeed',STAPEx_PropagationSpeed,...
    'OperatingFrequency',STAPEx_OperatingFrequency,...
    'WeightsOutputPort',true,...
    'DirectionSource','Input port',...
    'DopplerSource','Input port');
[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0;0],12.980e3);

sAngDop = phased.AngleDopplerResponse(...
    'SensorArray',Hs.SensorArray,...
    'OperatingFrequency',Hs.OperatingFrequency,...
    'PRF',Hs.PRF,...
    'PropagationSpeed',Hs.PropagationSpeed);
plotResponse(sAngDop,w)
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Algorithms
Single Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,” Technical Report
1015, MIT Lincoln Laboratory, December, 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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See Also
phased.ADPCACanceller | phased.AngleDopplerResponse | phased.STAPSMIBeamformer |
phitheta2azel | uv2azel

Introduced in R2011a
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step
System object: phased.DPCACanceller
Package: phased

Perform DPCA processing on input data

Syntax
Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,ANG)
Y = step(H,X,CUTIDX,DOP)
Y = step(H,X,CUTIDX,PRF)
[Y,W] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X,CUTIDX) applies the DPCA pulse cancellation algorithm to the input data X. The
algorithm calculates the processing weights according to the range cell specified by CUTIDX. This
syntax is available when the DirectionSource property is 'Property' and the DopplerSource
property is 'Property'. The receiving mainlobe direction is the Direction property value. The
output Y contains the result of pulse cancellation either before or after Doppler filtering, depending
on the PreDopplerOutput property value.

Y = step(H,X,CUTIDX,ANG) uses ANG as the receiving main lobe direction. This syntax is available
when the DirectionSource property is 'Input port' and the DopplerSource property is
'Property'.

Y = step(H,X,CUTIDX,DOP) uses DOP as the targeting Doppler frequency. This syntax is available
when the DopplerSource property is 'Input port'.

Y = step(H,X,CUTIDX,PRF) uses PRF as the pulse repetition frequency. This syntax is available
when the PRFSource property is 'Input port'.

[Y,W] = step( ___ ) also returns the processing weights, W. This syntax is available when the
WeightsOutputPort property is true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
H

Pulse canceller object.

X

Input data. X must be a 3-dimensional M-by-N-by-P numeric array whose dimensions are (range,
channels, pulses). You can specify this argument as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

CUTIDX

Range cell. You can specify this argument as single or double precision.

PRF

Pulse repetition frequency specified as a positive scalar. To enable this argument, set the PRFSource
property to 'Input port'. You can specify this argument as single or double precision. Units are in
Hertz.

ANG

Receiving main lobe direction. ANG must be a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle], in degrees. The azimuth angle must be between –180 and 180. The elevation
angle must be between –90 and 90. You can specify this argument as single or double precision.

Default: Direction property of H

DOP

Targeting Doppler frequency in hertz. DOP must be a scalar. You can specify this argument as single
or double precision.

Default: Doppler property of H

Output Arguments
Y

Result of applying pulse cancelling to the input data. The meaning and dimensions of Y depend on the
PreDopplerOutput property of H:

• If PreDopplerOutput is true, Y contains the pre-Doppler data. Y is an M-by-(P–1) matrix. Each
column in Y represents the result obtained by cancelling the two successive pulses.

• If PreDopplerOutput is false, Y contains the result of applying an FFT-based Doppler filter to
the pre-Doppler data. The targeting Doppler is the Doppler property value. Y is a column vector
of length M.
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W

Processing weights the pulse canceller used to obtain the pre-Doppler data. The dimensions of W
depend on the PreDopplerOutput property of H:

• If PreDopplerOutput is true, W is a 2N-by-(P-1) matrix. The columns in W correspond to
successive pulses in X.

• If PreDopplerOutput is false, W is a column vector of length (N*P).

Examples

Process Data Cube Using DPCA

Process a data cube using a DPCA processor. The weights are calculated for the 71st cell of the
collected data cube. The look direction is (0,0) degrees and the Doppler shift is 12.980 kHz.

load STAPExampleData;
Hs = phased.DPCACanceller('SensorArray',STAPEx_HArray,...
    'PRF',STAPEx_PRF,...
    'PropagationSpeed',STAPEx_PropagationSpeed,...
    'OperatingFrequency',STAPEx_OperatingFrequency,...
    'WeightsOutputPort',true,...
    'DirectionSource','Input port',...
    'DopplerSource','Input port');
[y,w] = step(Hs,STAPEx_ReceivePulse,71,[0;0],12.980e3);

sAngDop = phased.AngleDopplerResponse(...
    'SensorArray',Hs.SensorArray,...
    'OperatingFrequency',Hs.OperatingFrequency,...
    'PRF',Hs.PRF,...
    'PropagationSpeed',Hs.PropagationSpeed);
plotResponse(sAngDop,w)
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See Also
phitheta2azel | uv2azel
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phased.ElementDelay
Package: phased

Sensor array element delay estimator

Description
The ElementDelay object calculates the signal delay for elements in an array.

To compute the signal delay across the array elements:

1 Define and set up your element delay estimator. See “Construction” on page 1-488.
2 Call step to estimate the delay according to the properties of phased.ElementDelay. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ElementDelay creates an element delay estimator System object, H. The object
calculates the signal delay for elements in an array when the signal arrives the array from specified
directions. By default, a 2-element uniform linear array (ULA) is used.

H = phased.ElementDelay(Name,Value) creates object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array used to calculate the delay

Specify the sensor array as a handle. The sensor array must be an array object in the phased
package. The array cannot contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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Methods

step Calculate delay for elements

Common to All System Objects
release Allow System object property value changes

Examples

Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input is impinging on the array from
30° azimuth and 20° elevation.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

array = phased.ULA('NumElements',4);
delay = phased.ElementDelay('SensorArray',array);
tau = delay([30;20])

tau = 4×1
10-8 ×

    0.1175
    0.0392
   -0.0392
   -0.1175

Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments.

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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• This System object supports single and double precision for input data, properties, and
arguments.

See Also
phased.ArrayGain | phased.ArrayResponse | phased.SteeringVector

Introduced in R2011a
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step
System object: phased.ElementDelay
Package: phased

Calculate delay for elements

Syntax
TAU = step(H,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

TAU = step(H,ANG) returns the delay TAU of each element relative to the array’s phase center for
the signal incident directions specified by ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Element delay object.

ANG

Signal incident directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.
This argument can be single or double precision.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.

 step

1-491



Output Arguments
TAU

Delay in seconds.TAU is an N-by-M matrix, where N is the number of elements in the array. Each
column of TAU contains the delays of the array elements for the corresponding direction specified in
ANG. This argument can be single or double precision.

Examples

Element Delay for Uniform Linear Array

Calculate the element delay for a uniform linear array when the input is impinging on the array from
30° azimuth and 20° elevation.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

array = phased.ULA('NumElements',4);
delay = phased.ElementDelay('SensorArray',array);
tau = delay([30;20])

tau = 4×1
10-8 ×

    0.1175
    0.0392
   -0.0392
   -0.1175

See Also
phitheta2azel | uv2azel
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phased.ESPRITEstimator
Package: phased

ESPRIT direction of arrival (DOA) estimator for ULA

Description
The phased.ESPRITEstimator System object estimate the direction of arrival of signals
parameters via rotational invariance (ESPRIT) direction of arrival estimate.

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page 1-493.
2 Call step to estimate the DOA according to the properties of phased.ESPRITEstimator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ESPRITEstimator creates an ESPRIT DOA estimator System object, H. The object
estimates the signal's direction-of-arrival (DOA) using the ESPRIT algorithm with a uniform linear
array (ULA).

H = phased.ESPRITEstimator(Name,Value) creates object, H, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with conjugate symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance matrix as a
nonnegative integer. Each additional smoothing handles one extra coherent source, but reduces the
effective number of element by 1. The maximum value of this property is M–2, where M is the number
of sensors. You can specify this property as single or double precision.

Default: 0, indicating no spatial smoothing

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto' or 'Property'. If you set this property
to 'Auto', the number of signals is estimated by the method specified by the NumSignalsMethod
property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of 'AIC' or 'MDL'. The 'AIC' uses the
Akaike Information Criterion and the 'MDL' uses Minimum Description Length criterion. This
property applies when you set the NumSignalsSource property to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you set the
NumSignalsSource property to 'Property'. The number of signals, Nsig, must be smaller than the
number of elements, Nsub, in the subarray derived from the array specified in the SensorArray
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property. See “ESPRIT Subarrays” on page 1-496. You can specify this property as single or double
precision.

Default: 1

Method

Type of least squares method

Specify the least squares method used for ESPRIT as one of 'TLS' or 'LS'. 'TLS' refers to total
least squares and 'LS'refers to least squares.

Default: 'TLS'

RowWeighting

Row weighting factor

Specify the row weighting factor for signal subspace eigenvectors as a positive integer scalar. This
property controls the weights applied to the selection matrices. In most cases the higher value the
better. However, it can never be greater than (Nsub – 1)/2 where Nsub is the number of elements in
the subarray derived from the array specified in the SensorArray property. See “ESPRIT Subarrays”
on page 1-496. You can specify this property as single or double precision.

Default: 1

Methods
step Perform DOA estimation

Common to All System Objects
release Allow System object property value changes

Examples

Estimate DOAs of Two Signals

Estimate the directions-of-arrival (DOA) of two signals received by a standard 10-element ULA with
element spacing 1 m. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is 10° in azimuth and 20° in elevation. The direction of the second signal is 45° in azimuth and
60° in elevation.

Create the signals.

fs = 8.0e3;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;

Create the plane waves and add noise.
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x = collectPlaneWave(array,[x1 x2],[10 20;45 60]',fc);
noise = 0.1/sqrt(2)*(randn(size(x)) + 1i*randn(size(x)));

Estimate the arrival angles.

estimator = phased.ESPRITEstimator('SensorArray',array,...
    'OperatingFrequency',fc);
doas = estimator(x + noise);
az = broadside2az(sort(doas),[20 60])

az = 1×2

   10.0000   45.0126

Algorithms
ESPRIT Subarrays

The ESPRIT algorithm, as implemented in the phased.ESPRITEstimator System object,
reorganizes the ULA elements into two overlapping subarrays. For an original N-element array, the
first subarray consist of elements 1,...,N - 1 of the original array. The second subarray consist of
elements 2, ... ,N of the original array. There are Nsub = N - 1 elements in each subarray.

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
broadside2az

1 Objects

1-496



Introduced in R2011a
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step
System object: phased.ESPRITEstimator
Package: phased

Perform DOA estimation

Syntax
ANG = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

ANG = step(H,X) estimates the DOAs from X using the DOA estimator, H. X is a matrix whose
columns correspond to channels. ANG is a row vector of the estimated broadside angles (in degrees).
You can specify this argument as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Estimate DOAs of Two Signals

Estimate the directions-of-arrival (DOA) of two signals received by a standard 10-element ULA with
element spacing 1 m. The antenna operating frequency is 150 MHz. The actual direction of the first
signal is 10° in azimuth and 20° in elevation. The direction of the second signal is 45° in azimuth and
60° in elevation.

Create the signals.

fs = 8.0e3;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
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array.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;

Create the plane waves and add noise.

x = collectPlaneWave(array,[x1 x2],[10 20;45 60]',fc);
noise = 0.1/sqrt(2)*(randn(size(x)) + 1i*randn(size(x)));

Estimate the arrival angles.

estimator = phased.ESPRITEstimator('SensorArray',array,...
    'OperatingFrequency',fc);
doas = estimator(x + noise);
az = broadside2az(sort(doas),[20 60])

az = 1×2

   10.0000   45.0126
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phased.FMCWWaveform
Package: phased

FMCW waveform

Description
The FMCWWaveform object creates an FMCW (frequency modulated continuous wave) waveform.

To obtain waveform samples:

1 Define and set up your FMCW waveform. See “Construction” on page 1-500.
2 Call step to generate the FMCW waveform samples according to the properties of

phased.FMCWWaveform. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Construction
H = phased.FMCWWaveform creates an FMCW waveform System object, H. The object generates
samples of an FMCW waveform.

H = phased.FMCWWaveform(Name,Value) creates an FMCW waveform object, H, with additional
options specified by one or more Name,Value pair arguments. Name is a property name on page 1-
500, and Value is the corresponding value. Name must appear inside single quotes (''). You can
specify several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Properties
SampleRate

Sample rate

Specify the same rate, in hertz, as a positive scalar. The default value of this property corresponds to
1 MHz.

The quantity (SampleRate .* SweepTime) is a scalar or vector that must contain only integers.

Default: 1e6

SweepTime

Duration of each linear FM sweep

Specify the duration of the upsweep or downsweep, in seconds, as a row vector of positive, real
numbers. The default value corresponds to 100 μs.
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If SweepDirection is 'Triangle', the sweep time is half the sweep period because each period
consists of an upsweep and a downsweep. If SweepDirection is 'Up' or 'Down', the sweep time
equals the sweep period.

The quantity (SampleRate .* SweepTime) is a scalar or vector that must contain only integers.

To implement a varying sweep time, specify SweepTime as a nonscalar row vector. The waveform
uses successive entries of the vector as the sweep time for successive periods of the waveform. If the
last element of the vector is reached, the process continues cyclically with the first entry of the
vector.

If SweepTime and SweepBandwidth are both nonscalar, they must have the same length.

Default: 1e-4

SweepBandwidth

FM sweep bandwidth

Specify the bandwidth of the linear FM sweeping, in hertz, as a row vector of positive, real numbers.
The default value corresponds to 100 kHz.

To implement a varying bandwidth, specify SweepBandwidth as a nonscalar row vector. The
waveform uses successive entries of the vector as the sweep bandwidth for successive periods of the
waveform. If the last element of the SweepBandwidth vector is reached, the process continues
cyclically with the first entry of the vector.

If SweepTime and SweepBandwidth are both nonscalar, they must have the same length.

Default: 1e5

SweepDirection

FM sweep direction

Specify the direction of the linear FM sweep as one of 'Up' | 'Down' | 'Triangle'.

Default: 'Up'

SweepInterval

Location of FM sweep interval

If you set this property value to 'Positive', the waveform sweeps in the interval between 0 and B,
where B is the SweepBandwidth property value. If you set this property value to 'Symmetric', the
waveform sweeps in the interval between –B/2 and B/2.

Default: 'Positive'

OutputFormat

Output signal format

Specify the format of the output signal as one of 'Sweeps' or 'Samples'. When you set the
OutputFormat property to 'Sweeps', the output of the step method is in the form of multiple
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sweeps. In this case, the number of sweeps is the value of the NumSweeps property. If the
SweepDirection property is 'Triangle', each sweep is half a period.

When you set the OutputFormat property to 'Samples', the output of the step method is in the
form of multiple samples. In this case, the number of samples is the value of the NumSamples
property.

Default: 'Sweeps'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Samples'.

Default: 100

NumSweeps

Number of sweeps in output

Specify the number of sweeps in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Sweeps'.

Default: 1

Methods

plot Plot FMCW waveform
reset Reset states of FMCW waveform object
step Samples of FMCW waveform

Common to All System Objects
release Allow System object property value changes

Examples

Plot FMCW Waveform

Create and plot an upsweep FMCW waveform.

waveform = phased.FMCWWaveform('SweepBandwidth',100.0e3,...
    'OutputFormat','Sweeps','NumSweeps',2);
plot(waveform)

1 Objects

1-502



Spectrogram of Triangle Sweep FMCW Waveform

Generate samples of a triangle sweep FMCW Waveform. Then, plot the spectrogram of the sweep.
The sweep has a 10 MHz bandwidth.

sFMCW = phased.FMCWWaveform('SweepBandwidth',10.0e6,...
   'SampleRate',20.0e6,'SweepDirection','Triangle',...
   'NumSweeps',2);
sig = step(sFMCW);
windowlength = 32;
noverlap = 16;
nfft = 32;
spectrogram(sig,windowlength,noverlap,nfft,sFMCW.SampleRate,'yaxis')
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More About
Triangle Sweep

In each period of a triangle sweep, the waveform sweeps up with a slope of B/T and then down with a
slope of –B/T. B is the sweep bandwidth, and T is the sweep time. The sweep period is 2T.

Upsweep

In each period of an upsweep, the waveform sweeps with a slope of B/T. B is the sweep bandwidth,
and T is the sweep time.
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Downsweep

In each period of a downsweep, the waveform sweeps with a slope of –B/T. B is the sweep bandwidth,
and T is the sweep time.

References

[1] Issakov, Vadim. Microwave Circuits for 24 GHz Automotive Radar in Silicon-based Technologies.
Berlin: Springer, 2010.

[2] Skolnik, M.I. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• plot method is not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.LinearFMWaveform | range2bw | range2time | time2range

Topics
Automotive Adaptive Cruise Control Using FMCW Technology

Introduced in R2012b
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plot
System object: phased.FMCWWaveform
Package: phased

Plot FMCW waveform

Syntax
plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot( ___ )

Description
plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one or more
Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker options as
are available in the MATLAB plot function.

h = plot( ___ ) returns the line handle in the figure.

Input Arguments
Hwav

Waveform object. This variable must be a scalar that represents a single waveform object.

LineSpec

Character vector to specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec applies to
both the real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PlotType

Specifies whether the function plots the real part, imaginary part, or both parts of the waveform.
Valid values are 'real', 'imag', and 'complex'.

Default: 'real'
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SweepIdx

Index of the sweep to plot. This value must be a positive integer scalar.

Default: 1

Output Arguments
h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a column vector.
The first and second elements of this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples

Plot FMCW Waveform

Create and plot an upsweep FMCW waveform.

waveform = phased.FMCWWaveform('SweepBandwidth',100.0e3,...
    'OutputFormat','Sweeps','NumSweeps',2);
plot(waveform)
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reset
System object: phased.FMCWWaveform
Package: phased

Reset states of FMCW waveform object

Syntax
reset(H)

Description
reset(H) resets the states of the FMCWWaveform object, H. Afterward, the next call to step restarts
the sweep of the waveform.
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step
System object: phased.FMCWWaveform
Package: phased

Samples of FMCW waveform

Syntax
Y = step(H)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Y = step(H) returns samples of the FMCW waveform in a column vector, Y.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

FMCW waveform object.

Output Arguments
Y

Column vector containing the waveform samples.

If H.OutputFormat is 'Samples', Y consists of H.NumSamples samples.

If H.OutputFormat is 'Sweeps', Y consists of H.NumSweeps sweeps. Also, if H.SweepDirection
is 'Triangle', each sweep is half a period.

Examples
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Spectrogram of Triangle Sweep FMCW Waveform

Generate samples of a triangle sweep FMCW Waveform. Then, plot the spectrogram of the sweep.
The sweep has a 10 MHz bandwidth.

sFMCW = phased.FMCWWaveform('SweepBandwidth',10.0e6,...
   'SampleRate',20.0e6,'SweepDirection','Triangle',...
   'NumSweeps',2);
sig = step(sFMCW);
windowlength = 32;
noverlap = 16;
nfft = 32;
spectrogram(sig,windowlength,noverlap,nfft,sFMCW.SampleRate,'yaxis')

1 Objects

1-510



phased.FreeSpace
Package: phased

Free space environment

Description
The phased.FreeSpace System object models narrowband signal propagation from one point to
another in a free-space environment. The object applies range-dependent time delay, gain and phase
shift to the input signal. The object accounts for doppler shift when either the source or destination is
moving. A free-space environment is a boundaryless medium with a speed of signal propagation
independent of position and direction. The signal propagates along a straight line from source to
destination. For example, you can use this object to model the propagation of a signal from a radar to
a target and back to the radar.

For non-polarized signals, the FreeSpace System object lets you propagate signals from a single
point to multiple points or from multiple points to a single point. Multiple-point to multiple-point
propagation is not supported.

To compute the propagated signal in free space:

1 Define and set up your free space environment. See “Construction” on page 1-511.
2 Call step to propagate the signal through a free space environment according to the properties

of phased.FreeSpace. The behavior of step is specific to each object in the toolbox.

When propagating a round trip signal in free-space, you can either use one FreeSpace System object
to compute the two-way propagation delay or two separate FreeSpace System objects to compute
one-way propagation delays in each direction. Due to filter distortion, the total round trip delay when
you employ two-way propagation can differ from the delay when you use two one-way
phased.FreeSpace System objects. It is more accurate to use a single two-way
phased.FreeSpace System object. This option is set by the TwoWayPropagation property.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.FreeSpace creates a free space environment System object, H.

H = phased.FreeSpace(Name,Value) creates a free space environment object, H, with each
specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
PropagationSpeed

Signal propagation speed
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Specify signal wave propagation speed in free space as a real positive scalar. Units are meters per
second.

Default: Speed of light

OperatingFrequency

Signal carrier frequency

A scalar containing the carrier frequency of the narrowband signal. Units are hertz.

Default: 3e8

TwoWayPropagation

Perform two-way propagation

Set this property to true to perform round-trip propagation between the origin and destination that
you specify in the step command. Set this property to false to perform one-way propagation from
the origin to the destination.

Default: false

SampleRate

Sample rate

A scalar containing the sample rate. Units of sample rate are hertz. The algorithm uses this value to
determine the propagation delay in number of samples.

Default: 1e6

MaximumDistanceSource

Source of maximum distance value

Source of maximum distance value, specified as 'Auto' or 'Property'. This choice selects how the
maximum one-way propagation distance is determined. The maximum one-way propagation distance
is used to allocate sufficient memory for delay computation. When you set this property to 'Auto, the
System object automatically allocates memory. When you set this property to 'Property', you
specify the maximum one-way propagation distance using the value of the MaximumDistance
property.

Default: 'Auto'

MaximumDistance

Maximum one-way propagation distance

Maximum one-way propagation distance, specified as a real-valued positive scalar. Units are meters.
This property applies when you set the MaximumDistanceSource property to 'Property'. Any
signal that propagates more than the maximum one-way distance is ignored. The maximum distance
should be greater than or equal to the largest position-to-position distance.

Default: 10000
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MaximumNumInputSamplesSource

Source of maximum number of samples.

The source of the maximum number of samples in the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the propagation model automatically allocates
enough memory to buffer the input signal. When you set this property to 'Property', specify the
maximum number of samples in the input signal using the MaximumNumInputSamples property. Any
input signal longer than that value is truncated.

This property applies when you set the MaximumDistanceSource property to 'Property'.

To use this object with variable-size input signals in a MATLAB Function Block in Simulink®, set the
MaximumNumInputSamplesSource property to 'Property' and set a value for the
MaximumNumInputSamples property.

Default: 'Auto'

MaximumNumInputSamples

Maximum number of input signal samples.

Maximum number of samples in the input signal, specified as a positive integer. This property limits
the size of the input signal. Any input signal longer than this value is truncated. The input signal is
the first argument to the step method. The number of samples is the number of rows in the input.

This property applies when you set the MaximumNumInputSamplesSource property to
'Property'.

Default: 100

Methods

reset Reset internal states of propagation channel
step Propagate signal from one location to another

Common to All System Objects
release Allow System object property value changes

Examples

Signal Propagation from Stationary Radar to Stationary Target

Calculate the amplitude of a signal propagating in free-space from a radar at (1000,0,0) to a target at
(300,200,50). Assume both the radar and the target are stationary. The sample rate is 8000 Hz while
the operating frequency of the radar is 300 MHz. Transmit five samples of a unit amplitude signal.
The signal propagation speed takes the default value of the speed of light. Examine the amplitude of
the signal at the target.

fs = 8e3;
fop = 3e8;
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henv = phased.FreeSpace('SampleRate',fs,...
    'OperatingFrequency',fop);
pos1 = [1000;0;0];
pos2 = [300;200;50];
vel1 = [0;0;0];
vel2 = [0;0;0];

Compute the received signal at the target.

x = ones(5,1);
y = step(henv,x,...
    pos1,...
    pos2,...
    vel1,...
    vel2);
disp(y)

   1.0e-03 *

   0.0126 - 0.1061i
   0.0129 - 0.1082i
   0.0129 - 0.1082i
   0.0129 - 0.1082i
   0.0129 - 0.1082i

The first sample is zero because the signal has not yet reached the target.

Manually compute the loss using the formula

L = (4πR/λ)2

R = sqrt( (pos1-pos2)'*(pos1-pos2));
lambda = physconst('Lightspeed')/fop;
L = (4*pi*R/lambda)^2

L = 8.4205e+07

Because the transmitted amplitude is unity, the square of the signal at the target equals the inverse of
the loss.

disp(1/abs(y(2))^2)

   8.4205e+07

Signal Propagation from Moving Radar to Moving Target

Calculate the result of propagating a signal in free space from a radar at (1000,0,0) to a target at
(300,200,50). Assume the radar moves at 10 m/s along the x-axis, while the target moves at 15 m/s
along the y-axis. The sample rate is 8000 Hz while the operating frequency of the radar is 300 MHz.
The signal propagation speed takes the default value of the speed of light. Transmit five samples of a
unit amplitude signal and examine the amplitude of the signal at the target.

fs = 8000;
fop = 3e8;
sProp = phased.FreeSpace('SampleRate',fs,...
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    'OperatingFrequency',fop);
pos1 = [1000;0;0];
pos2 = [300;200;50];
vel1 = [10;0;0];
vel2 = [0;15;0];
y = step(sProp,ones(5,1),...
    pos1,...
    pos2,...
    vel1,...
    vel2);
disp(y)

   1.0e-03 *

   0.0126 - 0.1061i
   0.0117 - 0.1083i
   0.0105 - 0.1085i
   0.0094 - 0.1086i
   0.0082 - 0.1087i

Because the transmitted amplitude is unity, the square of the signal at the target equals the inverse of
the loss.

disp(1/abs(y(2))^2)

   8.4206e+07

More About
Freespace Time Delay and Path Loss

When the origin and destination are stationary relative to each other, you can write the output signal
of a free-space channel as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal delay and Lfsp is the free-space
path loss. The delay τ is given by R/c, where R is the propagation distance and c is the propagation
speed. The free-space path loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or array. In the
near field, the free-space path loss formula is not valid and can result in a loss smaller than one,
equivalent to a signal gain. Therefore, the loss is set to unity for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a Doppler
frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
The quantity v is the relative speed of the destination with respect to the origin.

For more details on free space channel propagation, see [2].

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Requires dynamic memory allocation. See “Limitations for System Objects that Require Dynamic
Memory Allocation”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
fspl | phased.RadarTarget

Introduced in R2011a
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reset
System object: phased.FreeSpace
Package: phased

Reset internal states of propagation channel

Syntax
reset(H)

Description
reset(H) resets the states of the FreeSpace object, H.
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step
System object: phased.FreeSpace
Package: phased

Propagate signal from one location to another

Syntax
Y = step(SFS,F,origin_pos,dest_pos,origin_vel,dest_vel)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(SFS,F,origin_pos,dest_pos,origin_vel,dest_vel) returns the resulting signal
Y when the narrowband signal F propagates in free space from the position or positions specified in
origin_pos to the position or positions specified in dest_pos. For non-polarized signals, either the
origin_pos or dest_pos arguments can specify more than one point. Using both arguments to
specify multiple points is not allowed. The velocity of the signal origin is specified in origin_vel
and the velocity of the signal destination is specified in dest_vel. The dimensions of origin_vel
and dest_vel must agree with the dimensions of origin_pos and dest_pos, respectively.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
SFS — Free-space propagator
System object

Free-space propagator, specified as a System object.

F — Narrowband signal
M-element complex-valued column vector, M-by-N complex-valued matrix or structure containing
complex-valued fields.

Narrowband signal, specified as an M-element complex-valued column vector, M-by-N complex-valued
matrix or structure containing complex-valued fields.
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Polarization Signal structure
Not enabled The signal X can be a complex-valued 1-by-M

column vector or complex-valued M-by-N matrix.
The quantity M is the number of sample values of
the signal and N is the number of signals to
propagate. When you specify N signals, you need
to specify N signal origins or N signal
destinations.

The size of the first dimension of the input matrix
can vary to simulate a changing signal length. A
size change can occur, for example, in the case of
a pulse waveform with variable pulse repetition
frequency.

Enabled The signal X is a MATLAB struct containing
three matrix fields:X.X, X.Y, and X.Z
representing the x, y, and z components of the
polarized signals.

The size of the first dimension of the matrix fields
within the struct can vary to simulate a
changing signal length such as a pulse waveform
with variable pulse repetition frequency.

origin_pos — 

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. Position units are meters. The quantity N is the number of signals arriving from N signal
origins and matches the dimension specified in the signal X. If origin_pos is a column vector, it
takes the form [x; y; z]. If origin_pos is a matrix, each column specifies a different signal origin
and has the form [x; y; z]. origin_pos and dest_pos cannot both be specified as matrices — at
least one must be a 3-by-1 column vector.

dest_pos — 

Destination of the signal or signals, specified as a 3-by-1 column vector or 3-by-N matrix. Position
units are meters. The quantity N is the number of signals arriving at N signal destinations and
matches the dimension specified in the signal X. If dest_pos is a column vector, it takes the form
[x; y; z]. If dest_pos is a matrix, each column specifies a different destination and has the form
[x; y; z]. dest_pos and origin_pos cannot both be specified as matrices — at least one must
be a 3-by-1 column vector.

origin_vel — 

Velocity of signal origin, specified as a 3-by-1 column vector or 3-by-N matrix. Velocity units are
meters/second. The dimensions of origin_vel must match the dimensions of origin_pos. If
origin_vel is a column vector, it takes the form [Vx; Vy; Vz]. If origin_vel is a 3–by-N matrix,
each column specifies a different origin velocity and has the form [Vx; Vy; Vz].

dest_vel — 

Velocity of signal destinations, specified as a 3-by-1 column vector or 3–by-N matrix. Velocity units are
meters/second. The dimensions of dest_vel must match the dimensions of dest_pos. If dest_vel
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is a column vector, it takes the form [Vx; Vy; Vz]. If dest_vel is a 3–by-N matrix, each column
specifies a different destination velocity and has the form [Vx; Vy; Vz].

Output Arguments
Y

Propagated signal, returned as a M-element complex-valued column vector, M-by-N complex-valued
matrix or MATLAB structure containing complex-valued fields.

If X is a column vector or matrix, Y is also a column vector or matrix with the same dimensions.

If X is a struct, Y is also a struct with the same fields. Each field in Y contains the resulting signal
of the corresponding field in X.

The output Y contains signal samples arriving at the signal destination within the current time frame.
The current time frame is defined as the time spanned by the current input. Whenever it takes longer
than the current time frame for the signal to propagate from the origin to the destination, the output
contains no contribution from the input of the current time frame.

Examples

Signal Propagation from Stationary Radar to Stationary Target

Calculate the amplitude of a signal propagating in free-space from a radar at (1000,0,0) to a target at
(300,200,50). Assume both the radar and the target are stationary. The sample rate is 8000 Hz while
the operating frequency of the radar is 300 MHz. Transmit five samples of a unit amplitude signal.
The signal propagation speed takes the default value of the speed of light. Examine the amplitude of
the signal at the target.

fs = 8e3;
fop = 3e8;
henv = phased.FreeSpace('SampleRate',fs,...
    'OperatingFrequency',fop);
pos1 = [1000;0;0];
pos2 = [300;200;50];
vel1 = [0;0;0];
vel2 = [0;0;0];

Compute the received signal at the target.

x = ones(5,1);
y = step(henv,x,...
    pos1,...
    pos2,...
    vel1,...
    vel2);
disp(y)

   1.0e-03 *

   0.0126 - 0.1061i
   0.0129 - 0.1082i
   0.0129 - 0.1082i
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   0.0129 - 0.1082i
   0.0129 - 0.1082i

The first sample is zero because the signal has not yet reached the target.

Manually compute the loss using the formula

L = (4πR/λ)2

R = sqrt( (pos1-pos2)'*(pos1-pos2));
lambda = physconst('Lightspeed')/fop;
L = (4*pi*R/lambda)^2

L = 8.4205e+07

Because the transmitted amplitude is unity, the square of the signal at the target equals the inverse of
the loss.

disp(1/abs(y(2))^2)

   8.4205e+07

Signal Propagation from Moving Radar to Moving Target

Calculate the result of propagating a signal in free space from a radar at (1000,0,0) to a target at
(300,200,50). Assume the radar moves at 10 m/s along the x-axis, while the target moves at 15 m/s
along the y-axis. The sample rate is 8000 Hz while the operating frequency of the radar is 300 MHz.
The signal propagation speed takes the default value of the speed of light. Transmit five samples of a
unit amplitude signal and examine the amplitude of the signal at the target.

fs = 8000;
fop = 3e8;
sProp = phased.FreeSpace('SampleRate',fs,...
    'OperatingFrequency',fop);
pos1 = [1000;0;0];
pos2 = [300;200;50];
vel1 = [10;0;0];
vel2 = [0;15;0];
y = step(sProp,ones(5,1),...
    pos1,...
    pos2,...
    vel1,...
    vel2);
disp(y)

   1.0e-03 *

   0.0126 - 0.1061i
   0.0117 - 0.1083i
   0.0105 - 0.1085i
   0.0094 - 0.1086i
   0.0082 - 0.1087i

Because the transmitted amplitude is unity, the square of the signal at the target equals the inverse of
the loss.
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disp(1/abs(y(2))^2)

   8.4206e+07

Propagation of Polarized Field from Source to Target

Create a uniform linear array (ULA) consisting of four short-dipole antenna elements that support
polarization. Set the orientation of each dipole to the z-direction. Set the operating frequency to 300
MHz and the element spacing of the array to 0.4 meters. While the antenna element supports
polarization, you must explicitly enable polarization in the Radiator System object.

Create the short-dipole antenna element, ULA array, and radiator System objects. Set the
CombineRadiatedSignals property to true to coherently combine the radiated signals from all
antennas and the Polarization property to 'Combined' to process polarized waves.

freq = 300e6;
nsensors = 4;
c = physconst('LightSpeed');
antenna = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 900e6],...
    'AxisDirection','Z');
array = phased.ULA('Element',antenna,...
    'NumElements',nsensors,...
    'ElementSpacing',0.4);
radiator = phased.Radiator('Sensor',array,...
    'PropagationSpeed',c,...
    'OperatingFrequency',freq,...
    'CombineRadiatedSignals',true,...
    'Polarization','Combined',...
    'WeightsInputPort',true);

Create a signal to be radiated. In this case, the signal consists of one cycle of a 4 kHz sinusoid. Set
the signal amplitude to unity. Set the sampling frequency to 8 kHz. Choose a radiating angles of 0
degrees azimuth and 20 degrees elevation. polarization, you must set a local axes - in this case
chosen to coincide with the global axes. Set uniform weights on the elements of the array.

fsig = 4000;
fs = 8000;
A = 1;
t = [0:0.01:2]/fs;
signal = A*sin(2*pi*fsig*t');
radiatingAngles = [0;20];
laxes = ones(3,3);
y = radiator(signal,radiatingAngles,laxes,[1,1,1,1].');
disp(y)

    X: [201x1 double]
    Y: [201x1 double]
    Z: [201x1 double]

The radiated signal is a struct containing the polarized field.

Use a FreeSpace System object to propagate the field from the origin to the destination.

propagator = phased.FreeSpace('PropagationSpeed',c,...
    'OperatingFrequency',freq,...
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    'TwoWayPropagation',false,...
    'SampleRate',fs);

Set the signal origin, signal origin velocity, signal destination, and signal destination velocity.

origin_pos = [0; 0; 0];
dest_pos = [500; 200; 50];
origin_vel = [10; 0; 0];
dest_vel = [0; 15; 0];

Call the FreeSpace object to propagate the signals.

yprop = propagator(y,origin_pos,dest_pos,...
    origin_vel,dest_vel);

Plot the x-component of the propagated signals.

figure
plot(1000*t,real(yprop.X))
xlabel('Time (millisec)')

Propagate Signal to Multiple Destinations

Create a FreeSpace System object to propagate a signal from one point to multiple points in space.
Start by defining a signal origin and three destination points, all at different ranges.
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Compute the propagation direction angles from the source to the destination locations. The source
and destination are stationary.

pos1 = [0,0,0]';
vel1 = [0,0,0]';
pos2 = [[700;700;100],[1400;1400;200],2*[2100;2100;400]];
vel2 = zeros(size(pos2));
[rngs,radiatingAngles] = rangeangle(pos2,pos1);

Create the cosine antenna element, ULA array, and Radiator System objects.

fs = 8000;
freq = 300e6;
nsensors = 4;
sAnt = phased.CosineAntennaElement;
sArray = phased.ULA('Element',sAnt,'NumElements',nsensors);
sRad = phased.Radiator('Sensor',sArray,...
    'OperatingFrequency',freq,...
    'CombineRadiatedSignals',true,'WeightsInputPort',true);

Create a signal to be one cycle of a sinusoid of amplitude one and having a frequency of 4 kHz.

fsig = 4000;
t = [0:0.01:2]'/fs;
signal = sin(2*pi*fsig*t);

Radiate the signals in the destination directions. Apply a uniform weighting to the array.

y = step(sRad,signal,radiatingAngles,[1,1,1,1].');

Propagate the signals to the destination points.

sFSp = phased.FreeSpace('OperatingFrequency',freq,'SampleRate',fs);
yprop = step(sFSp,y,pos1,pos2,vel1,vel2);

Plot the propagated signal magnitudes for each range.

figure
plot(1000*t,abs(yprop(:,1)),1000*t,abs(yprop(:,2)),1000*t,abs(yprop(:,3)))
ylabel('Signal Magnitude')
xlabel('Time (millisec)')

1 Objects

1-524



Algorithms
When the origin and destination are stationary relative to each other, you can write the output signal
of a free-space channel as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal delay and Lfsp is the free-space
path loss. The delay τ is given by R/c, where R is the propagation distance and c is the propagation
speed. The free-space path loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or array. In the
near field, the free-space path loss formula is not valid and can result in a loss smaller than one,
equivalent to a signal gain. Therefore, the loss is set to unity for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a Doppler
frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
The quantity v is the relative speed of the destination with respect to the origin.

For further details, see [2].
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See Also
phased.TwoRayChannel | phased.WidebandFreeSpace
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phased.FrostBeamformer
Package: phased

Frost beamformer

Description
The phased.FrostBeamformer object implements a Frost beamformer. A Frost beamformer
consists of a time-domain MVDR beamformer combined with a bank of FIR filters. The beamformer
steers the beam towards a given direction while the FIR filters preserve the input signal power.

To compute the beamformed signal:

1 Create the phased.FrostBeamformer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
beamformer = phased.FrostBeamformer
beamformer = phased.FrostBeamformer(Name,Value)

Description

beamformer = phased.FrostBeamformer creates a Frost beamformer System object,
beamformer, with default property values.

beamformer = phased.FrostBeamformer(Name,Value) creates a Frost beamformer object,
beamformer, with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property
name in single quotes.
Example: beamformer =
phased.FrostBeamformer('SensorArray',phased.ULA('NumElements',20),'SampleRate
',300e3) sets the sensor array to a uniform linear array (ULA) with default ULA property values
except for the number of elements. The beamformer has a sample rate of 300 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.
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SensorArray — Sensor array
phased.ULA array with default array properties (default) | Phased Array System Toolbox array System
object

Sensor array, specified as a Phased Array System Toolbox array System object. The array cannot
contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double

SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: single | double

FilterLength — FIR filter length
2 (default) | positive integer

Length of FIR filter for each sensor element, specified as a positive integer.
Example: 7
Data Types: single | double

DiagonalLoadingFactor — Diagonal loading factor
0 (default) | nonnegative scalar

Diagonal loading factor, specified as a nonnegative scalar. Diagonal loading is a technique used to
achieve robust beamforming performance, especially when the sample size is small. A small sample
size can lead to an inaccurate estimate of the covariance matrix. Diagonal loading also provides
robustness due to steering vector errors. The diagonal loading technique adds a positive scalar
multiple of the identity matrix to the sample covariance matrix.

Tunable: Yes
Data Types: single | double

TrainingInputPort — Enable training data input
false (default) | true

Enable training data input, specified as false or true. When you set this property to true, use the
training data input argument, XT, when running the object. Set this property to false to use the
input data, X, as the training data.
Data Types: logical
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DirectionSource — Source of beamforming direction
'Property' (default) | 'Input port'

Source of beamforming direction, specified as 'Property' or 'Input port'. Specify whether the
beamforming direction comes from the Direction property of this object or from the input
argument, ANG. Values of this property are:

'Property' Specify the beamforming direction using the Direction
property.

'Input port' Specify the beamforming direction using the input argument,
ANG.

Data Types: char

Direction — Beamforming directions
[0;0] (default) | real-valued 2-by-1 vector | real-valued 2-by-L matrix

Beamforming directions, specified as a real-valued 2-by-1 vector or a real-valued 2-by-L matrix. For a
matrix, each column specifies a different beamforming direction. Each column has the form
[AzimuthAngle;ElevationAngle]. Azimuth angles must lie between –180° and 180° and
elevation angles must lie between –90° and 90°. All angles are defined with respect to the local
coordinate system of the array. Units are in degrees.
Example: [40;30]
Dependencies

To enable this property, set the DirectionSource property to 'Property'.
Data Types: single | double

WeightsOutputPort — Enable beamforming weights output
false (default) | true

Enable the output of beamforming weights, specified as false or true. To obtain the beamforming
weights, set this property to true and use the corresponding output argument, W. If you do not want
to obtain the weights, set this property to false.
Data Types: logical

Usage

Syntax
Y = beamformer(X)
Y = beamformer(X,XT)
Y = beamformer(X,ANG)
Y = beamformer(X,XT,ANG)
[Y,W] = beamformer( ___ )

Description

Y = beamformer(X) performs Frost beamforming on the input, X, and returns the beamformed
output, Y. This syntax uses the input data, X, as training samples to calculate the beamforming
weights.

 phased.FrostBeamformer

1-529



Y = beamformer(X,XT) uses XT as training data to calculate the beamforming weights. To use this
syntax, set the TrainingInputPort property to true.

Y = beamformer(X,ANG) uses ANG as the beamforming direction. To use this syntax, set the
DirectionSource property to 'Input port'.

Y = beamformer(X,XT,ANG) combines all input arguments. To use this syntax, set the
TrainingInputPort property to true and set the DirectionSource property to 'Input port'.

[Y,W] = beamformer( ___ ) returns the beamforming weights, W. To use this syntax, set the
WeightsOutputPort property to true.

Input Arguments

X — Input signal
complex-valued M-by-N matrix

Input signal, specified as a complex-valued M-by-N matrix. M is the signal length and N is the number
of array elements specified in the SensorArray property. M must be larger than the length of the filter
specified by the FilterLength property.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: single | double
Complex Number Support: Yes

XT — Training data
complex-valued M-by-N matrix

Training data, specified as a complex-valued M-by-N matrix. M and N are equal to the values for X.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1 0.5 2.6; 2 -0.2 0; 3 -2 -1]
Dependencies

To enable this argument, set the TrainingInputPort property to true.
Data Types: single | double
Complex Number Support: Yes

ANG — Beamforming directions
[0;0] (default) | real-valued 2-by-1 column vector | real-valued 2-by-L matrix

Beamforming directions, specified as a real-valued 2-by-1 column vector The vector has the form
[AzimuthAngle;ElevationAngle]. Units are in degrees. The azimuth angle must lie between –
180° and 180°, and the elevation angle must lie between –90° and 90°.
Example: [40;10]
Dependencies

To enable this argument, set the DirectionSource property to 'Input port'.
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Data Types: double

Output Arguments

Y — Beamformed output
complex-valued 1-by-M vector

Beamformed output, returned as a complex-valued 1-by-Mvector, where M is the number of rows of
the input X.
Data Types: single | double
Complex Number Support: Yes

W — Beamforming weights
complex-valued L-by-1 vector.

Beamforming weights, returned as a complex-valued L-by-1 vector where L is the number of degrees
of freedom of the beamformer. The number of degrees of freedom is given by the product of the
number of elements specified by the SensorArray property and the FIR filter length specified by
FilterLength property.

Dependencies

To enable this output, set the WeightsOutputPort property to true.
Data Types: single | double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Apply Frost Beamforming to ULA

Apply Frost beamforming to an 11-element acoustic ULA array. The incident angle of the incoming
signal is -50 degrees in azimuth and 30 degrees in elevation. The speed of sound in air is assumed to
be 340 m/sec. The signal has added gaussian white noise.

Simulate the signal.

array = phased.ULA('NumElements',11,'ElementSpacing',0.04);
array.Element.FrequencyRange = [20 20000];
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fs = 8e3;
t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340;
collector = phased.WidebandCollector('Sensor',array,...
    'PropagationSpeed',c,'SampleRate',fs,...
    'ModulatedInput',false,'NumSubbands',8192);
incidentAngle = [-50;30];
x = collector(x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x + noise;

Beamform the signal.

beamformer = phased.FrostBeamformer('SensorArray',array,...
    'PropagationSpeed',c,'SampleRate',fs,...
    'Direction',incidentAngle,'FilterLength',5);
y = beamformer(rx);

Plot the beamformed output.

plot(t,rx(:,6),'r:',t,y)
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')
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Find Frost Beamforming Weights

Find the beamformer weights of a Frost beamforming applied to signals received at a 7-element
acoustic ULA array. The incident angle of the incoming signal is −20∘ in azimuth and 30∘ in elevation.
The signal has added gaussian white noise. The speed of sound in air is assumed to be 340 m/s. Use a
filter length of 15.

First, create the signal.

numelements = 7;
element = phased.OmnidirectionalMicrophoneElement('FrequencyRange',[50,10000]);
array = phased.ULA('Element',element,'NumElements',numelements,'ElementSpacing',0.04);
fs = 8e3;
t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340.0;
collector = phased.WidebandCollector('Sensor',array,...
    'PropagationSpeed',c,'SampleRate',fs,...
    'ModulatedInput',false,'NumSubbands',8192);
incidentAngle = [-20;30];
x = collector(x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x + noise;

Create a beamformer with a filter length of 15. Then, beamform the arriving signal and obtain the
beamformer weights.

filterlength = 15;
beamformer = phased.FrostBeamformer('SensorArray',array, ...
    'PropagationSpeed',c,'SampleRate',fs,'WeightsOutputPort',true, ...
    'Direction',incidentAngle,'FilterLength',filterlength);
[y,wt] = beamformer(rx);
size(wt)

ans = 1×2

   105     1

There are 7*15 = 105 weights computed as expected.

Compare the beamformed output with the signal arriving at the middle element of the array.

plot(1000*t,rx(:,4),'r:',1000*t,y)
xlabel('time (msec)')
ylabel('Amplitude')
legend('Middle Element','Beamformed')
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Algorithms
phased.FrostBeamformer uses a beamforming algorithm proposed by Frost. It can be considered
the time-domain counterpart of the minimum variance distortionless response (MVDR) beamformer.
The algorithm does the following:

1 Steers the array to the beamforming direction.
2 Applies an FIR filter to the output of each sensor to achieve the distortionless response

constraint. The filter is specific to each sensor.
3 This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

For more information about Frost beamforming, see [1].

References
[1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array Processing”, Proceedings of the

IEEE. Vol. 60, Number 8, August, 1972, pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Requires dynamic memory allocation. See “Limitations for System Objects that Require Dynamic
Memory Allocation”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
phased.PhaseShiftBeamformer | phased.SubbandPhaseShiftBeamformer |
phased.TimeDelayBeamformer | phased.TimeDelayLCMVBeamformer

Introduced in R2011a
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step
System object: phased.FrostBeamformer
Package: phased

Perform Frost beamforming

Syntax
Y = step(H,X)
Y = step(H,X,XT)
Y = step(H,X,ANG)
Y = step(H,X,XT,ANG)
[Y,W] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) performs Frost beamforming on the input, X, and returns the beamformed output in
Y.

Y = step(H,X,XT) uses XT as the training samples to calculate the beamforming weights. This
syntax is available when you set the TrainingInputPort property to true.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This syntax is available when you set
the DirectionSource property to 'Input port'.

Y = step(H,X,XT,ANG) combines all input arguments. This syntax is available when you set the
TrainingInputPort property to true and set the DirectionSource property to 'Input port'.

[Y,W] = step( ___ ) returns the beamforming weights, W. This syntax is available when you set the
WeightsOutputPort property to true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Beamformer object.
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X

Input signal, specified as an M-by-N matrix. M must be larger than the FIR filter length specified in
the FilterLength property. N is the number of elements in the sensor array.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

XT

Training samples, specified as an M-by-N matrix. M and N have the same dimensions as X.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

ANG

Beamforming directions, specified as a length-2 column vector. The vector has the form
[AzimuthAngle; ElevationAngle], in degrees. The azimuth angle must be between –180 and
180 degrees, and the elevation angle must be between –90 and 90 degrees.

Output Arguments
Y

Beamformed output. Y is a column vector of length M, where M is the number of rows in X.

W

Beamforming weights. W is a column vector of length L, where L is the degrees of freedom of the
beamformer. For a Frost beamformer, H, L is given by the product of the number of elements in the
array and the FIR filter length.

Examples

Apply Frost Beamforming to ULA

Apply Frost beamforming to an 11-element acoustic ULA array. The incident angle of the incoming
signal is -50 degrees in azimuth and 30 degrees in elevation. The speed of sound in air is assumed to
be 340 m/sec. The signal has added gaussian white noise.

Simulate the signal.

array = phased.ULA('NumElements',11,'ElementSpacing',0.04);
array.Element.FrequencyRange = [20 20000];
fs = 8e3;
t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340;
collector = phased.WidebandCollector('Sensor',array,...
    'PropagationSpeed',c,'SampleRate',fs,...

 step

1-537



    'ModulatedInput',false,'NumSubbands',8192);
incidentAngle = [-50;30];
x = collector(x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x + noise;

Beamform the signal.

beamformer = phased.FrostBeamformer('SensorArray',array,...
    'PropagationSpeed',c,'SampleRate',fs,...
    'Direction',incidentAngle,'FilterLength',5);
y = beamformer(rx);

Plot the beamformed output.

plot(t,rx(:,6),'r:',t,y)
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')

Algorithms
phased.FrostBeamformer uses a beamforming algorithm proposed by Frost. It can be considered
the time-domain counterpart of the minimum variance distortionless response (MVDR) beamformer.
The algorithm does the following:
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1 Steers the array to the beamforming direction.
2 Applies an FIR filter to the output of each sensor to achieve the distortionless response

constraint. The filter is specific to each sensor.

For further details, see [1].

References

[1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array Processing”, Proceedings of the
IEEE. Vol. 60, Number 8, August, 1972, pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel
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phased.gpu.ConstantGammaClutter
Package: phased.gpu

Simulate constant-gamma clutter using GPU

Description
The phased.gpu.ConstantGammaClutter object simulates clutter, performing the computations
on a GPU.

Note To use this object, you must install a Parallel Computing Toolbox license and have access to an
appropriate GPU. For more about GPUs, see “GPU Computing” (Parallel Computing Toolbox).

To compute the clutter return:

1 Define and set up your clutter simulator. See “Construction” on page 1-540.
2 Call step to simulate the clutter return for your system according to the properties of

phased.gpu.ConstantGammaClutter. The behavior of step is specific to each object in the
toolbox.

The clutter simulation that ConstantGammaClutter provides is based on these assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates how

frequently the software changes the set of random numbers in the clutter simulation.
• Because the signal is narrowband, the spatial response and Doppler shift can be approximated by

phase shifts.
• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.gpu.ConstantGammaClutter creates a constant-gamma clutter simulation System
object, H. This object simulates the clutter return of a monostatic radar system using the constant
gamma model.

H = phased.gpu.ConstantGammaClutter(Name,Value) creates a constant gamma clutter
simulation object, H, with additional options specified by one or more Name,Value pair arguments.
Name is a property name on page 1-541, and Value is the corresponding value. Name must appear
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inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Properties
Sensor

Handle of sensor

Specify the sensor as an antenna element object or as an array object whose Element property value
is an antenna element object. If the sensor is an array, it can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz.

Default: 3e8

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. The default value corresponds to 1 MHz.

Default: 1e6

PRF

Pulse repetition frequency

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. ThePRF must satisfy
these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval. For the phase-
coded waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to any element of PRF must be an integer. This condition expresses the
requirement that the number of samples in one pulse repetition interval is an integer.

You can select the value of PRF using property settings alone or using property settings in
conjunction with the prfidx input argument of the step method.
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• When PRFSelectionInputPort is false, you set the PRF using properties only. You can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-valued entries.

Then, each call to the step method uses successive elements of this vector for the PRF. If the
last element of the vector is reached, the process continues cyclically with the first element of
the vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by specifying PRF
as a row vector with positive real-valued entries. But this time, when you execute the step
method, select a PRF by passing an argument specifying an index into the PRF vector.

In all cases, the number of output samples is fixed when you set the OutputFormat property to
'Samples'. When you use a varying PRF and set the OutputFormat property to 'Pulses', the
number of samples can vary.

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property to false,
the step method uses the values set in the PRF property. When you set this property to true, you
pass an index argument into the step method to select a value from the PRF vector.

Default: false

Gamma

Terrain gamma value

Specify the γ value used in the constant γ clutter model, as a scalar in decibels. The γ value depends
on both terrain type and the operating frequency.

Default: 0

EarthModel

Earth model

Specify the earth model used in clutter simulation as one of | 'Flat' | 'Curved' |. When you set this
property to 'Flat', the earth is assumed to be a flat plane. When you set this property to 'Curved',
the earth is assumed to be a sphere.

Default: 'Flat'

PlatformHeight

Radar platform height from surface

Specify the radar platform height (in meters) measured upward from the surface as a nonnegative
scalar.

Default: 300
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PlatformSpeed

Radar platform speed

Specify the radar platform’s speed as a nonnegative scalar in meters per second.

Default: 300

PlatformDirection

Direction of radar platform motion

Specify the direction of radar platform motion as a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle] in degrees. The default value of this property indicates that the platform moves
perpendicular to the radar antenna array’s broadside.

Both azimuth and elevation angle are measured in the local coordinate system of the radar antenna
or antenna array. Azimuth angle must be between –180 and 180 degrees. Elevation angle must be
between –90 and 90 degrees.

Default: [90;0]

BroadsideDepressionAngle

Depression angle of array broadside

Specify the depression angle in degrees of the broadside of the radar antenna array. This value is a
scalar. The broadside is defined as zero degrees azimuth and zero degrees elevation. The depression
angle is measured downward from horizontal.

Default: 0

MaximumRange

Maximum range for clutter simulation

Specify the maximum range in meters for the clutter simulation as a positive scalar. The maximum
range must be greater than the value specified in the PlatformHeight property.

Default: 5000

AzimuthCoverage

Azimuth coverage for clutter simulation

Specify the azimuth coverage in degrees as a positive scalar. The clutter simulation covers a region
having the specified azimuth span, symmetric to 0 degrees azimuth. Typically, all clutter patches have
their azimuth centers within the region, but the PatchAzimuthWidth value can cause some patches
to extend beyond the region.

Default: 60

PatchAzimuthWidth

Azimuth span of each clutter patch
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Specify the azimuth span of each clutter patch in degrees as a positive scalar.

Default: 1

TransmitSignalInputPort

Add input to specify transmit signal

Set this property to true to add input to specify the transmit signal in the step syntax. Set this
property to false omit the transmit signal in the step syntax. The false option is less
computationally expensive; to use this option, you must also specify the TransmitERP property.

Default: false

TransmitERP

Effective transmitted power

Specify the transmitted effective radiated power (ERP) of the radar system in watts as a positive
scalar. This property applies only when you set the TransmitSignalInputPort property to false.

Default: 5000

CoherenceTime

Clutter coherence time

Specify the coherence time in seconds for the clutter simulation as a positive scalar. After the
coherence time elapses, the step method updates the random numbers it uses for the clutter
simulation at the next pulse. A value of inf means the random numbers are never updated.

Default: inf

OutputFormat

Output signal format

Specify the format of the output signal as one of | 'Pulses' | 'Samples' |. When you set the
OutputFormat property to 'Pulses', the output of the step method is in the form of multiple
pulses. In this case, the number of pulses is the value of the NumPulses property.

When you set the OutputFormat property to 'Samples', the output of the step method is in the
form of multiple samples. In this case, the number of samples is the value of the NumSamples
property. In staggered PRF applications, you might find the 'Samples' option more convenient
because the step output always has the same matrix size.

Default: 'Pulses'

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Pulses'.

Default: 1
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NumSamples

Number of output samples

Specify the number of output samples of the step method as a positive integer. Typically, you use the
number of samples in one pulse. This property applies only when you set the OutputFormat
property to 'Samples'.

Default: 100

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' Random numbers come from the global GPU random number stream.

'Auto' is appropriate in a variety of situations. In particular, if you want
to use a generator algorithm other than mrg32k3a, set SeedSource to
'Auto'. Then, configure the global GPU random number stream to use the
generator of your choice. You can configure the global GPU random
number stream using parallel.gpu.RandStream and
parallel.gpu.RandStream.setGlobalStream.

'Property' Random numbers come from a private stream of random numbers. The
stream uses the mrg32k3a generator algorithm, with a seed specified in
the Seed property of this object.

If you do not want clutter computations to affect the global GPU random
number stream, set SeedSource to 'Property'.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–1. This
property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods
reset Reset random numbers and time count for clutter simulation
step Simulate clutter using constant gamma model

Common to All System Objects
release Allow System object property value changes

Examples
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GPU Clutter Simulation of Radar System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective transmitted power
of the radar system is 5 kW.

Set up the characteristics of the radar system. This system uses a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2000 m/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300e6;
lambda = c/fc;
array = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000.0;
direction = [90;0];
speed = 2.0e3;
depang = 30.0;

Create the GPU clutter simulation object. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is ±60°.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
tpower = 5000;
clutter = phased.gpu.ConstantGammaClutter('Sensor',array, ...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf, ...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat' ,...
    'TransmitERP',tpower,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction, ...
    'BroadsideDepressionAngle',depang,'MaximumRange',Rmax, ...
    'AzimuthCoverage',Azcov,'SeedSource','Property', ...
    'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
clsig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    clsig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',array, ...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(clsig(20,:,:)),'NormalizeDoppler',true);
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The results are not identical to the results obtained by using phased.ConstantGammaClutter
because of differences between CPU and GPU computations.

GPU Clutter Simulation With Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the transmit signal of
the radar system when creating clutter. In this case, you do not specify the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2000 m/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('LightSpeed');
fc = 300e6;
lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000;
direction = [90;0];
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speed = 2000;
depang = 30;

Create the GPU clutter simulation object and configure it to take a transmitted signal as an input
argument. The configuration assumes the earth is flat. The maximum clutter range of interest is 5 km,
and the maximum azimuth coverage is ±60°.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
clutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitSignalInputPort',true,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
    'AzimuthCoverage',Azcov,'SeedSource','Property','Seed',40547);

Simulate the clutter return for 10 pulses. At each object call, pass the transmit signal as an input
argument. The software automatically computes the effective transmitted power of the signal. The
transmit signal is a rectangular waveform with a pulse width of 2 μs.

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
clsig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    clsig(:,:,m) = clutter(X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',ha,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(clsig(20,:,:)),...
    'NormalizeDoppler',true);
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The results are not identical to the results obtained by using phased.ConstantGammaClutter because
of differences between CPU and GPU computations.

Random Number Comparison Between GPU and CPU

In most cases, it does not matter that the GPU and CPU use different random numbers. Sometimes,
you may need to reproduce the same stream on both GPU and CPU. In such cases, you can set up the
two global streams so they produce identical random numbers. Both GPU and CPU support the
combined multiple recursive generator (mrg32k3a) with the NormalTransform parameter set to
'Inversion'.

Define a seed value to use for both the GPU stream and the CPU stream.

seed = 7151;

Create a CPU random number stream that uses the combined multiple recursive generator and the
chosen seed value. Then, use this stream as the global stream for random number generation on the
CPU.

stream_cpu = RandStream('CombRecursive','Seed',seed, ...
    'NormalTransform','Inversion');
RandStream.setGlobalStream(stream_cpu);
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Create a GPU random number stream that uses the combined multiple recursive generator and the
same seed value. Then, use this stream as the global stream for random number generation on the
GPU.

stream_gpu = parallel.gpu.RandStream('CombRecursive','Seed',seed, ...
    'NormalTransform','Inversion');
parallel.gpu.RandStream.setGlobalStream(stream_gpu);

Generate clutter on both the CPU and the GPU, using the global stream on each platform.

clutter_cpu = phased.ConstantGammaClutter('SeedSource','Auto');
clutter_gpu = phased.gpu.ConstantGammaClutter('SeedSource','Auto');
cl_cpu = clutter_cpu();
cl_gpu = clutter_gpu();

Check that the element-wise differences between the CPU and GPU results are negligible.

maxdiff = max(max(abs(cl_cpu - cl_gpu)))
eps

maxdiff =

   4.6709e-18

ans =

   2.2204e-16
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[1] Barton, David. “Land Clutter Models for Radar Design and Analysis,” Proceedings of the IEEE.
Vol. 73, Number 2, February, 1985, pp. 198–204.
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See Also
phased.BarrageJammer | phased.ConstantGammaClutter | phitheta2azel | surfacegamma |
uv2azel

Topics
Acceleration of Clutter Simulation Using GPU and Code Generation
Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“Clutter Modeling”
“GPU Computing” (Parallel Computing Toolbox)
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Introduced in R2012b
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reset
System object: phased.gpu.ConstantGammaClutter
Package: phased.gpu

Reset random numbers and time count for clutter simulation

Syntax
reset(H)

Description
reset(H) resets the states of the ConstantGammaClutter object, H. This method resets the
random number generator state if the SeedSource property is set to 'Property'. This method
resets the elapsed coherence time. Also, if the PRF property is a vector, the next call to step uses the
first PRF value in the vector.

1 Objects

1-552



step
System object: phased.gpu.ConstantGammaClutter
Package: phased.gpu

Simulate clutter using constant gamma model

Syntax
Y = step(H)
Y = step(H,X)
Y = step(H,STEERANGLE)
Y = step(H,WS)
Y = step(H,PRFIDX)
Y = step(H,X,STEERANGLE)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H) computes the collected clutter return at each sensor. This syntax is available when you
set the TransmitSignalInputPort property to false.

Y = step(H,X) specifies the transmit signal in X. Transmit signal refers to the output of the
transmitter while it is on during a given pulse. This syntax is available when you set the
TransmitSignalInputPort property to true.

Y = step(H,STEERANGLE) uses STEERANGLE as the subarray steering angle. This syntax is
available when you configure H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,WS) uses WS as weights applied to each element within each subarray. To use this
syntax, set the Sensor property to an array that supports subarrays and set the SubarraySteering
property of the array to 'Custom'.

Y = step(H,PRFIDX) uses the index, PRFIDX, to select the PRF from a predetermined list of PRFs
specified by the PRF property. To enable this syntax, set the PRFSelectionInputPort to true.

Y = step(H,X,STEERANGLE) combines all input arguments. This syntax is available when you
configure H so that H.TransmitSignalInputPort is true, H.Sensor is an array that contains
subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Input Arguments
H

Constant gamma clutter object.
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X

Transmit signal, specified as a column vector of data type double. The System object handles data
transfer between the CPU and GPU.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth angle must be
between –180 degrees and 180 degrees, and the elevation angle must be between –90 degrees and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation angle is
assumed to be 0.

WS

Subarray element weights

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.

Subarray Element Weights

Sensor Array Subarray weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray When subarrays do not have the same dimensions
and sizes, you can specify subarray weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and set the
SubarraySteering property of the array to 'Custom'.
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PRFIDX

Index of pulse repetition frequency, specified as a positive integer. The index selects one of the
entries specified in the PRF property as the PRF for the next transmission.
Example: 4

Dependencies

To enable this argument, set the PRFSelectionInputPort to true.

Output Arguments
Y

Collected clutter return at each sensor. Y has dimensions N-by-M matrix. If H.Sensor contains
subarrays, M is the number of subarrays in the radar system. Otherwise it is the number of sensors.
When you set the OutputFormat property to 'Samples', N is defined by the NumSamples property.
When you set the OutputFormat property to 'Pulses', N is the total number of samples in the next
L pulses. In this case, L is defined by the NumPulses property.

Examples

GPU Clutter Simulation of Radar System with Known Power

Simulate the clutter return from terrain with a gamma value of 0 dB. The effective transmitted power
of the radar system is 5 kW.

Set up the characteristics of the radar system. This system uses a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2000 m/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('Lightspeed');
fc = 300e6;
lambda = c/fc;
array = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000.0;
direction = [90;0];
speed = 2.0e3;
depang = 30.0;

Create the GPU clutter simulation object. The configuration assumes the earth is flat. The maximum
clutter range of interest is 5 km, and the maximum azimuth coverage is ±60°.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
tpower = 5000;
clutter = phased.gpu.ConstantGammaClutter('Sensor',array, ...
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    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf, ...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat' ,...
    'TransmitERP',tpower,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction, ...
    'BroadsideDepressionAngle',depang,'MaximumRange',Rmax, ...
    'AzimuthCoverage',Azcov,'SeedSource','Property', ...
    'Seed',40547);

Simulate the clutter return for 10 pulses.

Nsamp = fs/prf;
Npulse = 10;
clsig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    clsig(:,:,m) = clutter();
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',array, ...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
plotResponse(response,shiftdim(clsig(20,:,:)),'NormalizeDoppler',true);

The results are not identical to the results obtained by using phased.ConstantGammaClutter
because of differences between CPU and GPU computations.
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GPU Clutter Simulation With Known Transmit Signal

Simulate the clutter return from terrain with a gamma value of 0 dB. You input the transmit signal of
the radar system when creating clutter. In this case, you do not specify the effective transmitted
power of the signal in a property.

Set up the characteristics of the radar system. This system has a 4-element uniform linear array
(ULA). The sample rate is 1 MHz, and the PRF is 10 kHz. The propagation speed is the speed of light,
and the operating frequency is 300 MHz. The radar platform is flying 1 km above the ground with a
path parallel to the ground along the array axis. The platform speed is 2000 m/s. The mainlobe has a
depression angle of 30°.

Nele = 4;
c = physconst('LightSpeed');
fc = 300e6;
lambda = c/fc;
ha = phased.ULA('NumElements',Nele,'ElementSpacing',lambda/2);
fs = 1e6;
prf = 10e3;
height = 1000;
direction = [90;0];
speed = 2000;
depang = 30;

Create the GPU clutter simulation object and configure it to take a transmitted signal as an input
argument. The configuration assumes the earth is flat. The maximum clutter range of interest is 5 km,
and the maximum azimuth coverage is ±60°.

Rmax = 5000;
Azcov = 120;
tergamma = 0;
clutter = phased.gpu.ConstantGammaClutter('Sensor',ha,...
    'PropagationSpeed',c,'OperatingFrequency',fc,'PRF',prf,...
    'SampleRate',fs,'Gamma',tergamma,'EarthModel','Flat',...
    'TransmitSignalInputPort',true,'PlatformHeight',height,...
    'PlatformSpeed',speed,'PlatformDirection',direction,...
    'BroadsideDepressionAngle',depang,'MaximumRange',Rmax,...
    'AzimuthCoverage',Azcov,'SeedSource','Property','Seed',40547);

Simulate the clutter return for 10 pulses. At each object call, pass the transmit signal as an input
argument. The software automatically computes the effective transmitted power of the signal. The
transmit signal is a rectangular waveform with a pulse width of 2 μs.

tpower = 5000;
pw = 2e-6;
X = tpower*ones(floor(pw*fs),1);
Nsamp = fs/prf;
Npulse = 10;
clsig = zeros(Nsamp,Nele,Npulse);
for m = 1:Npulse
    clsig(:,:,m) = clutter(X);
end

Plot the angle-Doppler response of the clutter at the 20th range bin.

response = phased.AngleDopplerResponse('SensorArray',ha,...
    'OperatingFrequency',fc,'PropagationSpeed',c,'PRF',prf);
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plotResponse(response,shiftdim(clsig(20,:,:)),...
    'NormalizeDoppler',true);

The results are not identical to the results obtained by using phased.ConstantGammaClutter because
of differences between CPU and GPU computations.

Tips
The clutter simulation that ConstantGammaClutter provides is based on these assumptions:

• The radar system is monostatic.
• The propagation is in free space.
• The terrain is homogeneous.
• The clutter patch is stationary during the coherence time. Coherence time indicates how

frequently the software changes the set of random numbers in the clutter simulation.
• Because the signal is narrowband, the spatial response and Doppler shift can be approximated by

phase shifts.
• The radar system maintains a constant height during simulation.
• The radar system maintains a constant speed during simulation.
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See Also
Topics
Acceleration of Clutter Simulation Using GPU and Code Generation
Ground Clutter Mitigation with Moving Target Indication (MTI) Radar
“Clutter Modeling”
“GPU Computing” (Parallel Computing Toolbox)
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phased.GCCEstimator
Package: phased

Wideband direction of arrival estimation

Description
The phased.GCCEstimator System object creates a direction of arrival estimator for wideband
signals. This System object estimates the direction of arrival or time of arrival among sensor array
elements using the generalized cross-correlation with phase transform algorithm (GCC-PHAT). The
algorithm assumes that all signals propagate from a single source lying in the array far field so the
direction of arrival is the same for all sensors. The System object first estimates the correlations
between all specified sensor pairs using GCC-PHAT and then finds the largest peak in each
correlation. The peak identifies the delay between the signals arriving at each sensor pair. Finally, a
least-squares estimate is used to derive the direction of arrival from all estimated delays.

To compute the direction of arrival for pairs of element in the array:

1 Define and set up a GCC-PHAT estimator System object, phased.GCCEstimator, using the
“Construction” on page 1-560 procedure.

2 Call step to compute the direction of arrival of a signal using the properties of the
phased.GCCEstimator System object.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
sGCC = phased.GCCEstimator creates a GCC direction of arrival estimator System object, sGCC.
This object estimates the direction of arrival or time of arrival between sensor array elements using
the GCC-PHAT algorithm.

sGCC = phased.GCCEstimator(Name,Value) returns a GCC direction of arrival estimator object,
sGCC, with the specified property Name set to the specified Value. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
SensorArray — Sensor array
phased.ULA System object (default) | Phased Array System Toolbox sensor array

Sensor array, specified as a Phased Array System Toolbox System object. The array can also consist of
subarrays. If you do not specify this property, the default sensor array is a phased.ULA System
object with default array property values.
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Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6
Data Types: single | double

SensorPairSource — Source of sensor pairs
'Auto' (default) | 'Property'

Source of sensor pairs, specified as either 'Auto' or 'Property'.

• 'Auto' — choose this property value to compute correlations between the first sensor and all
other sensors. The first sensor of the array is the reference channel.

• 'Property' — choose this property value when you want to explicitly specify the sensor pairs to
be used for computing correlations. Set the sensor pair indices using the SensorPair property.
You can view the array indices using the viewArray method of any array System object.

Example: 'Auto'
Data Types: char

SensorPair — Sensor pairs
[2;1] (default) | 2-by-N positive integer valued matrix

Sensor pairs used to compute correlations, specified as a 2-by-N positive integer-valued matrix. Each
column of the matrix specifies a pair of sensors between which the correlation is computed. The
second row specifies the reference sensors. Each entry in the matrix must be less than the number of
array sensors or subarrays. To use the SensorPair property, you must also set the
SensorPairSource value to 'Property'.
Example: [1,3,5;2,4,6]
Data Types: double

DelayOutputPort — Option to enable delay output
false (default) | true

Option to enable output of time delay values, specified as a Boolean. Set this property to true to
output the delay values as an output argument of the step method. The delays correspond to the
arrival angles of a signal between sensor pairs. Set this property to false to disable the output of
delays.
Example: false
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Data Types: logical

CorrelationOutputPort — Option to enable correlation output
false (default) | true

Option to enable output of correlation values, specified as a Boolean. Set this property to true to
output the correlations and lags between sensor pairs as output arguments of the step method. Set
this property to false to disable output of correlations.
Example: false
Data Types: logical

Methods
reset Reset states of phased.GCCEstimator System object
step Estimate direction of arrival using generalized cross-correlation

Common to All System Objects
release Allow System object property value changes

Examples

GCC Estimate of Direction of Arrival at Microphone Array

Estimate the direction of arrival of a signal using the GCC-PHAT algorithm. The receiving array is a 5-
by-5-element URA microphone array with elements spaced 0.25 meters apart. The arriving signal is a
sequence of wideband chirps. The signal arrives from 17� azimuth and 0� elevation. Assume the
speed of sound in air is 340 m/s.

Load the chirp signal.

load chirp;
c = 340.0;

Create the 5-by-5 microphone URA.

d = 0.25;
N = 5;
mic = phased.OmnidirectionalMicrophoneElement;
array = phased.URA([N,N],[d,d],'Element',mic);

Simulate the incoming signal using the WidebandCollector System object�.

arrivalAng = [17;0];
collector = phased.WidebandCollector('Sensor',array,'PropagationSpeed',c,...
    'SampleRate',Fs,'ModulatedInput',false);
signal = collector(y,arrivalAng);

Estimate the direction of arrival.

estimator = phased.GCCEstimator('SensorArray',array,...
    'PropagationSpeed',c,'SampleRate',Fs);
ang = estimator(signal)
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ang = 2×1

   16.4538
   -0.7145

Algorithms
GCC-PHAT Cross-Correlation Algorithm

You can use generalized cross-correlation to estimate the time difference of arrival of a signal at two
different sensors.

A model of a signal emitted by a source and received at two sensors is given by:

r1 t = s t + n1 t
r2 t = s t − D + n2 t

where D is the time difference of arrival (TDOA), or time lag, of the signal at one sensor with respect
to the arrival time at a second sensor. You can estimate the time delay by finding the time lag that
maximizes the cross-correlation between the two signals.

From the TDOA, you can estimate the broadside arrival angle of the plane wave with respect to the
line connecting the two sensors. For two sensors separated by distance L, the broadside arrival angle,
“Broadside Angles”, is related to the time lag by

sinβ = cτ
L

where c is the propagation speed in the medium.

A common method of estimating time delay is to compute the cross-correlation between signals
received at two sensors. To identify the time delay, locate the peak in the cross-correlation. When the
signal-to-noise ratio (SNR) is large, the correlation peak, τ, corresponds to the actual time delay D.

R(τ) = E r1(t)r2(t + τ)

D   =  argmax
τ

R(τ)

When the correlation function is more sharply peaked, performance improves. You can sharpen a
cross correlation peak using a weighting function that whitens the input signals. This technique is
called generalized cross-correlation (GCC). One particular weighting function normalizes the signal
spectral density by the spectrum magnitude, leading to the generalized cross-correlation phase
transform method (GCC-PHAT).

S(f ) =∫−∞
∞

R(τ)e−i2πfτdτ

R(τ) =∫−∞
∞ S(f )

S(f ) e+i2πfτdf

D  =  argmax
τ

 R(τ)

If you use just two sensor pairs, you can only estimate the broadside angle of arrival. However, if you
use multiple pairs of non-collinear sensors, for example, in a URA, you can estimate the arrival

 phased.GCCEstimator

1-563



azimuth and elevation angles of the plane wave using least-square estimation. For N sensors, you can
write the delay time τkj of a signal arriving at the kth sensor with respect to the jth sensor by

cτk j = − x k− x j ⋅ u

u = cosαsinθi + sinαsinθ j + cosθk

where u is the unit propagation vector of the plane wave. The angles α and θ are the azimuth and
elevation angles of the propagation vector. All angles and vectors are defined with respect to the local
axes. You can solve the first equation using least-squares to yield the three components of the unit
propagation vector. Then, you can solve the second equation for the azimuth and elevation angles.

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Knapp, C. H. and G.C. Carter, “The Generalized Correlation Method for Estimation of Time Delay.”
IEEE Transactions on Acoustics, Speech and Signal Processing. Vol. ASSP-24, No. 4, Aug
1976.

[2] G. C. Carter, “Coherence and Time Delay Estimation.” Proceedings of the IEEE. Vol. 75, No. 2, Feb
1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
gccphat | phased.BeamscanEstimator | phased.RootMUSICEstimator

Introduced in R2015b
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reset
System object: phased.GCCEstimator
Package: phased

Reset states of phased.GCCEstimator System object

Syntax
reset(S)

Description
reset(S) resets the internal state of the phased.GCCEstimator object, S. This method resets the
random number generator state if the SeedSource property is applicable and has the value
'Property'.

Input Arguments
S — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, specified as a phased.GCCEstimator System object.
Example: phased.GCCEstimator()

Introduced in R2015b
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step
System object: phased.GCCEstimator
Package: phased

Estimate direction of arrival using generalized cross-correlation

Syntax
ang = step(sGCC,X)
[ang,tau] = step(sGCC,X)
[ang,R,lag] = step(sGCC,X)
[ang,tau,R,lag] = step(sGCC,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

ang = step(sGCC,X) returns the direction of arrival, ang, of an input signal X. The argument X is a
matrix specifying the received signals at the elements of the array specified in the SensorArray
property. Signals propagate from a single source. Each column in X corresponds to the elements in
the array (if an array is used) or the number of subarrays (if a subarray is used). Each row of X
represents a single time snapshot.

[ang,tau] = step(sGCC,X) returns the time delays, tau, estimated from the correlations
between pairs of sensors. To use this syntax, set the DelayOutputPort property to true. The
argument tau is a P-element row vector, where P is the number of sensor pairs, and where P =
N(N-1).

[ang,R,lag] = step(sGCC,X) returns the estimated correlations, R, between pairs of sensors,
when you set the CorrelationOutputPort property to true. R is a matrix with P columns where P
is the number of sensor pairs. Each column in R contains the correlation for the corresponding pair of
sensors. lag is a column vector containing the time lags corresponding to the rows of the correlation
matrix. The time lags are the same for all sensor pairs.

You can combine optional input arguments when their enabling properties are set. Optional inputs
must be listed in the same order as their enabling properties. For example,[ang,tau,R,lag] =
step(sGCC,X) is valid when you set both DelayOutputPort and CorrelationOutputPort to
true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
sGCC — GCC-PHAT estimator
phased.GCCEstimator System object

GCC-PHAT estimator, specified as a phased.GCCEstimator System object.
Example: phased.GCCEstimator

X — Received signal
M-by-N complex-valued matrix

Received signal, specified as an M-by-N complex-valued matrix. The quantity M is the number of
sample values (snapshots) of the signal and N is the number of sensor elements in the array. For
subarrays, N is the number of subarrays.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [[0;1;2;3;4;3;2;1;0],[1;2;3;4;3;2;1;0;0]]
Data Types: single | double
Complex Number Support: Yes

Output Arguments
ang — Direction of arrival
2-by-1 real-valued column vector | scalar

Direction of arrival of a signal, returned as a 2-by-1 real-valued column vector in the form
[azimuth;elevation]. If the array is a uniform linear array, ang is a scalar representing the
broadside angle. Angle units are in degrees, defined with respect to the local coordinate system of
the array.

tau — Time delays of arrival
1-by-P real-valued row vector

Time delays of arrival, returned as 1-by-P real-valued row vector. P is the number of sensor pairs
selected from the array.

• When SensorPairSource is set to 'Auto', P = N - 1. N is the number of elements in the array.
• When SensorPairSource is set to 'Property', P is the number of sensor pairs specified by the

SensorPair property.

Time units are seconds. This output is enabled when you set the DelayOutputPort property to
true.

R — Estimated cross-correlation
(2M+1)-by-P complex-valued matrix

Estimated cross-correlation between pairs of sensors, returned as a (2M+1)-by-P complex-valued
matrix, where P is the number of sensor pairs selected from the array.

• When SensorPairSource is set to 'Auto', P = N - 1. N is the number of elements in the array.
The columns in R contain the correlations between the first sensor and all other sensors.
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• When SensorPairSource is set to 'Property', P is the number of sensor pairs specified by the
SensorPair property. Each column in R contains the correlation for the corresponding pair of
sensors.

M is the number of time samples in the input signal. This output is enabled when you set the
CorrelationOutputPort property to true.

lag — Time lags
M-by-1 real-valued column vector

Time lags, returned as an (2M+1)-by-1 real-valued column vector. M is the number of time samples in
the input signal. Each time lag applies to the corresponding row in the cross-correlation matrix.

Examples

Plot Correlations from GCC Estimator

Estimate the direction of arrival of a signal using GCC-PHAT. The receiving array is a 5-by-5-element
URA microphone array with elements spaced 25 centimeters apart. Choose 10 element pairs to
compute the arrival angle. Assume the speed of sound in air is 340 meters/second. The arriving signal
is a sequence of wideband sounds. Assume the signal arrives from 54 degrees azimuth and five
degrees elevation. Estimate the arrival angle, and then plot the correlation function versus lag for a
pair of elements.

Load the signal and extract a small portion for computation.

load gong;
y1 = y(1:100);

Set up the receiving array.

N = 5;
d = 0.25;
sMic = phased.OmnidirectionalMicrophoneElement;
sURA = phased.URA([N,N],[d,d],'Element',sMic);

Simulate the arriving plane wave using the WidebandCollector System object™.

c = 340.0;
arrivalAng = [54;5];
sWBC = phased.WidebandCollector('Sensor',sURA,...
    'PropagationSpeed',c,...
    'SampleRate',Fs,...
    'ModulatedInput',false);
signal = step(sWBC,y1,arrivalAng);

Estimate direction of arrival. Choose 10 sensors to correlate with the first element of the URA.

sensorpairs = [[2,4,6,8,10,12,14,16,18,20];ones(1,10)];
sGCC = phased.GCCEstimator('SensorArray',sURA,...
    'PropagationSpeed',c,'SampleRate',Fs,...
    'SensorPairSource','Property',...
    'SensorPair',sensorpairs,...
    'DelayOutputPort',true','CorrelationOutputPort',true);
[estimatedAng,taus,R,lags] = step(sGCC,signal);
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The estimated angle is:

disp(estimatedAng)

   11.6720
    4.2189

Plot the correlation between sensor 8 and sensor 1. This pair corresponds to the fourth column of the
correlation matrix. The estimated value of tau (in milliseconds) for this pair is:

disp(1000*taus(4))

    0.0238

plot(1000*lags,real(R(:,4)))
xlabel('Time lags (msec)')
ylabel('Correlation')

Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.
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[1] Charles H. Knapp and Carter, G.C., The Generalized Correlation Method for Estimation of Time
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See Also
phased.BeamscanEstimator | phased.RootMUSICEstimator

Introduced in R2015b
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phased.GSCBeamformer
Package: phased

Generalized sidelobe canceler beamformer

Description
The phased.GSCBeamformer System object implements a generalized sidelobe cancellation (GSC)
beamformer. A GSC beamformer splits the incoming signals into two channels. One channel goes
through a conventional beamformer path and the second goes into a sidelobe canceling path. The
algorithm first pre-steers the array to the beamforming direction and then adaptively chooses filter
weights to minimize power at the output of the sidelobe canceling path. The algorithm uses least
mean squares (LMS) to compute the adaptive weights. The final beamformed signal is the difference
between the outputs of the two paths.

To compute the beamformed signal:

1 Create the phased.GSCBeamformer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
beamformer = phased.GSCBeamformer
beamformer = phased.GSCBeamformer(Name,Value)

Description

beamformer = phased.GSCBeamformer creates a GSC beamformer System object, beamformer,
with default property values.

beamformer = phased.GSCBeamformer(Name,Value) creates a GSC beamformer object,
beamformer, with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property
name in single quotes.
Example: beamformer =
phased.GSCBeamformer('SensorArray',phased.ULA('NumElements',20),'SampleRate',
300e3) sets the sensor array to a uniform linear array (ULA) with default ULA property values
except for the number of elements. The beamformer has a sample rate of 300 kHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.
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If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorArray — Sensor array
phased.ULA array with default array properties (default) | Phased Array System Toolbox array System
object

Sensor array, specified as a Phased Array System Toolbox array System object. The array cannot
contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double

SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: single | double

FilterLength — FIR filter length
1 (default) | positive integer

Length of the signal path FIR filters, specified as a positive integer. This property determines the
adaptive filter size for the sidelobe canceling path. The FIR filter for the conventional beamforming
path is a delta function of the same length.
Example: 4
Data Types: double | single

LMSStepSize — Adaptive filter step size factor
0.1 (default) | positive real-valued scalar

The adaptive filter step size factor, specified as a positive real-valued scalar. This quantity, when
divided by the total power in the sidelobe canceling path, sets the actual adaptive filter step size that
is used in the LMS algorithm.
Data Types: double | single

DirectionSource — Source of beamforming direction
'Property' (default) | 'Input port'
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Source of beamforming direction, specified as 'Property' or 'Input port'. Specify whether the
beamforming direction comes from the Direction property of this object or from the input
argument, ANG. Values of this property are:

'Property' Specify the beamforming direction using the Direction
property.

'Input port' Specify the beamforming direction using the input argument,
ANG.

Data Types: char

Direction — Beamforming directions
[0;0] (default) | real-valued 2-by-1 vector | real-valued 2-by-L matrix

Beamforming directions, specified as a real-valued 2-by-1 vector or a real-valued 2-by-L matrix. For a
matrix, each column specifies a different beamforming direction. Each column has the form
[AzimuthAngle;ElevationAngle]. Azimuth angles must lie between –180° and 180° and
elevation angles must lie between –90° and 90°. All angles are defined with respect to the local
coordinate system of the array. Units are in degrees.
Example: [40;30]
Dependencies

To enable this property, set the DirectionSource property to 'Property'.
Data Types: single | double

Usage

Syntax
Y = beamformer(X)
Y = beamformer(X,ANG)

Description

Y = beamformer(X) performs GSC beamforming on the input, X, and returns the beamformed
output, Y.

Y = beamformer(X,ANG) uses ANG as the beamforming direction. To use this syntax, set the
DirectionSource property to 'Input port'.

Input Arguments

X — Input signal
complex-valued M-by-N matrix

Input signal, specified as a complex-valued M-by-N matrix. M is the signal length and N is the number
of array elements specified in the SensorArray property. M must be larger than the length of the filter
specified by the FilterLength property.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
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Data Types: double | single
Complex Number Support: Yes

ANG — Beamforming directions
[0;0] (default) | real-valued 2-by-1 column vector | real-valued 2-by-L matrix

Beamforming directions, specified as a real-valued 2-by-1 column vector The vector has the form
[AzimuthAngle;ElevationAngle]. Units are in degrees. The azimuth angle must lie between –
180° and 180°, and the elevation angle must lie between –90° and 90°.
Example: [40;10]

Dependencies

To enable this argument, set the DirectionSource property to 'Input port'.
Data Types: double

Output Arguments

Y — Beamformed output
complex-valued 1-by-M vector

Beamformed output, returned as a complex-valued 1-by-Mvector, where M is the number of rows of
the input X.
Data Types: double | single
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Generalized Sidelobe Cancellation on Uniform Linear Array

Create a GSC beamformer for a 11-element acoustic array in air. A chirp signal is incident on the
array at −50∘ in azimuth and 0∘ in elevation. Compare the GSC beamformed signal to a Frost
beamformed signal. The signal propagation speed is 340 m/s and the sample rate is 8 kHz.

Create the microphone and array System objects. The array element spacing is one-half wavelength.
Set the signal frequency to the one-half the Nyquist frequency.

1 Objects

1-574



c = 340.0;
fs = 8.0e3;
fc = fs/2;
lam = c/fc;
transducer = phased.OmnidirectionalMicrophoneElement('FrequencyRange',[20 20000]);
array = phased.ULA('Element',transducer,'NumElements',11,'ElementSpacing',lam/2);

Simulate a chirp signal with a 500 Hz bandwidth.

t = 0:1/fs:.5;
signal = chirp(t,0,0.5,500);

Create an incident wave arriving at the array. Add gaussian noise to the wave.

collector = phased.WidebandCollector('Sensor',array,'PropagationSpeed',c, ...
    'SampleRate',fs,'ModulatedInput',false,'NumSubbands',512);
incidentAngle = [-50;0];
signal = collector(signal.',incidentAngle);
noise = 0.5*randn(size(signal));
recsignal = signal + noise;

Perform Frost beamforming at the actual incident angle.

frostbeamformer = phased.FrostBeamformer('SensorArray',array,'PropagationSpeed', ...
    c,'SampleRate',fs,'Direction',incidentAngle,'FilterLength',15);
yfrost = frostbeamformer(recsignal);

Perform GSC beamforming and plot the beamformer output against the Frost beamformer output.
Also plot the nonbeamformed signal arriving at the middle element of the array.

gscbeamformer = phased.GSCBeamformer('SensorArray',array, ...
    'PropagationSpeed',c,'SampleRate',fs,'Direction',incidentAngle, ...
    'FilterLength',15);
ygsc = gscbeamformer(recsignal);
plot(t*1000,recsignal(:,6),t*1000,yfrost,t,ygsc)
xlabel('Time (ms)')
ylabel('Amplitude')
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Zoom in on a small portion of the output.

idx = 1000:1300;
plot(t(idx)*1000,recsignal(idx,6),t(idx)*1000,yfrost(idx),t(idx)*1000,ygsc(idx))
xlabel('Time (ms)')
legend('Received signal','Frost beamformed signal','GSC beamformed signal')
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Generalized Sidelobe Cancellation in Two Directions

Create a GSC beamformer for a 11-element acoustic array in air. A chirp signal is incident on the
array at −50∘ in azimuth and 0∘ in elevation. Compute the beamformed signal in the direction of the
incident wave and in another direction. Compare the two beamformed outputs. The signal
propagation speed is 340 m/s and the sample rate is 8 kHz. Create the microphone and array System
objects. The array element spacing is one-half wavelength. Set the signal frequency to the one-half
the Nyquist frequency.

c = 340.0;
fs = 8.0e3;
fc = fs/2;
lam = c/fc;
transducer = phased.OmnidirectionalMicrophoneElement('FrequencyRange',[20 20000]);
array = phased.ULA('Element',transducer,'NumElements',11,'ElementSpacing',lam/2);

Simulate a chirp signal with a 500 Hz bandwidth.

t = 0:1/fs:0.5;
signal = chirp(t,0,0.5,500);

Create an incident wavefield hitting the array.

collector = phased.WidebandCollector('Sensor',array,'PropagationSpeed',c, ...
    'SampleRate',fs,'ModulatedInput',false,'NumSubbands',512);
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incidentAngle = [-50;0];
signal = collector(signal.',incidentAngle);
noise = 0.1*randn(size(signal));
recsignal = signal + noise;

Perform GSC beamforming and plot the beamformer outputs. Also plot the nonbeamformed signal
arriving at the middle element of the array.

gscbeamformer = phased.GSCBeamformer('SensorArray',array, ...
    'PropagationSpeed',c,'SampleRate',fs,'DirectionSource','Input port', ...
    'FilterLength',5);
ygsci = gscbeamformer(recsignal,incidentAngle);
ygsco = gscbeamformer(recsignal,[20;30]);
plot(t*1000,recsignal(:,6),t*1000,ygsci,t*1000,ygsco)
xlabel('Time (ms)')
ylabel('Amplitude')
legend('Received signal at element','GSC beamformed signal (incident direction)', ...
    'GSC beamformed signal (other direction)','Location','southeast')

Zoom in on a small portion of the output.

idx = 1000:1300;
plot(t(idx)*1000,recsignal(idx,6),t(idx)*1000,ygsci(idx),t(idx)*1000,ygsco(idx))
xlabel('Time (ms)')
legend('Received signal at element','GSC beamformed signal (incident direction)', ...
    'GSC beamformed signal (other direction)','Location','southeast')
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Algorithms
Generalized Sidelobe Cancellation

The generalized sidelobe canceler (GSC) is an efficient implementation of a linear constraint
minimum variance (LCMV) beamformer. LCMV beamforming minimizes the output power of an array
while preserving the power in one or more specified directions. This type of beamformer is called a
constrained beamformer. You can compute exact weights for the constrained beamformer but the
computation is costly when the number of elements is large. The computation requires the inversion
of a large spatial covariance matrix. The GSC formulation converts the adaptive constrained
optimization LCMV problem into an adaptive unconstrained problem, which simplifies the
implementation.

In the GSC algorithm, incoming sensor data is split into two signal paths as shown in the block
diagram. The upper path is a conventional beamformer. The lower path is an adaptive unconstrained
beamformer whose purpose is to minimize the GSC output power. The GSC algorithm consists of
these steps:

1 Presteer the element sensor data by time-shifting the incoming signals. Presteering time-aligns
all sensor element signals. The time shifts depend on the arrival angle of the signal.

2 Pass the presteered signals through the upper path into a conventional beamformer with fixed
weights, wconv.

3 Also pass the presteered signals through the lower path into the blocking matrix, B. The blocking
matrix is orthogonal to the signal and removes the signal from the lower path.
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4 Filter the lower path signals through a bank of FIR filters. The FilterLength property sets the
length of the filters. The filter coefficients are the adaptive filter weights, wad.

5 Compute the difference between the upper and lower signal paths. This difference is the
beamformed GSC output.

6 Feed the beamformed output back into the filter. The filter adapts its weights using a least mean-
square (LMS) algorithm. The actual adaptive LMS step size is equal to the value of the
LMSStepSize property divided by the total signal power.

For more information, see [1].

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.
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beamforming." IEEE Transactions on Antennas and Propagation, 30.1 (1982): 27-34.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Requires dynamic memory allocation. See “Limitations for System Objects that Require Dynamic
Memory Allocation”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
phased.FrostBeamformer | phased.MVDRBeamformer | phased.PhaseShiftBeamformer |
phased.SubbandPhaseShiftBeamformer | phased.TimeDelayBeamformer |
phased.TimeDelayLCMVBeamformer

Introduced in R2016b
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phased.HeterogeneousConformalArray
Package: phased

Heterogeneous conformal array

Description
The HeterogeneousConformalArray object constructs a conformal array from a heterogeneous
set of antenna elements. A heterogeneous array is an array which consists of different kinds of
antenna elements or an array of different kinds of microphone elements. A conformal array can have
elements in any position pointing in any direction.

To compute the response for each element in the array for specified directions:

1 Define and set up your conformal array. See “Construction” on page 1-582.
2 Call step to compute the response according to the properties of

phased.HeterogeneousConformalArray. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.HeterogeneousConformalArray creates a heterogeneous conformal array System
object, H. This object models a heterogeneous conformal array formed with different kinds of sensor
elements.

H = phased.HeterogeneousConformalArray(Name,Value) creates object, H, with each
specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
ElementSet

Set of elements used in the array

Specify the set of different elements used in the sensor array as a row MATLAB cell array. Each
member of the cell array contains an element object in the phased package. Elements specified in the
ElementSet property must be either all antennas or all microphones. In addition, all specified
antenna elements must have the same polarization capability. Specify the element of the sensor array
as a handle. The element must be an element object in the phased package.

Default: One cell containing one isotropic antenna element
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ElementIndices

Elements location assignment

This property specifies the mapping of elements in the array. The property assigns elements to their
locations in the array using the indices into the ElementSet property. The value of
ElementIndices must be an length-N row vector. In this vector, N represents the number of
elements in the array. The values in the vector specified by ElementIndices must be less than or
equal to the number of entries in the ElementSet property.

Default: [1 2 2 1]

ElementPosition

Element positions

ElementPosition specifies the positions of the elements in the conformal array. The value of the
ElementPosition property must be a 3-by-N matrix, where N indicates the number of elements in
the conformal array. Each column of ElementPosition represents the position, in the form [x; y;
z] (in meters), of a single element in the local coordinate system of the array. The local coordinate
system has its origin at an arbitrary point.

Default: [0; 0; 0]

ElementNormal

Element normal directions

ElementNormal specifies the normal directions of the elements in the conformal array. Angle units
are degrees. The value assigned to ElementNormal must be either a 2-by-N matrix or a 2-by-1
column vector. The variable N indicates the number of elements in the array. If the value of
ElementNormal is a matrix, each column specifies the normal direction of the corresponding
element in the form [azimuth;elevation] with respect to the local coordinate system. The local
coordinate system aligns the positive x-axis with the direction normal to the conformal array. If the
value of ElementNormal is a 2-by-1 column vector, it specifies the pointing direction of all elements
in the array.

You can use the ElementPosition and ElementNormal properties to represent any arrangement in
which pairs of elements differ by certain transformations. The transformations can combine
translation, azimuth rotation, and elevation rotation. However, you cannot use transformations that
require rotation about the normal.

Default: [0; 0]

Taper

Element taper or weighting

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector, or N-by-1
column vector. The quantity N is the number of elements in the array as determined by the size of the
ElementIndices property. Tapers, also known as weights, are applied to each sensor element in the
sensor array and modify both the amplitude and phase of the received data. If 'Taper' is a scalar,
the same taper value is applied to all elements. If 'Taper' is a vector, each taper value is applied to
the corresponding sensor element.
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Default: 1

Methods
Specific to phased.HeterogeneousConformalArray Object
beamwidth Compute and display beamwidth of an array
collectPla
neWave

Simulate received plane waves

directivit
y

Directivity of heterogeneous conformal array

getElement
Normal

Normal vector to array elements

getElement
Position

Positions of array elements

getNumElem
ents

Number of elements in array

getTaper Array element tapers
isPolariza
tionCapabl
e

Polarization capability

pattern Plot heterogeneous conformal array pattern
patternAzi
muth

Plot heterogeneous conformal array directivity or pattern versus azimuth

patternEle
vation

Plot heterogeneous conformal array directivity or pattern versus elevation

plotRespon
se

Plot response pattern of array

step Output responses of array elements
viewArray View array geometry

Common to All System Objects
release Allow System object property value changes

Examples

Heterogeneous Uniform Circular Array

Construct an 8-element heterogeneous uniform circular array (UCA) using the ConformalArray
System object. Four of the elements have a cosine pattern with a power of 1.6 while the remaining
elements have a cosine pattern with a power of 2.0. Plot the 3-D power response. Assume a 1 GHz
operating frequency. The wave propagation speed is the speed of light.

Construct the array
sElement1 = phased.CosineAntennaElement('CosinePower',1.6);
sElement2 = phased.CosineAntennaElement('CosinePower',2.0);
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N = 8;
azang = (0:N-1)*360/N-180;
sArray = phased.HeterogeneousConformalArray(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 1 2 2 2 2],...
    'ElementPosition',[cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal',[azang;zeros(1,N)]);
c = physconst('LightSpeed');
fc = 1e9;

Create the 3-D power pattern

pattern(sArray,fc,[-180:180],[-90:90],...
    'CoordinateSystem','polar',...
    'Type','power')

References

[1] Josefsson, L. and P. Persson. Conformal Array Antenna Theory and Design. Piscataway, NJ: IEEE
Press, 2006.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, plotResponse, and viewArray methods are
not supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.HeterogeneousULA | phased.HeterogeneousURA |
phased.IsotropicAntennaElement | phased.PartitionedArray |
phased.ReplicatedSubarray | phased.UCA | phased.ULA | phased.URA | phitheta2azel |
uv2azel

Topics
“Phased Array Gallery”

Introduced in R2013a
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directivity
System object: phased.HeterogeneousConformalArray
Package: phased

Directivity of heterogeneous conformal array

Syntax
D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)

Description
D = directivity(H,FREQ,ANGLE) computes the “Directivity” on page 1-590 of a heterogeneous
conformal array of antenna or microphone elements, H, at frequencies specified by the FREQ and in
angles of direction specified by the ANGLE.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
H — Heterogeneous conformal array
System object

Heterogeneous conformal array specified as a phased.HeterogeneousConformalArray System
object.
Example: H = phased.HeterogeneousConformalArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double
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ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
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In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Heterogeneous Conformal Array

Compute the directivity of a steered heterogeneous conformal array. Construct a 24-element
heterogeneous disk array using elements having different antenna patterns and then show how to
compute the array's directivity.

Set the signal speed to the speed of light and the signal frequency to 2GHz.

c = physconst('LightSpeed');
freq = 2e9;

Choose two different types of elements - both are cosine antenna elements with different powers.

myElement1 = phased.CosineAntennaElement('CosinePower',1.5);
myElement2 = phased.CosineAntennaElement('CosinePower',1.8);

Set up a three-ring disk array with 8 elements per ring. The inner ring has different elements from
the outer rings.

N = 8;
azang = (0:N-1)*360/N-180;
p0 = [zeros(1,N);cosd(azang);sind(azang)];
posn = [0.6*p0, 0.4*p0, 0.2*p0];
myArray = phased.HeterogeneousConformalArray;
myArray.ElementPosition = posn;
myArray.ElementNormal = zeros(2,3*N);
myArray.ElementSet = {myElement1,myElement2};
myArray.ElementIndices = [1 1 1 1 1 1 1 1,...
    1 1 1 1 1 1 1 1,...
    2 2 2 2 2 2 2 2];

Set up the steering vector to point at 30 degrees azimuth and compute the directivity in that
direction.
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lambda = c/freq;
ang = [30;0];
w = steervec(getElementPosition(myArray)/lambda,ang);
d = directivity(myArray,freq,ang,'PropagationSpeed',c,...
            'Weights',w)

d = 20.9519

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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collectPlaneWave
System object: phased.HeterogeneousConformalArray
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H, when the
input signals indicated by X arrive at the array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal carrier
frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal propagation speed in
C.

Input Arguments
H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an individual
incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the corresponding signal in
X. Each column of ANG is in the form [azimuth; elevation]. The azimuth angle must be between
–180° and 180°, inclusive. The elevation angle must be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this case, the
corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8
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C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments
Y

Received signals. Y is an N-column matrix, where N is the number of elements in the array H. Each
column of Y is the received signal at the corresponding array element, with all incoming signals
combined.

Examples

Simulate Received Signal at Heterogeneous Conformal Array

Simulate the received signal at an 8-element heterogeneous uniform circular array created using the
phased.HeterogeneousConformalArray System object™. The signals arrive from 10° and 30°
azimuth. Both signals have an elevation angle of 0°. Assume the propagation speed is the speed of
light.

antenna1 = phased.CosineAntennaElement('CosinePower',1.5);
antenna2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8;
azang = (0:N-1)*360/N-180;
array = phased.HeterogeneousConformalArray('ElementPosition', ...
    [cosd(azang);sind(azang);zeros(1,N)],'ElementNormal',[azang;zeros(1,N)], ...
    'ElementSet',{antenna1,antenna2},'ElementIndices',[1 1 1 1 2 2 2 2]);
c = physconst('LightSpeed');
y = collectPlaneWave(array,randn(4,2),[10 30],c);
disp(y(:,1:2))

   0.7476 + 0.2890i   0.5378 + 0.5554i
   0.9544 - 0.8005i  -0.5059 + 1.3857i
  -2.5374 - 0.5387i  -1.3746 - 2.1411i
   1.0865 + 0.3377i   0.6977 + 0.8549i

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the delay caused by
the direction of arrival. The method does not account for the response of individual elements in the
array.

For further details, see Van Trees [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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See Also
phitheta2azel | uv2azel
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getElementNormal
System object: phased.HeterogeneousConformalArray
Package: phased

Normal vector to array elements

Syntax
normvec = getElementNormal(sConfArray)
normvec = getElementNormal(sConfArray,elemidx)

Description
normvec = getElementNormal(sConfArray) returns the normal vectors of the array elements of
the phased.sConfArray System object, sConfArray. The output argument normvec is a 2-by-N
matrix, where N is the number of elements in array, sConfArray. Each column of normvec defines
the normal direction of an element in the local coordinate system in the form[az;el]. Units are
degrees. The origin of the local coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sConfArray,elemidx) returns only the normal vectors of the
elements specified in the element index vector, elemidx. This syntax can use any of the input
arguments in the previous syntax.

Input Arguments
sConfArray — Heterogeneous conformal array
phased.HeterogeneousConformalArray System object

Heterogeneous conformal array, specified as a phased.HeterogeneousConformalArray System
object.
Example: phased.HeterogeneousConformalArray

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1 column vector

Element indices, specified as a 1-by-M or M-by-1 vector. Index values lie in the range 1 to N where N
is the number of elements of the array. When elemidx is specified, getElementNormal returns the
normal vectors of the elements contained in elemidx.
Example: [1,5,4]

Output Arguments
normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of normvec takes the
form [az,el]. When elemidx is not specified, P equals the array dimension. When elemidx is
specified, P equals the length of elemidx, M.
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Examples

Display Heterogeneous Conformal Array Element Normals

Construct a 5-element acoustic cross array (UCA) composed of two different types of cosine antenna
elements. Use the Phased.HeterogeneousConformalArray System object. Assume the operating
frequency is 4 kHz. A typical value for the speed of sound in seawater is 1500.0 m/s. Display the array
normal vectors.

N = 5;
fc = 4000;
c = 1500.0;
lam = c/fc;
x = zeros(1,N);
y = [-1,0,1,0,0]*lam/2;
z = [0,0,0,-1,1]*lam/2;
sCos1 = phased.CosineAntennaElement('CosinePower',1.5);
sCos2 = phased.CosineAntennaElement('CosinePower',1.8);
sHCA = phased.HeterogeneousConformalArray('ElementSet',{sCos1,sCos2},...
    'ElementIndices',[1,2,2,2,1],...
    'ElementPosition',[x;y;z],...
    'ElementNormal',[[-20,-10,0,10,20];zeros(1,N)]);
pos = getElementPosition(sHCA)

pos = 3×5

         0         0         0         0         0
   -0.1875         0    0.1875         0         0
         0         0         0   -0.1875    0.1875

normvec = getElementNormal(sHCA)

normvec = 2×5

   -20   -10     0    10    20
     0     0     0     0     0

Introduced in R2016a
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getElementPosition
System object: phased.HeterogeneousConformalArray
Package: phased

Positions of array elements

Syntax
pos = getElementPosition(sHCA)
pos = getElementPosition(sHCA,elemidx)

Description
pos = getElementPosition(sHCA) returns the element positions of the
HeterogeneousConformalArray System object, sHCA. POS is an 3-by-N matrix where N is the number
of elements in H. Each column of pos defines the position of an element in the local coordinate
system, in meters, in the form [x;y;z].

For details regarding the local coordinate system of the conformal or heterogeneous conformal array,
enter phased.ConformalArray.coordinateSystemInfo.

pos = getElementPosition(sHCA,elemidx) returns the positions of the elements that are
specified in the element index vector elemidx.

Examples

Element Positions of Heterogeneous Conformal Array

Construct an 8-element heterogeneous conformal array with oriented short-dipole antenna elements.
Then, obtain the positions of the first four elements.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],...
    'AxisDirection','Y');
N = 8; azang = (0:N-1)*360/N-180;
sArray = phased.HeterogeneousConformalArray(...
    'ElementPosition',...
    [cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal',[azang;zeros(1,N)],...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 1 2 2 2 2]);
pos = getElementPosition(sArray);
disp(pos(:,1:4));

   -1.0000   -0.7071         0    0.7071
         0   -0.7071   -1.0000   -0.7071
         0         0         0         0
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getNumElements
System object: phased.HeterogeneousConformalArray
Package: phased

Number of elements in array

Syntax
N = getNumElements(H)

Description
N = getNumElements(H) returns the number of elements, N, in the conformal array object H.

Examples

Number of Elements in Heterogeneous Conformal Array

Construct a heterogeneous 8-element circular array and use the getNumElements method to return
the number of elements.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Y');
N = 8;
azang = (0:N-1)*360/N-180;
array = phased.HeterogeneousConformalArray('ElementPosition', ...
    [cosd(azang);sind(azang);zeros(1,N)], ...
    'ElementNormal',[azang;zeros(1,N)], ...
    'ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 1 1 1 2 2 2 2]);
N = getNumElements(array)

N = 8
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getTaper
System object: phased.HeterogeneousConformalArray
Package: phased

Array element tapers

Syntax
wts = getTaper(h)

Description
wts = getTaper(h) returns the tapers applied to each element of a conformal array, h. Tapers are
often referred to as weights.

Input Arguments
h — Conformal array
phased.HeterogeneousConformalArray System object

Conformal array specified as a phased.HeterogeneousConformalArray System object.

Output Arguments
wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector, where N is the number of
elements in the array.

Examples

Create Tapered Heterogeneous Conformal Disk Array

Create a 12-element, 2-ring tapered disk array where the outer ring is more heavily tapered than the
inner ring.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Y');
elemAngles = ([0:5]*360/6);
elemPosInner = 0.5*[zeros(size(elemAngles));cosd(elemAngles); ...
    sind(elemAngles)];
elemPosOuter = [zeros(size(elemAngles));cosd(elemAngles); ...
    sind(elemAngles)];
elemNorms = repmat([0;0],1,12);
taper =  [ones(size(elemAngles)),0.3*ones(size(elemAngles))];
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array = phased.HeterogeneousConformalArray('ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 1 1 1 1 1 2 2 2 2 2 2], ...
    'ElementPosition',[elemPosInner,elemPosOuter],'ElementNormal',elemNorms, ...
    'Taper',taper);
w = getTaper(array)

w = 12×1

    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    1.0000
    0.3000
    0.3000
    0.3000
    0.3000
      ⋮

Draw the array showing taper colors.

viewArray(array,'ShowTaper',true,'ShowIndex','all')
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isPolarizationCapable
System object: phased.HeterogeneousConformalArray
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the array
supports polarization. An array supports polarization if all of its constituent sensor elements support
polarization.

Input Arguments
h — Conformal array

Conformal array specified as a phased.HeterogeneousConformalArray System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the array supports polarization or false
if it does not.

Examples

Conformal Heterogeneous Array Supports Polarization

Show that a disk heterogeneous conformal array of short-dipole antennas supports polarization.

antenna1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],...
    'AxisDirection','Y');
elemAngles = ([0:5]*360/6);
elemPosInner = 0.5*[zeros(size(elemAngles));...
    cosd(elemAngles); sind(elemAngles)];
elemPosOuter = [zeros(size(elemAngles));...
    cosd(elemAngles); sind(elemAngles)];
elemNorms = repmat([0;0],1,12);
array = phased.HeterogeneousConformalArray(...
    'ElementSet',{antenna1,antenna2},...
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    'ElementIndices',[1 1 1 1 1 1 2 2 2 2 2 2],...
    'ElementPosition',[elemPosInner,elemPosOuter],...
    'ElementNormal',elemNorms);
viewArray(array)

isPolarizationCapable(array)

ans = logical
   1

The returned value of 1 shows that this array supports polarization when used with a polarized
antenna.
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pattern
System object: phased.HeterogeneousConformalArray
Package: phased

Plot heterogeneous conformal array pattern

Syntax
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array specified in
sArray. The operating frequency is specified in FREQ.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the array pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-612 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sArray — Heterogeneous conformal array
System object

Heterogeneous conformal array, specified as a phased.HeterogeneousConformalArray System
object.
Example: sArray= phased.HeterogeneousConformalArray;
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FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
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'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component
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Example: 'V'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT correspond to the
dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector
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Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Plot Power Patterns of 8-Element Heterogeneous Uniform Circular Array

Create an 8-element uniform circular array using the HeterogeneousConformalArray System
object with two different types of short-dipole elements. Then, plot the 3-D and 2-D power patterns.

Create the array

sElement1 = phased.ShortDipoleAntennaElement('FrequencyRange',[1e9 5e9],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement('FrequencyRange',[1e9 5e9],...
    'AxisDirection','Y');
N = 8;
azang = (0:N-1)*360/N-180;
sArray = phased.HeterogeneousConformalArray(...
    'ElementPosition',...
    0.4*[zeros(1,N);cosd(azang);sind(azang)],...
    'ElementNormal', zeros(2,N),...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 1 2 2 2 2]);

Plot 3-D power pattern

Assume the operating frequency is 1.5 GHz and the wave propagation speed is the speed of light.

c = physconst('LightSpeed');
fc = 1.5e9;
pattern(sArray,fc,[-180:180],[-90:90],...
    'PropagationSpeed',c',...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'Polarization','combined')
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Plot 2-D power pattern

Take a cut of the 3-D power pattern at zero degrees elevation

pattern(sArray,fc,[-180:180],0,...
    'PropagationSpeed',c',...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'Polarization','combined')
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Plot pattern of disk array

Construct a 24-element disk array using elements with two different types of cosine antennas. Then,
plot the array pattern.

Create the array

The array consists of cosine antenna elements with different power exponents.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8;
azang = (0:N-1)*360/N-180;
p0 = [zeros(1,N);cosd(azang);sind(azang)];
posn = [0.6*p0, 0.4*p0, 0.2*p0];
sArray1 = phased.HeterogeneousConformalArray(...
    'ElementPosition',posn,...
    'ElementNormal', zeros(2,3*N),...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 1 1 1 1 1,...
    1 1 1 1 1 1 1 1,...
    2 2 2 2 2 2 2 2]);

View the disk array

viewArray(sArray1)
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Plot the power pattern

Plot the elevation power pattern of this array two different sets of element weights. The first set is
uniform weights on the elements. The second set is a tapered set of weights set by the Weights
parameter. Restrict the plot of the response from -60 to 60 degrees in 0.1 degree increments. Assume
the operating frequency is 1 GHz and the wave propagation speed is the speed of light.

c = physconst('LightSpeed');
fc = 1e9;
wts1 = ones(3*N,1);
wts1 = wts1/sum(abs(wts1));
wts2 = [0.5*ones(N,1); 0.7*ones(N,1); 1*ones(N,1)];
wts2 = wts2/sum(abs(wts2));
pattern(sArray1,fc,0,[-60:0.1:60],'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Type','powerdb','Weights',[wts1,wts2])
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As expected, the tapered weights broaden the mainlobe and reduce the sidelobes.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.HeterogeneousConformalArray
Package: phased

Plot heterogeneous conformal array directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus azimuth (in dBi) for
the array sArray at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternAzimuth(sArray,FREQ,EL), in addition, plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When EL is a vector,
multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the array pattern. PAT is a matrix whose entries represent
the pattern at corresponding sampling points specified by the 'Azimuth' parameter and the EL
input argument.

Input Arguments
sArray — Heterogeneous conformal array
System object

Heterogeneous conformal array, specified as a phased.HeterogeneousConformalArray System
object.
Example: sArray= phased.HeterogeneousConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension N is the
number of elevation angles, as determined by the EL input argument.

Examples

Plot azimuthal directivity pattern of disk array

Construct a 24-element disk array using elements with two different types of cosine antennas. Then,
plot the array azimuthal directivity pattern.

Create the array

The array consists of cosine antenna elements with different power exponents.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8;
azang = (0:N-1)*360/N-180;
p0 = [zeros(1,N);cosd(azang);sind(azang)];
posn = [0.6*p0, 0.4*p0, 0.2*p0];
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sArray = phased.HeterogeneousConformalArray(...
    'ElementPosition',posn,...
    'ElementNormal', zeros(2,3*N),...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 1 1 1 1 1,...
    1 1 1 1 1 1 1 1,...
    2 2 2 2 2 2 2 2]);

View the disk array

viewArray(sArray)

Plot the power pattern

Plot the azimuthal power pattern of this array for three different elevation angles: 0, 10 and 25
degrees. Apply radial tapering to the array. Assume the operating frequency is 1 GHz and the wave
propagation speed is the speed of light.

c = physconst('LightSpeed');
fc = 1e9;
wts = [0.5*ones(N,1); 0.7*ones(N,1); 1.0*ones(N,1)];
wts = wts/sum(abs(wts));
patternAzimuth(sArray,fc,[0,10,25],'PropagationSpeed',c,...
    'Type','directivity','Weights',wts)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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Introduced in R2015a
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patternElevation
System object: phased.HeterogeneousConformalArray
Package: phased

Plot heterogeneous conformal array directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus elevation (in dBi)
for the array sArray at zero degrees azimuth angle. When AZ is a vector, multiple overlaid plots are
created. The argument FREQ specifies the operating frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the array pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sArray — Heterogeneous conformal array
System object

Heterogeneous conformal array, specified as a phased.HeterogeneousConformalArray System
object.
Example: sArray= phased.HeterogeneousConformalArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of elevation angles determined by the 'Elevation' name-value pair argument. The dimension N is
the number of azimuth angles determined by the AZ argument.

Examples

Plot elevation directivity pattern of disk array

Construct a 24-element disk array using elements with two different types of cosine antennas. Then,
plot the array elevation directivity pattern.

Create the array

The array consists of cosine antenna elements with different power exponents.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8;
azang = (0:N-1)*360/N-180;
p0 = [zeros(1,N);cosd(azang);sind(azang)];
posn = [0.6*p0, 0.4*p0, 0.2*p0];
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sArray = phased.HeterogeneousConformalArray(...
    'ElementPosition',posn,...
    'ElementNormal', zeros(2,3*N),...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 1 1 1 1 1,...
    1 1 1 1 1 1 1 1,...
    2 2 2 2 2 2 2 2]);

View the disk array

viewArray(sArray)

Plot the power pattern

Plot the elevation power pattern of this array for three different azimuth angles: 0, -20 and 25
degrees. Apply radial tapering to the array. Assume the operating frequency is 1 GHz and the wave
propagation speed is the speed of light.

c = physconst('LightSpeed');
fc = 1e9;
wts = [0.5*ones(N,1); 0.7*ones(N,1); 1*ones(N,1)];
wts = wts/sum(abs(wts));
patternElevation(sArray,fc,[-20,0,25],'PropagationSpeed',c,...
    'Type','directivity','Weights',wts)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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plotResponse
System object: phased.HeterogeneousConformalArray
Package: phased

Plot response pattern of array

Syntax
plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ. The propagation speed is specified
in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie within the
range specified by a property of H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has no response at frequencies outside
that range. If you set the 'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a
row vector, plotResponse draws multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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CutAngle

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If RespCut is
'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be between –180
and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the array response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This parameter is not
applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.
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• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.

Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

Weights

Weight values applied to the array, specified as a length-N column vector or N-by-M matrix. The
dimension N is the number of elements in the array. The interpretation of M depends upon whether
the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose
N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for the

same single frequency or all M
frequencies.

N-by-M matrix

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

AzimuthAngles

Azimuth angles for plotting array response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting array response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
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Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When yous set the RespCut parameter to '3D',
you can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting array response, specified as a row vector. The UGrid parameter sets
the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting array response, specified as a row vector. The VGrid parameter sets
the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Plot Response and Directivity of 8-Element Uniform Circular Array

This example shows how to construct an 8-element uniform circular array (UCA) with two different
antenna patterns.

element1 = phased.CosineAntennaElement('CosinePower',1.5);
element2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8;
azang = (0:N-1)*360/N-180;
array = phased.HeterogeneousConformalArray( ...
    'ElementPosition',0.4*[zeros(1,N); cosd(azang); sind(azang)], ...
    'ElementNormal',zeros(2,N),'ElementSet',{element1,element2}, ...
    'ElementIndices',[1 1 1 1 2 2 2 2]);

Plot the array elevation response when the operating frequency is 1 GHz and the wave propagation
speed is the speed of light.

c = physconst('LightSpeed');
fc = 1e9;
pattern(array,fc,0.0,-90:90,'PropagationSpeed',c,'CoordinateSystem','polar', ...
    'Type','powerdb')
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Plot the directivity.

pattern(array,fc,0.0,-90:90,'PropagationSpeed',c,'CoordinateSystem','polar', ...
    'Type','directivity')
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Plot Response of Disk Array

This example shows how to construct a 24-element disk array using elements with two different
antenna patterns and plot its response.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8; azang = (0:N-1)*360/N-180;
p0 = [zeros(1,N);cosd(azang);sind(azang)];
posn = [0.6*p0, 0.4*p0, 0.2*p0];
sArray1 = phased.HeterogeneousConformalArray(...
    'ElementPosition',posn,...
    'ElementNormal', zeros(2,3*N),...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 1 1 1 1 1,...
    1 1 1 1 1 1 1 1,...
    2 2 2 2 2 2 2 2]);

Show the array.

viewArray(sArray1);
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Plot the elevation response of this array using uniform weights on the elements and also a tapered set
of weights set by the Weights parameter. Using the ElevationAngles parameter, restrict the plot
of the response from -60 to 60 degrees in 0.1 degree increments. Assume the operating frequency is
1 GHz and the wave propagation speed is the speed of light.

c = physconst('LightSpeed');
fc = 1e9;
wts1 = ones(3*N,1);
wts1 = wts1/sum(abs(wts1));
wts2 = [0.5*ones(N,1); 0.7*ones(N,1); 1*ones(N,1)];
wts2 = wts2/sum(abs(wts2));
plotResponse(sArray1,fc,c,'RespCut','El',...
    'Format','Polar',...
    'ElevationAngles',[-60:0.1:60],...
    'Weights',...
    [wts1,wts2],...
    'Unit','db');
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As expected, the tapered weights broaden the mainlobe and reduce the sidelobes.

See Also
azel2uv | uv2azel
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step
System object: phased.HeterogeneousConformalArray
Package: phased

Output responses of array elements

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP at operating frequencies
specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of H.Element. That property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array. The element has zero response at
frequencies outside that range.

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must lie between –180° and 180°, inclusive. The elevation angle
must lie between –90° and 90°, inclusive.
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If ANG is a row vector of length M, each element specifies the azimuth angle of the direction. In this
case, the corresponding elevation angle is assumed to be 0°.

Output Arguments
RESP

Voltage responses of the phased array. The output depends on whether the array supports
polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP, has the
dimensions N-by-M-by-L. N is the number of elements in the array. The dimension M is the
number of angles specified in ANG. L is the number of frequencies specified in FREQ. For any
element, the columns of RESP contain the responses of the array elements for the corresponding
direction specified in ANG. Each of the L pages of RESP contains the responses of the array
elements for the corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a MATLAB
struct containing two fields, RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents the array’s vertical polarization
response. Each field has the dimensions N-by-M-by-L. N is the number of elements in the array,
and M is the number of angles specified in ANG. L is the number of frequencies specified in FREQ.
Each column of RESP contains the responses of the array elements for the corresponding direction
specified in ANG. Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples

Compute Response of Circular Conformal Array

Construct an 8-element uniform circular array using the phased.HeterogeneousConformalArray
System object™. Assume the operating frequency is 1 GHz. Find the response of each element in this
array in the direction of 30° azimuth and 5°.

antenna1 = phased.CosineAntennaElement('CosinePower',1.5);
antenna2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8;
azang = (0:N-1)*360/N-180;
array = phased.HeterogeneousConformalArray(...
    'ElementPosition',...
    [cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal', zeros(2,N),...
    'ElementSet',{antenna1,antenna2},...
    'ElementIndices',[1 1 1 1 2 2 2 2]);
fc = 1e9;
ang = [30;5];
resp = array(fc,ang)

resp = 8×1

    0.8013
    0.8013
    0.8013
    0.8013
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    0.7666
    0.7666
    0.7666
    0.7666

See Also
phitheta2azel | uv2azel
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viewArray
System object: phased.HeterogeneousConformalArray
Package: phased

View array geometry

Syntax
viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray( ___ )

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options specified by
one or more Name,Value pair arguments.

hPlot = viewArray( ___ ) returns the handle of the array elements in the figure window. All input
arguments described for the previous syntaxes also apply here.

Input Arguments
H

Array object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each number in the vector must be an
integer between 1 and the number of elements. You can also specify the value 'All' to show the
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

Set this value to true to show the normal directions of all elements of the array. Set this value to
false to plot the elements without showing normal directions.

Default: false
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ShowTaper

Set this value to true to specify whether to change the element color brightness in proportion to the
element taper magnitude. When this value is set to false, all elements are drawn with the same
color.

Default: false

Title

Character vector specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handle of array elements in figure window.

Examples

Element Positions and Normal Directions for Uniform Circular Array

Display the element positions and normal directions for all elements of an 8-element heterogeneous
uniform circular array.

Create the elements and the array.

antenna1 = phased.CosineAntennaElement('CosinePower',1.5);
antenna2 = phased.CosineAntennaElement('CosinePower',1.8);
N = 8;
azang = (0:N-1)*360/N-180;
array = phased.HeterogeneousConformalArray(...
    'ElementPosition',...
    [cosd(azang);sind(azang);zeros(1,N)],...
    'ElementNormal', zeros(2,N),...
    'ElementSet',{antenna1,antenna2},...
    'ElementIndices',[1 1 1 1 2 2 2 2]);
viewArray(array,'ShowIndex','all','ShowNormal',true);

1 Objects

1-640



See Also
phased.ArrayResponse

Topics
Phased Array Gallery
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phased.HeterogeneousULA
Package: phased

Heterogeneous uniform linear array

Description
The phased.HeterogeneousULA object creates a uniform linear array from a heterogeneous set of
antenna elements. A heterogeneous array is an array in which the antenna or microphone elements
may be of different kinds or have different properties. An example would be an array of elements
each having different antenna patterns.

To compute the response for each element in the array for specified directions:

1 Define and set up your uniform linear array. See “Construction” on page 1-642.
2 Call step to compute the response according to the properties of phased.HeterogeneousULA.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.HeterogeneousULA creates a heterogeneous uniform linear array (ULA) System
object, H. The object models a heterogeneous ULA formed with generally different sensor elements.
The origin of the local coordinate system is the phase center of the array. The positive x-axis is the
direction normal to the array, and the elements of the array are located along the y-axis.

H = phased.HeterogeneousULA(Name,Value) creates object, H, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties
ElementSet

Set of elements used in the array

Specify the set of different elements used in the sensor array as a row MATLAB cell array. Each
member of the cell array contains an element object in the phased package. Elements specified in the
ElementSet property must be either all antennas or all microphones. In addition, all specified
antenna elements should have same polarization capability. Specify the element of the sensor array as
a handle. The element must be an element object in the phased package.

Default: One cell containing one isotropic antenna element
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ElementIndices

Elements location assignment

This property specifies the mapping of elements in the array. The property assigns elements to their
locations in the array using indices into the ElementSet property. ElementIndices must be a 1-by-
N row vector where N is greater than 1. N is the number of elements in the sensor array. The values
in ElementIndices should be less than or equal to the number of entries in the ElementSet
property.

Default: [1 1]

ElementSpacing

Element spacing

A scalar containing the spacing (in meters) between two adjacent elements in the array.

Default: 0.5

ArrayAxis

Array axis

Array axis, specified as one of 'x', 'y', or 'z'. ULA array elements are located along the selected
coordinate system axis.

Element normal vectors are determined by the selected array axis

ArrayAxis Property Value Element Normal Direction
'x' azimuth = 90°, elevation = 0° (y-axis)
'y' azimuth = 0°, elevation = 0° (x-axis)
'z' azimuth = 0°, elevation = 0° (x-axis)

Default: 'y'

Taper

Element tapering

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector, or N-by-1
column vector. The quantity N is the number of elements in the array as determined by the size of the
ElementIndices property. Tapers, also known as weights, are applied to each sensor element in the
sensor array and modify both the amplitude and phase of the received data. If 'Taper' is a scalar,
the same taper value is applied to all elements. If 'Taper' is a vector, each taper value is applied to
the corresponding sensor element.

Default: 1
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Methods
Specific to phased.HeterogeneousULA Object
beamwidth Compute and display beamwidth of an array
collectPla
neWave

Simulate received plane waves

directivit
y

Directivity of heterogeneous uniform linear array

getElement
Normal

Normal vector for array elements

getElement
Position

Positions of array elements

getNumElem
ents

Number of elements in array

getTaper Array element tapers
isPolariza
tionCapabl
e

Polarization capability

pattern Plot heterogeneous ULA pattern
patternAzi
muth

Plot heterogeneous ULA directivity or pattern versus azimuth

patternEle
vation

Plot heterogeneous ULA array directivity or pattern versus elevation

plotRespon
se

Plot response pattern of array

step Output responses of array elements
viewArray View array geometry

Common to All System Objects
release Allow System object property value changes

Examples

Power pattern of 10-Element Heterogeneous ULA Array

Create a 10-element heterogeneous ULA consisting of cosine antenna elements with different power
exponents. Two elements at each end have power values of 1.5 while the inside elements have power
exponents of 1.8. Find the power pattern in dB of each element at boresight.

Construct the heterogeneous array and show the element responses at 1 GHz.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousULA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 2 2 2 2 2 2 1 1 ]);
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fc = 1e9;
ang = [0;0];
resp = step(sArray,fc,ang)

resp =

     1
     1
     1
     1
     1
     1
     1
     1
     1
     1

Plot an azimuth cut of the array response at 1 GHz.

c = physconst('LightSpeed');
plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');
pattern(sArray,fc,[-180:180],0,...
    'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Type','powerdb');
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Pattern of Array of Polarized Short-Dipole Antennas

Construct a heterogeneous uniform line array of 10 short-dipole sensor elements. Because short
dipoles support polarization, the array should also. Verify that the array supports polarization by
looking at the output of isPolarizationCapable. Then, draw the array, showing the tapering.

Construct the array

Construct the array. Then, verify that it supports polarization by looking at the returned value of the
isPolarizationCapable method.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousULA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 2 2 2 2 2 2 1 1 ],...
    'Taper',taylorwin(10)');
isPolarizationCapable(sArray)

ans = logical
   1
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View the array

viewArray(sArray,'ShowTaper',true,'ShowIndex',...
    'All','ShowTaper',true)

Show the response

Show the element horizontal polarization responses at 10 degrees azimuth angle.

fc = 150e6;
ang = [10];
resp = step(sArray,fc,ang)

resp = struct with fields:
    H: [10x1 double]
    V: [10x1 double]

resp.H

ans = 10×1

         0
         0
   -1.2442
   -1.6279
   -1.8498
   -1.8498
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   -1.6279
   -1.2442
         0
         0

Plot the combined polarization response

c = physconst('LightSpeed');
pattern(sArray,fc,[-180:180],0,...
    'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'Polarization','combined');

References

[1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, plotResponse, and viewArray methods are
not supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.CosineAntennaElement | phased.CrossedDipoleAntennaElement |
phased.CustomAntennaElement | phased.HeterogeneousURA | phased.HeterogeneousURA |
phased.IsotropicAntennaElement | phased.PartitionedArray |
phased.ReplicatedSubarray | phased.ShortDipoleAntennaElement | phased.UCA |
phased.ULA | phased.URA

Topics
“Phased Array Gallery”

Introduced in R2013a
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directivity
System object: phased.HeterogeneousULA
Package: phased

Directivity of heterogeneous uniform linear array

Syntax
D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)

Description
D = directivity(H,FREQ,ANGLE) computes the “Directivity (dBi)” on page 1-653 of a
heterogeneous uniform linear array of antenna or microphone elements, H, at frequencies specified
by the FREQ and in angles of direction specified by the ANGLE.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
H — Heterogeneous uniform linear array
System object

Heterogeneous uniform linear array, specified as a phased.HeterogeneousULA System object.
Example: H = phased.HeterogeneousULA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double
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ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
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In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Heterogeneous Uniform Linear Array

Compute the directivity of a 10-element heterogeneous ULA consisting of cosine antenna elements
with different power factors. The two elements at each end have power values of 1.5 while the inner
elements have power values of 1.8.

Construct the heterogeneous array. Set the signal frequency to 1 GHz.

c = physconst('LightSpeed');
freq = 1e9;
ang = [30;0];
lambda = c/freq;

Create the cosine antenna elements.

myElement1 = phased.CosineAntennaElement;
myElement1.CosinePower = 1.5;
myElement2 = phased.CosineAntennaElement;
myElement2.CosinePower = 1.8;

Create the Heterogeneous ULA.

myArray = phased.HeterogeneousULA;
myArray.ElementSet = {myElement1,myElement2};
myArray.ElementIndices = [1 1 2 2 2 2 2 2 1 1 ];
myArray.ElementSpacing = 0.5*lambda;

Create the steering vector and compute the directivity in the same direction as the steering vector.

w = steervec(getElementPosition(myArray)/lambda,ang);
d = directivity(myArray,freq,ang,'PropagationSpeed',c,...
    'Weights',w)
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d = 17.0102

More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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collectPlaneWave
System object: phased.HeterogeneousULA
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H, when the
input signals indicated by X arrive at the array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal carrier
frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal propagation speed in
C.

Input Arguments
H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an individual
incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the corresponding signal in
X. Each column of ANG is in the form [azimuth; elevation]. The azimuth angle must be between
–180° and 180°, inclusive. The elevation angle must be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this case, the
corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8
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C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments
Y

Received signals. Y is an N-column matrix, where N is the number of elements in the array H. Each
column of Y is the received signal at the corresponding array element, with all incoming signals
combined.

Examples

Simulate Received Signals at Heterogeneous ULA

Simulate two received signal at a heterogeneous 4-element ULA. The signals arrive from 10° and 30°
degrees azimuth. Both signals have an elevation angle of 0°. Assume the propagation speed is the
speed of light and the carrier frequency of the signal is 100 MHz.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Y');
array = phased.HeterogeneousULA('ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 2 2 1]);

Create a random plane wave signals.

y = collectPlaneWave(array,randn(4,2),[10 30],1e8,physconst('LightSpeed'));

Display the signal at the first element.

y(:,1)

ans = 4×1 complex

   0.7430 - 0.3705i
   0.8418 + 0.4308i
  -2.4817 + 0.9157i
   1.0724 - 0.4748i

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the delay caused by
the direction of arrival. The method does not account for the response of individual elements in the
array.

For further details, see [1].

 collectPlaneWave

1-655



References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel
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getElementNormal
System object: phased.HeterogeneousULA
Package: phased

Normal vector to array elements

Syntax
normvec = getElementNormal(sULA)
normvec = getElementNormal(sULA,elemidx)

Description
normvec = getElementNormal(sULA) returns the normal vectors of the array elements of the
phased.HeterogeneousULA System object, sULA. The output argument normvec is a 2-by-N
matrix, where N is the number of elements in array, sULA. Each column of normvec defines the
normal direction of an element in the local coordinate system in the form[az;el]. Units are degrees.
The origin of the local coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sULA,elemidx) returns only the normal vectors of the elements
specified in the element index vector, elemidx. This syntax can use any of the input arguments in the
previous syntax.

Input Arguments
sULA — Uniform line array
phased.HeterogeneousULA System object

Uniform line array, specified as a phased.HeterogeneousULA System object.
Example: sULA = phased.HeterogeneousULA

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1 column vector

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range 1 to N where N
is the number of elements of the array. When elemidx is specified, getElementNormal returns the
normal vectors of the elements contained in elemidx.
Example: [1,5,4]

Output Arguments
normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of normvec takes the
form [az,el]. When elemidx is not specified, P equals the array dimension. When elemidx is
specified, P equals the length of elemidx, M.
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Examples

Heterogeneous ULA Element Normals

Construct three 5-element heterogeneous ULA's with elements along the x-, y-, and z-axes. Obtain the
element normals.

Create two types of cosine antennas.

sCosAnt1 = phased.CosineAntennaElement('CosinePower',[1.5,1.5]);
sCosAnt2 = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);

First, choose the array axis to lie along the x-axis.

sULA1 = phased.HeterogeneousULA('ElementSet',{sCosAnt1,sCosAnt2},...
    'ElementIndices',[1 2 2 2 1],'ArrayAxis','x');
norm = getElementNormal(sULA1)

norm = 2×5

    90    90    90    90    90
     0     0     0     0     0

The element normal vectors point along the y-axis.

Next, choose the array axis along the y-axis.

sULA2 = phased.HeterogeneousULA('ElementSet',{sCosAnt1,sCosAnt2},...
    'ElementIndices',[1 2 2 2 1],'ArrayAxis','y');
norm = getElementNormal(sULA2)

norm = 2×5

     0     0     0     0     0
     0     0     0     0     0

The element normal vectors point along the x-axis.

Finally, set the array axis along the z-axis. Obtain the normal vectors of the odd-numbered elements.

sULA3 = phased.HeterogeneousULA('ElementSet',{sCosAnt1,sCosAnt2},...
    'ElementIndices',[1 2 2 2 1],'ArrayAxis','z');
norm = getElementNormal(sULA3,[1,3,5])

norm = 2×3

     0     0     0
     0     0     0

The element normal vectors also point along the x-axis.

Introduced in R2016a
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getElementPosition
System object: phased.HeterogeneousULA
Package: phased

Positions of array elements

Syntax
pos = getElementPosition(sHULA)
pos = getElementPosition(sHULA,elemidx)

Description
pos = getElementPosition(sHULA) returns the element positions of the
phased.HeterogeneousULA System object, sHULA. pos is a 3-by-N matrix, where N is the number
of elements in sHULA. Each column of pos defines the position of an element in the local coordinate
system, in meters, using the form [x;y;z]. The origin of the local coordinate system is the phase
center of the array. The positions of the array elements depend upon the value of the ArrayAxis
property.

pos = getElementPosition(sHULA,elemidx) returns only the positions of the elements that are
specified in the element index vector elemidx. This syntax can use any of the input arguments in the
previous syntax.

Examples

Position of Heterogeneous ULA Elements

Construct a 4-element heterogeneous ULA of different types of short-dipole antenna elements. Then,
obtain the element positions.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousULA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 2 2 1]);
pos = getElementPosition(sArray)

pos = 3×4

         0         0         0         0
   -0.7500   -0.2500    0.2500    0.7500
         0         0         0         0
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getNumElements
System object: phased.HeterogeneousULA
Package: phased

Number of elements in array

Syntax
N = getNumElements(array)

Description
N = getNumElements(array) returns the number of elements, N, in the heterogeneous ULA
object array.

Examples

Number of Elements of Heterogeneous ULA

Construct a 4-element heterogeneous ULA. Then verify the number of elements in the array.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Y');
array = phased.HeterogeneousULA('ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 2 2 1]);
N = getNumElements(array)

N = 4
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getTaper
System object: phased.HeterogeneousULA
Package: phased

Array element tapers

Syntax
wts = getTaper(array)

Description
wts = getTaper(array) returns the tapers, wts, applied to each element of the phased
heterogeneous uniform line array (ULA), h. Tapers are often referred to as weights.

Input Arguments
array — Heterogeneous uniform line array
phased.HeterogeneousULA System object

Heterogeneous uniform line array, specified as a phased.HeterogeneousULA System object.

Output Arguments
wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1 complex-valued vector, where N is the number of
elements in the array.

Examples

Heterogeneous ULA with Taylor Window Taper

Construct a 5-element heterogeneous ULA with a Taylor window taper. The array consists of short-
dipole antenna elements with different orientations.Then, obtain the element taper values.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Y');
array = phased.HeterogeneousULA('ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 2 2 2 1],'Taper',taylorwin(5)');
w = getTaper(array)

w = 5×1

    0.5181
    1.2029
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    1.5581
    1.2029
    0.5181
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isPolarizationCapable
System object: phased.HeterogeneousULA
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(array)

Description
flag = isPolarizationCapable(array) returns a Boolean value, flag, indicating whether the
array supports polarization. An array supports polarization if all of its constituent sensor elements
support polarization.

Input Arguments
array — Heterogeneous uniform line array
phased.HeterogeneousULA System object

Heterogeneous uniform line array, specified as a phased.HeterogeneousULA System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability flag, returned as a Boolean value 1 if the array supports polarization or 0 if it
does not.

Examples

Heterogeneous ULA of Short-Dipole Antenna Elements Supports Polarization

Show that a heterogeneous array of short-dipole antenna elements supports polarization.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Y');
array = phased.HeterogeneousULA('ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 2 2 2 1]);
isPolarizationCapable(array)

ans = logical
   1
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pattern
System object: phased.HeterogeneousULA
Package: phased

Plot heterogeneous ULA pattern

Syntax
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array specified in
sArray. The operating frequency is specified in FREQ.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the array pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-671 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sArray — Heterogeneous ULA
System object

Heterogeneous conformal array, specified as a phased.HeterogeneousULA System object.
Example: sArray= phased.HeterogeneousULA;
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FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
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'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component
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Example: 'V'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT correspond to the
dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector
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Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Azimuth Power Pattern For Two Frequencies

Create a 5-element heterogeneous ULA from short-dipole antenna elements with different axis
directions. Draw the azimuth power pattern for the horizontal polarization component at 0 degrees
elevation for two frequencies, 300 MHz and 400 MHz.

Construct Heterogeneous ULA

Construct the array from z-directed and y-directed short dipole antenna elements.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousULA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 2 2 2 1]);

Plot the patterns

fc = [300e6 400e6];
c = physconst('LightSpeed');
pattern(sArray,fc,[-180:180],0,...
    'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'PlotStyle','overlay',...
    'Polarization','H')
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Directivity Pattern in UV Space

Create an 11-element heterogeneous ULA from short-dipole antenna elements with different axis
directions. Draw the 3-D power pattern for the horizontal polarization component at 300 MHz.

Construct Heterogeneous ULA

Construct the array from z-directed and y-directed short dipole antenna elements.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousULA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 2 2 2 2 2 1 1 1]);

Plot the patterns

fc = 300e6;
c = physconst('LightSpeed');
pattern(sArray,fc,-1:.01:1,-1:.01:1,...
    'PropagationSpeed',c,...
    'CoordinateSystem','uv',...
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    'Type','powerdb',...
    'Polarization','H')

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.HeterogeneousULA
Package: phased

Plot heterogeneous ULA directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus azimuth (in dBi) for
the array sArray at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternAzimuth(sArray,FREQ,EL), in addition, plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When EL is a vector,
multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the array pattern. PAT is a matrix whose entries represent
the pattern at corresponding sampling points specified by the 'Azimuth' parameter and the EL
input argument.

Input Arguments
sArray — Heterogeneous ULA
System object

Heterogeneous ULA, specified as a phased.HeterogeneousULA System object.
Example: sArray= phased.HeterogeneousULA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension N is the
number of elevation angles, as determined by the EL input argument.

Examples

Azimuth Directivity Pattern For Steered Array

Create an 11-element heterogeneous ULA from short-dipole antenna elements with different axis
directions. The element spacing is 0.4 meters. Draw the azimuthal directivity pattern for 0 degrees
elevation at an operating frequency of 300 MHz. Then, steer the array and draw the azimuthal
directivity pattern.

Construct Heterogeneous ULA

Construct the array from z-directed and y-directed short dipole antenna elements.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[200e6 500e6],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
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    'FrequencyRange',[200e6 500e6],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousULA(...
    'ElementSpacing',0.4,...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 2 2 2 2 2 1 1 1]);

Plot Directivity Pattern

fc = 300e6;
c = physconst('LightSpeed');
lam = c/fc;
patternAzimuth(sArray,fc,0,...
    'PropagationSpeed',c,...
    'Type','directivity')

Steer Array and Plot Directivity Pattern

Steer the array to 30 degrees in azimuth by applying weights to achieve a linear phase shift.

theta = 30;
d = [0:10]*0.4;
ph = 2*pi*d'/lam*sind(theta);
wts = exp(1i*ph);
patternAzimuth(sArray,fc,0,...
    'PropagationSpeed',c,...
    'Type','directivity',....
    'Weights',wts)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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Introduced in R2015a
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patternElevation
System object: phased.HeterogeneousULA
Package: phased

Plot heterogeneous ULA directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus elevation (in dBi)
for the array sArray at zero degrees azimuth angle. When AZ is a vector, multiple overlaid plots are
created. The argument FREQ specifies the operating frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the array pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sArray — Heterogeneous ULA
System object

Heterogeneous ULA array, specified as a phased.HeterogeneousULA System object.
Example: sArray= phased.HeterogeneousULA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of elevation angles determined by the 'Elevation' name-value pair argument. The dimension N is
the number of azimuth angles determined by the AZ argument.

Examples

Elevation Power Pattern For Two Azimuth Directions

Create an 11-element heterogeneous ULA from short-dipole antenna elements with different axis
directions. The element spacing is 0.4 meters. Draw the elevation power pattern for 0 and 30 degrees
azimuth for 300 MHz.

Construct Heterogeneous ULA

Construct the array from z-directed and y-directed short dipole antenna elements.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[200e6 500e6],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[200e6 500e6],...
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    'AxisDirection','Y');
sArray = phased.HeterogeneousULA(...
    'ElementSpacing',0.4,...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 2 2 2 2 2 1 1 1]);

Plot Directivity Pattern
fc = 300e6;
c = physconst('LightSpeed');
patternElevation(sArray,fc,[0,30],...
    'PropagationSpeed',c,...
    'Type','directivity')

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal
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where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth

Introduced in R2015a
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plotResponse
System object: phased.HeterogeneousULA
Package: phased

Plot response pattern of array

Syntax
plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ. The propagation speed is specified
in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie within the
range specified by a property of H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has no response at frequencies outside
that range. If you set the 'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a
row vector, plotResponse draws multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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CutAngle

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If RespCut is
'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be between –180
and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the array response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This parameter is not
applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.
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• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.

Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

Weights

Weight values applied to the array, specified as a length-N column vector or N-by-M matrix. The
dimension N is the number of elements in the array. The interpretation of M depends upon whether
the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose
N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for the

same single frequency or all M
frequencies.

N-by-M matrix

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

AzimuthAngles

Azimuth angles for plotting array response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting array response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
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Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When yous set the RespCut parameter to '3D',
you can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting array response, specified as a row vector. The UGrid parameter sets
the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting array response, specified as a row vector. The VGrid parameter sets
the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Line Plot Showing Multiple Frequencies

Using a line plot, show the azimuth cut response of a 5-element heterogeneous uniform linear array
along 0 degrees elevation. The plot shows the responses at operating frequencies of 200 MHz and
400 MHz.

Construct the array from z-directed and y-directed short dipole antenna elements.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousULA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 2 2 2 1]);

Plot the response.

fc = [3e8 4e8];
c = physconst('LightSpeed');
plotResponse(sArray,fc,c);

 plotResponse

1-689



Plot Response and Directivity for 5-Element Array

Construct a 5-element heterogeneous ULA of short-dipole antenna elements. Using the
plotResponse method, plot the array's azimuth response in polar format. Assume each element's
operating frequency spans 200-500 MHz and the wave propagation speed is the speed of light.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousULA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 2 2 2 1]);

Plot the response at 300 MHz.

fc = 3e8;
c = physconst('LightSpeed');
plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');
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Plot the directivity of the array at 300 MHz.

plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar',...
    'Unit','dbi');
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Plot Response for 9-Element Array with Two Weight Sets

Construct a 9-element heterogeneous ULA of short-dipole antenna elements having different
orientations. Assume each element response is in the frequency range 200-500 MHz. Using the
plotResponse method, plot the array's azimuth response in polar format. Use the Weights
parameter to set two different sets of tapering weights: a uniform tapering and a Taylor tapering. Use
the AzimuthAngles parameter to restrict the display range from -45 to 45 degrees in 0.1 degree
increments.

Construct the array.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousULA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 2 2 2 2 2 1 1]);

Plot the response at 300 MHz.

fc = 3e8;
wts1 = ones(9,1);
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wts2 = taylorwin(9);
c = physconst('LightSpeed');
plotResponse(sArray,fc,c,'RespCut','Az',...
    'AzimuthAngles',[-45:0.1:45],...
    'Weights',[wts1,wts2]);

As expected, the tapered weighting broadens the mainlobe and reduces the sidelobes.

See Also
azel2uv | uv2azel
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step
System object: phased.HeterogeneousULA
Package: phased

Output responses of array elements

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP at operating frequencies
specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of H.Element. That property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array. The element has zero response at
frequencies outside that range.

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must lie between –180° and 180°, inclusive. The elevation angle
must lie between –90° and 90°, inclusive.
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If ANG is a row vector of length M, each element specifies the azimuth angle of the direction. In this
case, the corresponding elevation angle is assumed to be 0°.

Output Arguments
RESP

Voltage responses of the phased array. The output depends on whether the array supports
polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP, has the
dimensions N-by-M-by-L. N is the number of elements in the array. The dimension M is the
number of angles specified in ANG. L is the number of frequencies specified in FREQ. For any
element, the columns of RESP contain the responses of the array elements for the corresponding
direction specified in ANG. Each of the L pages of RESP contains the responses of the array
elements for the corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a MATLAB
struct containing two fields, RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents the array’s vertical polarization
response. Each field has the dimensions N-by-M-by-L. N is the number of elements in the array,
and M is the number of angles specified in ANG. L is the number of frequencies specified in FREQ.
Each column of RESP contains the responses of the array elements for the corresponding direction
specified in ANG. Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples

Heterogeneous ULA of Cosine Antenna Elements

Create a 5-element heterogeneous ULA of cosine antenna elements with difference responses, and
find the response of each element at 30° azimuth.

antenna1 = phased.CosineAntennaElement('CosinePower',1.5);
antenna2 = phased.CosineAntennaElement('CosinePower',1.8);
array = phased.HeterogeneousULA(...
    'ElementSet',{antenna1,antenna2},...
    'ElementIndices',[1 2 2 2 1]);
fc = 1e9;
c = physconst('LightSpeed');
ang = [30;0];
resp = array(fc,ang)

resp = 5×1

    0.8059
    0.7719
    0.7719
    0.7719
    0.8059
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Response of Heterogeneous Microphone ULA Array

Find the response of a heterogeneous ULA array of 7 custom microphone elements with different
responses.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create two microphones with different response patterns.

mic1 = phased.CustomMicrophoneElement(...
    'FrequencyResponse',[20 20e3]);
mic1.PolarPatternFrequencies = [500 1000];
mic1.PolarPattern = mag2db([...
    0.5+0.5*cosd(mic1.PolarPatternAngles);...
    0.6+0.4*cosd(mic1.PolarPatternAngles)]);
mic2 = phased.CustomMicrophoneElement(...
    'FrequencyResponse',[20 20e3]);
mic2.PolarPatternFrequencies = [500 1000];
mic2.PolarPattern = mag2db([...
    ones(size(mic2.PolarPatternAngles));...
    ones(size(mic2.PolarPatternAngles))]);

Create the heterogeneous ULA.

array = phased.HeterogeneousULA(...
    'ElementSet',{mic1,mic2},...
    'ElementIndices',[1 1 2 2 2 1 1]);

Find the array response at 40° and 50° azimuth.

fc = [1500, 2000];
ang = [40 50; 0 0];
resp = array(fc,ang)

resp = 
resp(:,:,1) =

    9.0642    8.5712
    9.0642    8.5712
   10.0000   10.0000
   10.0000   10.0000
   10.0000   10.0000
    9.0642    8.5712
    9.0642    8.5712

resp(:,:,2) =

    9.0642    8.5712
    9.0642    8.5712
   10.0000   10.0000
   10.0000   10.0000
   10.0000   10.0000
    9.0642    8.5712
    9.0642    8.5712
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See Also
phitheta2azel | uv2azel
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viewArray
System object: phased.HeterogeneousULA
Package: phased

View array geometry

Syntax
viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray( ___ )

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options specified by
one or more Name,Value pair arguments.

hPlot = viewArray( ___ ) returns the handle of the array elements in the figure window. All input
arguments described for the previous syntaxes also apply here.

Input Arguments
H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each number in the vector must be an
integer between 1 and the number of elements. You can also specify the value 'All' to show the
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

Set this value to true to show the normal directions of all elements of the array. Set this value to
false to plot the elements without showing normal directions.

Default: false
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ShowTaper

Set this value to true to specify whether to change the element color brightness in proportion to the
element taper magnitude. When this value is set to false, all elements are drawn with the same
color.

Default: false

Title

Character vector specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handle of array elements in figure window.

Examples

Geometry and Indices of Heterogeneous ULA Elements

Display the geometry of a 5-element heterogeneous ULA of cosine antenna elements, showing the
indices for the first three elements.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousULA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 2 2 2 1]);
viewArray(sArray,'ShowIndex',[1:3])

 viewArray
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See Also
phased.ArrayResponse

Topics
Phased Array Gallery
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phased.HeterogeneousURA
Package: phased

Heterogeneous uniform rectangular array

Description
The HeterogeneousURA object constructs a heterogeneous uniform rectangular array (URA).

To compute the response for each element in the array for specified directions:

1 Define and set up your uniform rectangular array. See “Construction” on page 1-701.
2 Call step to compute the response according to the properties of phased.HeterogeneousURA.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.HeterogeneousURA creates a heterogeneous uniform rectangular array (URA) System
object, H. This object models a heterogeneous URA formed with sensor elements whose pattern may
vary from element to element. Array elements are distributed in the yz-plane in a rectangular lattice.
An M-by-N heterogeneous URA has M rows and N columns. The array boresight direction is along the
positive x-axis. The default array is a 2-by-2 URA of isotropic antenna elements.

H = phased.HeterogeneousURA(Name,Value) creates the object, H, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties
ElementSet

Set of elements used in the array

Specify the set of different elements used in the sensor array as a row MATLAB cell array. Each
member of the cell array contains an element object in the phased package. Elements specified in the
ElementSet property must be either all antennas or all microphones. In addition, all specified
antenna elements should have same polarization capability. Specify the element of the sensor array as
a handle. The element must be an element object in the phased package.

Default: One cell containing one isotropic antenna element

ElementIndices

Elements location assignment
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This property specifies the mapping of elements in the array. The property assigns elements to their
locations in the array using the indices into the ElementSet property. The value of
ElementIndices must be an M-by-N matrix. In this matrix, M represents the number of rows and N
represents the number of columns. Rows are along y-axis and columns are along z-axis of the local
coordinate system. The values in the matrix specified by ElementIndices should be less than or
equal to the number of entries in the ElementSet property.

Default: [1 1;1 1]

ElementSpacing

Element spacing

A 1-by-2 vector or a scalar containing the element spacing (in meters) of the array. If
ElementSpacing is a 1-by-2 vector, it is in the form of
[SpacingBetweenRows,SpacingBetweenColumns]. See “Spacing Between Columns” on page 1-
706 and “Spacing Between Rows” on page 1-706. If ElementSpacing is a scalar, both spacings
are the same.

Default: [0.5 0.5]

Lattice

Element lattice

Specify the element lattice as one of 'Rectangular' | 'Triangular'. When you set the Lattice
property to 'Rectangular', all elements in the heterogeneous URA are aligned in both row and
column directions. When you set the Lattice property to 'Triangular', the elements in even rows
are shifted toward the positive row axis direction by a distance of half the element spacing along the
row.

Default: 'Rectangular'

ArrayNormal

Array normal direction

Array normal direction, specified as one of 'x', 'y', or 'z'.

URA elements lie in a plane orthogonal to the selected array normal direction. Element boresight
directions point along the array normal direction

ArrayNormal Property Value Element Positions and Boresight Directions
'x' Array elements lie on the yz-plane. All element

boresight vectors point along the x-axis.
'y' Array elements lie on the zx-plane. All element

boresight vectors point along the y-axis.
'z' Array elements lie on the xy-plane. All element

boresight vectors point along the z-axis.

Default: 'x'
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Taper

Element tapers

Element tapers, specified as a complex-valued scalar, or a complex-valued 1-by-MN row vector, MN-
by-1 column vector, or M-by-N matrix. Tapers are applied to each element in the sensor array. Tapers
are often referred to as element weights. M is the number of elements along the z-axis, and N is the
number of elements along y-axis. M and N correspond to the values of [NumberofRows,
NumberOfColumns] in the Size property. If Taper is a scalar, the same taper value is applied to all
elements. If the value of Taper is a vector or matrix, taper values are applied to the corresponding
elements. Tapers are used to modify both the amplitude and phase of the received data.

Default: 1

Methods
Specific to phased.HeterogeneousURA Object
beamwidth Compute and display beamwidth of an array
collectPla
neWave

Simulate received plane waves

directivit
y

Directivity of heterogeneous uniform rectangular array

getElement
Normal

Normal vector to array elements

getElement
Position

Positions of array elements

getNumElem
ents

Number of elements in array

getTaper Array element tapers
isPolariza
tionCapabl
e

Polarization capability

pattern Plot heterogeneous URA directivity and power pattern
patternAzi
muth

Plot heterogeneous URA directivity or pattern versus azimuth

patternEle
vation

Plot heterogeneous URA array directivity or pattern versus elevation

plotRespon
se

Plot response pattern of array

step Output responses of array elements
viewArray View array geometry

Common to All System Objects
release Allow System object property value changes
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Examples

Azimuth Pattern of 3-by-2 Heterogeneous URA

Construct a 3-by-2 heterogeneous URA with a rectangular lattice, and find the response of each
element at 30 degrees azimuth and 0 degrees elevation. Assume the operating frequency is 1 GHz.

antenna1 = phased.CosineAntennaElement('CosinePower',1.5);
antenna2 = phased.CosineAntennaElement('CosinePower',1.8);
array = phased.HeterogeneousURA('ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 1; 2 2; 1 1]);
fc = 1e9;
ang = [30;0];
resp = array(fc,ang)

resp = 6×1

    0.8059
    0.7719
    0.8059
    0.8059
    0.7719
    0.8059

Plot the azimuth pattern of the array.

c = physconst('LightSpeed');
pattern(array,fc,[-180:180],0,'PropagationSpeed',c, ...
    'CoordinateSystem','polar','Type','powerdb','Normalize',true)
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Draw Heterogeneous Triangular Lattice Array

Construct a 3-by-3 heterogeneous URA with a triangular lattice. The element spacing is 0.5 meter.
Display the array shape.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousURA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1; 2 2 2; 1 1 1],...
    'Lattice','Triangular');
viewArray(sArray);
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More About
Spacing Between Columns

The spacing between columns is the distance between adjacent elements in the same row.

Spacing Between Rows

The spacing between rows is the distance along the column axis direction between adjacent rows.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, plotResponse, and viewArray methods are
not supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.HeterogeneousConformalArray |
phased.HeterogeneousULA | phased.IsotropicAntennaElement |
phased.PartitionedArray | phased.ReplicatedSubarray | phased.UCA | phased.ULA |
phased.URA

Topics
Phased Array Gallery

Introduced in R2013a
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directivity
System object: phased.HeterogeneousURA
Package: phased

Directivity of heterogeneous uniform rectangular array

Syntax
D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)

Description
D = directivity(H,FREQ,ANGLE) computes the “Directivity (dBi)” on page 1-712 of a
heterogeneous uniform rectangular array of antenna or microphone elements, H, at frequencies
specified by the FREQ and in angles of direction specified by the ANGLE.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
H — Heterogeneous uniform rectangular array
System object

Uniform rectangular array specified as a phased.HeterogeneousURA System object.
Example: H = phased.HeterogeneousURA

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double
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ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
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In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Heterogeneous Uniform Rectangular Array

Compute the directivity of a 9-element 3-by-3 heterogeneous URA consisting of short-dipole antenna
elements. The three elements on the middle row are Y-directed while all the remaining elements are
Z-directed.

Set the signal frequency to 1 GHz.

c = physconst('LightSpeed');
freq = 1e9;
lambda = c/freq;

Create the array of short-dipole antenna elements. The elements have frequency ranges from 0 to 10
GHz.

myElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[0 10e9],...
    'AxisDirection','Z');
myElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[0 10e9],...
    'AxisDirection','Y');
myArray = phased.HeterogeneousURA(...
    'ElementSet',{myElement1,myElement2},...
    'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);

Create the steering vector to point to 30 degrees azimuth and compute the directivity in the same
direction as the steering vector.

ang = [30;0];
w = steervec(getElementPosition(myArray)/lambda,ang);
d = directivity(myArray,freq,ang,'PropagationSpeed',c,...
    'Weights',w)
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d = 11.1405

More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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collectPlaneWave
System object: phased.HeterogeneousURA
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H, when the
input signals indicated by X arrive at the array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal carrier
frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal propagation speed in
C.

Input Arguments
H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an individual
incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the corresponding signal in
X. Each column of ANG is in the form [azimuth; elevation]. The azimuth angle must be between
–180° and 180°, inclusive. The elevation angle must be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this case, the
corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8
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C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments
Y

Received signals. Y is an N-column matrix, where N is the number of elements in the array H. Each
column of Y is the received signal at the corresponding array element, with all incoming signals
combined.

Examples

Create Received Signal at Heterogeneous URA

Simulate two received signals at a 2-by-2 element heterogeneous URA with two different cosine
antenna patterns. The signals arrive from 10° and 30° azimuth. Both signals have an elevation angle
of 0deg; degrees.

antenna1 = phased.CosineAntennaElement('CosinePower',1.5);
antenna2 = phased.CosineAntennaElement('CosinePower',1.8);
array = phased.HeterogeneousURA(...
    'ElementSet',{antenna1,antenna2},...
    'ElementIndices',[1 2; 1 2]);
y = collectPlaneWave(array,randn(4,2),[10 30],1e8,physconst('LightSpeed'))

y = 4×4 complex

   0.8433 - 0.1314i   0.8433 - 0.1314i   0.8433 + 0.1314i   0.8433 + 0.1314i
   0.5632 + 0.1721i   0.5632 + 0.1721i   0.5632 - 0.1721i   0.5632 - 0.1721i
  -2.6683 + 0.3175i  -2.6683 + 0.3175i  -2.6683 - 0.3175i  -2.6683 - 0.3175i
   1.1895 - 0.1671i   1.1895 - 0.1671i   1.1895 + 0.1671i   1.1895 + 0.1671i

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the delay caused by
the direction of arrival. This method does not account for the response of individual elements in the
array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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See Also
phitheta2azel | uv2azel
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getElementNormal
System object: phased.HeterogeneousURA
Package: phased

Normal vector to array elements

Syntax
normvec = getElementNormal(sURA)
normvec = getElementNormal(sURA,elemidx)

Description
normvec = getElementNormal(sURA) returns the normal vectors of the array elements of the
phased.URA System object, sURA. The output argument normvec is a 2-by-N matrix, where N is the
number of elements in array, sURA. Each column of normvec defines the normal direction of an
element in the local coordinate system in the form[az;el]. Units are degrees. The origin of the local
coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sURA,elemidx) returns only the normal vectors of the elements
specified in the element index vector, elemidx. This syntax can use any of the input arguments in the
previous syntax.

Input Arguments
sURA — Heterogeneous uniform rectangular array
phased.HeterogeneousURA System object

Uniform line array, specified as a phased.HeterogeneousURA System object.
Example: sULA = phased.HeterogeneousURA

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1 column vector

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range 1 to N where N
is the number of elements of the array. When elemidx is specified, getElementNormal returns the
normal vectors of the elements contained in elemidx.
Example: [1,5,4]

Output Arguments
normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of normvec takes the
form [az,el]. When elemidx is not specified, P equals the array dimension. When elemidx is
specified, P equals the length of elemidx, M. You can determine element indices using the
viewArray method.
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Examples

URA Element Normals

Construct three 2-by-2 URA's with element normals along the x-, y-, and z-axes. Obtain the element
positions and normal directions.

First, choose the array normal along the x-axis.

sURA1 = phased.URA('Size',[2,2],'ArrayNormal','x');
pos = getElementPosition(sURA1)

pos = 3×4

         0         0         0         0
   -0.2500   -0.2500    0.2500    0.2500
    0.2500   -0.2500    0.2500   -0.2500

normvec = getElementNormal(sURA1)

normvec = 2×4

     0     0     0     0
     0     0     0     0

All elements lie in the yz-plane and the element normal vectors point along the x-axis (0°,0°).

Next, choose the array normal along the y-axis.

sURA2 = phased.URA('Size',[2,2],'ArrayNormal','y');
pos = getElementPosition(sURA2)

pos = 3×4

   -0.2500   -0.2500    0.2500    0.2500
         0         0         0         0
    0.2500   -0.2500    0.2500   -0.2500

normvec = getElementNormal(sURA2)

normvec = 2×4

    90    90    90    90
     0     0     0     0

All elements lie in the zx-plane and the element normal vectors point along the y-axis (90°,0°).

Finally, set the array normal along the z-axis. Obtain the normal vectors of the odd-numbered
elements.

sURA3 = phased.URA('Size',[2,2],'ArrayNormal','z');
pos = getElementPosition(sURA3)

pos = 3×4
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   -0.2500   -0.2500    0.2500    0.2500
    0.2500   -0.2500    0.2500   -0.2500
         0         0         0         0

normvec = getElementNormal(sURA3,[1,3])

normvec = 2×2

     0     0
    90    90

All elements lie in the xy-plane and the element normal vectors point along the z-axis (0°,90°).

Introduced in R2016a
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getElementPosition
System object: phased.HeterogeneousURA
Package: phased

Positions of array elements

Syntax
POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description
POS = getElementPosition(H) returns the element positions of the HeterogeneousURA System
object, H. POS is a 3-by-N matrix where N is the number of elements in H. Each column of POS
defines the position of an element in the local coordinate system, in meters, using the form [x; y;
z].

For details regarding the local coordinate system of the URA or heterogeneous URA, enter
phased.URA.coordinateSystemInfo on the command line.

POS = getElementPosition(H,ELEIDX) returns the positions of the elements that are specified
in the element index vector, ELEIDX. The element indices of a URA run down each column, then to
the top of the next column to the right. For example, in a URA with 4 elements in each row and 3
elements in each column, the element in the third row and second column has an index value of 6.
This syntax can use any of the input arguments in the previous syntax.

Examples

Element Positions of Heterogeneous URA

Construct a heterogeneous URA with a rectangular lattice, and obtain the element positions.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Y');
array = phased.HeterogeneousURA('ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 2; 2 1]);
pos = getElementPosition(array)

pos = 3×4

         0         0         0         0
   -0.2500   -0.2500    0.2500    0.2500
    0.2500   -0.2500    0.2500   -0.2500
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getNumElements
System object: phased.HeterogeneousURA
Package: phased

Number of elements in array

Syntax
N = getNumElements(H)

Description
N = getNumElements(H) returns the number of elements, N, in the HeterogeneousURA System
object H.

Examples

Find Number of Elements of Heterogeneous URA

Construct a Heterogeneous URA, and obtain the number of elements.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Y');
array = phased.HeterogeneousURA('ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 2; 2 1]);
N = getNumElements(array)

N = 4
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getTaper
System object: phased.HeterogeneousURA
Package: phased

Array element tapers

Syntax
wts = getTaper(h)

Description
wts = getTaper(h) returns the tapers, wts, applied to each element of the phased heterogeneous
uniform rectangular array (URA), h. Tapers are often referred to as weights.

Input Arguments
h — Uniform rectangular array
phased.HeterogeneousURA System object

Uniform rectangular array specified as a phased.HeterogeneousURA System object.

Output Arguments
wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector. The dimension N is the number
of elements in the array. The array tapers are returned in the same order as the element indices. The
element indices of a URA run down each column, then to the top of the next column to the right.

Examples

Heterogeneous URA Array Element Tapering

Construct a 2-by-5 element heterogeneous URA with a Taylor window taper along each row. Then,
show the array with the element taper shading.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Y');
array = phased.HeterogeneousURA('ElementSet',{antenna1,antenna2},...
    'ElementIndices',[1 2 2 2 1 ; 1 2 2 2 1],...
    'Taper',[taylorwin(5)';taylorwin(5)']);
w = getTaper(array)

w = 10×1
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    0.5181
    0.5181
    1.2029
    1.2029
    1.5581
    1.5581
    1.2029
    1.2029
    0.5181
    0.5181
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isPolarizationCapable
System object: phased.HeterogeneousURA
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the array
supports polarization. An array supports polarization if all of its constituent sensor elements support
polarization.

Input Arguments
h — Uniform rectangular array

Uniform rectangular array specified as phased.HeterogeneousURA System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if the array supports polarization or
false if it does not.

Examples

Short-dipole Antenna Array Polarization

Show that an array of short-dipole antenna element supports polarization.

antenna1 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9], ...
    'AxisDirection','Z');
antenna2 = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 1e9],...
    'AxisDirection','Y');
array = phased.HeterogeneousURA('ElementSet',{antenna1,antenna2}, ...
    'ElementIndices',[1 2 2 2 1 ; 1 2 2 2 1]);
isPolarizationCapable(array)

ans = logical
   1
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pattern
System object: phased.HeterogeneousURA
Package: phased

Plot heterogeneous URA directivity and power pattern

Syntax
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array specified in
sArray. The operating frequency is specified in FREQ.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the array pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-733 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sArray — Heterogeneous URA
System object

Heterogeneous conformal array, specified as a phased.HeterogeneousURA System object.
Example: sArray= phased.HeterogeneousURA;
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FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
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'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component
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Example: 'V'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT correspond to the
dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector
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Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Azimuth Pattern and Directivity of Heterogeneous URA

Construct a 3-by-3 heterogeneous URA of short-dipole antenna elements with a rectangular lattice.
Then, plot the array's azimuth pattern at 300 MHz.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousURA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);
fc = 300e6;
c = physconst('LightSpeed');
pattern(sArray,fc,[-180:180],0,...
    'PropagationSpeed',c,...
    'CoordinateSystem','rectangular',...
    'Type','powerdb',...
    'Normalize',true,...
    'Polarization','combined')
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Plot the same result in polar form.

pattern(sArray,fc,[-180:180],0,...
    'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'Normalize',true,...
    'Polarization','combined')
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Finally, plot the directivity.

pattern(sArray,fc,[-180:180],0,...
    'PropagationSpeed',c,...
    'CoordinateSystem','rectangular',...
    'Type','directivity')
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Azimuth Pattern of Heterogeneous URA For Two Sets of Weights

Construct a square 3-by-3 heterogeneous URA composed of 9 short-dipole antenna elements with
different orientations. Plot the array azimuth pattern from -45 degrees to 45 degrees in 0.1 degree
increments. The Weights parameter lets you display the array pattern simultaneously for different
sets of weights: in this case a uniform set of weights and a tapered set.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousURA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);
fc = [3e8];
c = physconst('LightSpeed');
wts1 = ones(9,1)/9;
wts2 = [.7,.7,.7,.7,1,.7,.7,.7,.7]';
wts2 = wts2/sum(wts2);
pattern(sArray,fc,[-45:0.1:45],0,...
    'PropagationSpeed',c,...
    'CoordinateSystem','rectangular',...
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    'Type','powerdb',...
    'Weights',[wts1,wts2],...
    'Polarization','combined')

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.HeterogeneousURA
Package: phased

Plot heterogeneous URA directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus azimuth (in dBi) for
the array sArray at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternAzimuth(sArray,FREQ,EL), in addition, plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When EL is a vector,
multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the array pattern. PAT is a matrix whose entries represent
the pattern at corresponding sampling points specified by the 'Azimuth' parameter and the EL
input argument.

Input Arguments
sArray — Heterogeneous URA
System object

Heterogeneous URA, specified as a phased.HeterogeneousURA System object.
Example: sArray= phased.HeterogeneousURA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension N is the
number of elevation angles, as determined by the EL input argument.

Examples

Azimuth Directivity of Heterogeneous URA

Construct a square 4-by-4 heterogeneous URA composed of a mix of crossed-dipole and short-dipole
antenna elements with short dipoles in the center. Plot the array azimuth directivity for two different
elevation angles. Set the operating frequency to 400 MHz.

sElement1 = phased.CrossedDipoleAntennaElement(...
    'FrequencyRange',[200e6 500e6]);
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[200e6 500e6],...
    'AxisDirection','Z');
elemindices = ones(4,4);
elemindices(2:3,2:3) = 2;
sArray = phased.HeterogeneousURA(...
    'ElementSet',{sElement1,sElement2},...
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    'ElementIndices',elemindices);
fc = 400e6;
c = physconst('LightSpeed');
patternAzimuth(sArray,fc,[0 30],...
    'PropagationSpeed',c,...
    'Type','directivity')

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
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array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation

Introduced in R2015a
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patternElevation
System object: phased.HeterogeneousURA
Package: phased

Plot heterogeneous ULA directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus elevation (in dBi)
for the array sArray at zero degrees azimuth angle. When AZ is a vector, multiple overlaid plots are
created. The argument FREQ specifies the operating frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the array pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sArray — Heterogeneous URA
System object

Heterogeneous URA array, specified as a phased.HeterogeneousURA System object.
Example: sArray= phased.HeterogeneousURA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of elevation angles determined by the 'Elevation' name-value pair argument. The dimension N is
the number of azimuth angles determined by the AZ argument.

Examples

Elevation Directivity of Heterogeneous URA

Construct a square 4-by-4 heterogeneous URA composed of a mix of crossed-dipole and short-dipole
antenna elements with short dipoles in the center. Plot the array elevation directivity for two different
azimuth angles. Set the operating frequency to 400 MHz.

sElement1 = phased.CrossedDipoleAntennaElement(...
    'FrequencyRange',[200e6 500e6]);
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[200e6 500e6],...
    'AxisDirection','Z');
elemindices = ones(4,4);
elemindices(2:3,2:3) = 2;
sArray = phased.HeterogeneousURA(...
    'ElementSet',{sElement1,sElement2},...
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    'ElementIndices',elemindices);
fc = 400e6;
c = physconst('LightSpeed');
patternElevation(sArray,fc,[0 75],...
    'PropagationSpeed',c,...
    'Type','directivity')

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
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array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth

Introduced in R2015a
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plotResponse
System object: phased.HeterogeneousURA
Package: phased

Plot response pattern of array

Syntax
plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ. The propagation speed is specified
in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie within the
range specified by a property of H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has no response at frequencies outside
that range. If you set the 'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a
row vector, plotResponse draws multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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CutAngle

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If RespCut is
'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be between –180
and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the array response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This parameter is not
applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.
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• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.

Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

Weights

Weight values applied to the array, specified as a length-N column vector or N-by-M matrix. The
dimension N is the number of elements in the array. The interpretation of M depends upon whether
the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose
N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for the

same single frequency or all M
frequencies.

N-by-M matrix

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

AzimuthAngles

Azimuth angles for plotting array response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting array response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
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Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When yous set the RespCut parameter to '3D',
you can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting array response, specified as a row vector. The UGrid parameter sets
the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting array response, specified as a row vector. The VGrid parameter sets
the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Azimuth Response and Directivity of Heterogeneous URA

Construct a 3-by-3 heterogeneous URA with a rectangular lattice, then plot the array's azimuth
response at 300 MHz.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousURA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);
fc = [3e8];
c = physconst('LightSpeed');
plotResponse(sArray,fc,c);
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Plot the same result in polar form.

plotResponse(sArray,fc,c,'RespCut','Az','Format','Polar');
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Finally, plot the directivity.

plotResponse(sArray,fc,c,'RespCut','Az','Unit','dbi');
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Azimuth Responses of a Heterogeneous URA For Two Sets of Weights

Construct a square 3-by-3 heterogeneous URA composed of 9 short-dipole antenna elements with
different orientations. Using the AzimuthAngles parameter, plot the array's azimuth response in the
-45 degrees to 45 degrees in 0.1 degree increments. The Weights parameter lets you display the
array's response simultaneously for different sets of weights: in this case a uniform set of weights and
a tapered set.

sElement1 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Z');
sElement2 = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[2e8 5e8],...
    'AxisDirection','Y');
sArray = phased.HeterogeneousURA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1; 2 2 2; 1 1 1]);
fc = [3e8];
c = physconst('LightSpeed');
wts1 = ones(9,1)/9;
wts2 = [.7,.7,.7,.7,1,.7,.7,.7,.7]';
wts2 = wts2/sum(wts2);
plotResponse(sArray,fc,c,'RespCut','Az',...
    'Format','Line',...
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    'AzimuthAngles',[-45:0.1:45],...
    'Weights',[wts1,wts2],'Unit','db');

See Also
azel2uv | uv2azel
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step
System object: phased.HeterogeneousURA
Package: phased

Output responses of array elements

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the array elements’ responses RESP at operating frequencies
specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of H.Element. That property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array. The element has zero response at
frequencies outside that range.

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must lie between –180° and 180°, inclusive. The elevation angle
must lie between –90° and 90°, inclusive.
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If ANG is a row vector of length M, each element specifies the azimuth angle of the direction. In this
case, the corresponding elevation angle is assumed to be 0°.

Output Arguments
RESP

Voltage responses of the phased array. The output depends on whether the array supports
polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP, has the
dimensions N-by-M-by-L. N is the number of elements in the array. The dimension M is the
number of angles specified in ANG. L is the number of frequencies specified in FREQ. For any
element, the columns of RESP contain the responses of the array elements for the corresponding
direction specified in ANG. Each of the L pages of RESP contains the responses of the array
elements for the corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a MATLAB
struct containing two fields, RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents the array’s vertical polarization
response. Each field has the dimensions N-by-M-by-L. N is the number of elements in the array,
and M is the number of angles specified in ANG. L is the number of frequencies specified in FREQ.
Each column of RESP contains the responses of the array elements for the corresponding direction
specified in ANG. Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples

Response of 2-by-2 Heterogeneous URA of Cosine Antennas

Construct a 2-by-2 rectangular lattice heterogeneous URA of cosine antenna elements. Find the
response of each element at 30 degrees azimuth and 0 degrees elevation. Assume the operating
frequency is 1 GHz. Then, plot the array directivity.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousURA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 2; 2 1]);
fc = 1e9;
c = physconst('LightSpeed');
ang = [30;0];
resp = step(sArray,fc,ang)

resp = 4×1

    0.8059
    0.7719
    0.7719
    0.8059

Show the 3-D directivity pattern.
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pattern(sArray,fc,[-180:180],[-90:90],...
    'PropagationSpeed',c,...
    'CoordinateSystem','rectangular',...
    'Type','directivity')

See Also
phitheta2azel | uv2azel
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viewArray
System object: phased.HeterogeneousURA
Package: phased

View array geometry

Syntax
viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray( ___ )

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options specified by
one or more Name,Value pair arguments.

hPlot = viewArray( ___ ) returns the handle of the array elements in the figure window. All input
arguments described for the previous syntaxes also apply here.

Input Arguments
H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each number in the vector must be an
integer between 1 and the number of elements. You can also specify the value 'All' to show the
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

Set this value to true to show the normal directions of all elements of the array. Set this value to
false to plot the elements without showing normal directions.

Default: false
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ShowTaper

Set this value to true to specify whether to change the element color brightness in proportion to the
element taper magnitude. When this value is set to false, all elements are drawn with the same
color.

Default: false

Title

Character vector specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handle of array elements in figure window.

Examples

Geometry, Normal Directions, and Indices of Heterogeneous URA Elements

Display the element positions, normal directions, and indices for all elements of a 4-by-4
heterogeneous URA.

sElement1 = phased.CosineAntennaElement('CosinePower',1.5);
sElement2 = phased.CosineAntennaElement('CosinePower',1.8);
sArray = phased.HeterogeneousURA(...
    'ElementSet',{sElement1,sElement2},...
    'ElementIndices',[1 1 1 1; 1 2 2 1; 1 2 2 1; 1 1 1 1]);
viewArray(sArray,'ShowIndex','all','ShowNormal',true);

 viewArray

1-759



See Also
phased.ArrayResponse

Topics
Phased Array Gallery
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phased.IntensityScope
Package: phased

Range-time-intensity (RTI) or Doppler-time-intensity (DTI) display

Description
The phased.IntensityScope System object creates an intensity scope for viewing range-time-
intensity (RTI) or Doppler-time-intensity (DTI) data. An intensity scope is a scrolling waterfall of
intensity values as a function of time. Scan lines appear at the bottom of the display window and
scroll off at the top. Each scan line represents signal intensity as a function of a parameter of
interest, such as range or speed. You can also use this object to display angle-time-intensity data and
spectral data. This figure shows an RTI display.

To create an intensity scope:

1 Define and set up the phased.IntensityScope System object. You can set any System object
properties at this time or you can leave them at their default values. See “Construction” on page
1-762 .

2 Call the step method to add intensity lines to the bottom of the display according to the
properties of the phased.IntensityScope System object. Some properties are tunable and
can be changed at any time. Non-tunable properties cannot be changed after the first call to
step. Subsequent calls to step add more intensity lines.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.
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Construction
sIS = phased.IntensityScope creates an intensity scope System object, sIS, having default
property values.

sIS = phased.IntensityScope(Name,Value) returns an intensity scope System object, sIS,
with each specified property Name set to a specified Value. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
Name — Window name
'Intensity Scope' (default) | character vector

Intensity scope window name, specified as a character vector. Name property and Title are different
properties. The title appears inside the display window, above the data. The name appears in the title
bar of the window.
Example: 'Range Intensity'
Data Types: char

XResolution — X-axis sample spacing
1 (default) | positive real-valued scalar

X-axis sample spacing, specified as a positive real-valued scalar. This quantity determines the width of
each horizontal bin of the scan line. The units depend on the interpretation of the data. For example,
if you are creating an RTI display, then setting XResolution to 0.5 is interpreted as 0.5 meters.
Example: 0.5
Data Types: double

XOffset — X-axis offset
0 (default) | real-valued scalar

X-axis offset, specified as a real-valued scalar. This quantity sets the value of the lowest bin of the
scan line. The values of all other bins are equal to this value plus an integer multiple of
Xresolution. The units depend upon the interpretation of the data. For example, if you are creating
an RTI display, then setting XOffset to 100.0 is interpreted as 100 meters.
Example: -0.1
Data Types: double

Xlabel — X-axis label
'' (default) | character vector

X-axis label, specified as a character vector.
Example: 'Range (km)'
Data Types: char

Title — Title of display
'' (default) | character vector
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Title of the intensity scope display, specified as a character vector. Title property and Name are
different properties. The title appears inside the display window, above the data. The name appears in
the title bar of the window.
Example: 'Range vs Time'
Data Types: char

TimeResolution — Time resolution
.001 (default) | positive real-valued scalar

Time resolution of intensity line(s), specified as a positive real-valued scalar. Units are seconds.
Example: .0001
Data Types: double

TimeSpan — Time span of display window
0.1 (default) | positive real-valued scalar

Time span of intensity display, specified as a positive real-valued scalar. Units are seconds.
Example: 5.0
Data Types: double

IntensityUnits — Intensity units label
'dB' (default) | character vector

Intensity units label displayed in the color bar, specified as a character vector.
Example: 'Watts'
Data Types: char

Position — Location and size of intensity scope window
depends on display-resolution (default) | 1-by-4 vector of positive values

Location and size of the intensity scope window, specified as a 1-by-4 vector having the form [left
bottom width height]. Units are in pixels.

• left and bottom specify the location of the bottom-left corner of the window.
• width and height specify the width and height of the window.

The default value of this property depends on the resolution of your display. This property is tunable.
Example: [100 100 500 400]
Data Types: double

Methods

hide Hide intensity scope window
reset Reset state of intensity scope System object
show Show intensity scope window
step Update intensity scope display
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Common to All System Objects
release Allow System object property value changes

Examples

RTI Display of Moving Target

Use a phased.IntensityScope System object? to display the echo intensity of a moving target as a
function of range and time.

Run the simulation for 5 seconds at 0.1 second steps. In the display, each horizontal scan line shows
the intensities of radar echo at each time step.

nsteps = 50;
dt = .1;
timespan = nsteps*dt;

Simulate a target at a range of 320.0 km and a range rate of 2.0 km/s. Echoes are resolved into range
bins of 1 km resolution. The range bins span from 50 to 1000 km.

rngres = 1.0;
rngmin = 50.0;
rngmax = 1000.0;
tgtrange = 320.0;
rangerate = 2.0;
rngscan = [rngmin:rngres:rngmax];

Set up the Intensity Scope using these properties.

• Use the XResolution property to set the width of each scan line bin to the range resolution of 1
km.

• Use the XOffset property to set the value of the lowest range bin to the minimum range of 50
km.

• Use the TimeResolution property to set the value of the scan line time difference to 0.1 s.
• Use the TimeSpan property to set the height of the display window to the time duration of the

simulation.
• Use the IntensityUnits property to set the display units to Watts.

scope = phased.IntensityScope('Name','IntensityScope Display',...
    'Title','Range vs. Time','XLabel','Range (km)',...
    'XResolution',rngres,'XOffset',rngmin,...
    'TimeResolution',dt,'TimeSpan',timespan, ...
    'IntensityUnits','Watts','Position',[100,100,800,450]);

Update the current target bin and create entries for two adjacent range bins. Each call to the step
method creates a new scan line.

for k = 1:nsteps
    bin = floor((tgtrange - rngmin)/rngres) + 1;
    scanline = zeros(size(rngscan));
    scanline(bin+[-1:1]) = 1;
    scope(scanline.');
    tgtrange = tgtrange + dt*rangerate;
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    pause(.1);
end

RTI Display of Three Moving Targets

Use the phased.IntensityScope System object? to display the intensities of the echoes of three
moving targets as functions of range and time.

Create the Radar and Target System Objects

Set up the initial positions and velocities of the three targets. Use the phased.Platform System
object? to model radar and target motions. The radar is stationary while the targets undergo constant
velocity motion. The simulation runs for 500 steps at 0.1 second increments, giving a total simulation
time of 50 seconds.

nsteps = 500;
dt = .1;
timespan = nsteps*dt;
x1 = [60,0,0]';
x2 = [60,-80,40]';
x3 = [300,0,-300]';
v1 = [2,0,0]';
v2 = [10,5,6]';
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v3 = [-10,2,-4]';
platform = phased.Platform([0,0,0]',[0,0,0]');
targets = phased.Platform([x1,x2,x3],[v1,v2,v3]);

Set Up Range Bins

Each echo is put into a range bin. The range bin resolution is 1 meter and the range is from 50 to
1000 meters.

rngres = 1.0;
rngmin = 50.0;
rngmax = 1000.0;
rngscan = [rngmin:rngres:rngmax];

Create the Gain Function

Define a range-dependent gain function to enhance the display of targets at larger ranges. The gain
function amplifies the returned echo for visualization purposes only.

rangegain = @(rng)(1e12*rng^4);

Create the Intensity Scope

Set up the Intensity Scope using these properties.

• Use the XResolution property to set the width of each scan line bin to the range resolution of 1
km.

• Use the XOffset property to set the value of the lowest range bin to the minimum range of 50
km.

• Use the TimeResolution property to set the value of the scan line time difference to 0.1 s.
• Use the TimeSpan property to set the height of the display window to the time duration of the

simulation.
• Use the IntensityUnits property to set the display units to Watts.

scope = phased.IntensityScope('Name','IntensityScope Display',...
    'Title','Ranges vs. Time','XLabel','Range (m)','XResolution',rngres,...
    'XOffset',rngmin,'TimeResolution',dt,'TimeSpan',timespan, ...
    'IntensityUnits','Watts','Position',[100,100,800,450]);

Run Simulation Loop

1 In this loop, move the targets at constant velocity using the step method of the
phased.Platform System object.

2 Compute the target ranges using the rangeangle function.
3 Compute the target range bins by quantizing the range values in integer multiples of rangres.
4 Fill each target range bin and neighboring bins with a simulated radar intensity value.
5 Add the signal from each target to the scan line.
6 Call the step method of the phased.IntensityScope System object to display the scan lines.

for k = 1:nsteps
    xradar = platform(dt);
    xtgts = targets(dt);
    [rngs] = rangeangle(xtgts,xradar);
    scanline = zeros(size(rngscan));
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    rngindx = ceil((rngs(1) - rngmin)/rngres);
    scanline(rngindx + [-1:1]) = rangegain(rngs(1))/(rngs(1)^4);

    rngindx = ceil((rngs(2) - rngmin)/rngres);
    scanline(rngindx + [-1:1]) = rangegain(rngs(2))/(rngs(2)^4);

    rngindx = ceil((rngs(3) - rngmin)/rngres);
    scanline(rngindx + [-1:1]) = rangegain(rngs(3))/(rngs(3)^4);

    scope(scanline.');
    pause(.1);
end

RTI and DTI Displays in Full Radar Simulation

Use the phased.IntensityScope System object? to display the detection output of a complete
radar system simulation. The radar scenario contains a stationary single-element monostatic radar
and three moving targets.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).
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Set Radar Operating Parameters

Set the probability of detection, probability of false alarm, maximum range, range resolution,
operating frequency, transmitter gain, and target radar cross-section.

pd = 0.9;
pfa = 1e-6;
max_range = 5000;
range_res = 50;
fc = 10e9;
tx_gain = 20;
tgt_rcs = 1;

Choose the signal propagation speed to be the speed of light, and compute the signal wavelength
corresponding to the operating frequency.

c = physconst('LightSpeed');
lambda = c/fc;

Compute the pulse bandwidth from the range resolution. Set the sampling rate, fs, to twice the pulse
bandwidth. The noise bandwidth is also set to the pulse bandwidth. The radar integrates a number of
pulses set by num_pulse_int. The duration of each pulse is the inverse of the pulse bandwidth.

pulse_bw = c/(2*range_res);
pulse_length = 1/pulse_bw;
fs = 2*pulse_bw;
noise_bw = pulse_bw;
num_pulse_int = 10;

Set the pulse repetition frequency to match the maximum range of the radar.

prf = c/(2*max_range);

Compute Transmit Power

Use the Albersheim equation to compute the SNR required to meet the desired probability of
detection and probability of false alarm. Then, use the radar equation to compute the power needed
to achieve the required SNR.

snr_min = albersheim(pd, pfa, num_pulse_int);
peak_power = radareqpow(lambda,max_range,snr_min,pulse_length,...
    'RCS',tgt_rcs,'Gain',tx_gain);

Create System Objects for the Model

Choose a rectangular waveform.

waveform = phased.RectangularWaveform('PulseWidth',pulse_length,...
    'PRF',prf,'SampleRate',fs);

Set the receiver amplifier characteristics.

amplifier = phased.ReceiverPreamp('Gain',20,'NoiseFigure',0,...
    'SampleRate',fs,'EnableInputPort',true,'SeedSource','Property',...
    'Seed',2007);
transmitter = phased.Transmitter('Gain',tx_gain,'PeakPower',peak_power,...
    'InUseOutputPort',true);

Specify the radar antenna as a single isotropic antenna.
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antenna = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);

Set up a monostatic radar platform.

radarplatform = phased.Platform('InitialPosition',[0; 0; 0],...
    'Velocity',[0; 0; 0]);

Set up the three target platforms using a single System object.

targetplatforms = phased.Platform(...
    'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0; 0 0 0], ...
    'Velocity',[150 -150 0; 0 0 0; 0 0 0]);

Create the radiator and collector System objects.

radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc);

Set up the three target RCS properties.

targets = phased.RadarTarget('MeanRCS',[1.6 2.2 1.05],'OperatingFrequency',fc);

Create System object to model two-way freespace propagation.

channels= phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,...
    'OperatingFrequency',fc);

Define a matched filter.

MFcoef = getMatchedFilter(waveform);
filter = phased.MatchedFilter('Coefficients',MFcoef,'GainOutputPort',true);

Create Range and Doppler Bins

Set up the fast-time grid. Fast time is the sampling time of the echoed pulse relative to the pulse
transmission time. The range bins are the ranges corresponding to each bin of the fast time grid.

fast_time = unigrid(0,1/fs,1/prf,'[)');
range_bins = c*fast_time/2;

To compensate for range loss, create a time varying gain System Object?.

gain = phased.TimeVaryingGain('RangeLoss',2*fspl(range_bins,lambda),...
    'ReferenceLoss',2*fspl(max_range,lambda));

Set up Doppler bins. Doppler bins are determined by the pulse repetition frequency. Create an FFT
System object for Doppler processing.

DopplerFFTbins = 32;
DopplerRes = prf/DopplerFFTbins;
fft = dsp.FFT('FFTLengthSource','Property',...
    'FFTLength',DopplerFFTbins);

Create Data Cube

Set up a reduced data cube. Normally, a data cube has fast-time and slow-time dimensions and the
number of sensors. Because the data cube has only one sensor, it is two-dimensional.

rx_pulses = zeros(numel(fast_time),num_pulse_int);
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Create IntensityScope System Objects

Create two IntensityScope System objects, one for Doppler-time-intensity and the other for range-
time-intensity.

dtiscope = phased.IntensityScope('Name','Doppler-Time Display',...
    'XLabel','Velocity (m/sec)', ...
    'XResolution',dop2speed(DopplerRes,c/fc)/2, ...
    'XOffset',dop2speed(-prf/2,c/fc)/2,...
    'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');
rtiscope = phased.IntensityScope('Name','Range-Time Display',...
    'XLabel','Range (m)', ...
    'XResolution',c/(2*fs), ...
    'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');

Run the Simulation Loop Over Multiple Radar Transmissions

Transmit 2000 pulses. Coherently process groups of 10 pulses at a time.

For each pulse:

1 Update the radar position and velocity radarplatform
2 Update the target positions and velocities targetplatforms
3 Create the pulses of a single wave train to be transmitted transmitter
4 Compute the ranges and angles of the targets with respect to the radar
5 Radiate the signals to the targets radiator
6 Propagate the pulses to the target and back channels
7 Reflect the signals off the target targets
8 Receive the signal sCollector
9 Amplify the received signal amplifier
10 Form data cube

For each set of 10 pulses in the data cube:

1 Match filter each row (fast-time dimension) of the data cube.
2 Compute the Doppler shifts for each row (slow-time dimension) of the data cube.

pri = 1/prf;
nsteps = 200;
for k = 1:nsteps
    for m = 1:num_pulse_int
        [ant_pos,ant_vel] = radarplatform(pri);
        [tgt_pos,tgt_vel] = targetplatforms(pri);
        sig = waveform();
        [s,tx_status] = transmitter(sig);
        [~,tgt_ang] = rangeangle(tgt_pos,ant_pos);
        tsig = radiator(s,tgt_ang);
        tsig = channels(tsig,ant_pos,tgt_pos,ant_vel,tgt_vel);
        rsig = targets(tsig);
        rsig = collector(rsig,tgt_ang);
        rx_pulses(:,m) = amplifier(rsig,~(tx_status>0));
    end
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    rx_pulses = filter(rx_pulses);
    MFdelay = size(MFcoef,1) - 1;
    rx_pulses = buffer(rx_pulses((MFdelay + 1):end), size(rx_pulses,1));
    rx_pulses = gain(rx_pulses);
    range = pulsint(rx_pulses,'noncoherent');
    rtiscope(range);
    dshift = fft(rx_pulses.');
    dshift = fftshift(abs(dshift),1);
    dtiscope(mean(dshift,2));
    radarplatform(.05);
    targetplatforms(.05);
end
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All of the targets lie on the x-axis. Two targets are moving along the x-axis and one is stationary.
Because the radar is at the origin, you can read the target speed directly from the Doppler-Time
Display window. The values agree with the specified velocities of -150, 150, and 0 m/sec.

See Also
spectrogram

Topics
“Measure Intensity Levels Using the Intensity Scope”

Introduced in R2016a
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phased.RTIScope
Package: phased

Range intensity scope

Description
The phased.RTIScope System object creates a scrolling display of range response intensity as a
function of time. Each row represents the range response for a pulse or FMCW signal. Sequential
calls to the object add new rows to the bottom of the display window. Columns represent the
responses at a specific range over all pulses. You can input two types of data - in-phased and
quadrature (I/Q) data or response data.

• I/Q data – The input consists of fast-time I/Q samples for one or more pulses or FM sweeps. The
scope computes the range response and adds it to the display. To use I/Q data, set the
IQDataInput property to true. In this mode, you can set the properties shown in “Properties
Applicable to I/Q Data” on page 1-781.

• Response data – The data consists of the range response itself. The scope adds the range response
to the display. For example, you can obtain the range response from a phased.RangeResponse
object. To use response data, set the IQDataInput property to false. In this mode, you can set
the properties shown in “Properties Applicable to Response Data” on page 1-781.

To create and run a range-time intensity scope,

1 Create the phased.RTIScope object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.
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Creation

Syntax
scope = phased.RTIScope
scope = phased.phased.RTIScope(Name,Value)

Description

scope = phased.RTIScope creates a range-time intensity scope System object, scope. This object
displays the intensity of the range-time response for the input data.

scope = phased.phased.RTIScope(Name,Value) creates a range-time intensity scope, scope,
with each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose property names in quotes. For
example,

scope = phased.RTIScope('IQInputData',true,'RangeMethod', ...
        'FFT','SampleRate',1e6,'TimeResolution,0.5,'TimeSpan',10.0, ...
        'RangeFFTLength',1024);

creates a scope object that uses FFT-based range processing for I/Q data having a sample rate of 1
MHz. The time resolution is 0.5 seconds and the time span is 10 seconds. The range FFT length is
1024 samples.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Name — Display caption
'Range Time Intensity Scope' (default) | character vector

Display caption, specified as a character vector. The caption appears in the title bar of the window.
Example: 'Multi-target Range Time Intensity Scope'

Tunable: Yes
Data Types: char

Position — Location and size of intensity scope window
depends on display-resolution (default) | 1-by-4 vector of positive values

Location and size of the intensity scope window, specified as a 1-by-4 vector having the form [left
bottom width height].

• left and bottom specify the location of the bottom-left corner of the window.
• width and height specify the width and height of the window.
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Units are in pixels.

The default value of this property depends on the resolution of your display. By default, the window is
positioned in the center of the screen, with a width and height of 800 and 450 pixels, respectively.
Example: [100 100 500 400]

Tunable: Yes
Data Types: double

IQDataInput — Type of input data
false (default) | true

Type of input data, specified as false or true. When true, the object assumes that the input
consists of I/Q sample data and further processing is required in the range domain. When false, the
object assumes that the data is response data that has already been processed.
Data Types: logical

RangeLabel — Range axis label
'Range (m)' (default) | character vector

Range-axis label, specified as a character vector.
Example: 'Range (km)'

Tunable: Yes
Data Types: char

RangeResolution — Range difference between samples
1.0 (default) | positive scalar

Range distance between samples, specified as a positive scalar. This property defines the distance
between columns of the scope. Units are in meters.
Data Types: double

RangeOffset — Range offset
0.0 (default) | positive scalar

Range offset, specified as a positive scalar. This property defines the range value of the first column
of the display. Units are in meters.
Data Types: double

TimeResolution — Time difference between rows
0.001 (default) | positive scalar

Time interval between samples, specified as a positive scalar. This property defines the time interval
between the rows of the scope. Units are in seconds.
Data Types: double

TimeSpan — Time span of display
0.100 (default) | positive scalar

Time span of the intensity display, specified as a positive scalar. Units are in seconds.

 phased.RTIScope

1-775



Data Types: double

IntensityUnits — Response intensity units
'db' (default) | 'magnitude' | 'power'

Response intensity units, specified as a 'db', 'magnitude', or 'power'.
Data Types: char

RangeMethod — Range processing method
'Matched filter' (default) | 'FFT'

Range-processing method, specified as 'Matched filter' or 'FFT'.

'Matched filter' The object applies a matched filter to the incoming signal. This
approach is commonly used with pulsed signals, where the matched
filter is a time-reversed replica of the transmitted signal.

'FFT' Algorithm performs range processing by applying an FFT to the
input signal. This approach is commonly used with FMCW
continuous signals and linear FM pulsed signals.

Dependencies

To enable this property, set the IQDataInput property to true.

PropagationSpeed — Signal propagation speed
physconst('Lightspeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. The default value of this property is the
speed of light. See physconst. Units are in meters/second.
Example: 3e8

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

SampleRate — Sample rate
1e6 (default) | positive scalar

Sample rate, specified as a positive scalar. Units are in Hz.
Example: 10e3

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

SweepSlope — FM sweep slope
1e9 (default) | scalar

Slope of the linear FM sweep, specified as a scalar. Units are in Hz/sec.
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Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: double

DechirpInput — Dechirp input signal
false (default) | true

Set this property to true to dechirp the input signal before performing range processing. false
indicates that the input signal is already dechirped and no dechirp operation is necessary.

Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: logical

RangeFFTLength — FFT length used in range processing
1024 (default) | positive integer

FFT length used for range processing, specified as a positive integer.
Example: 128

Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: double

ReferenceRangeCentered — Set reference range at center of range span
true (default) | false

Set this property to true to set the reference range to the center of the range span. Set this property
to false to set the reference range to the beginning of the range span.

Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: logical

Usage

Syntax
scope(X)

scope(X,Xref)
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Description

scope(X) adds new rows to the range-time intensity scope. The input X can be I/Q sample data or
range response data depending on the value of the IQDataInput property.

scope(X,Xref) also specifies a reference signal to use for dechirping the input signal, X. This
syntax applies when you set the IQDataInput property to true, the RangeMethod property to
'FFT', and the DechirpInput property to true. This syntax is most commonly used with FMCW
signals. Xref is generally the transmitted signal.

scope(X,coeff) also specifies matched filter coefficients, coeff. This syntax applies when you set
the IQDataInput property to true and the RangeMethod property to 'Matched Filter'. This
syntax is most commonly used with pulsed signals.

Input Arguments

X — Input data
real-valued N-by-M matrix | complex-valued N-by-M matrix

Input data, specified as a complex-valued N-by-M matrix. The interpretation of the data depends on
the setting of the IQDataInput property.

• When IQDataInput is true, each column contains N fast-time I/Q samples for a pulse or an
FMCW sweep. M is the number of pulses in the case of pulsed signals or the number of dechirped
frequency sweeps for FMCW signals. The scope computes and displays the range-response.

• When RangeMethod is set to 'FFT' and DechirpInput is false, X has previously been
dechirped.

• When RangeMethod is set to 'FFT' and DechirpInput is false, X has not been previously
dechirped. Use the syntax that includes XREF as input data.

• When RangeMethod is set to 'MatchedFilter', X has not been matched filtered. Use the
syntax that includes COEF as input data.

• When IQDataInput is false, each column contains N response samples for a pulse or an FMCW
sweep such as that produced by the phased.RangeResponse. M is the number of pulses in the
case of pulsed signals or the number of dechirped frequency sweeps for FMCW signals. The scope
only displays the range-response.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Scope Objects
show Turn on visibility of scopes
hide Turn off visibility of scope
isVisible Visibility of scopes

Common to All System Objects
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Display Range Time Intensity Map for Three Targets

Create a scrolling display of intensity at each range as function of time. The intensity is a combination
of intensities from three simulated targets. One target starts at a range of 250 m and moves outward
to 950 m. The second target starts at 1000 m and moves inward to 300 m. The third stays a 400 m.
The intensities are computed using the inline function rangePow. The targets move in steps of 10 m
but the rangePow function spreads the intensity over nearby range bins which are spaced every
meter.

The inline function rangePow simulates a spread target return having an intensity falling off with the
fourth power of range.

txpow = 200;
gain = 2e8;
std = 5;
rangePow = @(rngbins,range) ...
    gain.*exp(-0.5*((rngbins-range)./std).^2).* ...
    txpow./(range.^4)./(sqrt(2*pi).*std);

Create an RTI Scope to view intensity data.

scope = phased.RTIScope( ...
    'IQDataInput',false,...
    'Name','Range-Time Intensity Scope',...
    'Position',[560 375 560 420],...
    'RangeLabel','Range (m)', ...
    'RangeResolution',1, ...
    'TimeResolution',0.05,'TimeSpan',6, ...
    'IntensityUnits','magnitude');

Create range bins for three targets.

rngbins = 0:900;
ranges(:,1) = 250:10:950;
ranges(:,2) = 1000:-10:300;
ranges(:,3) = 400;

Fill in all range bins by looping over all ranges and add each line at a time to the scope.

for k = 1:size(ranges,1)
    y = rangePow(rngbins,ranges(k,1)) + ...
        rangePow(rngbins,ranges(k,2)) + ...
        rangePow(rngbins,ranges(k,3));
    scope(y.');
    pause(.1);
end
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More About
Properties Applicable to I/Q Data

These properties are applicable when IQDataInput is true.

Properties
Name Position
RangeLabel RangeResolution
RangeOffset TimeResolution
TimeSpan IntensityUnits
RangeMethod PropagationSpeed
SampleRate SweepSlope
DechirpInput RangeFFTLength
ReferenceRangeCentered  

Properties Applicable to Response Data

These properties are applicable when IQDataInput is false.
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Properties
Name Position
RangeLabel RangeResolution
RangeOffset TimeResolution
TimeSpan IntensityUnits

See Also
hide | isVisible | phased.AngleDopplerScope | phased.DTIScope |
phased.RangeAngleScope | phased.RangeDopplerResponse | phased.RangeDopplerScope |
phased.RangeResponse | show

Introduced in R2019a

1 Objects

1-782



phased.DTIScope
Package: phased

Doppler-time intensity scope

Description
The phased.DTIScope System object creates a scrolling display of Doppler response intensity as a
function of time. Each row represents the Doppler response for a pulse or FMCW signal. Sequential
calls to the object add new rows to the bottom of the display window. Columns represent the
responses at specific Doppler values as a function of time. You can input two types of data - in-phased
and quadrature (I/Q) data or response data.

• I/Q data – The input consists of fast-time I/Q samples from one or more pulses or FM sweeps. The
scope computes the Doppler response and adds it to the display. To use I/Q data, set the
IQDataInput property to true. In this mode, you can set the properties listed in “Properties
Applicable to I/Q Data” on page 1-781.

• Response data – The data consists of the Doppler response itself as a function of time. The scope
only adds the Doppler response to the display. For example, you can obtain Doppler responses
from the phased.RangeDopplerResponse System object. To use response data, set the
IQDataInput property to false. In this mode, you can set the properties listed in “Properties
Applicable to Response Data” on page 1-781.

To create and run a Doppler-time intensity scope,

1 Create the phased.DTIScope object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.
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Creation

Syntax
scope = phased.DTIScope
scope = phased.phased.DTIScope(Name,Value)

Description

scope = phased.DTIScope creates a Doppler time intensity scope System object, scope. This
object displays the Doppler-time response intensity of the input data.

scope = phased.phased.DTIScope(Name,Value) creates a Doppler-time intensity scope object,
scope, with each specified property set to the specified value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose property names in quotes.
For example,

scope = phased.DTIScope('IQInputData',false, ...
        'OperatingFrequency',1e6, ...
        'SampleRate',1e6,'DopplerOutput','Speed', ...
        'OperatingFrequency',10e6,'DopplerFFTLength',512);

creates a scope object that displays a 10-second time span of data using a Doppler FFT size of 512 for
I/Q data. The Doppler output units are speed in meters per second.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Name — Display caption
Doppler Time Intensiy Scope' (default) | character vector

Display caption, specified as a character vector. The caption appears in the title bar of the window.
Example: 'Multi-target Doppler Time Intensiy Scope'

Tunable: Yes
Data Types: char

Position — Location and size of intensity scope window
depends on display-resolution (default) | 1-by-4 vector of positive values

Location and size of the intensity scope window, specified as a 1-by-4 vector having the form [left
bottom width height].

• left and bottom specify the location of the bottom-left corner of the window.
• width and height specify the width and height of the window.

1 Objects

1-784



Units are in pixels.

The default value of this property depends on the resolution of your display. By default, the window is
positioned in the center of the screen, with a width and height of 800 and 450 pixels, respectively.
Example: [100 100 500 400]

Tunable: Yes
Data Types: double

IQDataInput — Type of input data
false (default) | true

Type of input data, specified as true or false. When true, the object assumes that the input
consists of I/Q sample data and further processing is required in the Doppler domain. When false,
the object assumes that the data is response data that has already been processed.
Data Types: logical

DopplerResolution — Doppler interval between samples
1.0 (default) | positive scalar

Doppler interval between samples, specified as a positive scalar. This property defines the Doppler
frequency difference between the scope columns. Units are in Hz.
Data Types: double

DopplerOffset — Doppler axis offset
0.0 (default) | scalar

Doppler axis offset, specified as a scalar. This property apples a frequency offset to the Doppler axis.
Units are in Hz.
Data Types: double

TimeResolution — Time difference between rows
0.001 (default) | positive scalar

Time interval between samples, specified as a positive scalar. This property defines the time duration
between rows of scope. Units are in seconds.
Data Types: double

TimeSpan — Time duration of display
0.100 (default) | positive scalar

Time span of the intensity display, specified as a positive scalar. Units are in seconds.
Data Types: double

IntensityUnits — Response Intensity units
'db' (default) | 'magnitude' | 'power'

Response intensity units, specified as a 'db', 'magnitude', or 'power'.
Data Types: char
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DopplerOutput — Doppler output domain
'Frequency' (default) | 'Speed'

Doppler output domain, specified as 'Frequency' or 'Speed'. If you set this property to
'Frequency', the Doppler domain is the Doppler shift. Units are in Hz. If you set this property to
'Speed'', the Doppler domain is the corresponding radial speed. Units are in m/s.
Data Types: char

PropagationSpeed — Signal propagation speed
physconst('Lightspeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. The default value of this property is the
speed of light. See physconst. Units are in meters/second.
Example: 3e8

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar.

Dependencies

To enable this property, set the IQDataInput property to true and the DopplerOutput to
'Speed'.
Data Types: double

DopplerFFTLength — FFT length used in Doppler processing
1024 (default) | positive integer

FFT length used in Doppler processing, specified as a positive integer.

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

Usage

Syntax
scope(X)

Description

scope(X) updates and displays the Doppler-time intensity scope for the input data, X. The input X
can be I/Q sample data or Doppler response data depending on the value of the IQDataInput
property.
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Input Arguments

X — Input data
complex-valued K-by-L matrix

Input data, specified as a complex-valued K-by-L matrix. The interpretation of the data depends on
the value of the IQDataInput property.

• When IQDataInput is true, the input consists of received fast-time and slow-time data for each
PRI pulse or FMCW sweep. K denotes the number of time samples. L is the number of pulses in
the case of pulsed signals or the number of dechirped frequency sweeps for FMCW signals. The
scope computes and displays the Doppler response.

• When IQDataInput is false, the input already consists of response data in the Doppler domain
such as that produced, for example, by phased.RangeDopplerResponse. Each row contains the
set of Doppler responses. Each response corresponds to an element of the Dop vector. The scope
serves only as a display of the Doppler response.

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Scope Objects
show Turn on visibility of scopes
hide Turn off visibility of scope
isVisible Visibility of scopes

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Display Doppler-Time Intensity Map for Three Targets

Create a phased.DTIScope object to view a scrolling Doppler-Time Intensity map.

Load the example data.

load('RTIDTIExampleData.mat')
rx_pulses = zeros(numel(fast_time),num_pulse_int);

Create the DTI scope.

scope = phased.DTIScope('IQDataInput',false,...
    'DopplerOutput','Speed',...
    'PropagationSpeed',c,...

 phased.DTIScope
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    'OperatingFrequency',fc,...
    'Name','Doppler-Time Display',...
    'DopplerResolution',DopplerRes, ...
    'DopplerOffset',-prf/2,...
    'TimeResolution',0.05,...
    'TimeSpan',5,...
    'IntensityUnits','magnitude',...
    'Position',[560 375 560 420]);

Obtain the pulse repetition interval, 33.3564 microsec.

pri = 1/prf;

Transmit 2000 pulses and coherently process a train of 10 pulses at a time. There are 200 trains.
After each pulse, move the target and radar platform. The radar reflects off three targets. The first
moves along the x-axis at -150 m/sec. The second moves along the x-axis at +150 m/sec. The third
target is stationary. After each pulse train, compute the Doppler response using an FFT.

nsteps = 200;
for k = 1:nsteps
    for m = 1:num_pulse_int
        [ant_pos,ant_vel] = radarplatform(pri);
        [tgt_pos,tgt_vel] = targetplatforms(pri);
        sig = waveform();
        [s,tx_status] = transmitter(sig);
        [~,tgt_ang] = rangeangle(tgt_pos,ant_pos);
        tsig = radiator(s,tgt_ang);
        tsig = channels(tsig,ant_pos,tgt_pos,ant_vel,tgt_vel);
        rsig = targets(tsig);
        rsig = collector(rsig,tgt_ang);
        rx_pulses(:,m) = preamplifier(rsig,~(tx_status>0));
    end
    
    rx_pulses = gain(rx_pulses);
    dshift = fft(rx_pulses.');
    dshift = fftshift(abs(dshift),1);
    scope(mean(dshift,2));
    
    pause(0.1)
    radarplatform(.05);
    targetplatforms(.05);
end
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More About
Properties Applicable to I/Q Data

These properties are applicable when IQDataInput is true.

Properties
Name Position
DopplerResolution DopplerOffset
TimeResolution TimeSpan
IntensityUnits DopplerOutput
PropagationSpeed OperatingFrequency
DopplerFFTLength  

Properties Applicable to Response Data

These properties are applicable when IQDataInput is false.

Properties
Name Position
DopplerResolution DopplerOffset
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Properties
TimeResolution TimeSpan
IntensityUnits DopplerOutput
PropagationSpeed OperatingFrequency

See Also
hide | isVisible | phased.AngleDopplerScope | phased.RTIScope |
phased.RangeAngleScope | phased.RangeDopplerResponse | phased.RangeDopplerScope |
show

Introduced in R2019a
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hide
System object: phased.IntensityScope
Package: phased

Hide intensity scope window

Syntax
hide(sIS)

Description
hide(sIS) hides the display window of the phased.IntensityScope object, sIS.

Input Arguments
sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Examples

Hide and Show Intensity Scope

Create an angle-time-intensity scope. Use the phased.IntensityScope System object? to display
simulated intensity as a function of the angular motion of a moving target. After five steps in the
processing loop, use the hide method to hide the scope. At completion of the loop, use the show
method to show the scope.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).%% Simulate data for 5 seconds with a time interval of 0.5 seconds between
scan lines.

nsteps = 10;
dt = 0.5;
timespan = nsteps*dt;

Set Up IntensityScope System Object

Create an angle-time-intensity scope having azimuth angle bins spanning ?180° to 180° with 1°
resolution.

scanline = zeros(361,1);
angres = 1.0;
angmin = -180.0;
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angmax = 180.0;
rtidisplay = phased.IntensityScope( ...
    'Name','IntensityScope Display',...
    'Title','Azimuth vs. Time',...
    'XLabel','Azimuth (deg)', ...
    'XResolution',angres,'XOffset',angmin,...
    'TimeResolution',dt,'TimeSpan',timespan, ...
    'IntensityUnits','Watts',...
    'Position',[100,100,800,450]);

Loop Over Scan Updates

Simulate angular motion and fill the bin containing the current angular position of the signal. Hide
the scope after the 5th step and show the scope at the end of the simulation.

for k = 1:nsteps
    ang = -130.0 + k;
    binindexdx = floor((ang - angmin)/angres) + 1;
    scanline(binindexdx) = 1;
    rtidisplay(scanline);
    scanline(binindexdx) = 0;
    if k == 5
        hide(rtidisplay)
    end
    pause(.1);
end
show(rtidisplay)
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reset
System object: phased.IntensityScope
Package: phased

Reset state of intensity scope System object

Syntax
reset(sIS)

Description
reset(sIS) resets the internal state of the phased.IntensityScope System object, sIS, to its
initial value.

Input Arguments
sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Introduced in R2016a
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show
System object: phased.IntensityScope
Package: phased

Show intensity scope window

Syntax
show(sIS)

Description
show(sIS) shows the display window of the phased.IntensityScope object, sIS.

Input Arguments
sIS — Intensity scope
phased.IntensityScope System object

Intensity scope, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

Examples

Hide and Show Intensity Scope

Create an angle-time-intensity scope. Use the phased.IntensityScope System object? to display
simulated intensity as a function of the angular motion of a moving target. After five steps in the
processing loop, use the hide method to hide the scope. At completion of the loop, use the show
method to show the scope.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).%% Simulate data for 5 seconds with a time interval of 0.5 seconds between
scan lines.

nsteps = 10;
dt = 0.5;
timespan = nsteps*dt;

Set Up IntensityScope System Object

Create an angle-time-intensity scope having azimuth angle bins spanning ?180° to 180° with 1°
resolution.

scanline = zeros(361,1);
angres = 1.0;
angmin = -180.0;
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angmax = 180.0;
rtidisplay = phased.IntensityScope( ...
    'Name','IntensityScope Display',...
    'Title','Azimuth vs. Time',...
    'XLabel','Azimuth (deg)', ...
    'XResolution',angres,'XOffset',angmin,...
    'TimeResolution',dt,'TimeSpan',timespan, ...
    'IntensityUnits','Watts',...
    'Position',[100,100,800,450]);

Loop Over Scan Updates

Simulate angular motion and fill the bin containing the current angular position of the signal. Hide
the scope after the 5th step and show the scope at the end of the simulation.

for k = 1:nsteps
    ang = -130.0 + k;
    binindexdx = floor((ang - angmin)/angres) + 1;
    scanline(binindexdx) = 1;
    rtidisplay(scanline);
    scanline(binindexdx) = 0;
    if k == 5
        hide(rtidisplay)
    end
    pause(.1);
end
show(rtidisplay)
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step
System object: phased.IntensityScope
Package: phased

Update intensity scope display

Syntax
step(sIS,data)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

step(sIS,data) updates the intensity scope display with new scan lines from a real signal, data.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
sIS — Intensity scope display
phased.IntensityScope System object

Intensity scope display, specified as a phased.IntensityScope System object.
Example: phased.IntensityScope

data — Displayed intensity values
real-valued N-by-M matrix

Displayed intensity values, specified as a real-valued N-by-M matrix. The quantity N specifies the
number of intensity bins in data. The quantity M specifies the number of intensity vectors in the
data. Each column of the matrix creates a display line. Units are arbitrary. Specify the time interval
between intensity vectors using the TimeResolution property.
Example: [5.0;5.1;5.0;4.9]
Data Types: double

Examples

 step
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RTI Display of Three Moving Targets

Use the phased.IntensityScope System object? to display the intensities of the echoes of three
moving targets as functions of range and time.

Create the Radar and Target System Objects

Set up the initial positions and velocities of the three targets. Use the phased.Platform System
object? to model radar and target motions. The radar is stationary while the targets undergo constant
velocity motion. The simulation runs for 500 steps at 0.1 second increments, giving a total simulation
time of 50 seconds.

nsteps = 500;
dt = .1;
timespan = nsteps*dt;
x1 = [60,0,0]';
x2 = [60,-80,40]';
x3 = [300,0,-300]';
v1 = [2,0,0]';
v2 = [10,5,6]';
v3 = [-10,2,-4]';
platform = phased.Platform([0,0,0]',[0,0,0]');
targets = phased.Platform([x1,x2,x3],[v1,v2,v3]);

Set Up Range Bins

Each echo is put into a range bin. The range bin resolution is 1 meter and the range is from 50 to
1000 meters.

rngres = 1.0;
rngmin = 50.0;
rngmax = 1000.0;
rngscan = [rngmin:rngres:rngmax];

Create the Gain Function

Define a range-dependent gain function to enhance the display of targets at larger ranges. The gain
function amplifies the returned echo for visualization purposes only.

rangegain = @(rng)(1e12*rng^4);

Create the Intensity Scope

Set up the Intensity Scope using these properties.

• Use the XResolution property to set the width of each scan line bin to the range resolution of 1
km.

• Use the XOffset property to set the value of the lowest range bin to the minimum range of 50
km.

• Use the TimeResolution property to set the value of the scan line time difference to 0.1 s.
• Use the TimeSpan property to set the height of the display window to the time duration of the

simulation.
• Use the IntensityUnits property to set the display units to Watts.

scope = phased.IntensityScope('Name','IntensityScope Display',...
    'Title','Ranges vs. Time','XLabel','Range (m)','XResolution',rngres,...
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    'XOffset',rngmin,'TimeResolution',dt,'TimeSpan',timespan, ...
    'IntensityUnits','Watts','Position',[100,100,800,450]);

Run Simulation Loop

1 In this loop, move the targets at constant velocity using the step method of the
phased.Platform System object.

2 Compute the target ranges using the rangeangle function.
3 Compute the target range bins by quantizing the range values in integer multiples of rangres.
4 Fill each target range bin and neighboring bins with a simulated radar intensity value.
5 Add the signal from each target to the scan line.
6 Call the step method of the phased.IntensityScope System object to display the scan lines.

for k = 1:nsteps
    xradar = platform(dt);
    xtgts = targets(dt);
    [rngs] = rangeangle(xtgts,xradar);
    scanline = zeros(size(rngscan));

    rngindx = ceil((rngs(1) - rngmin)/rngres);
    scanline(rngindx + [-1:1]) = rangegain(rngs(1))/(rngs(1)^4);

    rngindx = ceil((rngs(2) - rngmin)/rngres);
    scanline(rngindx + [-1:1]) = rangegain(rngs(2))/(rngs(2)^4);

    rngindx = ceil((rngs(3) - rngmin)/rngres);
    scanline(rngindx + [-1:1]) = rangegain(rngs(3))/(rngs(3)^4);

    scope(scanline.');
    pause(.1);
end
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RTI and DTI Displays in Full Radar Simulation

Use the phased.IntensityScope System object? to display the detection output of a complete
radar system simulation. The radar scenario contains a stationary single-element monostatic radar
and three moving targets.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set Radar Operating Parameters

Set the probability of detection, probability of false alarm, maximum range, range resolution,
operating frequency, transmitter gain, and target radar cross-section.

pd = 0.9;
pfa = 1e-6;
max_range = 5000;
range_res = 50;
fc = 10e9;
tx_gain = 20;
tgt_rcs = 1;
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Choose the signal propagation speed to be the speed of light, and compute the signal wavelength
corresponding to the operating frequency.

c = physconst('LightSpeed');
lambda = c/fc;

Compute the pulse bandwidth from the range resolution. Set the sampling rate, fs, to twice the pulse
bandwidth. The noise bandwidth is also set to the pulse bandwidth. The radar integrates a number of
pulses set by num_pulse_int. The duration of each pulse is the inverse of the pulse bandwidth.

pulse_bw = c/(2*range_res);
pulse_length = 1/pulse_bw;
fs = 2*pulse_bw;
noise_bw = pulse_bw;
num_pulse_int = 10;

Set the pulse repetition frequency to match the maximum range of the radar.

prf = c/(2*max_range);

Compute Transmit Power

Use the Albersheim equation to compute the SNR required to meet the desired probability of
detection and probability of false alarm. Then, use the radar equation to compute the power needed
to achieve the required SNR.

snr_min = albersheim(pd, pfa, num_pulse_int);
peak_power = radareqpow(lambda,max_range,snr_min,pulse_length,...
    'RCS',tgt_rcs,'Gain',tx_gain);

Create System Objects for the Model

Choose a rectangular waveform.

waveform = phased.RectangularWaveform('PulseWidth',pulse_length,...
    'PRF',prf,'SampleRate',fs);

Set the receiver amplifier characteristics.

amplifier = phased.ReceiverPreamp('Gain',20,'NoiseFigure',0,...
    'SampleRate',fs,'EnableInputPort',true,'SeedSource','Property',...
    'Seed',2007);
transmitter = phased.Transmitter('Gain',tx_gain,'PeakPower',peak_power,...
    'InUseOutputPort',true);

Specify the radar antenna as a single isotropic antenna.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[5e9 15e9]);

Set up a monostatic radar platform.

radarplatform = phased.Platform('InitialPosition',[0; 0; 0],...
    'Velocity',[0; 0; 0]);

Set up the three target platforms using a single System object.

targetplatforms = phased.Platform(...
    'InitialPosition',[2000.66 3532.63 3845.04; 0 0 0; 0 0 0], ...
    'Velocity',[150 -150 0; 0 0 0; 0 0 0]);
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Create the radiator and collector System objects.

radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc);

Set up the three target RCS properties.

targets = phased.RadarTarget('MeanRCS',[1.6 2.2 1.05],'OperatingFrequency',fc);

Create System object to model two-way freespace propagation.

channels= phased.FreeSpace('SampleRate',fs,'TwoWayPropagation',true,...
    'OperatingFrequency',fc);

Define a matched filter.

MFcoef = getMatchedFilter(waveform);
filter = phased.MatchedFilter('Coefficients',MFcoef,'GainOutputPort',true);

Create Range and Doppler Bins

Set up the fast-time grid. Fast time is the sampling time of the echoed pulse relative to the pulse
transmission time. The range bins are the ranges corresponding to each bin of the fast time grid.

fast_time = unigrid(0,1/fs,1/prf,'[)');
range_bins = c*fast_time/2;

To compensate for range loss, create a time varying gain System Object?.

gain = phased.TimeVaryingGain('RangeLoss',2*fspl(range_bins,lambda),...
    'ReferenceLoss',2*fspl(max_range,lambda));

Set up Doppler bins. Doppler bins are determined by the pulse repetition frequency. Create an FFT
System object for Doppler processing.

DopplerFFTbins = 32;
DopplerRes = prf/DopplerFFTbins;
fft = dsp.FFT('FFTLengthSource','Property',...
    'FFTLength',DopplerFFTbins);

Create Data Cube

Set up a reduced data cube. Normally, a data cube has fast-time and slow-time dimensions and the
number of sensors. Because the data cube has only one sensor, it is two-dimensional.

rx_pulses = zeros(numel(fast_time),num_pulse_int);

Create IntensityScope System Objects

Create two IntensityScope System objects, one for Doppler-time-intensity and the other for range-
time-intensity.

dtiscope = phased.IntensityScope('Name','Doppler-Time Display',...
    'XLabel','Velocity (m/sec)', ...
    'XResolution',dop2speed(DopplerRes,c/fc)/2, ...
    'XOffset',dop2speed(-prf/2,c/fc)/2,...
    'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');
rtiscope = phased.IntensityScope('Name','Range-Time Display',...
    'XLabel','Range (m)', ...
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    'XResolution',c/(2*fs), ...
    'TimeResolution',0.05,'TimeSpan',5,'IntensityUnits','Mag');

Run the Simulation Loop Over Multiple Radar Transmissions

Transmit 2000 pulses. Coherently process groups of 10 pulses at a time.

For each pulse:

1 Update the radar position and velocity radarplatform
2 Update the target positions and velocities targetplatforms
3 Create the pulses of a single wave train to be transmitted transmitter
4 Compute the ranges and angles of the targets with respect to the radar
5 Radiate the signals to the targets radiator
6 Propagate the pulses to the target and back channels
7 Reflect the signals off the target targets
8 Receive the signal sCollector
9 Amplify the received signal amplifier
10 Form data cube

For each set of 10 pulses in the data cube:

1 Match filter each row (fast-time dimension) of the data cube.
2 Compute the Doppler shifts for each row (slow-time dimension) of the data cube.

pri = 1/prf;
nsteps = 200;
for k = 1:nsteps
    for m = 1:num_pulse_int
        [ant_pos,ant_vel] = radarplatform(pri);
        [tgt_pos,tgt_vel] = targetplatforms(pri);
        sig = waveform();
        [s,tx_status] = transmitter(sig);
        [~,tgt_ang] = rangeangle(tgt_pos,ant_pos);
        tsig = radiator(s,tgt_ang);
        tsig = channels(tsig,ant_pos,tgt_pos,ant_vel,tgt_vel);
        rsig = targets(tsig);
        rsig = collector(rsig,tgt_ang);
        rx_pulses(:,m) = amplifier(rsig,~(tx_status>0));
    end

    rx_pulses = filter(rx_pulses);
    MFdelay = size(MFcoef,1) - 1;
    rx_pulses = buffer(rx_pulses((MFdelay + 1):end), size(rx_pulses,1));
    rx_pulses = gain(rx_pulses);
    range = pulsint(rx_pulses,'noncoherent');
    rtiscope(range);
    dshift = fft(rx_pulses.');
    dshift = fftshift(abs(dshift),1);
    dtiscope(mean(dshift,2));
    radarplatform(.05);
    targetplatforms(.05);
end
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All of the targets lie on the x-axis. Two targets are moving along the x-axis and one is stationary.
Because the radar is at the origin, you can read the target speed directly from the Doppler-Time
Display window. The values agree with the specified velocities of -150, 150, and 0 m/sec.

Intensity Scope Display of Target Angular Motion

Use the phased.IntensityScope System object? to display the angular motions of moving targets
as functions of time. Each horizontal line (scan line) shows the strength of radar echoes at different
azimuth angles. Azimuth space is divided into azimuth bins and each bin is filled with a simulated
value depending upon the position of the targets.

Create Radar and Target System Objects

Set up the initial positions and velocities of the three targets. Use the phased.Platform System
object? to model radar and target motions. The radar is stationary while the targets undergo constant
velocity motion. The simulation runs for 200 steps at 0.5 second intervals, giving a total simulation
time of 100 seconds.

nsteps = 200;
dt = 0.5;
timespan = nsteps*dt;
x1 = [60,0,0]';
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x2 = [60,-80,40]';
x3 = [300,0,-300]';
x3 = [-300,0,-300]';

v1 = [2,0,0]';
v2 = [10,5,6]';
v3 = [-10,2,-4]';
radarplatform = phased.Platform([0,0,0]',[0,0,0]');
targets = phased.Platform([x1,x2,x3],[v1,v2,v3]);

Set Up Azimuth Angle Bins

The signal for each echo is put into an angle bin and two adjacent bins. Bin resolution is 1 degree and
the angle span is from -180 to 180 degrees.

angres = 1.0;
angmin = -180.0;
angmax = 180.0;
angscan = [angmin:angres:angmax];
na = length(angscan);

Range Gain Function

Define a range-dependent gain function to enhance the display of targets at larger ranges. The gain
function amplifies the returned echo for visualization purposes only.

rangegain = @(rng)(1e12*rng^4);

Set Up Scope Viewer

The XResolution name-value pair specifies the width of each bin of the scan line. The XOffset sets
the value of the lowest azimuth angle bin. The TimeResolution name-value pair specifies the time
difference between scan lines. The TimeSpan name-value pair sets the height of the display window.
A scan line is created with each call to the step method. Intensity units are amplitude units.

scope = phased.IntensityScope( ...
    'Name','IntensityScope Display',...
    'Title','Azimuth vs. Time',...
    'XLabel','Azimuth (deg)', ...
    'XResolution',angres,'XOffset',angmin,...
    'TimeResolution',dt,'TimeSpan',timespan, ...
    'IntensityUnits','Watts',...
    'Position',[100,100,800,450]);

Update-Display Loop

1 In this loop, move the targets at constant velocity using the step method of the
phased.Platform System object.

2 Compute the target ranges and azimuth angles using the rangeangle function.
3 Compute the azimuth angle bins by quantizing the azimuth angle values in integer multiples of

angres.
4 Fill each target azimuth bin and neighboring bins with a simulated radar intensity value.
5 Call the phased.IntensityScope step method to display the scan line.

for k = 1:nsteps
    xradar = radarplatform(dt);
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    xtgts = targets(dt);
    [rngs,angs] = rangeangle(xtgts,xradar);
    scanline = zeros(size(angscan));

    angindx = ceil((angs(1,1) - angmin)/angres) + 1;
    idx = angindx + [-1:1];
    idx(idx>na)=[];
    idx(idx<1)=[];
    scanline(idx) = rangegain(rngs(1))/(rngs(1)^4);

    angindx = ceil((angs(1,2) - angmin)/angres) + 1;
    idx = angindx + [-1:1];
    idx(idx>na)=[];
    idx(idx<1)=[];
    scanline(idx) = rangegain(rngs(2))/(rngs(2)^4);

    angindx = ceil((angs(1,3) - angmin)/angres) + 1;
    idx = angindx + [-1:1];
    idx(idx>na)=[];
    idx(idx<1)=[];
    scanline(idx) = rangegain(rngs(3))/(rngs(3)^4);
    scope(scanline.');
    pause(.1);
end

 step
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phased.IsoSpeedUnderwaterPaths
Package: phased

Isospeed multipath sonar channel

Description
The phased.IsoSpeedUnderwaterPaths System object creates an underwater acoustic channel to
propagate narrowband sound from point to point. The channel has finite constant depth with air-
water and water-bottom interfaces. Both interfaces are planar and horizontal. Sound speed is
constant throughout the channel. The object generates multiple propagation paths in the channel
using the acoustical method of images (see [3]). Because sound speed is constant, all propagation
paths are straight lines between the source, boundaries, and receiver. There is always one direct line-
of-sight path. For each propagation path, the object outputs range-dependent time delay, gain,
Doppler factor, reflection loss, and spreading loss. You can use the channel data as input to the
multipath sound propagator, phased.MultipathChannel.

To model an isospeed channel :

1 Define and set up the channel. You can set phased.IsoSpeedUnderwaterPaths System object
properties at construction time or leave them to their default values. See “Construction” on page
1-811. Some properties that you set at construction time can be changed later. These properties
are tunable.

2 To create the multipath channel, call the step method of phased.IsoSpeedUnderwaterPaths.
The output of the method depends on the properties of the
phased.IsoSpeedUnderwaterPaths System object. You can change tunable properties at any
time.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
channel = phased.IsoSpeedUnderwaterPaths creates an isospeed multipath underwater
channel System object, channel.

channel = phased.IsoSpeedUnderwaterPaths(Name,Value) creates an isospeed multipath
underwater channel System object, channel, with each specified property Name set to the specified
Value. You can specify additional name and value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
ChannelDepth — Channel depth
100 (default) | positive scalar

Channel depth, specified as a positive scalar. Units are in meters.

 phased.IsoSpeedUnderwaterPaths
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Example: 250.0
Data Types: double

PropagationSpeed — Underwater sound propagation speed
1520.0 (default) | positive scalar

Underwater sound propagation speed, specified as a positive scalar. Units are in meter per second.
The default value is a commonly-used underwater sound propagation speed.
Example: 1502.0
Data Types: double

NumPathsSource — Source of number of propagation paths
'Auto' (default) | 'Property'

The source of the number of propagation paths, specified as 'Auto' or 'Property'. If you set this
property to 'Auto', the object automatically determines the number of paths based on spreading
and reflection losses. If you set this property to 'Property', you specify the number of paths using
the NumPaths property.

When NumPathsSource is set to 'Auto', only paths having a total loss greater than 20 dB below the
direct path loss are returned.
Example: 'Property'
Data Types: char

NumPaths — Number of propagation paths
10 (default) | positive integer

The number of propagation paths, specified as a positive integer between 1 and 51, inclusive.
Example: 11
Dependencies

To enable this property, set the NumPathsSource property to 'Property'.
Data Types: double

CoherenceTime — Channel coherence time
0 (default) | nonnegative scalar

Channel coherence time, specified as a nonnegative scalar. Coherence time is a measure of the
temporal stability of the channel. The object keeps a record of cumulative step time. When the
cumulative step time exceeds the coherence time, propagation paths are recomputed and the
cumulative step time is reset to zero. If you set this quantity to zero, the propagation paths are
update at each call to step. Units are in seconds.
Example: 5.0
Data Types: double

BottomLoss — Bottom reflection loss
6 (default) | nonnegative scalar

Bottom reflection loss, specified as a nonnegative scalar. This value applies to each bottom reflection
of a path. Units are in dB.
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Example: 10
Data Types: double

LossFrequencies — Absorption loss frequencies
[1:100]*1000 (default) | positive real-valued vector

Frequencies for which to compute absorption loss, specified as a positive real-valued vector. Units are
in Hz.
Example: [1000:100:3000]
Data Types: double

TwoWayPropagation — Enable two-way propagation
false (default) | true

Enable two-way propagation, specified as a false or true. Set this property to true to perform
round-trip propagation between the signal origin and destination specified in step. Set this property
to false to perform only one-way propagation from the origin to the destination.
Example: true
Data Types: logical

Methods

step Create propagation paths in an isospeed multipath sound channel
reset Reset state of System object

Common to All System Objects
release Allow System object property value changes

Examples

Create One-Way Multipath Underwater Sound Channel

Create a 5-path underwater sound channel and display the propagation path matrix. Assume the
source is stationary and the receiver is moving along the x-axis towards the source at 20 kph. Assume
one-way propagation.

speed = -20*1000/3600;
numpaths = 5;
channelpaths = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',10, ...
    'NumPathsSource','Property','NumPaths',numpaths,'CoherenceTime',5);
tstep = 1;
srcpos = [0;0;-160];
rcvpos = [500;0;-50];
srcvel = [0;0;0];
rcvvel = [speed;0;0];
pathmat = channelpaths(srcpos,rcvpos,srcvel,rcvvel,tstep);
disp(pathmat)

 phased.IsoSpeedUnderwaterPaths
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    0.3356    0.3556    0.4687    0.3507    0.3791
    1.0000   -1.0000   -0.3162    0.3162   -0.3162
   54.1847   54.6850   57.0766   54.5652   55.2388

The first row contains the time delay in seconds. The second row contains the bottom reflection loss
coefficients, and the third row contains the spreading loss in dB. The reflection loss coefficient for the
first path is 1.0 because the direct path has no boundary reflections. The reflection loss coefficient for
the second path is -1.0 because the path has only a surface reflection.

Create Two-Way Multipath Underwater Sound Channel

Create a 7-path underwater sound channel and display the propagation path matrix. Assume the
source is stationary and the target is moving along the x-axis towards the source at 20 kph. Assume
two-way propagation.

speed = -20*1000/3600;
numpaths = 7;
channelpaths = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',10, ...
    'NumPathsSource','Property','NumPaths',numpaths,'CoherenceTime',5,...
    'TwoWayPropagation',true);
tstep = 1;
srcpos = [0;0;-160];
tgtpos = [500;0;-50];
srcvel = [0;0;0];
tgtvel = [speed;0;0];
[pathmat,dop,aloss,tgtangs,srcangs] = channelpaths(srcpos,tgtpos,srcvel,tgtvel,tstep);
disp(pathmat)

    0.6712    0.7112    0.9374    1.0354    0.7014    0.7581    1.0152
    1.0000    1.0000    0.1000    0.1000    0.1000    0.1000    0.0100
  108.3693  109.3699  114.1531  115.8772  109.1304  110.4775  115.5355

The first row contains the time delay in seconds. The second row contains the bottom reflection loss
coefficients, and the third row contains the spreading loss in dB. The reflection loss coefficient for the
first path is 1.0 because the direct path has no boundary reflections. The reflection loss coefficient for
the second path is -1.0 because the path has only a surface reflection.

Propagate Sound in Channel Having Unknown Number of Paths

Create an underwater sound channel and plot the combined received signal. Automatically find the
number of paths. Assume that the source is stationary and that the receiver is moving along the x-axis
toward the source at 20 km/h. Assume the default one-way propagation.

speed = -20*1000/3600;
channel = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',5, ...
    'NumPathsSource','Auto','CoherenceTime',5);
tstep = 1;
srcpos = [0;0;-160];
rcvpos = [500;0;-50];
srcvel = [0;0;0];
rcvvel = [speed;0;0];
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Compute the path matrix, Doppler factor, and losses. The propagator outputs 51 paths output but
some paths can contain Nan values.

[pathmat,dop,absloss,rcvangs,srcangs] = channel(srcpos,rcvpos,srcvel,rcvvel,tstep);

Create of a 100 Hz signal with 500 samples. Assume that all the paths have the same signal. Use a
phased.MultipathChannel System object to propagate the signals to the receiver.
phased.MultipathChannel accepts as input all paths produced by
phased.IsoSpeedUnderwaterPaths but ignores paths that have NaN values.

fs = 1e3;
nsamp = 500;
propagator = phased.MultipathChannel('OperatingFrequency',10e3,'SampleRate',fs);
t = [0:(nsamp-1)]'/fs;
sig0 = sin(2*pi*100*t);
numpaths = size(pathmat,2);
sig = repmat(sig0,1,numpaths);
propsig = propagator(sig,pathmat,dop,absloss);

Plot the real part of the coherent sum of the propagated signals.

plot(t*1000,real(sum(propsig,2)))
xlabel('Time (millisec)')
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Doppler Stretching of Sonar Signal

Compare the duration of a propagated signal from a stationary sonar to that of a moving sonar. The
moving sonar has a radial velocity of 25 m/s away from the target. In each case, propagate the signal
along a single path. Assume one-way propagation.

Define the sonar system parameters: maximum unambiguous range, required range resolution,
operating frequency, and propagation speed.

maxrange = 5000.0;
rngres = 10.0;
fc = 20.0e3;
csound = 1520.0;

Use a rectangular waveform for the transmitted signal.

prf = csound/(2*maxrange);
pulseWidth = 8*rngres/csound;
pulseBW = 1/pulseWidth;
fs = 80*pulseBW;
waveform = phased.RectangularWaveform('PulseWidth',pulseWidth,'PRF',prf, ...
    'SampleRate',fs);

Specify the sonar positions.

sonarplatform1 = phased.Platform('InitialPosition',[0;0;-60],'Velocity',[0;0;0]);
sonarplatform2 = phased.Platform('InitialPosition',[0;0;-60],'Velocity',[0;-25;0]);

Specify the target position.

targetplatform = phased.Platform('InitialPosition',[0;500;-60],'Velocity',[0;0;0]);

Define the underwater path and propagation channel objects.

paths = phased.IsoSpeedUnderwaterPaths('ChannelDepth',100, ...
    'CoherenceTime',0,'NumPathsSource','Property','NumPaths',1, ...
    'PropagationSpeed',csound);
propagator = phased.MultipathChannel('SampleRate',fs,'OperatingFrequency',fc);

Create the transmitted waveform.

wav = waveform();
nsamp = size(wav,1);
rxpulses = zeros(nsamp,2);
t = (0:nsamp-1)/fs;

Transmit the signal and then receive the echo at the stationary sonar.

[pathmat,dop,aloss,~,~] = paths(sonarplatform1.InitialPosition, ...
    targetplatform.InitialPosition,sonarplatform1.InitialVelocity, ...
    targetplatform.InitialVelocity,1/prf);
rxpulses(:,1) = propagator(wav,pathmat,dop,aloss);

Transmit and receive at the moving sonar.

[pathmat,dop,aloss,~,~] = paths(sonarplatform2.InitialPosition, ...
    targetplatform.InitialPosition,sonarplatform2.Velocity, ...
    targetplatform.Velocity,1/prf);
rxpulses(:,2) = propagator(wav,pathmat,dop,aloss);
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Plot the received pulses.

plot(abs(rxpulses))
xlim([490 650])
ylim([0 1.65e-3])
legend('Stationary sonar','Moving sonar')
xlabel('Received Sample Time (sec)')
ylabel('Integrated Received Pulses')

The signal received at the moving sonar has increased in duration compared to the stationary sonar.

References
[1] Urick, R.J. Principles of Underwater Sound, 3rd Edition. New York: Peninsula Publishing, 1996.

[2] Sherman, C.S. and J.Butler Transducers and Arrays for Underwater Sound. New York: Springer,
2007.
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Acoust. Soc. Am, Vol 65, No. 4. April 1979.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
phased.BackscatterSonarTarget | phased.IsotropicHydrophone |
phased.IsotropicProjector | phased.MultipathChannel

Topics
“Underwater Target Detection with an Active Sonar System”
“Locating an Acoustic Beacon with a Passive Sonar System”

Introduced in R2017a
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step
System object: phased.IsoSpeedUnderwaterPaths
Package: phased

Create propagation paths in an isospeed multipath sound channel

Syntax
pathmat = step(channel,srcpos,destpos,srcvel,destvel,T)
[pathmat,dop,aloss,destang,srcang] = step(channel,srcpos,destpos,srcvel,
destvel,T)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

pathmat = step(channel,srcpos,destpos,srcvel,destvel,T) returns the propagation
paths matrix, pathmat, for a multipath underwater acoustic channel. The matrix describes one or
two-way propagation from the signal source position, srcpos, to the signal destination position,
destpos. The velocity of the signal source is specified in srcvel and the velocity of the signal
destination is specified in destvel. T is the step time interval.

When you use this method for one-way propagation, srcpos refers to the origin of the signal and
destpos to the receiver. One-way propagation modeling is useful for passive sonar and underwater
communications.

When you use this method for two-way propagation, destpos now refers to the reflecting target, not
the sonar receiver. A two-way path consists of a one-way path from source to target and then along an
identical one-way path from target to receiver (which is collocated with the source). Two-way
propagation modeling is useful for active sonar systems.

[pathmat,dop,aloss,destang,srcang] = step(channel,srcpos,destpos,srcvel,
destvel,T) also returns the Doppler factor, dop, the frequency dependent absorption loss, aloss,
the receiver arrival angles, destang, and the srcang transmitting angles.

When you use this method for two-way propagation, destang now refers to the reflecting target, not
the sonar receiver.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Input Arguments
channel — Isospeed underwater channel path
phased.IsoSpeedUnderwaterPaths System object

Isospeed underwater channel paths, specified as a phased.IsoSpeedUnderwaterPaths System
object.
Example: phased.IsoSpeedUnderwaterPaths

srcpos — Source of sonar signals
real-valued 3-by-1 column vector

Source of the sonar signal, specified as a real-valued 3-by-1 column vector. Position units are meters.
Example: [1000;100;500]
Data Types: double

destpos — Destination of signal
real-valued 3-by-1 column vector

Destination position of the signal, specified as a real-valued 3-by-1 column vector. Position units are in
meters.
Example: [0;0;0]
Data Types: double

srcvel — Velocity of signal source
real-valued 3-by-1 column vector

Velocity of signal source, specified as a real-valued 3-by-1 column vector. Velocity units are in meters
per second.
Example: [10;0;5]
Data Types: double

destvel — Velocity of signal destination
real-valued 3-by-1 column vector

Velocity of signal destination, specified as a real-valued 3-by-1 column vector. Velocity units are in
meters per second.
Example: [0;0;0]
Data Types: double

T — Elapsed time of current step
positive scalar

Elapsed time of current step, specified as a positive scalar. Time units are in seconds.
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Example: 0.1
Data Types: double

Output Arguments
pathmat — Propagation paths matrix
real-valued 3-by-N matrix

Propagation paths matrix, returned as a real-valued 3-by-N matrix. N is the number of paths in the
channel. Each column represents a path. When you set NumPathsSource to 'Auto', N is 51. In this
case, any columns filled with NaN do not correspond to found paths. The matrix rows represent:

Row Data
1 Propagation delays for each path. Units are in seconds.
2 Total reflection coefficient for each path. Units are dimensionless
3 Spreading loss for each path. Units are in dB.

Except for the direct path, paths consists of alternating surface and bottom reflections. The losses for
multiple reflections are multiplied. Bottom loss per reflection is specified by the BottomLoss
property. The loss at the surface is –1 indicating no loss, but only a 180° phase change. This is
because the air-water interface surface is a pressure-release surface.
Data Types: double

dop — Doppler factor
real-valued N-by-1 row vector

Doppler factor, returned as a real-valued N-by-1 row vector where N is the number of paths. The
Doppler factor multiplies the transmitted frequency to produce the Doppler-shifted received
frequency for each path. The Doppler shift is defined as the difference between the transmitted
frequency and the received frequency. The Doppler factor also defines the time compression or
expansion of a signal. Units are dimensionless.
Data Types: double

aloss — Frequency-dependent absorption loss
real-valued K-by-(N+1) matrix

Frequency-dependent absorption loss, returned as a real-valued K-by-(N+1) matrix. K is the number
of frequencies specified in the LossFrequencies property. N is the number of paths returned. The
first column of aloss contains the absorption loss frequencies in Hz. You specify the frequencies
using the LossFrequencies property. The remaining columns contain the absorption losses for each
frequency. There is one column for each path. Units are in dB.
Data Types: double

destang — Angles of paths at destination
real-valued 2-by-N matrix

Angles of paths at destination, returned as a real-valued 2-by-N matrix. Each column contains the
direction of the received path with respect to the destination position as azimuth and elevation,
[az;el]. Units are in degrees.
Data Types: double
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srcang — Angles of paths from source
real-valued 2-by-N matrix

Angles of paths from source, returned as a real-valued 2-by-N matrix. Each column contains the
direction of the transmitted path with respect to the source position as azimuth and elevation,
[az;el]. Units are in degrees.
Data Types: double

Examples

Create One-Way Multipath Underwater Sound Channel

Create a 5-path underwater sound channel and display the propagation path matrix. Assume the
source is stationary and the receiver is moving along the x-axis towards the source at 20 kph. Assume
one-way propagation.

speed = -20*1000/3600;
numpaths = 5;
channelpaths = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',10, ...
    'NumPathsSource','Property','NumPaths',numpaths,'CoherenceTime',5);
tstep = 1;
srcpos = [0;0;-160];
rcvpos = [500;0;-50];
srcvel = [0;0;0];
rcvvel = [speed;0;0];
pathmat = channelpaths(srcpos,rcvpos,srcvel,rcvvel,tstep);
disp(pathmat)

    0.3356    0.3556    0.4687    0.3507    0.3791
    1.0000   -1.0000   -0.3162    0.3162   -0.3162
   54.1847   54.6850   57.0766   54.5652   55.2388

The first row contains the time delay in seconds. The second row contains the bottom reflection loss
coefficients, and the third row contains the spreading loss in dB. The reflection loss coefficient for the
first path is 1.0 because the direct path has no boundary reflections. The reflection loss coefficient for
the second path is -1.0 because the path has only a surface reflection.

Create Two-Way Multipath Underwater Sound Channel

Create a 7-path underwater sound channel and display the propagation path matrix. Assume the
source is stationary and the target is moving along the x-axis towards the source at 20 kph. Assume
two-way propagation.

speed = -20*1000/3600;
numpaths = 7;
channelpaths = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',10, ...
    'NumPathsSource','Property','NumPaths',numpaths,'CoherenceTime',5,...
    'TwoWayPropagation',true);
tstep = 1;
srcpos = [0;0;-160];
tgtpos = [500;0;-50];
srcvel = [0;0;0];
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tgtvel = [speed;0;0];
[pathmat,dop,aloss,tgtangs,srcangs] = channelpaths(srcpos,tgtpos,srcvel,tgtvel,tstep);
disp(pathmat)

    0.6712    0.7112    0.9374    1.0354    0.7014    0.7581    1.0152
    1.0000    1.0000    0.1000    0.1000    0.1000    0.1000    0.0100
  108.3693  109.3699  114.1531  115.8772  109.1304  110.4775  115.5355

The first row contains the time delay in seconds. The second row contains the bottom reflection loss
coefficients, and the third row contains the spreading loss in dB. The reflection loss coefficient for the
first path is 1.0 because the direct path has no boundary reflections. The reflection loss coefficient for
the second path is -1.0 because the path has only a surface reflection.

Automatically Find the Number of Paths

Create an underwater sound channel and display the propagation paths which are found
automatically. Assume the source is stationary and the receiver is moving along the x-axis towards the
source at 20 kph. Assume two-way propagation.

speed = -20*1000/3600;
channelpaths = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',5, ...
    'NumPathsSource','Auto','CoherenceTime',5,'TwoWayPropagation',true);
tstep = 1;
srcpos = [0;0;-160];
tgtpos = [500;0;-50];
srcvel = [0;0;0];
tgtpos = [speed;0;0];
[pathmat,dop,aloss,rcvangs,srcangs] = channelpaths(srcpos,tgtpos,srcvel,tgtpos,tstep);

Display the first 7 columns of pathmat. Some columns are filled with |NaN|s.

disp(pathmat(:,1:7))

    0.2107    0.2107       NaN       NaN       NaN       NaN       NaN
    1.0000    1.0000       NaN       NaN       NaN       NaN       NaN
   88.1753   88.1753       NaN       NaN       NaN       NaN       NaN

Select the column indices of the valid paths from the entire matrix.

idx = find(~isnan(pathmat(1,:)))

idx = 1×4

     1     2    27    28

Display the valid paths information.

validpaths = pathmat(:,idx)

validpaths = 3×4

    0.2107    0.2107    0.3159    0.3159
    1.0000    1.0000    0.3162    0.3162
   88.1753   88.1753   95.2131   95.2131
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The first row contains the time delays in seconds. The second row contains the bottom reflected loss
coefficients, and the third row contains the spreading losses.

Introduced in R2017a

1 Objects

1-824



reset
System object: phased.IsoSpeedUnderwaterPaths
Package: phased

Reset state of System object

Syntax
reset(channel)

Description
reset(channel) resets the internal state of the phased.IsoSpeedUnderwaterPaths object,
channel. This method resets the coherence time clock.

Input Arguments
channel — Isospeed underwater channel path
phased.IsoSpeedUnderwaterPaths System object

Isospeed underwater channel paths, specified as a phased.IsoSpeedUnderwaterPaths System
object.
Example: phased.IsoSpeedUnderwaterPaths

Introduced in R2017a
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phased.IsotropicAntennaElement
Package: phased

Isotropic antenna element

Description
The phased.IsotropicAntennaElement object creates an antenna element with an isotropic
response pattern. The object models an antenna element whose response is unity in all directions. An
isotropic antenna does not support polarization.

To compute the response of the antenna element for specified directions:

1 Create the phased.IsotropicAntennaElement object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
antenna = phased.IsotropicAntennaElement
antenna = phased.IsotropicAntennaElement(Name,Value)

Description

antenna = phased.IsotropicAntennaElement creates an isotropic antenna System object,
antenna, with default property values.

antenna = phased.IsotropicAntennaElement(Name,Value) creates an isotropic antenna
object, antenna, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FrequencyRange — Operating frequency range
[0 1e20] (default) | nonnegative, real-valued, 1-by-2 row vector
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Operating frequency range of the antenna, specified as a nonnegative, real-valued, 1-by-2 row vector
in the form [LowerBound HigherBound]. The antenna element has no response outside the
specified frequency range. Units are in Hz.
Data Types: double

BackBaffled — Backbaffle antenna element
false (default) | true

Backbaffle the antenna element, specified as false or true. Set this property to true to baffle the
response on the backside of the antenna element. In this case, the antenna response to all azimuth
angles beyond ±90° from broadside (0° azimuth and 0°elevation) is zero. When the value of this
property is false, the back of the antenna element is not baffled.
Data Types: logical

Usage

Syntax
RESP = antenna(FREQ,ANG)

Description

RESP = antenna(FREQ,ANG) returns the antenna voltage response RESP at operating frequencies
specified in FREQ and in directions specified in ANG.

Input Arguments

FREQ — Operating frequency of antenna element
nonnegative scalar | nonnegative, real-valued, 1-by-L row vector

Operating frequency of antenna element, specified as a nonnegative scalar or nonnegative, real-
valued, 1-by-L row vector. Frequency units are in Hz.

FREQ must lie within the range of values specified by the FrequencyRange or the
FrequencyVector property of the element. Otherwise, the element produces no response and the
response is returned as –Inf. Most elements objects use the FrequencyRange property except for
phased.CustomAntennaElement, which uses the FrequencyVector property.
Example: [1e8 2e6]
Data Types: double

ANG — Azimuth and elevation angles of response directions
real-valued, 1-by-M row vector | real-valued, 2-by-M matrix

Azimuth and elevation angles of response directions, specified as a real-valued, 1-by-M row vector or
a real-valued, 2-by-M matrix, where M is the number of angular directions. Angle units are in
degrees. The azimuth angle must lie in the range –180° to 180°, inclusive. The elevation angle must
lie in the range –90° to 90°, inclusive.

• If ANG is a 1-by-M vector, each element specifies the azimuth angle of the direction. In this case,
the corresponding elevation angle is assumed to be zero.
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• If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation].

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy-plane. This angle is positive when measured towards
the z-axis. See the definition of “Azimuth and Elevation Angles”.
Example: [110 125; 15 10]
Data Types: double

Output Arguments

RESP — Voltage response of antenna
complex-valued M-by-L matrix

Voltage response of antenna element, returned as a complex-valued M-by-L matrix. In this matrix, M
represents the number of angles specified in ANG and L represents the number of frequencies
specified in FREQ.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Antenna and Transducer Element System Objects
beamwidth Compute and display beamwidth of sensor element pattern
directivity Directivity of antenna or transducer element
isPolarizationCapable Antenna element polarization capability
pattern Plot antenna or transducer element directivity and patterns
patternAzimuth Plot antenna or transducer element directivity and pattern versus azimuth
patternElevation Plot antenna or transducer element directivity and pattern versus elevation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Plot Isotropic Antenna Element Response

Create an isotropic antenna operating over a frequency range from 800 MHz to 1.2 GHz. The
operating frequency is 1 GHz. Find the response of the antenna at boresight. Then, plot the polar-
pattern elevation response of the antenna.
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antenna = phased.IsotropicAntennaElement( ...
    'FrequencyRange',[800e6 1.2e9]);
fc = 1e9;

Obtain the response at boresight.

resp = antenna(fc,[0;0])

resp = 1

Plot the response pattern.

pattern(antenna,fc,0,[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb','Normalize',true)

Isotropic Antenna Does Not Support Polarization

Create an isotropic antenna element using the phased.IsotropicAntennaElement System
object™ and show that it does not support polarization.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[1.0,10]*1e9);
isPolarizationCapable(antenna)

ans = logical
   0
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The returned value 0 shows that the antenna element does not support polarization.

Directivity of Isotropic Antenna Element

Compute the directivity of an isotropic antenna element in different directions.

Create an isotropic antenna element system object.

antenna = phased.IsotropicAntennaElement();

First, specify that the directions of interest all at an elevation angle of zero degrees. The seven
azimuth angles are centered around boresight (zero degrees azimuth and zero degrees elevation). Set
the frequency to 1 GHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
freq = 1e9;

Compute the directivity along the constant elevation cut.

d = directivity(antenna,freq,ang)

d = 7×1

     0
     0
     0
     0
     0
     0
     0

Next, specify that the directions of interest all at an azimuth angle of zero degrees. All elevation
angles are centered around boresight. The five elevation angles range from −20 to +20 degrees,
inclusive. Set the frequency to 1 GHz.

ang = [0,0,0,0,0; -20,-10,0,10,20];
freq = 1e9;

Compute the directivity along the constant azimuth cut.

d = directivity(antenna,freq,ang)

d = 5×1

     0
     0
     0
     0
     0

For an isotropic antenna, the directivity is independent of direction.
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Plot Pattern and Directivity of Isotropic Antenna

Create an isotropic antenna element. Then, plot the antenna power pattern and directivity.

First, create the antenna.

antenna = phased.IsotropicAntennaElement;

Draw an azimuth cut of the power pattern at 0 degrees elevation. Assume the operating frequency is
1 GHz.

fc = 1e9;
pattern(antenna,fc,[-180:180],0,...
    'Type','power',...
    'CoordinateSystem','rectangular')

Draw the same azimuth cut of the antenna directivity.

pattern(antenna,fc,[-180:180],0,...
    'Type','directivity',...
    'CoordinateSystem','rectangular')
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Elevation-Cut of Isotropic Antenna Pattern

Construct an isotropic antenna operating in the frequency range from 800 MHz to 1.2 GHz. Compute
the response at boresight at 1 GHz. Display the power pattern of the antenna at 1 GHz.

antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[800e6 1.2e9]);
fc = 1e9;
resp = antenna(fc,[0;0])

resp = 1

Plot the elevation power pattern of the antenna in polar coordinates.

pattern(antenna,fc,0,[-90:90],'Type','powerdb','CoordinateSystem','polar')
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3-D Isotropic Antenna Pattern

Construct an isotropic antenna operating over a frequency range from 800 MHz to 1.2 GHz. Then,
plot the 3-D antenna field pattern.

Construct an isotropic antenna element.

antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[800e6 1.2e9]);

Plot the 3-D magnitude pattern of the antenna at 1 GHz from −30 to 30 degrees in both azimuth and
elevation in 0.1 degree increments.

fc = 1e9;
pattern(antenna,fc,[-30:0.1:30],[-30:0.1:30],...
    'Type','efield',...
    'CoordinateSystem','polar')
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Directivity Pattern of Isotropic Antenna Element for Span of Azimuth Angles

Plot an azimuth cut of the directivity of an isotropic antenna element at 0 degrees elevation for all
azimuth angles and at 30 degrees elevation for a small span of azimuth angles. Assume the operating
frequency is 500 MHz.

Create the antenna element.

fc = 500e6;
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

Plot the pattern for all azimuth angles at 0 degrees elevation.

patternAzimuth(antenna,fc,0)
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Plot the pattern for a reduced span of azimuth angles using the Azimuth parameter.

patternAzimuth(antenna,fc,30,'Azimuth',[-20:20])
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Directivity Pattern of Isotropic Antenna Element for Span of Elevation Angles

Plot an elevation cut of directivity of an isotropic antenna element at 45 degrees azimuth for all
elevation angles and at 45 degrees for a span of elevation angles. Assume the operating frequency is
500 MHz.

Create the antenna element.

fc = 500e6;
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

Plot the directivity for all elevation angles.

patternElevation(antenna,fc,45)
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Plot the directivity for a span of elevation angles using the Elevation parameter.

patternElevation(antenna,fc,45,'Elevation',[-20:20])

 phased.IsotropicAntennaElement
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, and patternElevation object functions are not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement | phased.CustomAntennaElement |
phased.CustomMicrophoneElement | phased.OmnidirectionalMicrophoneElement |
phased.ShortDipoleAntennaElement | phased.ULA | phased.URA | phitheta2azel |
uv2azel

Introduced in R2011a
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directivity
System object: phased.IsotropicAntennaElement
Package: phased

Directivity of isotropic antenna element

Syntax
D = directivity(H,FREQ,ANGLE)

Description
D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-841 of an isotropic
antenna element, H, at frequencies specified by FREQ and in direction angles specified by ANGLE.

Input Arguments
H — Isotropic antenna element
System object

Isotropic antenna element specified as a phased.IsotropicAntennaElement System object.
Example: H = phased.IsotropicAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.
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If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Isotropic Antenna Element

Compute the directivity of an isotropic antenna element in different directions.

Create an isotropic antenna element system object.

antenna = phased.IsotropicAntennaElement();

First, specify that the directions of interest all at an elevation angle of zero degrees. The seven
azimuth angles are centered around boresight (zero degrees azimuth and zero degrees elevation). Set
the frequency to 1 GHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
freq = 1e9;

Compute the directivity along the constant elevation cut.

d = directivity(antenna,freq,ang)

d = 7×1

     0
     0
     0
     0
     0
     0
     0

1 Objects

1-840



Next, specify that the directions of interest all at an azimuth angle of zero degrees. All elevation
angles are centered around boresight. The five elevation angles range from −20 to +20 degrees,
inclusive. Set the frequency to 1 GHz.

ang = [0,0,0,0,0; -20,-10,0,10,20];
freq = 1e9;

Compute the directivity along the constant azimuth cut.

d = directivity(antenna,freq,ang)

d = 5×1

     0
     0
     0
     0
     0

For an isotropic antenna, the directivity is independent of direction.

More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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isPolarizationCapable
System object: phased.IsotropicAntennaElement
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the
phased.IsotropicAntennaElement System object supports polarization. An antenna element
supports polarization if it can create or respond to polarized fields. This object does not support
polarization.

Input Arguments
h — Isotropic antenna element

Isotropic antenna element specified as a phased.IsotropicAntennaElement System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the antenna element supports polarization
or false if it does not. Since the phased.IsotropicAntennaElement object does not support
polarization, flag is always returned as false.

Examples

Isotropic Antenna Does Not Support Polarization

Create an isotropic antenna element using the phased.IsotropicAntennaElement System
object™ and show that it does not support polarization.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[1.0,10]*1e9);
isPolarizationCapable(antenna)

ans = logical
   0

The returned value 0 shows that the antenna element does not support polarization.
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pattern
System object: phased.IsotropicAntennaElement
Package: phased

Plot isotropic antenna element directivity and patterns

Syntax
pattern(sElem,FREQ)
pattern(sElem,FREQ,AZ)
pattern(sElem,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the element specified in
sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the element directivity pattern at the specified azimuth angle.

pattern(sElem,FREQ,AZ,EL) plots the element directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the element pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the element pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-850 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sElem — Isotropic antenna element
System object

Isotropic antenna element, specified as a phased.IsotropicAntennaElement System object.
Example: sElem = phased.IsotropicAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector
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Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
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must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Output Arguments
PAT — Element pattern
N-by-M real-valued matrix

Element pattern, returned as an N-by-M real-valued matrix. The pattern is a function of azimuth and
elevation. The rows of PAT correspond to the azimuth angles in the vector specified by EL_ANG. The
columns correspond to the elevation angles in the vector specified by AZ_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.
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EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Plot Pattern and Directivity of Isotropic Antenna

Create an isotropic antenna element. Then, plot the antenna power pattern and directivity.

First, create the antenna.

antenna = phased.IsotropicAntennaElement;

Draw an azimuth cut of the power pattern at 0 degrees elevation. Assume the operating frequency is
1 GHz.

fc = 1e9;
pattern(antenna,fc,[-180:180],0,...
    'Type','power',...
    'CoordinateSystem','rectangular')

Draw the same azimuth cut of the antenna directivity.
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pattern(antenna,fc,[-180:180],0,...
    'Type','directivity',...
    'CoordinateSystem','rectangular')

Elevation-Cut of Isotropic Antenna Pattern

Construct an isotropic antenna operating in the frequency range from 800 MHz to 1.2 GHz. Compute
the response at boresight at 1 GHz. Display the power pattern of the antenna at 1 GHz.

antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[800e6 1.2e9]);
fc = 1e9;
resp = antenna(fc,[0;0])

resp = 1

Plot the elevation power pattern of the antenna in polar coordinates.

pattern(antenna,fc,0,[-90:90],'Type','powerdb','CoordinateSystem','polar')
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3-D Isotropic Antenna Pattern

Construct an isotropic antenna operating over a frequency range from 800 MHz to 1.2 GHz. Then,
plot the 3-D antenna field pattern.

Construct an isotropic antenna element.

antenna = phased.IsotropicAntennaElement(...
    'FrequencyRange',[800e6 1.2e9]);

Plot the 3-D magnitude pattern of the antenna at 1 GHz from −30 to 30 degrees in both azimuth and
elevation in 0.1 degree increments.

fc = 1e9;
pattern(antenna,fc,[-30:0.1:30],[-30:0.1:30],...
    'Type','efield',...
    'CoordinateSystem','polar')
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument

1 Objects

1-852



plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.IsotropicAntennaElement
Package: phased

Plot isotropic antenna element directivity or pattern versus azimuth

Syntax
patternAzimuth(sElem,FREQ)
patternAzimuth(sElem,FREQ,EL)
patternAzimuth(sElem,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus azimuth (in dBi)
for the element sElem at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity pattern versus
azimuth (in dBi) at the elevation angle specified by EL. When EL is a vector, multiple overlaid plots
are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Azimuth' parameter and
the EL input argument.

Input Arguments
sElem — Isotropic antenna element
System object

Isotropic antenna element, specified as a phased.IsotropicAntennaElement System object.
Example: sElem = phased.IsotropicAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension
N is the number of elevation angles, as determined by the EL input argument.

Examples

Directivity Pattern of Isotropic Antenna Element for Span of Azimuth Angles

Plot an azimuth cut of the directivity of an isotropic antenna element at 0 degrees elevation for all
azimuth angles and at 30 degrees elevation for a small span of azimuth angles. Assume the operating
frequency is 500 MHz.

Create the antenna element.

fc = 500e6;
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

Plot the pattern for all azimuth angles at 0 degrees elevation.

patternAzimuth(antenna,fc,0)

Plot the pattern for a reduced span of azimuth angles using the Azimuth parameter.

patternAzimuth(antenna,fc,30,'Azimuth',[-20:20])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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Introduced in R2015a
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patternElevation
System object: phased.IsotropicAntennaElement
Package: phased

Plot isotropic antenna element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)
patternElevation(sElem,FREQ,AZ)
patternElevation(sElem,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus elevation (in
dBi) for the element sElem at zero degrees azimuth angle. The argument FREQ specifies the
operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity pattern versus
elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid plots
are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sElem — Isotropic antenna element
System object

Isotropic antenna element, specified as a phased.IsotropicAntennaElement System object.
Example: sElem = phased.IsotropicAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of elevation angles determined by the 'Elevation' name-value pair argument. The
dimension N is the number of azimuth angles determined by the AZ argument.

Examples

Directivity Pattern of Isotropic Antenna Element for Span of Elevation Angles

Plot an elevation cut of directivity of an isotropic antenna element at 45 degrees azimuth for all
elevation angles and at 45 degrees for a span of elevation angles. Assume the operating frequency is
500 MHz.

Create the antenna element.

fc = 500e6;
antenna = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);

Plot the directivity for all elevation angles.

patternElevation(antenna,fc,45)

Plot the directivity for a span of elevation angles using the Elevation parameter.

patternElevation(antenna,fc,45,'Elevation',[-20:20])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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plotResponse
System object: phased.IsotropicAntennaElement
Package: phased

Plot response pattern of antenna

Syntax
plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ) plots the element response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must lie within the
range specified by the FrequencyVector property of H. If you set the 'RespCut' property of H to
'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If
RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0
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Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the antenna response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This parameter is
not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.
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Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

AzimuthAngles

Azimuth angles for plotting element response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting element response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When you set the RespCut parameter to '3D', you
can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting element response, specified as a row vector. The UGrid parameter
sets the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting element response, specified as a row vector. The VGrid parameter
sets the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples
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Plot Response and Directivity of Isotropic Antenna

This example shows how to plot the response and the directivity of an isotropic antenna element.

Draw a line plot of an azimuth cut of the response of an isotropic antenna along 0 degrees elevation.
Assume the operating frequency is 1 GHz.

sIso = phased.IsotropicAntennaElement;
plotResponse(sIso,1e9,'Unit','pow');

Draw an azimuth cut of the antenna directivity.

plotResponse(sIso,1e9,'Unit','dbi');

 plotResponse

1-867



Plot Elevation-Cut of Isotropic Antenna Response

Construct an isotropic antenna operating in the frequency range from 800 MHz to 1.2 GHz. Find the
response of the antenna at boresight at 1 GHz.

sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[800e6 1.2e9]);
fc = 1e9;
resp = step(sIso,fc,[0;0])

resp = 1

Plot the polar-form of the elevation response of the antenna.

plotResponse(sIso,fc,'RespCut','El','Format','Polar');
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Plot 3-D Response

This example shows how to construct an isotropic antenna operating over a frequency range from
800 MHz to 1.2 GHz and how to plot its response.

Construct the antenna element.

sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[0.8e9 1.2e9]);

Plot the 3-D response of the antenna at 1 GHz from -30 to 30 degrees in both azimuth and elevation
at 0.1 degree increments.

fc = 1e9;
plotResponse(sIso,fc,'RespCut','3D','Format','Polar',...
    'Unit','mag','AzimuthAngles',[-30:.1:30],...
    'ElevationAngles',[-30:.1:30]);
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See Also
azel2uv | uv2azel
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step
System object: phased.IsotropicAntennaElement
Package: phased

Output response of antenna element

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response RESP at operating frequencies
specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.
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Output Arguments
RESP

Voltage response of antenna element specified as an M-by-L, complex-valued matrix. In this matrix, M
represents the number of angles specified in ANG while L represents the number of frequencies
specified in FREQ.

Examples

Plot Isotropic Antenna Element Response

Create an isotropic antenna operating over a frequency range from 800 MHz to 1.2 GHz. The
operating frequency is 1 GHz. Find the response of the antenna at boresight. Then, plot the polar-
pattern elevation response of the antenna.

antenna = phased.IsotropicAntennaElement( ...
    'FrequencyRange',[800e6 1.2e9]);
fc = 1e9;

Obtain the response at boresight.

resp = antenna(fc,[0;0])

resp = 1

Plot the response pattern.

pattern(antenna,fc,0,[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb','Normalize',true)
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See Also
phitheta2azel | uv2azel
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phased.IsotropicHydrophone
Package: phased

Isotropic hydrophone

Description
The phased.IsotropicHydrophone System object creates an isotropic hydrophone for sonar
applications. An isotropic hydrophone has the same response in all signal directions. The response is
the output voltage of the hydrophone per unit sound pressure. The response of a hydrophone is also
called its sensitivity. You can specify the response using the VoltageSensitivity property.

To compute the response of a hydrophone for specified directions:

1 Define and set up an isotropic hydrophone System object. See “Construction” on page 1-874.
2 Call step to compute the response according to the properties of

phased.IsotropicHydrophone.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
hydrophone = phased.IsotropicHydrophone creates an isotropic hydrophone System object,
hydrophone.

hydrophone = phased.IsotropicHydrophone(Name,Value) creates an isotropic hydrophone
System object, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
FrequencyRange — Operating frequency range of hydrophone
[0 100e6] (default) | real-valued 1-by-2 vector

Operating frequency range of hydrophone, specified as a real-valued 1-by-2 row vector of the form
[LowerBound HigherBound]. This property defines the frequency range over which the
hydrophone has a response. The hydrophone element has zero response outside this frequency range.
Units are in Hz.
Example: [0 1000]
Data Types: double

VoltageSensitivity — Voltage sensitivity of hydrophone
-120 (default) | scalar | real-valued 1-by-K row vector

Voltage sensitivity of hydrophone, specified as a scalar or real-valued 1-by-K row vector. When you
specify the voltage sensitivity as a scalar, that value applies to the entire frequency range specified by
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FrequencyRange. When you specify the voltage sensitivity as a vector, the frequency range is
divided into K-1 equal intervals. The sensitivity values are assigned to the interval end points. The
step method interpolates the voltage sensitivity for any frequency inside the frequency range. Units
are in dB//1V/μPa. See “Hydrophone Sensitivity” on page 1-877 for more details.
Example: 10
Data Types: double

BackBaffled — Backbaffle hydrophone element
false (default) | true

Backbaffle hydrophone element, specified as false or true. Set this property to true to backbaffle
the hydrophone. When the hydrophone is backbaffled, the hydrophone response for all azimuth
angles beyond ±90° from broadside are zero. Broadside is defined as 0° azimuth and 0° elevation.

When the value of this property is false, the hydrophone is not backbaffled.

Methods
Specific to phased.IsotropicHydrophone Object
beamwidth Compute and display beamwidth of sensor element pattern
directivit
y

Directivity of isotropic hydrophone

isPolariza
tionCapabl
e

Polarization capability

pattern Plot isotropic hydrophone directivity and patterns
patternAzi
muth

Plot isotropic hydrophone directivity and response patterns versus azimuth

patternEle
vation

Plot isotropic hydrophone directivity and response patterns versus elevation

step Voltage sensitivity of isotropic hydrophone

Common to All System Objects
release Allow System object property value changes

Examples

Single Frequency Response and Pattern of Isotropic Hydrophone

Examine the response and patterns of an isotropic hydrophone operating between 1 kHz and 10 kHz.

Set up the hydrophone parameters. Obtain the voltage sensitivity at five different elevation angles:
-30�, -15�, 0�, 15� and 30�. All elevation angles are at 0&deg;. The sensitivities are computed at
the signal frequency of 2 kHz.

hydrophone = phased.IsotropicHydrophone('FrequencyRange',[1 10]*1e3);
fc = 2e3;
resp = hydrophone(fc,[0 0 0 0 0;-30 -15 0 15 30]);
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Draw a 3-D plot of the voltage sensitivity.

pattern(hydrophone,fc,[-180:180],[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb')

Response and Pattern of Isotropic Hydrophone at Multiple Frequencies

Examine the response and patterns of an isotropic hydrophone at three different frequencies. The
hydrophone operates between 1 kHz and 10 kHz. Specify the voltage sensitivity as a vector.

Set up the hydrophone parameters and obtain the voltage sensitivity at 45° azimuth and 30°
elevation. Compute the sensitivities at the signal frequencies of 2, 5, and 7 kHz.

hydrophone = phased.IsotropicHydrophone('FrequencyRange',[1 10]*1e3, ...
    'VoltageSensitivity',[-100 -90 -100]);
fc = [2e3 5e3 7e3];
resp = hydrophone(fc,[45;30])

resp = 1×3

   14.8051   29.2202   24.4152

Draw a 2-D plot of the voltage sensitivity as a function of azimuth.
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pattern(hydrophone,fc,[-180:180],0,'CoordinateSystem','rectangular',...
    'Type','power')

More About
Hydrophone Sensitivity

Hydrophone sensitivity measures the response of a hydrophone to input sound pressure.

Hydrophone voltage sensitivity is the open circuit voltage (OCV) at the output of a hydrophone for a
given input sound intensity. Another term for hydrophone sensitivity is open circuit receiving
response (OCRR). Specifically, OCRR is the voltage generated by a hydrophone per µPa of sound
intensity. OCRR is generally a function of frequency. If the sound intensity level (SIL) is expressed in
dB//µPa and the output voltage is expressed in dB//1V, then OCRR is expressed in dB//1V/µPa. The
output voltage of a hydrophone is related to the input sound level by

VdB = SIL + OCRR.

Consider a hydrophone that has OCRR = –160 dB//1V/µPa at 10 kHz. Assume that the SIL at the
hydrophone due to a nearby ship is 120 dB//µPa. Then, the output voltage of the hydrophone is

VdB = SIL + OCRR = 120 dB + (–160) dB = –40 dB//1V.

In linear units,
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V = 10VdB/10 = 100 µV.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The pattern, patternAzimuth, and patternElevation methods are not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.IsotropicProjector | phased.ULA | phased.URA |
phased.UnderwaterRadiatedNoise

Topics
“Underwater Target Detection with an Active Sonar System”
“Locating an Acoustic Beacon with a Passive Sonar System”
Phased Array Gallery

Introduced in R2017a
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directivity
System object: phased.IsotropicHydrophone
Package: phased

Directivity of isotropic hydrophone

Syntax
D = directivity(hydrophone,FREQ,ANGLE)

Description
D = directivity(hydrophone,FREQ,ANGLE) returns the “Directivity” on page 1-881 of the
isotropic hydrophone, hydrophone, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments
hydrophone — Isotropic hydrophone
phased.IsotropicHydrophone System object

Isotropic hydrophone, specified as a phased.IsotropicHydrophone System object.
Example: phased.IsotropicHydrophone

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.
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If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Isotropic Hydrophone

Compute the directivity of an isotropic hydrophone in different directions. Assume the signal
frequency is 3 kHz. First, set up the hydrophone parameters.

fc = 3e3;
hydrophone = phased.IsotropicHydrophone('FrequencyRange',[1,10]*1e3, ...
    'VoltageSensitivity',[-100,-90,-100]);
patternElevation(hydrophone,fc,45)
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First, select the angles of interest to be constant elevation angle at zero degrees. The five azimuth
angles are centered around boresight (zero degrees azimuth and zero degrees elevation).

ang = [-20,-10,0,10,20; 0,0,0,0,0];

Compute the directivity along the constant elevation cut.

d = directivity(hydrophone,fc,ang)

d = 5×1

     0
     0
     0
     0
     0

The directivity of an isotropic hydrophone is zero in every direction.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.
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Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation

Introduced in R2017a
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isPolarizationCapable
System object: phased.IsotropicHydrophone
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(hydrophone)

Description
flag = isPolarizationCapable(hydrophone) returns a Boolean value, flag, indicating
whether the phased.IsotropicHydrophone supports polarization. An element supports
polarization if it can create or respond to polarized fields. This hydrophone does not support
polarization.

Input Arguments
hydrophone — Isotropic hydrophone
phased.IsotropicHydrophone System object

Isotropic hydrophone, specified as a phased.IsotropicHydrophone System object.
Example: phased.IsotropicHydrophone

Output Arguments
flag — Polarization-capability flag
true | false

Polarization-capability returned as a Boolean value true if the hydrophone supports polarization or
false if it does not. Because the phased.IsotropicHydrophone object does not support
polarization, flag is always returned as false.

Introduced in R2017a
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pattern
System object: phased.IsotropicHydrophone
Package: phased

Plot isotropic hydrophone directivity and patterns

Syntax
pattern(hydrophone,FREQ)
pattern(hydrophone,FREQ,AZ)
pattern(hydrophone,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(hydrophone,FREQ) plots the 3D directivity pattern (in dBi) for the hydrophone,
hydrophone. The operating frequency is specified in FREQ.

pattern(hydrophone,FREQ,AZ) plots the directivity pattern at the specified azimuth angle.

pattern(hydrophone,FREQ,AZ,EL) plots the directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the directivity pattern with additional options specified by one
or more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Input Arguments
hydrophone — Isotropic hydrophone
phased.IsotropicHydrophone System object

Isotropic hydrophone, specified as a phased.IsotropicHydrophone System object.
Example: phased.IsotropicHydrophone

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
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Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char
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Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component

Example: 'V'
Data Types: char

Output Arguments
PAT — Element pattern
N-by-M real-valued matrix
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Element pattern, returned as an N-by-M real-valued matrix. The pattern is a function of azimuth and
elevation. The rows of PAT correspond to the azimuth angles in the vector specified by EL_ANG. The
columns correspond to the elevation angles in the vector specified by AZ_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Single Frequency Response and Pattern of Isotropic Hydrophone

Examine the response and patterns of an isotropic hydrophone operating between 1 kHz and 10 kHz.

Set up the hydrophone parameters. Obtain the voltage sensitivity at five different elevation angles:
-30�, -15�, 0�, 15� and 30�. All elevation angles are at 0&deg;. The sensitivities are computed at
the signal frequency of 2 kHz.

hydrophone = phased.IsotropicHydrophone('FrequencyRange',[1 10]*1e3);
fc = 2e3;
resp = hydrophone(fc,[0 0 0 0 0;-30 -15 0 15 30]);

Draw a 3-D plot of the voltage sensitivity.

pattern(hydrophone,fc,[-180:180],[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb')
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Response and Pattern of Isotropic Hydrophone at Multiple Frequencies

Examine the response and patterns of an isotropic hydrophone at three different frequencies. The
hydrophone operates between 1 kHz and 10 kHz. Specify the voltage sensitivity as a vector.

Set up the hydrophone parameters and obtain the voltage sensitivity at 45° azimuth and 30°
elevation. Compute the sensitivities at the signal frequencies of 2, 5, and 7 kHz.

hydrophone = phased.IsotropicHydrophone('FrequencyRange',[1 10]*1e3, ...
    'VoltageSensitivity',[-100 -90 -100]);
fc = [2e3 5e3 7e3];
resp = hydrophone(fc,[45;30])

resp = 1×3

   14.8051   29.2202   24.4152

Draw a 2-D plot of the voltage sensitivity as a function of azimuth.

pattern(hydrophone,fc,[-180:180],0,'CoordinateSystem','rectangular',...
    'Type','power')
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
patternAzimuth | patternElevation
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patternAzimuth
System object: phased.IsotropicHydrophone
Package: phased

Plot isotropic hydrophone directivity and response patterns versus azimuth

Syntax
patternAzimuth(hydrophone,FREQ)
patternAzimuth(hydrophone,FREQ,EL)
patternAzimuth(hydrophone,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(hydrophone,FREQ) plots the 2-D element directivity pattern versus azimuth (in
dBi) for the element hydrophone at zero degrees elevation angle. The argument FREQ specifies the
operating frequency.

patternAzimuth(hydrophone,FREQ,EL), in addition, plots the 2-D element directivity pattern
versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a vector, multiple overlaid
plots are created.

patternAzimuth(hydrophone,FREQ,EL,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Azimuth' parameter and
the EL input argument.

Input Arguments
hydrophone — Isotropic hydrophone
phased.IsotropicHydrophone System object

Isotropic hydrophone, specified as a phased.IsotropicHydrophone System object.
Example: phased.IsotropicHydrophone

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix

1 Objects

1-892



Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension
N is the number of elevation angles, as determined by the EL input argument.

Examples

Azimuth Pattern of Isotropic Hydrophone

Examine the azimuth pattern of an isotropic hydrophone at 30° elevation. The frequency range is
between 1 kHz and 10 kHz. Specify the voltage sensitivity as a vector.

First, set up the hydrophone parameters.

fc = 3e3;
hydrophone = phased.IsotropicHydrophone('FrequencyRange',[1,10]*1e3, ...
    'VoltageSensitivity',[-100,-90,-100]);
patternAzimuth(hydrophone,fc,30)

Plot a smaller range of azimuth angles using the Azimuth parameter.

patternAzimuth(hydrophone,fc,30,'Azimuth',[-20:20])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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Introduced in R2017a

 patternAzimuth

1-895



patternElevation
System object: phased.IsotropicHydrophone
Package: phased

Plot isotropic hydrophone directivity and response patterns versus elevation

Syntax
patternElevation(hydrophone,FREQ)
patternElevation(hydrophone,FREQ,AZ)
patternElevation(hydrophone,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(hydrophone,FREQ) plots the 2-D element directivity pattern versus elevation
(in dBi) for the element hydrophone at zero degrees azimuth angle. The argument FREQ specifies
the operating frequency.

patternElevation(hydrophone,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(hydrophone,FREQ,AZ,Name,Value) plots the element pattern with
additional options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
hydrophone — Isotropic hydrophone
phased.IsotropicHydrophone System object

Isotropic hydrophone, specified as a phased.IsotropicHydrophone System object.
Example: phased.IsotropicHydrophone

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of elevation angles determined by the 'Elevation' name-value pair argument. The
dimension N is the number of azimuth angles determined by the AZ argument.

Examples

Elevation Pattern of Isotropic Hydrophone

Plot an elevation cut of directivity of an isotropic hydrophone at 45° azimuth. Assume the signal
frequency is 3 kHz. First, set up the hydrophone parameters.

fc = 3e3;
hydrophone = phased.IsotropicHydrophone('FrequencyRange',[1,10]*1e3, ...
    'VoltageSensitivity',[-100,-90,-100]);
patternElevation(hydrophone,fc,45)

Plot a smaller range of elevation angles using the Elevation parameter.

patternElevation(hydrophone,fc,45,'Elevation',-20:20)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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step
System object: phased.IsotropicHydrophone
Package: phased

Voltage sensitivity of isotropic hydrophone

Syntax
resp = step(hydrophone,freq,ang)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

resp = step(hydrophone,freq,ang) returns the voltage sensitivity for the hydrophone at the
specified operating frequencies and in the specified directions of arriving signals.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
hydrophone — Isotropic hydrophone
phased.IsotropicHydrophone System object

Isotropic hydrophone, specified as a phased.IsotropicHydrophone System object.
Example: phased.IsotropicHydrophone

freq — Voltage sensitivity frequencies
positive real scalar | real-valued 1-by-L vector of positive values

Voltage sensitivity frequencies of hydrophone, specified as a positive real scalar or a real-valued 1-by-
L vector of positive values. Units are in Hz.
Data Types: double

ang — Direction of arriving signals
real-valued 1-by-M row vector | real-valued 2-by-M matrix

Direction of arriving signals, specified as a real-valued 1-by-M row vector or 2-by-M matrix. When
ang is a 2-by-M matrix, each column of the matrix specifies the direction in the form
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[azimuth;elevation]. The azimuth angle must lie between –180° and 180°, inclusive. The
elevation angle must lie between –90° and 90°, inclusive.

When ang is a 1-by-M row vector, each element specifies the azimuth angle of the arriving signal. In
this case, the corresponding elevation angle is assumed to be zero.
Data Types: double

Output Arguments
resp — Voltage sensitivity of hydrophone

Voltage sensitivity of hydrophone, returned as a real-valued M-by-L matrix. M represents the number
of angles specified in ang, and L represents the number of frequencies specified in freq. Units are in
V/Pa.

Examples

Single Frequency Response and Pattern of Isotropic Hydrophone

Examine the response and patterns of an isotropic hydrophone operating between 1 kHz and 10 kHz.

Set up the hydrophone parameters. Obtain the voltage sensitivity at five different elevation angles:
-30�, -15�, 0�, 15� and 30�. All elevation angles are at 0&deg;. The sensitivities are computed at
the signal frequency of 2 kHz.

hydrophone = phased.IsotropicHydrophone('FrequencyRange',[1 10]*1e3);
fc = 2e3;
resp = hydrophone(fc,[0 0 0 0 0;-30 -15 0 15 30]);

Draw a 3-D plot of the voltage sensitivity.

pattern(hydrophone,fc,[-180:180],[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb')
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Response and Pattern of Isotropic Hydrophone at Multiple Frequencies

Examine the response and patterns of an isotropic hydrophone at three different frequencies. The
hydrophone operates between 1 kHz and 10 kHz. Specify the voltage sensitivity as a vector.

Set up the hydrophone parameters and obtain the voltage sensitivity at 45° azimuth and 30°
elevation. Compute the sensitivities at the signal frequencies of 2, 5, and 7 kHz.

hydrophone = phased.IsotropicHydrophone('FrequencyRange',[1 10]*1e3, ...
    'VoltageSensitivity',[-100 -90 -100]);
fc = [2e3 5e3 7e3];
resp = hydrophone(fc,[45;30])

resp = 1×3

   14.8051   29.2202   24.4152

Draw a 2-D plot of the voltage sensitivity as a function of azimuth.

pattern(hydrophone,fc,[-180:180],0,'CoordinateSystem','rectangular',...
    'Type','power')
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Algorithms
The total sensitivity of a hydrophone is a combination of its frequency sensitivity and spatial
sensitivity. phased.IsotropicHydrophone calculates both sensitivities using nearest neighbor
interpolation, and then multiplies the sensitivities to form the total sensitivity.

See Also
phitheta2azel | uv2azel
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phased.IsotropicProjector
Package: phased

Isotropic projector

Description
The phased.IsotropicProjector System object creates an isotropic sound projector for sonar
applications. An isotropic projector has the same response in all directions. The response is the
radiated sound intensity per unit input voltage to the projector. You can adjust the response using the
VoltageResponse property.

To compute the response of a projector for specified directions:

1 Define and set up an isotropic projector System object. See “Construction” on page 1-905.
2 Call step to compute the response according to the properties of

phased.IsotropicProjector.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
projector = phased.IsotropicProjector creates an isotropic projector System object,
projector.

projector = phased.IsotropicProjector(Name,Value) creates an isotropic projector
System object, projector, with each specified property Name set to the specified Value. You can
specify additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
FrequencyRange — Operating frequency range of projector
[0 100e6] (default) | real-valued 1-by-2 vector

Operating frequency range of projector, specified as a 1-by-2 row vector in the form of [LowerBound
HigherBound]. The projector defines the nonzero response range over which the hydrophone has a
response. The projector has zero response outside this frequency range. Units are Hz.
Example: [0 10e3]
Data Types: double

VoltageResponse — Voltage response of projector
120 (default) | scalar | real-valued 1-by-K row vector

Voltage response of projector, specified as a scalar or real-valued 1-by-K row vector. When you specify
voltage response as a scalar, that value applies to the entire frequency range specified by
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FrequencyRange. When you specify the voltage sensitivity as a vector, the frequency range is
divided into K-1 equal intervals. The response values are assigned to the interval end points. Then,
the step method interpolates the voltage response for any frequency inside the frequency range.
Units are in dB ref: 1 μPa/V. See “Projector Voltage Response” on page 1-908 for more details.
Example: 10
Data Types: double

BackBaffled — Backbaffle response of projector
false (default) | true

Backbaffle response of projector, specified as false or true. Set this property to true to backbaffle
the projector response. When the projector is backbaffled, the projector response for all azimuth
angles beyond ±90° from broadside are zero. Broadside is defined as 0° azimuth and 0° elevation.

When the value of this property is false, the projector is not backbaffled.

Methods
Specific to phased.IsotropicProjector Object
beamwidth Compute and display beamwidth of sensor element pattern
directivit
y

Directivity of isotropic projector

isPolariza
tionCapabl
e

Polarization capability

pattern Plot isotropic projector directivity and patterns
patternAzi
muth

Plot isotropic projector directivity and response patterns versus azimuth

patternEle
vation

Plot isotropic projector directivity and response patterns versus elevation

step Voltage sensitivity of isotropic projector

Common to All System Objects
release Allow System object property value changes

Examples

Response and Pattern of Isotropic Projector at Single Frequency

Examine the response and patterns of an isotropic projector operating between 1 kHz and 10 kHz.

Set the projector parameters and obtain the voltage response at five different elevation angles: -30°,
-15°, 0°, 15° and 30&deg. All elevation angles at 0° azimuth angle. The voltage response is computed
at 2 kHz.

projector = phased.IsotropicProjector('FrequencyRange',[1,10]*1e3);
fc = 2e3;
resp = projector(fc,[0,0,0,0,0;-30,-15,0,15,30]);
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Draw a 3-D plot of the voltage response.

pattern(projector,fc,[-180:180],[-90:90],'CoordinateSystem','polar', ...
    'Type','power')

Response and Pattern of Isotropic Projector at Multiple Frequencies

Examine the response and patterns of an isotropic projector at three different frequencies. The
projector operates between 1 kHz and 10 kHz. Specify the voltage response as a vector.

Set up the projector parameters, and obtain the voltage response at 45° azimuth and 30° elevation.
Compute the responses at signal frequencies of 2, 5, and 7 kHz.

projector = phased.IsotropicProjector('FrequencyRange',[1 10]*1e3, ...
    'VoltageResponse',[90 95 100 95 90]);
fc = [2e3 5e3 7e3];
resp = projector(fc,[45;30]);
resp

resp = 1×3

    0.0426    0.0903    0.0708

Next, draw a 2-D plot of the voltage response as a function of azimuth
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pattern(projector,fc,[-180:180],0,'CoordinateSystem','rectangular', ...
    'Type','power')

More About
Projector Voltage Response

The voltage response of a projector relates the transmitted sound intensity to the input voltage.

For a sound projector, the transmitting voltage response (TVR) is the sound intensity in µPa per volt,
when measured at one meter from the projector. TVR is generally a function of frequency. If the
sound intensity level (SIL) is expressed in dB//µPa and the output voltage (VdB) is expressed in
dB//1V, then TVR is expressed in dB//µPa/1V. The output sound pressure level of a hydrophone is
related to the input voltage level by

SIL = TVR + VdB.

Consider a projector that has TVR = 160 dB//µPa/1V at 10 kHz. If the projector input voltage is 200 V,
then the VdB is 23 dB and the sound intensity level (SIL) at one meter is

SIL = TVR + VdB = 160 + 23 = 173 dB//µPa.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The pattern, patternAzimuth, and patternElevation methods are not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.IsotropicHydrophone | phased.ULA | phased.URA |
phased.UnderwaterRadiatedNoise

Topics
“Underwater Target Detection with an Active Sonar System”
“Locating an Acoustic Beacon with a Passive Sonar System”
Phased Array Gallery

Introduced in R2017a
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directivity
System object: phased.IsotropicProjector
Package: phased

Directivity of isotropic projector

Syntax
D = directivity(projector,FREQ,ANGLE)

Description
D = directivity(projector,FREQ,ANGLE) returns the “Directivity” on page 1-912 of the
isotropic projector, projector, at frequencies specified by FREQ and in the directions specified by
ANGLE.

Input Arguments
projector — Isotropic projector
phased.IsotropicProjector System object

Isotropic projector, specified as a phased.IsotropicProjector System object.
Example: phased.IsotropicProjector

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.
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If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Isotropic Projector

Compute the directivity of an isotropic projector in different directions. Assume the signal frequency
is 3 kHz. First, set the projector parameters.

fc = 3e3;
projector = phased.IsotropicProjector('FrequencyRange',[1,10]*1e3, ...
    'VoltageResponse',[100,110,120,110,100]);
patternElevation(projector,fc,45)
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Select the angles of interest to be constant elevation angle at zero degrees. The five azimuth angles
are centered around boresight (zero degrees azimuth and zero degrees elevation).

ang = [-20,-10,0,10,20; 0,0,0,0,0];

Compute the directivity along the constant elevation cut.

d = directivity(projector,fc,ang)

d = 5×1

     0
     0
     0
     0
     0

The directivity of an isotropic projector is zero in every direction.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.
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Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation

Introduced in R2017a

 directivity

1-913



isPolarizationCapable
System object: phased.IsotropicProjector
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(projector)

Description
flag = isPolarizationCapable(projector) returns a Boolean value, flag, indicating
whether the phased.IsotropicProjector supports polarization. An element supports polarization
if it can create or respond to polarized fields. This projector does not support polarization.

Input Arguments
projector — Isotropic projector
phased.IsotropicProjector System object

Isotropic projector, specified as a phased.IsotropicProjector System object.
Example: phased.IsotropicProjector

Output Arguments
flag — Polarization-capability flag
true | false

Polarization-capability returned as a Boolean value true if the projector supports polarization or
false if it does not. Because the phased.IsotropicProjector object does not support
polarization, flag is always returned as false.

Introduced in R2017a
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pattern
System object: phased.IsotropicProjector
Package: phased

Plot isotropic projector directivity and patterns

Syntax
pattern(projector,FREQ)
pattern(projector,FREQ,AZ)
pattern(projector,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(projector,FREQ) plots the 3D directivity pattern (in dBi) for the projector specified in
projector. The operating frequency is specified in FREQ.

pattern(projector,FREQ,AZ) plots the projector directivity pattern at the specified azimuth
angle.

pattern(projector,FREQ,AZ,EL) plots the projector directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the projector pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the projector pattern in PAT. The AZ_ANG
output contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains
the coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter
is set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Input Arguments
FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.
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Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of
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• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component

Example: 'V'
Data Types: char

Output Arguments
PAT — Element pattern
N-by-M real-valued matrix

Element pattern, returned as an N-by-M real-valued matrix. The pattern is a function of azimuth and
elevation. The rows of PAT correspond to the azimuth angles in the vector specified by EL_ANG. The
columns correspond to the elevation angles in the vector specified by AZ_ANG.
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AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Response and Pattern of Isotropic Projector at Single Frequency

Examine the response and patterns of an isotropic projector operating between 1 kHz and 10 kHz.

Set the projector parameters and obtain the voltage response at five different elevation angles: -30°,
-15°, 0°, 15° and 30&deg. All elevation angles at 0° azimuth angle. The voltage response is computed
at 2 kHz.

projector = phased.IsotropicProjector('FrequencyRange',[1,10]*1e3);
fc = 2e3;
resp = projector(fc,[0,0,0,0,0;-30,-15,0,15,30]);

Draw a 3-D plot of the voltage response.

pattern(projector,fc,[-180:180],[-90:90],'CoordinateSystem','polar', ...
    'Type','power')
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Response and Pattern of Isotropic Projector at Multiple Frequencies

Examine the response and patterns of an isotropic projector at three different frequencies. The
projector operates between 1 kHz and 10 kHz. Specify the voltage response as a vector.

Set up the projector parameters, and obtain the voltage response at 45° azimuth and 30° elevation.
Compute the responses at signal frequencies of 2, 5, and 7 kHz.

projector = phased.IsotropicProjector('FrequencyRange',[1 10]*1e3, ...
    'VoltageResponse',[90 95 100 95 90]);
fc = [2e3 5e3 7e3];
resp = projector(fc,[45;30]);
resp

resp = 1×3

    0.0426    0.0903    0.0708

Next, draw a 2-D plot of the voltage response as a function of azimuth

pattern(projector,fc,[-180:180],0,'CoordinateSystem','rectangular', ...
    'Type','power')
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
patternAzimuth | patternElevation
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patternAzimuth
System object: phased.IsotropicProjector
Package: phased

Plot isotropic projector directivity and response patterns versus azimuth

Syntax
patternAzimuth(projector,FREQ)
patternAzimuth(projector,FREQ,EL)
patternAzimuth(projector,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(projector,FREQ) plots the 2-D element directivity pattern versus azimuth (in
dBi) for the projector, projector, at zero-degrees elevation angle. The argument FREQ specifies
the operating frequency.

patternAzimuth(projector,FREQ,EL), in addition, plots the 2-D element directivity pattern
versus azimuth (in dBi) at the elevation angle specified by EL. When EL is a vector, multiple overlaid
plots are created.

patternAzimuth(projector,FREQ,EL,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Azimuth' parameter and
the EL input argument.

Input Arguments
projector — Isotropic projector
phased.IsotropicProjector System object

Isotropic projector, specified as a phased.IsotropicProjector System object.
Example: phased.IsotropicProjector

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension
N is the number of elevation angles, as determined by the EL input argument.

Examples

Azimuth Pattern of Isotropic Projector

Examine the azimuth pattern of an isotropic projector at 30° elevation. The frequency range is
between 1 kHz and 10 kHz. Specify the voltage response as a scalar.

Set the projector parameters.

fc = 3e3;
projector = phased.IsotropicProjector('FrequencyRange',[1,10]*1e3, ...
    'VoltageResponse',-115);
patternAzimuth(projector,fc,30)

Plot a smaller range of azimuth angles using the Azimuth parameter.

patternAzimuth(projector,fc,30,'Azimuth',[-20:20])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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patternElevation
System object: phased.IsotropicProjector
Package: phased

Plot isotropic projector directivity and response patterns versus elevation

Syntax
patternElevation(projector,FREQ)
patternElevation(projector,FREQ,AZ)
patternElevation(projector,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(projector,FREQ) plots the 2D element directivity pattern versus elevation
(in dBi) for the projector, projector, at zero-degrees azimuth angle. The argument FREQ specifies
the operating frequency.

patternElevation(projector,FREQ,AZ), in addition, plots the 2D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(projector,FREQ,AZ,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
projector — Isotropic projector
phased.IsotropicProjector System object

Isotropic projector, specified as a phased.IsotropicProjector System object.
Example: phased.IsotropicProjector

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of elevation angles determined by the 'Elevation' name-value pair argument. The
dimension N is the number of azimuth angles determined by the AZ argument.

Examples

Elevation Pattern of Isotropic Projector

Plot an elevation cut of the directivity of an isotropic projector at 45° azimuth. Assume the signal
frequency is 3 kHz.

Create the isotropic projector object and call the pattern object function.

fc = 3e3;
projector = phased.IsotropicProjector('FrequencyRange',[1,10]*1e3, ...
    'VoltageResponse',70);
patternElevation(projector,fc,45)

Plot a smaller range of elevation angles using the Elevation parameter.

patternElevation(projector,fc,45,'Elevation',-20:20)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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step
System object: phased.IsotropicProjector
Package: phased

Voltage response of isotropic projector

Syntax
resp = step(projector,freq,ang)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

resp = step(projector,freq,ang) returns the voltage response for the projector at the
specified operating frequencies and in the specified directions of arriving signals.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
projector — Isotropic projector
phased.IsotropicProjector System object

Isotropic projector, specified as a phased.IsotropicProjector System object.
Example: phased.IsotropicProjector

freq — Voltage response frequencies
positive real scalar | real-valued 1-by-L vector of positive values

Voltage response frequencies of projector, specified as a positive real scalar or a real-valued 1-by-L
vector of positive values. Units are in Hz.
Data Types: double

ang — Direction of arriving signals
real-valued 1-by-M row vector | real-valued 2-by-M matrix

Direction of arriving signals, specified as a real-valued 1-by-M row vector or 2-by-M matrix. When
ang is a 2-by-M matrix, each column of the matrix specifies the direction in the form
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[azimuth;elevation]. The azimuth angle must lie between –180° and 180°, inclusive. The
elevation angle must lie between –90° and 90°, inclusive.

When ang is a 1-by-M row vector, each element specifies the azimuth angle of the arriving signal. In
this case, the corresponding elevation angle is assumed to be zero.
Data Types: double

Output Arguments
resp — Voltage response of projector
real-valued M-by-L matrix

Voltage response of projector, returned as a real-valued M-by-L matrix. M represents the number of
angles specified in ang, and L represents the number of frequencies specified in freq. Units are in
V/Pa.

Examples

Response and Pattern of Isotropic Projector at Single Frequency

Examine the response and patterns of an isotropic projector operating between 1 kHz and 10 kHz.

Set the projector parameters and obtain the voltage response at five different elevation angles: -30°,
-15°, 0°, 15° and 30&deg. All elevation angles at 0° azimuth angle. The voltage response is computed
at 2 kHz.

projector = phased.IsotropicProjector('FrequencyRange',[1,10]*1e3);
fc = 2e3;
resp = projector(fc,[0,0,0,0,0;-30,-15,0,15,30]);

Draw a 3-D plot of the voltage response.

pattern(projector,fc,[-180:180],[-90:90],'CoordinateSystem','polar', ...
    'Type','power')

 step
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Response and Pattern of Isotropic Projector at Multiple Frequencies

Examine the response and patterns of an isotropic projector at three different frequencies. The
projector operates between 1 kHz and 10 kHz. Specify the voltage response as a vector.

Set up the projector parameters, and obtain the voltage response at 45° azimuth and 30° elevation.
Compute the responses at signal frequencies of 2, 5, and 7 kHz.

projector = phased.IsotropicProjector('FrequencyRange',[1 10]*1e3, ...
    'VoltageResponse',[90 95 100 95 90]);
fc = [2e3 5e3 7e3];
resp = projector(fc,[45;30]);
resp

resp = 1×3

    0.0426    0.0903    0.0708

Next, draw a 2-D plot of the voltage response as a function of azimuth

pattern(projector,fc,[-180:180],0,'CoordinateSystem','rectangular', ...
    'Type','power')
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Algorithms
The total response of a projector is a combination of its frequency response and spatial response.
phased.IsotropicProjector calculates both responses using nearest neighbor interpolation, and
then multiplies the responses to form the total response.

See Also
phitheta2azel | uv2azel

 step
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phased.LCMVBeamformer
Package: phased

Narrowband LCMV beamformer

Description
The phased.LCMVBeamformer object implements a narrowband linear-constraint minimum-variance
(LCMV) beamformer for a sensor array. The LCMV beamformer belongs to the family of constrained
optimization beamformers.

To beamform signals arriving at a sensor array:

1 Create the phased.LCMVBeamformer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
beamformer = phased.LCMVBeamformer
beamformer = phased.LCMVBeamformer(Name,Value)

Description

beamformer = phased.LCMVBeamformer creates an LCMV beamformer System object,
beamformer, with default property values.

beamformer = phased.LCMVBeamformer(Name,Value) creates an LCMV beamformer with each
property Name set to a specified Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: beamformer = phased.LCMVBeamformer('Constraint',[1;1]) sets the constraint
matrix.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Constraint — Constraint matrix
[1;1] (default) | complex-valued N-by-K matrix
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Constraint matrix, specified as a complex-valued N-by-K matrix. Each column of the matrix represents
a constraint. N is the number of elements in the sensor array and K is the number of constraints. K
must be less than or equal to N, K ≤ N.
Example: [1 1i;1 1i]
Data Types: single | double
Complex Number Support: Yes

DesiredResponse — Desired response
1 (default) | complex-valued K-by-1 vector

Desired response of the LCMV beamformer, specified as a complex-valued K-by-1 vector, where K is
the number of constraints in the Constraint property. Each element in the vector defines the desired
response of the constraint specified in the corresponding column of the Constraint property. A
value of one creates a distortionless response and a value of zero creates a null response.
Example: [1;0]
Data Types: single | double
Complex Number Support: Yes

DiagonalLoadingFactor — Diagonal loading factor
0 (default) | nonnegative scalar

Diagonal loading factor, specified as a nonnegative scalar. Diagonal loading is a technique used to
achieve robust beamforming performance, especially when the sample size is small. A small sample
size can lead to an inaccurate estimate of the covariance matrix. Diagonal loading also provides
robustness due to steering vector errors. The diagonal loading technique adds a positive scalar
multiple of the identity matrix to the sample covariance matrix.

Tunable: Yes
Data Types: single | double

TrainingInputPort — Enable training data input
false (default) | true

Enable training data input, specified as false or true. When you set this property to true, use the
training data input argument, XT, when running the object. Set this property to false to use the
input data, X, as the training data.
Data Types: logical

WeightsOutputPort — Enable beamforming weights output
false (default) | true

Enable the output of beamforming weights, specified as false or true. To obtain the beamforming
weights, set this property to true and use the corresponding output argument, W. If you do not want
to obtain the weights, set this property to false.
Data Types: logical
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Usage

Syntax
Y = beamformer(X)
Y = beamformer(X,XT)
[Y,W] = beamformer( ___ )

Description

Y = beamformer(X) performs LCMV beamforming on the input array data, X, and returns the
beamformed output in Y.

Y = beamformer(X,XT) uses XT as training data to calculate the beamforming weights. To use this
syntax, set the TrainingInputPort property to true.

[Y,W] = beamformer( ___ ) returns the beamforming weights W. To use this syntax, set the
WeightsOutputPort property to true.

Input Arguments

X — Array element data
complex-valued M-by-N matrix

Array element data, specified as anM-by-N matrix where N is the number of elements in the sensor
array.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1 0.5 2.6; 2 -0.2 0]
Data Types: single | double

XT — Training data
complex-valued P-by-N matrix

Training data, specified as a P-by-N matrix. N is the number of elements of the sensor array. P is the
length of the training data and must be greater than N.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1 0.5 2.6; 2 -0.2 0; 3 -2 -1]
Dependencies

To enable this argument, set the TrainingInputPort property to true.
Data Types: single | double

Output Arguments

Y — Beamformed output
complex-valued M-by-1 vector
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Beamformed output, returned as a complex-valued M-by-1 vector.
Data Types: single | double

W — Beamformer weights
complex-valued N-by-1 vector

Beamformer weights, returned as a complex-valued N-by-1 vector. N is the number of elements in the
sensor array.

Dependencies

To enable this argument, set the WeightsOutputPort property to true.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

LCMV Beamformer with One Constraint

Apply an LCMV beamformer to a 5-element ULA of isotropic sensor elements, preserving the signal
from a desired direction. The operating frequency is 300 MHz.

Simulate a low-frequency sinusoid signal in gaussian noise.

f = 50;
t = (0:.001:.3)';
x = sin(2*pi*f*t);
c = physconst('LightSpeed');
fc = 300e6;
lambda = c/fc;
incidentAngle = [45;0];
antenna = phased.IsotropicAntennaElement('FrequencyRange',[20 20e8]);
array = phased.ULA('NumElements',5,'ElementSpacing',lambda/2,...
    'Element',antenna);
x = collectPlaneWave(array,x,incidentAngle,fc,c);
noise = 0.2*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

Beamform the array.
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steervec = phased.SteeringVector('SensorArray',array,...
    'PropagationSpeed',c);
beamformer = phased.LCMVBeamformer('Constraint',steervec(fc,incidentAngle),'DesiredResponse',1);
y = beamformer(rx);

Plot the original and beamformed signals.

plot(t,real(rx(:,3)),'r:',t,real(y),t,real(x(:,3)),'g')
xlabel('Time (sec)')
ylabel('Amplitude')
legend('Signal at Sensor 3','Beamformed Signal','Noise Free Signal')

Nulling with LCMV Beamformer

This example shows how to use an LCMV beamformer to point a null of the array response in the
direction of an interfering source. The array is a 10-element uniform linear array (ULA). By default,
the ULA elements are isotropic antennas created by the phased.IsotropicAntennaElement
System object™. Set the frequency range of the antenna elements so that the carrier frequency lies
within the operating range. The carrier frequency is 1 GHz.

fc = 1e9;
lambda = physconst('LightSpeed')/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',lambda/2);
array.Element.FrequencyRange = [8e8 1.2e9];
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Simulate a test signal using a simple rectangular pulse.

t = linspace(0,0.3,300)';
testsig = zeros(size(t));
testsig(201:205) = 1;

Assume the rectangular pulse is incident on the ULA from an angle of 30° azimuth and 0° elevation.
Use the collectPlaneWave function of the ULA System object to simulate reception of the pulse
waveform from the incident angle.

angle_of_arrival = [30;0];
x = collectPlaneWave(array,testsig,angle_of_arrival,fc);

The signal x is a matrix with ten columns. Each column represents the received signal at one of the
array elements.

Construct a conventional phase-shift beamformer. Set the WeightsOutputPort property to true to
output the spatial filter weights.

convbeamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
    'OperatingFrequency',1e9,'Direction',angle_of_arrival,...
    'WeightsOutputPort',true);

Add complex-valued white Gaussian noise to the signal x. Set the default random number stream for
reproducible results.

rng default
npower = 0.5;
x = x + sqrt(npower/2)*(randn(size(x)) + 1i*randn(size(x)));

Create an interference source using the phased.BarrageJammer System object. Specify the
barrage jammer to have an effective radiated power of 10 W. The interference signal from the
barrage jammer is incident on the ULA from an angle of 120° azimuth and 0° elevation. Use the
collectPlaneWave function of the ULA System object to simulate reception of the jammer signal.

jammer = phased.BarrageJammer('ERP',10,'SamplesPerFrame',300);
jamsig = jammer();
jammer_angle = [120;0];
jamsig = collectPlaneWave(array,jamsig,jammer_angle,fc);

Add complex-valued white Gaussian noise to simulate noise contributions not directly associated with
the jamming signal. Again, set the default random number stream for reproducible results. This noise
power is 0 dB below the jammer power. Beamform the signal using a conventional beamformer.

noisePwr = 1e-5;
rng(2008);
noise = sqrt(noisePwr/2)*...
    (randn(size(jamsig)) + 1j*randn(size(jamsig)));
jamsig = jamsig + noise;
rxsig = x + jamsig;
[yout,w] = convbeamformer(rxsig);

Implement the adaptive LCMV beamformer using the same ULA array. Use the target-free data,
jamsig, as training data. Output the beamformed signal and the beamformer weights.

steeringvector = phased.SteeringVector('SensorArray',array,...
    'PropagationSpeed',physconst('LightSpeed'));
LCMVbeamformer = phased.LCMVBeamformer('DesiredResponse',1,...
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    'TrainingInputPort',true,'WeightsOutputPort',true);
LCMVbeamformer.Constraint = steeringvector(fc,angle_of_arrival);
LCMVbeamformer.DesiredResponse = 1;
[yLCMV,wLCMV] = LCMVbeamformer(rxsig,jamsig);

Plot the conventional beamformer output and the adaptive beamformer output.

subplot(211)
plot(t,abs(yout))
axis tight
title('Conventional Beamformer')
ylabel('Magnitude')
subplot(212)
plot(t,abs(yLCMV))
axis tight
title('LCMV (Adaptive) Beamformer')
xlabel('Seconds')
ylabel('Magnitude')

The adaptive beamformer significantly improves the SNR of the rectangular pulse at 0.2 s.

Using conventional and LCMV weights, plot the responses for each beamformer.

subplot(211)
pattern(array,fc,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...
    'CoordinateSystem','rectangular','Type','powerdb','Normalize',true,...
    'Weights',w)
title('Array Response with Conventional Beamforming Weights');
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subplot(212)
pattern(array,fc,[-180:180],0,'PropagationSpeed',physconst('LightSpeed'),...)
    'CoordinateSystem','rectangular','Type','powerdb','Normalize',true,...
    'Weights',wLCMV)
title('Array Response with LCMV Beamforming Weights');

The adaptive beamform places a null at the arrival angle of the interference signal, 120°.

Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
phased.MVDRBeamformer | phased.PhaseShiftBeamformer |
phased.TimeDelayLCMVBeamformer

Topics
“Adaptive Beamforming”

Introduced in R2011a
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step
System object: phased.LCMVBeamformer
Package: phased

Perform LCMV beamforming

Syntax
Y = step(H,X)
Y = step(H,X,XT)
[Y,W] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) performs LCMV beamforming on the input, X, and returns the beamformed output
in Y. X is an M-by-N matrix where N is the number of elements of the sensor array. Y is a column
vector of length M.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Y = step(H,X,XT) uses XT as the training samples to calculate the beamforming weights. This
syntax is available when you set the TrainingInputPort property to true. XT is a P-by-N matrix,
where N is the number of elements of the sensor array. P must be greater than N.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

[Y,W] = step( ___ ) returns the beamforming weights W. This syntax is available when you set the
WeightsOutputPort property to true. W is a column vector of length N, where N is the number of
elements in the sensor array.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples
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LCMV Beamformer with One Constraint

Apply an LCMV beamformer to a 5-element ULA of isotropic sensor elements, preserving the signal
from a desired direction. The operating frequency is 300 MHz.

Simulate a low-frequency sinusoid signal in gaussian noise.

f = 50;
t = (0:.001:.3)';
x = sin(2*pi*f*t);
c = physconst('LightSpeed');
fc = 300e6;
lambda = c/fc;
incidentAngle = [45;0];
antenna = phased.IsotropicAntennaElement('FrequencyRange',[20 20e8]);
array = phased.ULA('NumElements',5,'ElementSpacing',lambda/2,...
    'Element',antenna);
x = collectPlaneWave(array,x,incidentAngle,fc,c);
noise = 0.2*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

Beamform the array.

steervec = phased.SteeringVector('SensorArray',array,...
    'PropagationSpeed',c);
beamformer = phased.LCMVBeamformer('Constraint',steervec(fc,incidentAngle),'DesiredResponse',1);
y = beamformer(rx);

Plot the original and beamformed signals.

plot(t,real(rx(:,3)),'r:',t,real(y),t,real(x(:,3)),'g')
xlabel('Time (sec)')
ylabel('Amplitude')
legend('Signal at Sensor 3','Beamformed Signal','Noise Free Signal')
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phased.LinearFMWaveform
Package: phased

Linear FM pulse waveform

Description
The LinearFMWaveform object creates a linear FM pulse waveform.

To obtain waveform samples:

1 Define and set up your linear FM waveform. See “Construction” on page 1-948.
2 Call step to generate the linear FM waveform samples according to the properties of

phased.LinearFMWaveform. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Construction
H = phased.LinearFMWaveform creates a linear FM pulse waveform System object, H. The object
generates samples of a linear FM pulse waveform.

H = phased.LinearFMWaveform(Name,Value) creates a linear FM pulse waveform object, H,
with each specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SampleRate

Sample rate

Signal sample rate, specified as a positive scalar. Units are Hertz. The ratio of sample rate to pulse
repetition frequency (PRF) must be a positive integer — each pulse must contain an integer number
of samples.

Default: 1e6

DurationSpecification

Method to set pulse duration

Method to set pulse duration (pulse width), specified as 'Pulse width' or 'Duty cycle'. This
property determines how you set the pulse duration. When you set this property to 'Pulse width',
then you set the pulse duration directly using the PulseWidth property. When you set this property
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to 'Duty cycle', you set the pulse duration from the values of the PRF and DutyCycle properties.
The pulse width is equal to the duty cycle divided by the PRF.

Default: 'Pulse width'

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar. The value must satisfy PulseWidth
<= 1./PRF.

Default: 50e-6

DutyCycle

Waveform duty cycle

Waveform duty cycle, specified as a scalar from 0 through 1, inclusive. This property applies when
you set the DurationSpecification property to 'Duty cycle'. The pulse width is the value of
the DutyCycle property divided by the value of the PRF property.

Default: 0.5

PRF

Pulse repetition frequency

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. ThePRF must satisfy
these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval. For the phase-
coded waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to any element of PRF must be an integer. This condition expresses the
requirement that the number of samples in one pulse repetition interval is an integer.

You can select the value of PRF using property settings alone or using property settings in
conjunction with the prfidx input argument of the step method.

• When PRFSelectionInputPort is false, you set the PRF using properties only. You can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-valued entries.

Then, each call to the step method uses successive elements of this vector for the PRF. If the
last element of the vector is reached, the process continues cyclically with the first element of
the vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by specifying PRF
as a row vector with positive real-valued entries. But this time, when you execute the step
method, select a PRF by passing an argument specifying an index into the PRF vector.

In all cases, the number of output samples is fixed when you set the OutputFormat property to
'Samples'. When you use a varying PRF and set the OutputFormat property to 'Pulses', the
number of samples can vary.
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Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property to false,
the step method uses the values set in the PRF property. When you set this property to true, you
pass an index argument into the step method to select a value from the PRF vector.

Default: false

SweepBandwidth

FM sweep bandwidth

Specify the bandwidth of the linear FM sweeping (in hertz) as a positive scalar. The default value
corresponds to 100 kHz.

Default: 1e5

SweepDirection

FM sweep direction

Specify the direction of the linear FM sweep as one of 'Up' or 'Down'.

Default: 'Up'

SweepInterval

Location of FM sweep interval

If you set this property value to 'Positive', the waveform sweeps in the interval between 0 and B,
where B is the SweepBandwidth property value. If you set this property value to 'Symmetric', the
waveform sweeps in the interval between –B/2 and B/2.

Default: 'Positive'

Envelope

Envelope function

Specify the envelope function as one of 'Rectangular' or 'Gaussian'.

Default: 'Rectangular'

FrequencyOffsetSource

Source of frequency offset

Source of frequency offset for the waveform, specified as 'Property' or 'Input port'.

• When you set this property to 'Property', the offset is determined by the value of the
FrequencyOffset property.
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• When you set this property to 'Input port', the FrequencyOffset is determined by the
freqoffset input argument.

Default: 'Property'

FrequencyOffset

Frequency offset

Frequency offset in Hz, specified as a scalar.

Dependencies

This property applies when you set the FrequencyOffsetSource property to 'Input port'.

Default: 0 Hz

OutputFormat

Output signal format

Specify the format of the output signal as 'Pulses' or 'Samples'. When you set the
OutputFormat property to 'Pulses', the output of the step method takes the form of multiple
pulses specified by the value of the NumPulses property. The number of samples per pulse can vary if
you change the pulse repetition frequency during the simulation.

When you set the OutputFormat property to 'Samples', the output of the step method is in the
form of multiple samples. In this case, the number of output signal samples is the value of the
NumSamples property and is fixed.

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

PRFOutputPort

Set this property to true to output the PRF for the current pulse using a step method argument.

Dependencies

This property can be used only when the OutputFormat property is set to 'Pulses'.
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Default: false

CoefficientsOutputPort

Enable matched filter coefficients output port

Enable the matched filter coefficients output port, specified as false or true. When you set this
property to false, the object does not provide the matched filter coefficients used during the
simulation as an output. When you set this property to true, the object provides the matched filter
coefficients used during the simulation as an output.

Default: false

Methods

bandwidth Bandwidth of linear FM waveform
getMatchedFilter Matched filter coefficients for waveform
getStretchProcessor Create stretch processor for waveform
plot Plot linear FM pulse waveform
reset Reset states of the linear FM waveform object
step Samples of linear FM pulse waveform

Common to All System Objects
release Allow System object property value changes

Examples

Plot LFM Waveform and Spectrum

Create and plot an upsweep linear FM pulse waveform. The sample rate is 500 kHz, the sweep
bandwidth is 200 kHz and the pulse width is 1 millisecond (equal to the pulse repetition interval).

fs = 500e3;
sLFM = phased.LinearFMWaveform('SampleRate',fs,...
    'SweepBandwidth',200e3,...
    'PulseWidth',1e-3,'PRF',1e3);

Obtain and then plot the real part of the LFM waveform.

lfmwav = step(sLFM);
nsamp = size(lfmwav,1);
t = [0:(nsamp-1)]/fs;
plot(t*1000,real(lfmwav))
xlabel('Time (millisec)')
ylabel('Amplitude')
grid
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Plot the Fourier transform of the complex signal.

nfft = 2^nextpow2(nsamp);
Z = fft(lfmwav,nfft);
fr = [0:(nfft/2-1)]/nfft*fs;
plot(fr/1000,abs(Z(1:nfft/2)),'.-')
xlabel('Frequency (kHz)')
ylabel('Amplitude')
grid
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Plot a spectrogram of the function with window size of 64 samples and 50% overlap.

nfft1 = 64;
nov = floor(0.5*nfft1);
spectrogram(lfmwav,hamming(nfft1),nov,nfft1,fs,'centered','yaxis')
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This plot shows the increasing frequency of the signal.

Apply Frequency Offset to Linear FM Waveform

Apply a frequency offset to an upsweep linear FM (LFM) pulse waveform. Plot the frequency
spectrum of the waveform with and without applying a frequency offset.

Create an LFM waveform object, which is configured to set the frequency offset from an input when
the object is executed.

fs = 500e3;
sLFM = phased.LinearFMWaveform('SampleRate',fs,'SweepBandwidth',200e3, ...
    'PulseWidth',2e-5,'PRF',1e3,'FrequencyOffsetSource','Input port');

Execute the object two times. First set the frequency offset to 0 Hz and then to 2e4 Hz.

lfmwav = sLFM(0);
lfmwav_foffset = sLFM(2e4);

Plot the frequency spectrum of the complex signals. The frequency offset signal is shifted to the right.

[Pxx,f] = pwelch(lfmwav,[],[],[],fs,'centered');
[Pxx_offset,foffset] = pwelch(lfmwav_foffset,[],[],[],fs,'centered');
plot(f/1000,Pxx,foffset/1000,Pxx_offset)
ylabel('PSD');
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xlabel('Frequency (kHz)');
legend({'No offset','Offset applied'},'Location','northwest');
grid on;

References

[1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John Wiley & Sons, 2004.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The plot method is not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.PhaseCodedWaveform | phased.RectangularWaveform |
phased.SteppedFMWaveform
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Topics
“Waveform Analysis Using the Ambiguity Function”

Introduced in R2011a
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bandwidth
System object: phased.LinearFMWaveform
Package: phased

Bandwidth of linear FM waveform

Syntax
BW = bandwidth(H)

Description
BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for the linear FM pulse
waveform H. The bandwidth equals the value of the SweepBandwidth property.

Input Arguments
H

Linear FM pulse waveform object.

Output Arguments
BW

Bandwidth of the pulses, in hertz.

Examples

Compute Linear FM Bandwidth

Determine the bandwidth of a linear FM pulse waveform. The default value for an LFM waveform is
100 kHz.

waveform = phased.LinearFMWaveform;
bw = bandwidth(waveform)

bw = 100000

1 Objects

1-958



getMatchedFilter
System object: phased.LinearFMWaveform
Package: phased

Matched filter coefficients for waveform

Syntax
Coeff = getMatchedFilter(H)
Coeff = getMatchedFilter(H,'FrequencyOffset',FOFFSET)

Description
Coeff = getMatchedFilter(H) returns the matched filter coefficients for the linear FM
waveform object H. Coeff is a column vector.

Coeff = getMatchedFilter(H,'FrequencyOffset',FOFFSET) adds a frequency offset when
matched filter coefficients are generated. FOFFSET must be a scalar. This option is available when
you set the FrequencyOffsetSource property to 'Input port' for the input object, H.

Examples

Matched Filter Coefficients of Linear FM Waveform

Get the matched filter coefficients for a linear FM pulse.

waveform = phased.LinearFMWaveform('PulseWidth',5e-05,...
    'SweepBandwidth',1e5,'OutputFormat','Pulses');
coeff = getMatchedFilter(waveform);
stem(real(coeff))
title('Matched Filter Coefficients, Real Part')
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getStretchProcessor
System object: phased.LinearFMWaveform
Package: phased

Create stretch processor for waveform

Syntax
HS = getStretchProcessor(H)
HS = getStretchProcessor(H,refrng)
HS = getStretchProcessor(H,refrng,rngspan)
HS = getStretchProcessor(H,refrng,rngspan,v)

Description
HS = getStretchProcessor(H) returns the stretch processor for the waveform, H. HS is set up so
the reference range corresponds to 1/4 of the maximum unambiguous range of a pulse. The range
span corresponds to 1/10 of the distance traveled by the wave within the pulse width. The
propagation speed is the speed of light.

HS = getStretchProcessor(H,refrng) specifies the reference range.

HS = getStretchProcessor(H,refrng,rngspan) specifies the range span. The reference
interval is centered at refrng.

HS = getStretchProcessor(H,refrng,rngspan,v) specifies the propagation speed.

Input Arguments
H

Linear FM pulse waveform object.

refrng

Reference range, in meters, as a positive scalar.

Default: 1/4 of the maximum unambiguous range of a pulse

rngspan

Length of the interval of ranges of interest, in meters, as a positive scalar. The center of the interval
is the range value specified in the refrng argument.

Default: 1/10 of the distance traveled by the wave within the pulse width

v

Propagation speed, in meters per second, as a positive scalar.

Default: Speed of light
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Output Arguments
HS

Stretch processor as a phased.StretchProcessor System object.

Examples

Detect a Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Simulate the signal.

waveform = phased.LinearFMWaveform;
x = waveform();
c = physconst('LightSpeed');
rng = 4950.0;
num_samples = round(rng/(c/(2*waveform.SampleRate)));
x = circshift(x,num_samples);

Perform stretch processing.

stretchproc = getStretchProcessor(waveform,5000,200,c);
y = stretchproc(x);

Plot the spectrum of the resulting signal.

[Pxx,F] = periodogram(y,[],2048,stretchproc.SampleRate,'centered');
plot(F/1000,10*log10(Pxx))
grid
xlabel('Frequency (kHz)')
ylabel('Power/Frequency (dB/Hz)')
title('Periodogram Power Spectrum Density Estimate')
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Detect the range.

[~,rngidx] = findpeaks(pow2db(Pxx/max(Pxx)),'MinPeakHeight',-5);
rngfreq = F(rngidx);
rng = stretchfreq2rng(rngfreq,stretchproc.SweepSlope,stretchproc.ReferenceRange,c)

rng = 4.9634e+03

See Also
phased.StretchProcessor | stretchfreq2rng

Topics
Range Estimation Using Stretch Processing
“Stretch Processing”
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plot
System object: phased.LinearFMWaveform
Package: phased

Plot linear FM pulse waveform

Syntax
plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot( ___ )

Description
plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one or more
Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker options as
are available in the MATLAB plot function.

h = plot( ___ ) returns the line handle in the figure.

Input Arguments
Hwav

Waveform object. This variable must be a scalar that represents a single waveform object.

LineSpec

Character vector to specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec applies to
both the real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PlotType

Specifies whether the function plots the real part, imaginary part, or both parts of the waveform.
Valid values are 'real', 'imag', and 'complex'.

Default: 'real'
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PulseIdx

Index of the pulse to plot. This value must be a scalar.

Default: 1

FrequencyOffset

Frequency offset

Frequency offset in Hz, specified as a scalar.

Dependencies

This property applies when you set the FrequencyOffsetSource property to 'Input port'.

Default: 0 Hz

Output Arguments
h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a column vector.
The first and second elements of this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples

Plot Linear FM Pulse

Create and plot an upsweep linear FM pulse waveform.

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5,'PulseWidth',1e-4);
plot(waveform);
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reset
System object: phased.LinearFMWaveform
Package: phased

Reset states of the linear FM waveform object

Syntax
reset(H)

Description
reset(H) resets the states of the LinearFMWaveform object, H. Afterward, if the PRF property is a
vector, the next call to step uses the first PRF value in the vector.
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step
System object: phased.LinearFMWaveform
Package: phased

Samples of linear FM pulse waveform

Syntax
Y = step(sLFM)
Y = step(sLFM,prfidx)
Y = step(sRFM,freqoffset)
[Y,PRF] = step( ___ )
[Y,COEFF] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Y = step(sLFM) returns samples of the linear FM pulse in a column vector Y.

Y = step(sLFM,prfidx), uses the prfidx index to select the PRF from the predefined vector of
values specified by in the PRF property. This syntax applies when you set the
PRFSelectionInputPort property to true.

Y = step(sRFM,freqoffset), uses the freqoffset to generate the waveform with an offset as
specified at step time. Use this syntax for cases where the transmit pulse frequency needs to be
dynamically updated. This syntax applies when you set the FrequencyOffsetSource property to
'Input port'.

[Y,PRF] = step( ___ ) also returns the current pulse repetition frequency, PRF. To enable this
syntax, set the PRFOutputPort property to true and set the OutputFormat property to 'Pulses'.

[Y,COEFF] = step( ___ ) returns the matched filter coefficients, COEFF, for the current pulse. To
enable this syntax, set the CoefficientsOutputPort property to true. COEFF is returned as
either an NZ-by-1 vector or an NZ-by-M matrix.

• An NZ-by-1 vector is returned when:

• The object has OutputFormat set to 'Pulses' and NumPulses is equal to 1. NZ is the pulse
width.

• The object is configured to generate constant pulse width waveforms
(DurationSpecification is set to 'Pulse width' or 'Duty cycle' and PRF has one
unique value); and either OutputFormat is set to 'Pulses' and NumPulses is greater than
1, or the OutputFormat is set to 'Samples'. For this case, NZ is the pulse width.
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• An NZ-by-M matrix is returned when the object generates varying pulse widths
(DurationSpecification property is set to 'Duty cycle' and PRF has more than one unique
value); and either OutputFormat set to 'Pulses' and NumPulses is greater than 1, or
OutputFormat is set to 'Samples'. For this case, NZ is the maximum of the pulse widths, and M
is the number of unique PRFs.

You can combine optional input and output arguments when their enabling properties are set.
Optional inputs and outputs must be listed in the same order as the order of the enabling properties.
For example, [Y,PRF,COEFF] = step(sRFM,prfidx,freqoffset).

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Create Linear FM Pulses

Construct a linear FM waveform having a sweep bandwidth of 300 kHz, a sample rate of 1 MHz, a
pulse width of 50 microseconds, and a pulse repetition frequency of 10 kHz. Generate two pulses.

sLFM = phased.LinearFMWaveform('SweepBandwidth',3e5,...
    'OutputFormat','Pulses','SampleRate',1e6,...
    'PulseWidth',50e-6,'PRF',10e3,'NumPulses',2);

Obtain and plot the linear FM waveform.

wav = step(sLFM);
numpulses = size(wav,1);
t = [0:(numpulses-1)]/sLFM.SampleRate;
plot(t*1e6,real(wav))
xlabel('Time (\mu sec)')
ylabel('Amplitude')
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Create Linear FM Pulses with Variable PRF

Construct six linear FM waveform pulses having a sweep bandwidth of 300 kHz, a sample rate of 1
MHz, a pulse width of 50 microseconds, and a duty cycle of 20%. Vary the pulse repetition frequency.

Set the sample rate and PRF. The ratio of sample rate to PRF must be an integer.

fs = 1e6;
PRF = [10000,25000];
sLFM = phased.LinearFMWaveform('SweepBandwidth',3e5,...
    'OutputFormat','Pulses','SampleRate',fs,...
    'DurationSpecification','Duty Cycle','DutyCycle',.2,...
    'PRF',PRF,'NumPulses',1,'PRFSelectionInputPort',true);

Obtain and plot the linear FM waveforms. For the first three calls to the step method, set the PRF to
10kHz using the PRF index. For the next three calls, set the PRF to 25 kHz.

wav = [];
for n = 1:6
    idx = floor((n-1)/3)+1;
    wav1 = step(sLFM,idx);
    wav = [wav;wav1];
end
nsamps = size(wav,1);
t = [0:(nsamps-1)]/sLFM.SampleRate;
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plot(t*1e6,real(wav))
xlabel('Time (\mu sec)')
ylabel('Amplitude')

Generate Matched Filter Coefficients of Linear FM Pulse Waveform

Generate output samples and matched filter coefficients of a linear FM pulse waveform at a 50 kHz
frequency offset.

waveform = phased.LinearFMWaveform('SweepBandwidth',1e5, ...
    'PulseWidth',5e-5,'OutputFormat','Pulses', ...
    'FrequencyOffset',5e4,'CoefficientsOutputPort',true);
[wav,coeff] = waveform();

Create a matched filter that applies the coefficients as an input argument. Use the coeficients when
applying the matched filter to the waveform. Plot the waveform and matched filter outputs.

mf = phased.MatchedFilter('CoefficientsSource','Input port');
mfOut = mf(wav,coeff);
subplot(211),plot(real(wav));
xlabel('Samples'),ylabel('Amplitude'),title('Waveform Output');
subplot(212),plot(abs(mfOut));
xlabel('Samples'),ylabel('Amplitude'),title('Matched Filter Output');
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phased.LOSChannel
Package: phased

Narrowband LOS propagation channel

Description
The phased.LOSChannel models the propagation of narrowband electromagnetic signals through a
line-of-sight (LOS) channel from a source to a destination. In an LOS channel, propagation paths are
straight lines from point to point. The propagation model in the LOS channel includes free-space
attenuation in addition to attenuation due to atmospheric gases, rain, fog, and clouds. You can use
phased.LOSChannel to model the propagation of signals between multiple points simultaneously.

While the System object works for all frequencies, the attenuation models for atmospheric gases and
rain are valid for electromagnetic signals in the frequency range 1–1000 GHz only. The attenuation
model for fog and clouds is valid for 10–1000 GHz. Outside these frequency ranges, the System object
uses the nearest valid value.

The phased.LOSChannel System object applies range-dependent time delays to the signals, as well
as gains or losses. When either the source or destination is moving, the System object applies
Doppler shifts.

Like the phased.FreeSpace System object, the phased.LOSChannel System object supports two-
way propagation.

To compute the propagation delay for specified source and receiver points:

1 Define and set up your LOS channel using the “Construction” on page 1-973 procedure. You can
set the System object properties during construction or leave them at their default values. Some
properties are tunable and can be changed at any time.

2 Call the step method to compute the propagated signal using the properties of the
phased.LOSChannel System object.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
sLOS = phased.LOSChannel creates an LOS attenuating propagation channel System object,
sLOS.

sLOS = phased.LOSChannel(Name,Value) creates a System object, sLOS, with each specified
property Name set to the specified Value. You can specify additional name and value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN).
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Properties
PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

SpecifyAtmosphere — Enable atmospheric attenuation model
false (default) | true

Option to enable the atmospheric attenuation model, specified as a false or true. Set this property
to true to add signal attenuation caused by atmospheric gases, rain, fog, or clouds. Set this property
to false to ignore atmospheric effects in propagation.

Setting SpecifyAtmosphere to true, enables the Temperature, DryAirPressure,
WaterVapourDensity, LiquidWaterDensity, and RainRate properties.
Data Types: logical

Temperature — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: 20.0
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

DryAirPressure — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar

Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this property corresponds to one standard atmosphere.
Example: 101.0e3
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double
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WaterVapourDensity — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.
Example: 7.4

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

LiquidWaterDensity — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.
Example: 0.1

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

RainRate — Rainfall rate
0.0 (default) | nonnegative scalar

Rainfall rate, specified as a nonnegative scalar. Units are in mm/hr.
Example: 10.0

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

TwoWayPropagation — Enable two-way propagation
false (default) | true

Enable two-way propagation, specified as a false or true. Set this property to true to perform
round-trip propagation between the signal origin and destination specified in step. Set this property
to false to perform only one-way propagation from the origin to the destination.
Example: true
Data Types: logical

SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: double
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MaximumDistanceSource — Source of maximum one-way propagation distance
'Auto' (default) | 'Property'

Source of maximum one-way propagation distance, specified as 'Auto' or 'Property'. The
maximum one-way propagation distance is used to allocate sufficient memory for signal delay
computation. When you set this property to 'Auto', the System object automatically allocates
memory. When you set this property to 'Property', you specify the maximum one-way propagation
distance using the value of the MaximumDistance property.
Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a positive real-valued scalar. Units are in
meters. Any signal that propagates more than the maximum one-way distance is ignored. The
maximum distance must be greater than or equal to the largest position-to-position distance.
Example: 5000

Dependencies

To enable this property, set the MaximumDistanceSource property to 'Property'.
Data Types: double

Methods
reset Reset states of System object
step Propagate signal in LOS channel

Common to All System Objects
release Allow System object property value changes

Examples

Propagate Polarized Wave in LOS Channel

Propagate a polarized electromagnetic wave radiating from a short-dipole antenna element. The
dipole is rotated 30° around the y-axis. Set the orientation of the local axis to coincide with the
dipole. Assume the dipole radiates at 30.0 GHz. Propagate the signal toward a target approximately
10 km away.

Create the short-dipole antenna element and radiator System objects. Set the Polarization
property to 'Combined' to generate polarized waves.

freq = 30.0e9;
c = physconst('LightSpeed');
antenna = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6 40e9], ...
    'AxisDirection','Z');
radiator = phased.Radiator('Sensor',antenna, ...
    'PropagationSpeed',c, ...
    'OperatingFrequency',freq, ...
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    'Polarization','Combined', ...
    'WeightsInputPort',false);

Create a signal to radiate. The signal envelope consists of several cycles of a 4 kHz sinusoid with
amplitude set to unity. Set the sampling frequency to 1 MHz.

fsig = 4.0e3;
fs = 1.0e6;
t = [1:1000]/fs;
signal = sin(2*pi*fsig*t');
laxes = roty(30)*eye(3,3);

Use a phased.FreeSpace System object to propagate the field from the origin to the destination in
free space.

fschannel = phased.FreeSpace('PropagationSpeed',c,...
    'OperatingFrequency',freq,...
    'TwoWayPropagation',false,...
    'SampleRate',fs);

Use a phased.LOSChannel System object to propagate the field from the origin to the destination in
the LOS channel. Attenuation is due to atmospheric gases and fog.

loschannel = phased.LOSChannel('PropagationSpeed',c,...
    'OperatingFrequency',freq,...
    'TwoWayPropagation',false,...
    'SampleRate',fs,'SpecifyAtmosphere',true,'LiquidWaterDensity',0.5);

Set the signal origin, signal origin velocity, signal destination, and signal destination velocity.

source_pos = [0;0;0];
target_pos = [10000;200;0];
source_vel = [0;0;0];
target_vel = [0;0;0];
[~,radiatingAngles] = rangeangle(target_pos,source_pos,laxes);

Radiate the signal towards the target. The radiated signal is a struct containing the polarized field.

rad_sig = radiator(signal,radiatingAngles,laxes);

Propagate the signals to the target in free space.

prop_sig = fschannel(rad_sig,source_pos,target_pos,...
    source_vel,target_vel);

Propagate the signals to the target in the LOS channel.

prop_att_sig = loschannel(rad_sig,source_pos,target_pos,...
    source_vel,target_vel);

Plot the z-components of both the free-space and LOS-channel-propagated signals.

plot(1e6*t,real(prop_sig.Z),1e6*t,real(prop_att_sig.Z))
grid
xlabel('Time (\mu sec)')
legend('z_{fsp}','z_{los}')
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The LOS channel signal is attenuated as compared to the free-space signal.

More About
Path Attenuation or Loss

Attenuation or path loss in the LOS channel consists of four components. L = LfspLgLcLr, where

• Lfsp is the free space path attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each path attenuation is in magnitude units, not in dB.

Free-space Time Delay and Path Loss

When the origin and destination are stationary relative to each other, you can write the output signal
of a free-space channel as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal delay and Lfsp is the free-space
path loss. The delay τ is given by R/c, where R is the propagation distance and c is the propagation
speed. The free-space path loss is given by

Lf sp = (4πR)2

λ2 ,
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where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or array. In the
near field, the free-space path loss formula is not valid and can result in a loss smaller than one,
equivalent to a signal gain. Therefore, the loss is set to unity for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a Doppler
frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
The quantity v is the relative speed of the destination with respect to the origin.

For more details on free-space channel propagation, see [5].

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.
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For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,
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where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

References

[1] Radiocommunication Sector of the International Telecommunication Union. Recommendation ITU-
R P.676-10: Attenuation by atmospheric gases. 2013.

[2] Radiocommunication Sector of the International Telecommunication Union. Recommendation ITU-
R P.840-6: Attenuation due to clouds and fog. 2013.

[3] Radiocommunication Sector of the International Telecommunication Union. Recommendation ITU-
R P.838-3: Specific attenuation model for rain for use in prediction methods. 2005.

[4] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

[5] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
Functions
fogpl | fspl | gaspl | rainpl | rangeangle

Objects
phased.BackscatterRadarTarget | phased.FreeSpace | phased.RadarTarget |
phased.TwoRayChannel | phased.WidebandFreeSpace | phased.WidebandLOSChannel

Introduced in R2016a
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reset
System object: phased.LOSChannel
Package: phased

Reset states of System object

Syntax
reset(sLOS)

Description
reset(sLOS) resets the internal state of the phased.LOSChannel System object, sLOS. If
SeedSource is a property of this System object and has the value 'Property', then this method
resets the random number generator state.

Input Arguments
sLOS — LOS channel
phased.LOSChannel System object

LOS channel, specified as a phased.LOSChannel System object.
Example: phased.LOSChannel

Introduced in R2016a
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step
System object: phased.LOSChannel
Package: phased

Propagate signal in LOS channel

Syntax
prop_sig = step(sLOS,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

prop_sig = step(sLOS,sig,origin_pos,dest_pos,origin_vel,dest_vel) returns the
resulting signal, prop_sig, when a narrowband signal, sig, propagates through a line-of-sight (LOS)
channel from a source located at the origin_pos position to a destination at the dest_pos position.
Only one of the origin_pos or dest_pos arguments can specify multiple positions. The other must
contain a single position. The velocity of the signal origin is specified in origin_vel and the velocity
of the signal destination is specified in dest_vel. The dimensions of origin_vel and dest_vel
must match the dimensions of origin_pos and dest_pos, respectively.

Electromagnetic fields propagating through an LOS channel can be polarized or nonpolarized. For
nonpolarized fields, the propagating signal field, sig, is a vector or matrix. For polarized fields, sig
is an array of structures. The structure elements represent an electric field vector in Cartesian form.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
sLOS — LOS channel
phased.LOSChannel System object

LOS channel, specified as a phased.LOSChannel System object.
Example: phased.LOSChannel

sig — Narrowband signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields
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Narrowband signal, specified as a matrix or struct array, depending on whether is signal or
polarized or nonpolarized. The quantity M is the number of samples in the signal, and N is the
number of LOS channels. Each channel corresponds to a source-destination pair.

• Narrowband nonpolarized scalar signal. Specify sig as an M-by-N complex-valued matrix. Each
column contains one signal propagated along the line-of-sight path.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

• Narrowband polarized signal. Specify sig as a 1-by-N struct array containing complex-valued
fields. Each struct represents a polarized signal propagated along the line-of-sight path. Each
struct element contains three M-by-1 complex-valued column vectors, sig.X, sig.Y, and
sig.Z. These vectors represent the x, y, and z Cartesian components of the polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a
changing signal length such as a pulse waveform with variable pulse repetition frequency.

Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

origin_pos — Signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix. The
quantity N is the number of LOS channels. If origin_pos is a column vector, it takes the form
[x;y;z]. If origin_pos is a matrix, each column specifies a different signal origin and has the form
[x;y;z]. Units are in meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [1000;100;500]
Data Types: double

dest_pos — Signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The quantity N is the number of LOS channels propagating from or to N signal
origins. If dest_pos is a 3-by-1 column vector, it takes the form [x;y;z]. If dest_pos is a matrix,
each column specifies a different signal destination and takes the form [x;y;z] Position units are in
meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [0;0;0]
Data Types: double

origin_vel — Velocities of signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix
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Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of origin_vel must match the dimensions of origin_pos. If origin_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If origin_vel is a 3-by-N matrix, each column
specifies a different origin velocity and has the form [Vx;Vy;Vz]. Velocity units are in meters per
second.
Example: [10;0;5]
Data Types: double

dest_vel — Velocities of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The dimensions of dest_vel must match the dimensions of dest_pos. If dest_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If dest_vel is a 3-by-N matrix, each column specifies
a different destination velocity and has the form [Vx;Vy;Vz] Velocity units are in meters per second.
Example: [0;0;0]
Data Types: double

Output Arguments
prop_sig — Narrowband propagated signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields

Narrowband signal, returned as a matrix or struct array, depending on whether signal is polarized
or nonpolarized. The quantity M is the number of samples in the signal and N is the number of
narrowband LOS channels. Each channel corresponds to a source-destination pair.

• Narrowband nonpolarized scalar signal. prop_sig is an M-by-N complex-valued matrix.
• Narrowband polarized scalar signal. prop_sig is a 1-by-N struct array containing complex-

valued fields. Each struct element contains three M-by-1 complex-valued column vectors,
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The prop_sig output contains signal samples arriving at the signal destination within the current
time frame. The current time frame is the time frame of the input signals to step. Whenever it takes
longer than the current time frame for the signal to propagate from the origin to the destination, the
output might not contain all contributions from the input of the current time frame. The remaining
output appears in the next call to step.

Examples

Propagate Signal in LOS Channel

Propagate a sinusoidal signal in a line of sight (LOS) channel from a radar at (1000,0,0) meters to a
target at (10000,4000,500) meters. Assume the signal propagates in medium fog specified by a liquid
water density of 0.05 g/m3. Assume that the radar and the target are stationary. The signal carrier
frequency is 10 GHz. The signal frequency is 500 Hz and the sample rate is 8.0 kHz.

Set up the transmitted signal.
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fs = 8.0e3;
dt = 1/fs;
fsig = 500.0;
fc = 10.0e9;
t = [0:dt:.01];
sig = sin(2*pi*fsig*t);

Set the liquid water density and specify the LOS channel System object™.

lwd = 0.05;
channel = phased.LOSChannel('SampleRate',fs,'SpecifyAtmosphere',true,...
    'LiquidWaterDensity',lwd,'OperatingFrequency',fc);

Set the origin and destination of the signal.

xradar = [1000,0,0].';
vradar = [0,0,0].';
xtgt = [10000,4000,500].';
vtgt = [0,0,0].';

Propagate the signal from origin to destination and plot the result.

prog_sig = channel(sig.',xradar,xtgt,vradar,vtgt);
plot(t*1000,real(prog_sig))
grid
xlabel('Time (milliseconds)')
ylabel('Amplitude')
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Introduced in R2016a
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phased.MatchedFilter
Package: phased

Matched filter

Description
The MatchedFilter object implements matched filtering of an input signal.

To compute the matched filtered signal:

1 Define and set up your matched filter. See “Construction” on page 1-989.
2 Call step to perform the matched filtering according to the properties of

phased.MatchedFilter. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.MatchedFilter creates a matched filter System object, H. The object performs
matched filtering on the input data.

H = phased.MatchedFilter(Name,Value) creates a matched filter object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
CoefficientsSource

Source of matched filter coefficients

Specify whether the matched filter coefficients come from the Coefficients property of this object
or from an input argument in step. Values of this property are:

'Property' The Coefficients property of this object specifies the
coefficients.

'Input port' An input argument in each invocation of step specifies the
coefficients.

Default: 'Property'

Coefficients

Matched filter coefficients
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Specify the matched filter coefficients as a column vector. This property applies when you set the
CoefficientsSource property to 'Property'. This property is tunable.

Default: [1;1]

SpectrumWindow

Window for spectrum weighting

Specify the window used for spectrum weighting using one of 'None', 'Hamming', 'Chebyshev',
'Hann', 'Kaiser', 'Taylor', or 'Custom'. Spectrum weighting is often used with linear FM
waveform to reduce the sidelobes in the time domain. The object computes the window length
internally, to match the FFT length.

Default: 'None'

CustomSpectrumWindow

User-defined window for spectrum weighting

Specify the user-defined window for spectrum weighting using a function handle or a cell array. This
property applies when you set the SpectrumWindow property to 'Custom'.

If CustomSpectrumWindow is a function handle, the specified function takes the window length as
the input and generates appropriate window coefficients.

If CustomSpectrumWindow is a cell array, then the first cell must be a function handle. The specified
function takes the window length as the first input argument, with other additional input arguments if
necessary, and generates appropriate window coefficients. The remaining entries in the cell array are
the additional input arguments to the function, if any.

Default: @hamming

SpectrumRange

Spectrum window coverage region

Specify the spectrum region on which the spectrum window is applied as a 1-by-2 vector in the form
of [StartFrequency EndFrequency] (in hertz). This property applies when you set the
SpectrumWindow property to a value other than 'None'.

Note that both StartFrequency and EndFrequency are measured in baseband. That is, they are
within [-Fs/2 Fs/2], where Fs is the sample rate that you specify in the SampleRate property.
StartFrequency cannot be larger than EndFrequency.

Default: [0 1e5]

SampleRate

Coefficient sample rate

Specify the matched filter coefficients sample rate (in hertz) as a positive scalar. This property applies
when you set the SpectrumWindow property to a value other than 'None'.

Default: 1e6
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SidelobeAttenuation

Window sidelobe attenuation level

Specify the sidelobe attenuation level (in decibels) of a Chebyshev or Taylor window as a positive
scalar. This property applies when you set the SpectrumWindow property to 'Chebyshev' or
'Taylor'.

Default: 30

Beta

Kaiser window parameter

Specify the parameter that affects the Kaiser window sidelobe attenuation as a nonnegative scalar.
Please refer to kaiser for more details. This property applies when you set the SpectrumWindow
property to 'Kaiser'.

Default: 0.5

Nbar

Number of nearly constant sidelobes in Taylor window

Specify the number of nearly constant level sidelobes adjacent to the mainlobe in a Taylor window as
a positive integer. This property applies when you set the SpectrumWindow property to 'Taylor'.

Default: 4

GainOutputPort

Output gain

To obtain the matched filter gain, set this property to true and use the corresponding output
argument when invoking step. If you do not want to obtain the matched filter gain, set this property
to false.

Default: false

Methods

step Perform matched filtering

Common to All System Objects
release Allow System object property value changes

Examples

Matched Filter for Linear FM Waveform

Construct a matched filter for a linear FM waveform.
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waveform = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);
x = waveform();
filter = phased.MatchedFilter( ...
    'Coefficients',getMatchedFilter(waveform));
y = filter(x);
subplot(2,1,1),plot(real(x))
xlabel('Samples')
ylabel('Amplitude')
title('Input Signal')
subplot(2,1,2),plot(real(y))
xlabel('Samples')
ylabel('Amplitude')
title('Matched Filter Output')

Matched Filter Using Hamming Window

Apply a matched filter, using a Hamming window to do spectrum weighting.

waveform = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);
x = waveform();
filter = phased.MatchedFilter( ...
    'Coefficients',getMatchedFilter(waveform), ...
    'SpectrumWindow','Hamming');
y = filter(x);
subplot(2,1,1)
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plot(real(x))
xlabel('Samples')
ylabel('Amplitude')
title('Input Signal')
subplot(2,1,2)
plot(real(y))
xlabel('Samples')
ylabel('Amplitude')
title('Matched Filter Output')

Matched Filter with Custom Window

Apply a matched filter, using a custom Gaussian window for spectrum weighting.

waveform = phased.LinearFMWaveform('PulseWidth',1e-4,'PRF',5e3);
x = waveform();
filter = phased.MatchedFilter( ...
    'Coefficients',getMatchedFilter(waveform), ...
    'SpectrumWindow','Custom', ...
    'CustomSpectrumWindow',{@gausswin,2.5});
y = filter(x);
subplot(2,1,1)
plot(real(x))
xlabel('Samples')
ylabel('Amplitude')
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title('Input Signal')
subplot(2,1,2)
plot(real(y))
xlabel('Samples')
ylabel('Amplitude')
title('Matched Filter Output')

Algorithms
The filtering operation uses the overlap-add method.

Spectrum weighting produces a transfer function

H′(F) = w(F)H(F)

where w(F) is the window and H(F) is the original transfer function.

For further details on matched filter theory, see [1]or [2].

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The CustomSpectrumWindow property is not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.CFARDetector | phased.StretchProcessor | phased.TimeVaryingGain | pulsint |
taylorwin

Introduced in R2011a
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step
System object: phased.MatchedFilter
Package: phased

Perform matched filtering

Syntax
Y = step(H,X)
Y = step(H,X,COEFF)
[Y,GAIN] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) applies the matched filtering to the input X and returns the filtered result in Y. The
filter is applied along the first dimension. Y and X have the same dimensions. The initial transient is
removed from the filtered result.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Y = step(H,X,COEFF) uses the input COEFF as the matched filter coefficients. This syntax is
available when you set the CoefficientsSource property to 'Input port'.

[Y,GAIN] = step( ___ ) returns additional output GAIN as the gain (in decibels) of the matched
filter. This syntax is available when you set the GainOutputPort property to true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Match Filter Linear FM Waveform

Construct a linear FM waveform with a sweep bandwidth of 300 kHz and a pulse width of 50 μs.
Obtain the matched filter coefficients using the getMatchedFilter method. Then, use the step to
match-filter the waveform.
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waveform = phased.LinearFMWaveform('SweepBandwidth',3e5,...
    'OutputFormat','Pulses','SampleRate',1e6,...
    'PulseWidth',50e-6,'PRF',1e4);
wav = waveform();

Plot the entire waveform. The length of the waveform is the pulse repetition interval (100 samples).

stem(real(wav))
xlabel('Samples')
title('Real Part of Waveform')

Obtain the matched filter coefficients for the linear FM waveform. The length of the matched filter
coefficients is the length of the pulse.

mfcoeffs = getMatchedFilter(waveform);
stem(real(mfcoeffs))
xlabel('Samples')
title('Real Part of Matched Filter Coefficients')
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Use phased.MatchedFilter step method to obtain the matched filter output.

filter = phased.MatchedFilter('Coefficients',mfcoeffs);
mfoutput = filter(wav);
stem(real(mfoutput))
xlabel('Samples')
title('Real Part of Matched Filter Output')
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phased.MonopulseEstimator
Package: phased

Amplitude monopulse direction finding

Description
The phased.MonopulseEstimator System object implements a target direction estimator using the
amplitude monopulse technique with arbitrary array geometry. The object works with the sum and
difference channels that are output from the phased.MonopulseFeed System object or your own
sum-difference channel generator. The output is an estimate of the target direction in azimuth and
elevation. You can use the object for target direction estimation and target tracking.

To create a monopulse estimator:

1 Create the phased.MonopulseEstimator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
estimator = phased.MonopulseEstimator
estimator = phased.MonopulseEstimator(Name,Value)

Description

estimator = phased.MonopulseEstimator creates a monopulse estimator System object,
estimator, with default property values.

estimator = phased.MonopulseEstimator(Name,Value) creates an estimator with each
property Name set to a specified Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: estimator =
phased.MonopulseEstimator('SensorArray',phased.URA,'OperatingFrequency',300e6
,'Coverage','Azimuth') sets the sensor array to a uniform rectangular array (URA) with default
URA property values. The estimator estimates azimuth from the sum channel and azimuth difference
channel. The estimator operates at 300 MHz.

Note You can also create a phased.MonopulseEstimator object from a phased.MonopulseFeed
object using the getMonopulseEstimator object function.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorArray — Sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox array

Sensor array, specified as an array System object belonging to Phased Array System Toolbox. The
sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

Coverage — Monopulse coverage
'3D' (default) | 'Azimuth'

Coverage of monopulse estimator, specified as '3D' or 'Azimuth'. When you set this property to
'3D', the monopulse estimator uses the sum channel and both azimuth and elevation difference
channels. When you set this property to 'Azimuth', the estimator uses the sum channel and the
azimuth difference channel.

SquintAngle — Squint angle
10 (default) | scalar | real-valued 2-by-1 vector

Squint angle, specified as a scalar or real-valued 2-by-1 vector. The squint angle is the separation
angle or angles between the sum beam and the beams along the azimuth and elevation directions.

• When you set the Coverage property to 'Azimuth', set the SquintAngle property to a scalar.
• When you set the Coverage property to '3D', you can specify the squint angle as either a scalar

or vector. If you set the SquintAngle property to a scalar, then the squint angle is the same along
both the azimuth and elevation directions. If you set the SquintAngle property to a 2-by-1 vector,
its elements specify the squint angle along the azimuth and elevation directions.
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Example: [20;5]

OutputFormat — Output direction format
'Angle' (default) | 'Angle offset'

Format of direction output, specified as 'Angle' or 'Angle offset'. When you set this property to
'Angle', the output angles are in the direction of the target. When you set this property to 'Angle
offset', the output is the angle offset from the array steering direction.

SumDifferenceRatioOutputPort — Enable sum-difference ratio output
false (default) | true

Set this property to true to output the ratio of the sum and difference channels in the azimuth and
elevation directions. Set this property to false to not output the ratios. The ratio is often used as an
error control signal.
Data Types: logical

Usage

Syntax
angest = estimator(sumchan,diffazchan,steervec)
angest = estimator(sumchan,diffazchan,diffelchan,steervec)
[angest,dratio] = estimator( ___ )

Description

angest = estimator(sumchan,diffazchan,steervec) returns the estimated target angle,
angest, derived from the sum channel signal, sumchan, and the azimuth difference channel signal,
diffazchan. steervec specifies the array steering direction. To use this syntax, set the Coverage
property to 'Azimuth'.

angest = estimator(sumchan,diffazchan,diffelchan,steervec) also specifies the
elevation difference channel signal, diffelchan. To use this syntax, set the Coverage property to
'3D'.

[angest,dratio] = estimator( ___ ) also returns the sum and difference ratio, dratio. To use
this syntax, set the SumDifferenceRatioOutputPort property to true.

You can combine optional input arguments when their enabling properties are set. Optional inputs
must be listed in the same order as the order of the enabling properties. For example:

 [angest,dratio] = estimator(X,steervec)

Input Arguments

sumchan — Sum-channel signal
complex-valued N-by-1 column vector

Sum-channel signal, specified as a complex-valued N-by-1 column vector. N is the number of
snapshots in the signal.
Data Types: double
Complex Number Support: Yes
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diffazchan — Azimuth difference-channel signal
complex-valued N-by-1 column vector

Azimuth difference-channel signal, specified as a complex-valued N-by-1 column vector. N is the
number of snapshots in the signal.
Data Types: double
Complex Number Support: Yes

diffelchan — Elevation difference-channel signal
complex-valued N-by-1 column vector

Elevation difference-channel signal, specified as a complex-valued N-by-1 column vector. N is the
number of snapshots in the signal.
Dependencies

To enable this output argument, set the Coverage property to '3D'.
Data Types: double
Complex Number Support: Yes

steervec — Array steering direction
scalar | real-valued 2-by-1 column vector

Array steering direction, specified as a scalar or real-valued 2-by-1 column vector.

• When you set the Coverage property to 'Azimuth', the steering direction is a scalar and
represents the azimuth steering angle.

• When you set the Coverage property to '3D', the steering vector has the form [azimuthAngle;
elevationAngle], where azimuthAngle is the azimuth steering angle and elevationAngle is
the elevation steering angle.

Units are in degrees. Azimuth angles lie between –180° and 180°, inclusive and elevation angles must
lie between –90° and 90°, inclusive.
Example: [40;10]
Data Types: double

Output Arguments

angest — Estimated direction of target
real-valued 1-by-N vector | real-valued 2-by-N matrix

Estimated direction of target, returned as a real-valued 1-by-N vector or real-valued 2-by-N matrix. N
is the number of snapshots in the signal. Units are in degrees.

• When you set the Coverage property to 'Azimuth', angest is a real-valued 1-by-N vector. The
elements contain the estimated target direction azimuth angle at each signal snapshot.

• When you set the Coverage property to '3D', angest is a real-valued 2-by-N matrix. Each
column contains the estimated target direction in the form [azimuthAngle;elevationAngle],
where azimuthAngle is the estimated azimuth angle, and elevationAngle is the estimated
elevation angle.

If you set the OutputFormat property to 'Angle offset', each element of the vector or matrix
represent an offset from the steering vector direction.
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Data Types: double

dratio — Ratio of sum and difference channels
real-valued 1-by-N vector | real-valued 2-by-N matrix

Ratio of sum and difference channels, returned as a real-valued 1-by-N vector or real-valued 2-by-N
matrix. N is the number of snapshots in the signal. Units are in degrees.

• When you set the Coverage property to 'Azimuth', dratio is a real-valued 1-by-N vector. The
elements contain the ratio of the sum to azimuth difference channel at each signal snapshot.

• When you set the Coverage property to '3D', dratio is a real-valued 2-by-N matrix. The
elements of the first row contain the ratio of the sum to azimuth difference channel at each signal
snapshot. The elements of the second row contain the ratio of the sum to elevation difference
channel at each signal snapshot.

Dependencies

To enable this output argument, set the SumDifferenceRatioOutputPort property to true.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create Sum and Difference Channels for URA

After creating sum and difference channels, determine the direction of a target at approximately 24
degrees azimuth and 40 degrees elevation with respect to a 5-by-5 uniform rectangular array.

Create a monopulse feed system based on a URA.

fc = 200e6;
c = physconst('LightSpeed');
lambda = c/fc;
array = phased.URA('Size',[5 5],'ElementSpacing',lambda/2);
feed = phased.MonopulseFeed('SensorArray',array,'OperatingFrequency', ...
    fc,'Coverage','3D','AngleOutputPort',true);

Create a signal using a steering vector.

steervector = phased.SteeringVector('SensorArray',array);
x = steervector(feed.OperatingFrequency,[24;40]).';
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Obtain the sum and difference channels and the estimated target angle.

[sumch,azch,elch,est_dir] = feed(x,[30;35]);
disp(est_dir)

   24.3705
   41.1997

Use a derived phased.MonopulseEstimator object to also obtain the target angle.

estimator = getMonopulseEstimator(feed);
est_dir = estimator(sumch,azch,elch,[30;35])

est_dir = 2×1

   24.3705
   41.1997

Find Direction of Target

Determine the direction of a target using monopulse processing of signals arriving on a URA. The
target echo is first detected before applying monopulse processing.

array = phased.URA('Size',4);
collect = phased.Collector('Sensor',array);
feed = phased.MonopulseFeed('SensorArray',array,'Coverage','3D');
estimator = phased.MonopulseEstimator('SensorArray',array,'Coverage','3D');

% Create a 100-sample random source signal with a single spike to simulate
% an echo.
x = sqrt(0.01/2)*(randn(100,1)+1i*randn(100,1));
x(20) = 1;
targetangle = [31;9];
rx = collect(x,targetangle);

Point the monopulse in a different direction from the target. Then, create the sum and difference
angles.

steerangle = [30;10];
[sumch,azch,elch] = feed(rx,steerangle);

% Detect the target by finding the peak of the sum channel.
[~,idx] = max(abs(sumch));

% Estimate the arrival angle using a monopulse estimator.
est_dir = estimator(sumch(idx),azch(idx),elch(idx),steerangle)

est_dir = 2×1

   31.1307
    9.0132
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References
[1] Mahafza, B.R. Radar System Analysis and Design Using Matlab. Boca Raton: Chapman and Hall/

CRC, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
System Objects
phased.MonopulseFeed | phased.SumDifferenceMonopulseTracker |
phased.SumDifferenceMonopulseTracker2D

Functions
getMonopulseEstimator

Introduced in R2018b
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phased.MonopulseFeed
Package: phased

Creates sum and difference channels

Description
The phased.MonopulseFeed System object implements a monopulse feed system for the amplitude
sum and difference monopulse tracker. This object combines received signals from an arbitrary array
to form sum and difference channels. You can use this object as a feed for the
phased.MonopulseEstimator System object.

To create a monopulse feed system:

1 Create the phased.MonopulseFeed object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
feed = phased.MonopulseFeed
feed = phased.MonopulseFeed(Name,Value)

Description

feed = phased.MonopulseFeed creates a monopulse feed System object, feed, with default
property values.

feed = phased.MonopulseFeed(Name,Value) creates a feed system with each property Name
set to a specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: feed =
phased.MonopulseFeed('SensorArray',phased.URA,'OperatingFrequency',300e6,'Cov
erage','Azimuth') sets the sensor array to a uniform rectangular array (URA) with default URA
property values. The feed forms only the sum channel and azimuth difference channel. The feed
system operates at 300 MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorArray — Sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox array

Sensor array, specified as an array System object belonging to Phased Array System Toolbox. The
sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

Coverage — Monopulse coverage
'3D' (default) | 'Azimuth'

Coverage directions of monopulse feed, specified as '3D' or 'Azimuth'. When you set this property
to '3D', the monopulse feed forms the sum channel and both azimuth and elevation difference
channels. When you set this property to 'Azimuth', the monopulse feed forms the sum channel and
the azimuth difference channel.
Example: 'Azimuth'

SquintAngle — Squint angle
10 (default) | scalar | real-valued 2-by-1 vector

Squint angle, specified as a scalar or real-valued 2-by-1 vector. The squint angle is the separation
angle or angles between the sum beam and the beams along the azimuth and elevation directions.

• When you set the Coverage property to 'Azimuth', set the SquintAngle property to a scalar.
• When you set the Coverage property to '3D', you can specify the squint angle as either a scalar

or vector. If you set the SquintAngle property to a scalar, then the squint angle is the same along
both the azimuth and elevation directions. If you set the SquintAngle property to a 2-by-1 vector,
its elements specify the squint angle along the azimuth and elevation directions.

Example: [20;5]

AngleOutputPort — Enable angle estimate output
false (default) | true
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Enable angle estimate output, specified as false or true. Set this property to true to output the
angle estimate in addition to sum and difference channels. Set this property to false to only output
sum and difference channels.
Data Types: logical

Usage

Syntax
[sumchan,diffazchan] = feed(X,steervec)
[sumchan,diffazchan,diffelchan] = feed(X,steervec)
[ ___ ,angest] = feed(X,steervec)

Description

[sumchan,diffazchan] = feed(X,steervec) returns the sum channel signal, sumchan, and the
azimuth difference channel signal, diffazchan, computed from the input signal, X. steervec
specifies the array steering direction. To use this syntax, set the Coverage property to 'Azimuth'.

[sumchan,diffazchan,diffelchan] = feed(X,steervec) also returns the elevation
difference channel signal, diffelchan. To use this syntax, set the Coverage property to '3D'.

[ ___ ,angest] = feed(X,steervec) also returns the estimated direction angle, angest. To use
this syntax, set the AngleOutputPort property to true.

Input Arguments

X — Input signal
complex-valued M-by-N matrix | -by-N matrix

Input signal, specified as a complex-valued M-by-N matrix, where M is the number of samples or
snapshots of data, and N is the number of array elements. If the array contains subarrays, then N is
the number of subarrays.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

steervec — Array steering direction
scalar | real-valued 2-by-1 column vector

Array steering direction, specified as a scalar or real-valued 2-by-1 column vector.

• When you set the Coverage property to 'Azimuth', the steering direction is a scalar and
represents the azimuth steering angle.

• When you set the Coverage property to '3D', the steering vector has the form [azimuthAngle;
elevationAngle], where azimuthAngle is the azimuth steering angle and elevationAngle is
the elevation steering angle.

Units are in degrees. Azimuth angles lie between –180° and 180°, inclusive and elevation angles must
lie between –90° and 90°, inclusive.
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Example: [40;10]
Data Types: double

You can combine optional input arguments when their enabling properties are set. Optional inputs
must be listed in the same order as the order of the enabling properties. For example,

array = phased.URA('Size',[5 5]);
feed = phased.MonopulseFeed('SensorArray',array,'Coverage','3D', ...
       'AngleOutputPort',true);
[sumch,dazch,delch,angest] = feed(X,steervec);

Output Arguments

sumchan — Sum-channel signal
complex-valued M-by-1 column vector

Sum-channel signal, returned as a complex-valued M-by-1 column vector, where M is the number of
rows of X.
Data Types: double
Complex Number Support: Yes

diffazchan — Azimuth difference-channel signal
complex-valued M-by-1 column vector

Azimuth difference-channel signal, returned as a complex-valued M-by-1 column vector, where M is
the number of rows of X.
Data Types: double
Complex Number Support: Yes

diffelchan — Elevation difference-channel signal
complex-valued M-by-1 column vector

Elevation difference-channel signal, returned as a complex-valued M-by-1 column vector, where M is
the number of rows of X.

Dependencies

To enable this output argument, set the Coverage property to '3D'.
Data Types: double
Complex Number Support: Yes

angest — Estimated direction of target
real-valued 2-by-1 vector

Estimated direction of target, returned as a real-valued 2-by-1 vector in the form
[azimuth,elevation]. Units are in degrees.

Dependencies

To enable this output argument, set the AngleOutputPort property to true.
Data Types: double
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to phased.MonopulseFeed
getMonopulseEstimator Create monopulse estimator from monopulse feed

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Create Sum and Difference Channels for URA

After creating sum and difference channels, determine the direction of a target at approximately 24
degrees azimuth and 40 degrees elevation with respect to a 5-by-5 uniform rectangular array.

Create a monopulse feed system based on a URA.

fc = 200e6;
c = physconst('LightSpeed');
lambda = c/fc;
array = phased.URA('Size',[5 5],'ElementSpacing',lambda/2);
feed = phased.MonopulseFeed('SensorArray',array,'OperatingFrequency', ...
    fc,'Coverage','3D','AngleOutputPort',true);

Create a signal using a steering vector.

steervector = phased.SteeringVector('SensorArray',array);
x = steervector(feed.OperatingFrequency,[24;40]).';

Obtain the sum and difference channels and the estimated target angle.

[sumch,azch,elch,est_dir] = feed(x,[30;35]);
disp(est_dir)

   24.3705
   41.1997

Use a derived phased.MonopulseEstimator object to also obtain the target angle.

estimator = getMonopulseEstimator(feed);
est_dir = estimator(sumch,azch,elch,[30;35])

est_dir = 2×1

   24.3705
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   41.1997

References
[1] Mahafza, B.R. Radar System Analysis and Design Using Matlab. Boca Raton: Chapman and Hall/

CRC, 2000.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
System Objects
phased.MonopulseEstimator | phased.SumDifferenceMonopulseTracker |
phased.SumDifferenceMonopulseTracker2D

Introduced in R2018b
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getMonopulseEstimator
Package: phased

Create monopulse estimator from monopulse feed

Syntax
estimator = getMonopulseEstimator(feed)

Description
estimator = getMonopulseEstimator(feed) creates a phased.MonopulseEstimator
System object, estimator, from a phased.MonopulseFeed System object, feed.

Examples

Create Sum and Difference Channels for URA

After creating sum and difference channels, determine the direction of a target at approximately 24
degrees azimuth and 40 degrees elevation with respect to a 5-by-5 uniform rectangular array.

Create a monopulse feed system based on a URA.

fc = 200e6;
c = physconst('LightSpeed');
lambda = c/fc;
array = phased.URA('Size',[5 5],'ElementSpacing',lambda/2);
feed = phased.MonopulseFeed('SensorArray',array,'OperatingFrequency', ...
    fc,'Coverage','3D','AngleOutputPort',true);

Create a signal using a steering vector.

steervector = phased.SteeringVector('SensorArray',array);
x = steervector(feed.OperatingFrequency,[24;40]).';

Obtain the sum and difference channels and the estimated target angle.

[sumch,azch,elch,est_dir] = feed(x,[30;35]);
disp(est_dir)

   24.3705
   41.1997

Use a derived phased.MonopulseEstimator object to also obtain the target angle.

estimator = getMonopulseEstimator(feed);
est_dir = estimator(sumch,azch,elch,[30;35])

est_dir = 2×1

   24.3705
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   41.1997

Input Arguments
feed — Monopulse feed
phased.MonopulseFeed System object

Monopulse feed, specified as a System object.

Output Arguments
estimator — Monopulse estimator
phased.MonopulseEstimator System object

Monopulse estimator, returned as a phased.MonopulseEstimator System object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2018b
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phased.MFSKWaveform
Package: phased

MFSK waveform

Description
The multiple frequency shift keying (MFSK) waveform is used in automotive radar to improve
simultaneous range and Doppler estimation of multiple targets. The MFSKWaveform System object
creates the baseband representation of an MFSK waveform. An MFSK waveform consists of two
interleaved sequences of increasing frequencies, as described in “Algorithms” on page 1-1018.

To obtain waveform samples:

1 Define and set up the MFSK waveform. See “Construction” on page 1-1015.
2 Call step to generate the MFSK waveform samples according to the properties of

phased.MFSKWaveform. The behavior of step is specific to each object in the toolbox. The
output of the step method is controlled by the OutputFormat property, which has no effect on
the properties of the waveform.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Construction
sMFSK = phased.MFSKWaveform creates an MFSK waveform System object, sMFSK.

sMFSK = phased.MFSKWaveform(Name,Value) creates an MFSK waveform object, sMFSK, with
additional properties specified by one or more Name-Value pair arguments. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,…,NameN,ValueN.

Properties
SampleRate — Sample rate
1e6 (default) | positive scalar

Sample rate of the signal, specified as a positive scalar. Units are hertz.
Example: 96e6
Data Types: double

SweepBandwidth — MFSK sweep bandwidth
1e5 (default) | positive scalar

MFSK sweep bandwidth, specified as a positive scalar. Units are in hertz. The sweep bandwidth is the
difference between the highest and lowest frequencies of either sequence.
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Example: 9e7
Data Types: double

StepTime — Duration of frequency step
1e-4 (default) | positive scalar

Time duration of each frequency step, specified as a positive scalar in seconds.
Example: 0.2e-3
Data Types: double

StepsPerSweep — Total number of frequency steps
64 (default) | even positive integer

Total number of frequency steps in a sweep, specified as an even positive integer.
Example: 16
Data Types: double

FrequencyOffset — Chirp offset frequency
1000 (default) | real scalar

Chirp offset frequency, specified as a real scalar. Units are in hertz. The offset determines the
frequency translation between the two sequences.
Example: 500
Data Types: double

OutputFormat — Output signal grouping
'Steps' (default) | 'Sweeps' | 'Samples'

Output signal grouping, specified as one of 'Steps', 'Sweeps', or 'Samples'. This property has
no effect on the waveform but determines the output form of the step method.

• 'Steps' — The output consists of all samples contained in an integer number of frequency steps,
NumSteps.

• 'Samples' — The output consists of an integer number of samples, NumSamples.
• 'Sweeps' — The output consists of all samples contained in an integer number of sweeps,

NumSweeps.

Example: 'Samples'
Data Types: char

NumSamples — Number of samples in output
1 (default) | positive integer

Number of samples in output, specified as a positive integer. This property applies only when you set
OutputFormat to 'Samples'.
Example: 200
Data Types: double

1 Objects

1-1016



NumSteps — Number of frequency steps in output
1 (default) | positive integer

Number of frequency steps in output, specified as a positive integer. This property applies only when
you set OutputFormat to 'Steps'.
Example: 10
Data Types: double

NumSweeps — Number of sweeps in output
1 (default) | positive integer

Number of sweeps in output, specified as a positive integer. This property applies only when you set
OutputFormat to 'Sweeps'.
Example: 5
Data Types: double

Methods
plot Plot continuous MFSK waveform
reset Reset states of the MFSK waveform object
step Samples of continuous MFSK waveform

Common to All System Objects
release Allow System object property value changes

Examples

Plot MFSK Waveform

Construct an MFSK waveform with a sample rate of 1 MHz and a sweep bandwidth of 0.1 MHz.
Assume 52 steps with a step time of 4 milliseconds. Set the frequency offset to 1 kHz. There are 4000
samples per step.

fs = 1e6;
fsweep = 1e5;
tstep = 4e-3;
numsteps = 52;
foffset = 1000;
noutputsteps = 4;
sMFSK = phased.MFSKWaveform('SampleRate',fs,...
    'SweepBandwidth',fsweep,...
    'StepTime',tstep,...
    'StepsPerSweep',numsteps,...
    'FrequencyOffset',foffset,...
    'OutputFormat','Steps',...
    'NumSteps',noutputsteps);

Plot the real and imaginary components of the second step of the waveform using the plot method.
Set the plot color to red.
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plot(sMFSK,'PlotType','complex','StepIdx',2,'r')

Algorithms
An MFSK waveform consists of two interleaved stepped-frequency sequences, as shown in this time-
frequency diagram.
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Each sequence is a set of continuous waveform (CW) signals increasing in frequency. The offset,
Foffset, between the two sequences is constant and can be positive or negative. A complete waveform
consists of an even number of steps, N, of equal duration, Tstep. Then, each sequence consists of N/2
steps. The sweep frequency, Fsweep, is the difference between the lowest and highest frequency of
either sequence. Fsweep is always positive, indicating increasing frequency. The frequency difference
between successive steps of each sequence is given by

Fstep = Fsweep/(N/2–1).

The lowest frequency of the first sequence is always 0 hertz and corresponds to the carrier frequency
of the bandpass signal. The lowest frequency of the second sequence can be positive or negative and
is equal to Foffset. Negative frequencies correspond to bandpass frequencies that are lower than the
carrier frequency. The duration of the waveform is given by Tsweep = N *Tstep. The System object
properties corresponding to the signal parameters are

Signal Parameter Property
Fsweep 'SweepBandwidth'
Tstep 'StepTime'
N 'StepsPerSweep'
Foffset 'FrequencyOffset'

References

[1] Meinecke, Marc-Michale, and Hermann Rohling, “Combination of LFMCW and FSK Modulation
Principles for Automotive Radar Systems.” German Radar Symposium GRS2000. 2000.

[2] Rohling, Hermann, and Marc-Michale Meinecke. “Waveform Design Principles for Automotive
Radar Systems”. CIE International Conference on Radar. 2001.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• plot method is not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.FMCWWaveform | phased.LinearFMWaveform | phased.MatchedFilter |
phased.PhaseCodedWaveform | phased.RectangularWaveform |
phased.SteppedFMWaveform

Topics
“Simultaneous Range and Speed Estimation Using MFSK Waveform”

Introduced in R2015a
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plot
System object: phased.MFSKWaveform
Package: phased

Plot continuous MFSK waveform

Syntax
plot(sMFSK)
plot(sMFSK,Name,Value)
plot(sMFSK,Name,Value,LineSpec)
h = plot( ___ )

Description
plot(sMFSK) plots the real part of the waveform specified by sMFSK.

plot(sMFSK,Name,Value) plots the waveform with additional options specified by one or more
Name,Value pair arguments.

plot(sMFSK,Name,Value,LineSpec) specifies the same line color, line style, or marker options
that are available in the MATLAB plot function.

h = plot( ___ ) returns the line handle in the figure.

Input Arguments
sMFSK — MFSK waveform
MFSK waveform System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: sMFSK = phased.MFSKWaveform;

LineSpec — Plot style
'b' (default) | character vector

Plot style, specified as a character vector. You can specify the same line color, style, or marker options
that are available in the MATLAB plot function. If you specify a PlotType value of 'complex', then
LineSpec applies to both the real and imaginary subplots.
Example: 'k.'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PlotType — Waveform component to plot
'real' (default) | 'imag' | 'complex'
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Waveform component to plot, specified as the comma-separated pair consisting of 'PlotType' and
one of the following:

• 'real' — Plots the real part of the waveform
• 'imag' — Plots the imaginary part of the waveform
• 'complex' — Plots both parts of the waveform

Example: 'PlotType','complex'

StepIdx — Index of step
1 (default) | positive integer

Index of the step to plot, specified as the comma-separated pair consisting of 'StepIdx' and a
positive integer. If you specify a 'StepIdx' value greater than 'StepsPerSweep', the frequency
corresponds to the mod('StepIdx','StepsPerSweep') value.

Output Arguments
h — Plot handle
double

Plot handle(s) to the line or lines in the figure, returned as a double. When PlotType is set to
'complex', h is a 2-by-1 column vector. The first and second elements of this vector are the handles
to the lines in the real and imaginary subplots, respectively.

Examples

Plot MFSK Waveform

Construct an MFSK waveform with a sample rate of 1 MHz and a sweep bandwidth of 0.1 MHz.
Assume 52 steps with a step time of 4 milliseconds. Set the frequency offset to 1 kHz. There are 4000
samples per step.

fs = 1e6;
fsweep = 1e5;
tstep = 4e-3;
numsteps = 52;
foffset = 1000;
noutputsteps = 4;
sMFSK = phased.MFSKWaveform('SampleRate',fs,...
    'SweepBandwidth',fsweep,...
    'StepTime',tstep,...
    'StepsPerSweep',numsteps,...
    'FrequencyOffset',foffset,...
    'OutputFormat','Steps',...
    'NumSteps',noutputsteps);

Plot the real and imaginary components of the second step of the waveform using the plot method.
Set the plot color to red.

plot(sMFSK,'PlotType','complex','StepIdx',2,'r')
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Introduced in R2015a

 plot

1-1023



reset
System object: phased.MFSKWaveform
Package: phased

Reset states of the MFSK waveform object

Syntax
reset(sMFSK)

Description
reset(sMFSK) resets the internal states of the phased.MFSKWaveform object, sMFSK, to their
initial values.

Input Arguments
sMFSK — MFSK waveform
System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: sMFSK= phased.MFSKWaveform;

Introduced in R2015a
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step
System object: phased.MFSKWaveform
Package: phased

Samples of continuous MFSK waveform

Syntax
Y = step(sMFSK)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Y = step(sMFSK) returns samples of the MFSK waveform in a N-by-1 complex valued column
vector, Y.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
sMFSK — MFSK waveform
System object

MFSK waveform, specified as a phased.MFSKWaveform System object.
Example: sMFSK= phased.MFSKWaveform;

Output Arguments
Y — Output samples
N-by-1 complex valued vector

Output samples of MFSK waveform, returned as an N-by-1 complex valued vector. When the step
method reaches the end of the waveform, the output samples wrap around from the start of the
waveform, yielding a periodic waveform.

Examples

 step
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Construct MFSK Step Output

Construct an MFSK waveform with a sample rate of 1 MHz and a sweep bandwidth of 0.1 MHz.
Assume 52 steps, with a step time of 4 milliseconds. Set the frequency offset to 1 kHz. There are 4000
samples per step.

fs = 1e6;
fsweep = 1e5;
tstep = 40e-4;
numsteps = 52;
foffset = 1000;
noutputsteps = 4;
sMFSK = phased.MFSKWaveform('SampleRate',fs,...
    'SweepBandwidth',fsweep,...
    'StepTime',tstep,...
    'StepsPerSweep',numsteps,...
    'FrequencyOffset',foffset,...
    'OutputFormat','Steps',...
    'NumSteps',noutputsteps);

Call the step method to retrieve the samples for the four steps.

z = step(sMFSK);

Plot the real and imaginary parts of the first two steps.

samplesperstep = fs*tstep;
disp(samplesperstep)

        4000

idx = [1:2*samplesperstep]';
time = idx/fs*1000;
plot(time,real(z(idx)),'b',time,imag(z(idx)),'k');
xlabel('Time (millisec)')
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Compute the FFT of all the data.

n = size(z,1);
nfft = 2^ceil(log2(n));
Y = fftshift(fft(z,nfft));

Plot the magnitudes of the spectrum.

fmax = fs/2;
ft = [-nfft/2:nfft/2-1]*fmax/(nfft/2);
figure(2);
hp = plot(ft/1000,abs(Y));
axis([-2,8,-1,4000]);
xlabel('Frequency (kHz)')
grid
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The plot shows two pairs of peaks. The first pair lies at 0 Hz and 1000 Hz. The second pair lies at
4000 Hz and 5000 Hz. The frequency offset is 1000 Hz.

Compute the frequency increase to the second pair off peaks.

fdelta = fsweep/(numsteps/2-1);
disp(fdelta)

        4000

The increase agrees with the location of the second pair of peaks in the FFT spectrum.

MFSK Samples per Sweep

Construct an MFSK waveform with a sample rate of 1 MHz and a sweep bandwidth of 0.1 MHz.
Assume 52 steps with a step time of 400 microseconds. Set the frequency offset to 1 kHz. Find the
number of samples returned when the OutputFormat property is set to return the samples for one
sweep.

fs = 1e6;
fsweep = 1e5;
tstep = 40e-4;
numsteps = 52;
foffset = 1000;
noutputsweeps = 1;
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sMFSK = phased.MFSKWaveform('SampleRate',fs,...
    'SweepBandwidth',fsweep,...
    'StepTime',tstep,...
    'StepsPerSweep',numsteps,...
    'FrequencyOffset',foffset,...
    'OutputFormat','Sweeps',...
    'NumSweeps',noutputsweeps);

Call the step method to retrieve the samples for the four steps.

z = step(sMFSK);

Count the number of samples in a sweep.

samplespersweep = fs*tstep*numsteps;
disp(samplespersweep)

      208000

Verify that this value agrees with the number of samples returned by the step method.

disp(size(z))

      208000           1

Introduced in R2015a
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phased.MVDRBeamformer
Package: phased

Narrowband minimum-variance distortionless-response beamformer

Description
The phased.MVDRBeamformer System object implements a narrowband minimum-variance
distortionless-response (MVDR) beamformer. The MVDR beamformer is also called the Capon
beamformer. An MVDR beamformer belongs to the family of constrained optimization beamformers.

To beamform signals arriving at an array:

1 Create the phased.MVDRBeamformer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
beamformer = phased.MVDRBeamformer
beamformer = phased.MVDRBeamformer(Name,Value)

Description

beamformer = phased.MVDRBeamformer creates an MVDR beamformer System object,
beamformer, with default property values.

beamformer = phased.MVDRBeamformer(Name,Value) creates an MVDR beamformer with each
property Name set to a specified Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: beamformer =
phased.MVDRBeamformer('SensorArray',phased.URA,'OperatingFrequency',300e6) sets
the sensor array to a uniform rectangular array (URA) with default URA property values. The
beamformer has an operating frequency of 300 MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

1 Objects

1-1030



SensorArray — Sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox array

Sensor array, specified as an array System object belonging to Phased Array System Toolbox. The
sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: single | double

DiagonalLoadingFactor — Diagonal loading factor
0 (default) | nonnegative scalar

Diagonal loading factor, specified as a nonnegative scalar. Diagonal loading is a technique used to
achieve robust beamforming performance, especially when the sample size is small. A small sample
size can lead to an inaccurate estimate of the covariance matrix. Diagonal loading also provides
robustness due to steering vector errors. The diagonal loading technique adds a positive scalar
multiple of the identity matrix to the sample covariance matrix.

Tunable: Yes
Data Types: single | double

TrainingInputPort — Enable training data input
false (default) | true

Enable training data input, specified as false or true. When you set this property to true, use the
training data input argument, XT, when running the object. Set this property to false to use the
input data, X, as the training data.
Data Types: logical

DirectionSource — Source of beamforming direction
'Property' (default) | 'Input port'

Source of beamforming direction, specified as 'Property' or 'Input port'. Specify whether the
beamforming direction comes from the Direction property of this object or from the input
argument, ANG. Values of this property are:
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'Property' Specify the beamforming direction using the Direction
property.

'Input port' Specify the beamforming direction using the input argument,
ANG.

Data Types: char

Direction — Beamforming directions
[0;0] (default) | real-valued 2-by-1 vector | real-valued 2-by-L matrix

Beamforming directions, specified as a real-valued 2-by-1 vector or a real-valued 2-by-L matrix. For a
matrix, each column specifies a different beamforming direction. Each column has the form
[AzimuthAngle;ElevationAngle]. Azimuth angles must lie between –180° and 180° and
elevation angles must lie between –90° and 90°. All angles are defined with respect to the local
coordinate system of the array. Units are in degrees.
Example: [40;30]

Dependencies

To enable this property, set the DirectionSource property to 'Property'.
Data Types: single | double

NumPhaseShifterBits — Number of phase shifter quantization bits
0 (default) | nonnegative integer

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights, specified as a nonnegative integer. A value of zero indicates that no quantization is
performed.
Example: 5
Data Types: single | double

WeightsOutputPort — Enable beamforming weights output
false (default) | true

Enable the output of beamforming weights, specified as false or true. To obtain the beamforming
weights, set this property to true and use the corresponding output argument, W. If you do not want
to obtain the weights, set this property to false.
Data Types: logical

Usage

Syntax
Y = beamformer(X)
Y = beamformer(X,XT)
Y = beamformer(X,ANG)
Y = beamformer(X,XT,ANG)
[Y,W] = beamformer( ___ )
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Description

Y = beamformer(X) performs MVDR beamforming on the input signal, X, and returns the
beamformed output in Y. This syntax uses X as training samples to calculate the beamforming
weights.

Y = beamformer(X,XT) uses XT as training samples to calculate the beamforming weights. To use
this syntax, set the TrainingInputPort property to true.

Y = beamformer(X,ANG) uses ANG as the beamforming direction. To use this syntax, set the
DirectionSource property to 'Input port'.

Y = beamformer(X,XT,ANG) combines all input arguments. To use this syntax, set the
TrainingInputPort property to true and set the DirectionSource property to 'Input port'.

[Y,W] = beamformer( ___ ) returns the beamforming weights, W. To use this syntax, set the
WeightsOutputPort property to true.

Input Arguments

X — Input signal
complex-valued M-by-N matrix

Input signal, specified as a complex-valued M-by-N matrix. N is the number of array elements. If the
sensor array contains subarrays, N is the number of subarrays. If you set TrainingInputPort to false,
M must be larger than N; otherwise, M can be any positive integer.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: single | double
Complex Number Support: Yes

XT — Training data
complex-valued P-by-N matrix

Training data, specified as a complex-valued P-by-N matrix. If the sensor array contains subarrays, N
is the number of subarrays; otherwise, N is the number of elements. P must be larger than N.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1 0.5 2.6; 2 -0.2 0; 3 -2 -1]
Dependencies

To enable this argument, set the TrainingInputPort property to true.
Data Types: single | double
Complex Number Support: Yes

ANG — Beamforming directions
[0;0] (default) | real-valued 2-by-1 column vector | real-valued 2-by-L matrix

Beamforming directions, specified as a real-valued 2-by-1 column vector, or 2-by-L matrix. L is the
number of beamforming directions. Each column has the form [AzimuthAngle;ElevationAngle].
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Units are in degrees. Each azimuth angle must lie between –180° and 180°, and each elevation angle
must lie between –90° and 90°.
Example: [40;10]

Dependencies

To enable this argument, set the DirectionSource property to 'Input port'.
Data Types: single | double

Output Arguments

Y — Beamformed output
complex-valued M-by-L matrix

Beamformed output, returned as a complex-valued M-by-L matrix, where M is the number of rows of
X and L is the number of beamforming directions.
Data Types: single | double
Complex Number Support: Yes

W — Beamforming weights
complex-valued N-by-L matrix.

Beamforming weights, returned as a complex-valued N-by-L matrix. If the sensor array contains
subarrays, N is the number of subarrays; otherwise, N is the number of elements. L is the number of
beamforming directions.

Dependencies

To enable this output, set the WeightsOutputPort property to true.
Data Types: single | double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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MVDR Beamforming

Apply an MVDR beamformer to a 5-element ULA. The incident angle of the signal is 45 degrees in
azimuth and 0 degree in elevation. The signal frequency is .01 hertz. The carrier frequency is 300
MHz.

t = [0:.1:200]';
fr = .01;
xm = sin(2*pi*fr*t);
c = physconst('LightSpeed');
fc = 300e6;
rng('default');
incidentAngle = [45;0];
array = phased.ULA('NumElements',5,'ElementSpacing',0.5);
x = collectPlaneWave(array,xm,incidentAngle,fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

Compute the beamforming weights

beamformer = phased.MVDRBeamformer('SensorArray',array,...
    'PropagationSpeed',c,'OperatingFrequency',fc,...
    'Direction',incidentAngle,'WeightsOutputPort',true);
[y,w] = beamformer(rx);

Plot the signals

plot(t,real(rx(:,3)),'r:',t,real(y))
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')
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Plot the array response pattern using the MVDR weights

pattern(array,fc,[-180:180],0,'PropagationSpeed',c,...
    'Weights',w,'CoordinateSystem','rectangular',...
    'Type','powerdb');
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Algorithms
MVDR Beamforming

The MVDR beamformer maximizes the signal to noise ratio.

Start with a signal arriving at the elements of an array. Assume that X is a complex-valued N-by-M
data matrix representing the arrival of signals at an array. N is the number of sensors in the array
and M is the number of samples or snapshots per signal. For mathematical convenience, this matrix is
the transpose of the matrix specified in the X argument. Each row of X represents a time series of
data for the corresponding array. The signal-to-noise ratio of a signal is given here.

SNR =
wHs 2

wHRI + Nw

Properly, the covariance matrix in the denominator is the covariance matrix for the noise and any
interferers. You can vary the scale of w without affecting the SNR. Therefore, you can choose the
normalization for w so that The MVDR estimator weights for beamforming are w = R-1v/vHRv where R
is the data covariance matrix R = E[xxH].

Diagonal Loading

Diagonal loading provides beamformer robustness due to small sample size and steering vector
errors.
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Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

[2] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array Processing”, Proceedings of the
IEEE. Vol. 60, Number 8, August, 1972, pp. 926–935.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
phased.FrostBeamformer | phased.LCMVBeamformer | phased.PhaseShiftBeamformer |
phased.SubbandMVDRBeamformer

Introduced in R2011a
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phased.MVDREstimator
Package: phased

MVDR (Capon) spatial spectrum estimator for ULA

Description
The MVDREstimator object computes a minimum variance distortionless response (MVDR) spatial
spectrum estimate for a uniform linear array. This DOA estimator is also referred to as a Capon DOA
estimator.

To estimate the spatial spectrum:

1 Define and set up your MVDR spatial spectrum estimator. See “Construction” on page 1-1039.
2 Call step to estimate the spatial spectrum according to the properties of

phased.MVDREstimator. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.MVDREstimator creates an MVDR spatial spectrum estimator System object, H. The
object estimates the incoming signal's spatial spectrum using a narrowband MVDR beamformer for a
uniform linear array (ULA).

H = phased.MVDREstimator(Name,Value) creates object, H, with each specified property Name
set to the specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Default: 0

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with conjugate symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

Specify the number of averaging used by spatial smoothing to estimate the covariance matrix as a
nonnegative integer. Each additional smoothing handles one extra coherent source, but reduces the
effective number of element by 1. The maximum value of this property is M–2, where M is the number
of sensors.

Default: 0, indicating no spatial smoothing

ScanAngles

Scan angles

Specify the scan angles (in degrees) as a real vector. The angles are broadside angles and must be
between –90 and 90, inclusive. You must specify the angles in ascending order.

Default: -90:90

DOAOutputPort

Enable DOA output

To obtain the signal's direction of arrival (DOA), set this property to true and use the corresponding
output argument when invoking step. If you do not want to obtain the DOA, set this property to
false.
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Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a positive scalar integer. This property applies
when you set the DOAOutputPort property to true.

Default: 1

Methods

plotSpectrum Plot spatial spectrum
reset Reset states of MVDR spatial spectrum estimator object
step Perform spatial spectrum estimation

Common to All System Objects
release Allow System object property value changes

Examples

Estimate DOA of Two Signals Using MVDR

First, estimate the DOAs of two signals received by a standard 10-element ULA with element spacing
of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first signal is 10°
in azimuth and 20° in elevation. The direction of the second signal is 60° in azimuth and −5° in
elevation. Then, plot the MVDR spatial spectrum.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create the signals with added noise. Then, create the ULA System object™.

fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150.0e6;
x = collectPlaneWave(array,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x)) + 1i*randn(size(x)));

Construct MVDR estimator System object.

estimator = phased.MVDREstimator('SensorArray',array,...
    'OperatingFrequency',fc,'DOAOutputPort',true,'NumSignals',2);

Estimate the DOAs.
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[y,doas] = estimator(x + noise);
doas = broadside2az(sort(doas),[20 -5])

doas = 1×2

    9.5829   60.3813

Plot the spectrum.

plotSpectrum(estimator)

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
broadside2az | phased.MVDREstimator2D

Introduced in R2011a
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plotSpectrum
System object: phased.MVDREstimator
Package: phased

Plot spatial spectrum

Syntax
plotSpectrum(estimator)
plotSpectrum(estimator,Name,Value)
hl = plotSpectrum( ___ )

Description
plotSpectrum(estimator) plots the spatial spectrum resulting from the most recent execution of
the object.

plotSpectrum(estimator,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

hl = plotSpectrum( ___ ) returns the line handle in the figure.

Input Arguments
H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

NormalizeResponse

Set this value to true to plot the normalized spectrum. Setting this value to false plots the
spectrum without normalization.

Default: false

Title

Character vector to use as figure title.

Default: ''

Unit

Plot units, specified as 'db', 'mag', or 'pow'.
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Default: 'db'

Examples

Estimate DOA of Two Signals Using MVDR

First, estimate the DOAs of two signals received by a standard 10-element ULA with element spacing
of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first signal is 10°
in azimuth and 20° in elevation. The direction of the second signal is 60° in azimuth and −5° in
elevation. Then, plot the MVDR spatial spectrum.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create the signals with added noise. Then, create the ULA System object™.

fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150.0e6;
x = collectPlaneWave(array,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x)) + 1i*randn(size(x)));

Construct MVDR estimator System object.

estimator = phased.MVDREstimator('SensorArray',array,...
    'OperatingFrequency',fc,'DOAOutputPort',true,'NumSignals',2);

Estimate the DOAs.

[y,doas] = estimator(x + noise);
doas = broadside2az(sort(doas),[20 -5])

doas = 1×2

    9.5829   60.3813

Plot the spectrum.

plotSpectrum(estimator)
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reset
System object: phased.MVDREstimator
Package: phased

Reset states of MVDR spatial spectrum estimator object

Syntax
reset(H)

Description
reset(H) resets the states of the MVDREstimator object, H.

 reset

1-1047



step
System object: phased.MVDREstimator
Package: phased

Perform spatial spectrum estimation

Syntax
Y = step(H,X)
[Y,ANG] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) estimates the spatial spectrum from X using the estimator H. X is a matrix whose
columns correspond to channels. Y is a column vector representing the magnitude of the estimated
spatial spectrum.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s direction of arrival (DOA)
when the DOAOutputPort property is true. ANG is a row vector of the estimated broadside angles (in
degrees).

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Estimate DOA of Two Signals Using MVDR

First, estimate the DOAs of two signals received by a standard 10-element ULA with element spacing
of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first signal is 10°
in azimuth and 20° in elevation. The direction of the second signal is 60° in azimuth and −5° in
elevation. Then, plot the MVDR spatial spectrum.
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Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create the signals with added noise. Then, create the ULA System object™.

fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150.0e6;
x = collectPlaneWave(array,[x1 x2],[10 20;60 -5]',fc);
noise = 0.1*(randn(size(x)) + 1i*randn(size(x)));

Construct MVDR estimator System object.

estimator = phased.MVDREstimator('SensorArray',array,...
    'OperatingFrequency',fc,'DOAOutputPort',true,'NumSignals',2);

Estimate the DOAs.

[y,doas] = estimator(x + noise);
doas = broadside2az(sort(doas),[20 -5])

doas = 1×2

    9.5829   60.3813

Plot the spectrum.

plotSpectrum(estimator)
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phased.MVDREstimator2D
Package: phased

2-D MVDR (Capon) spatial spectrum estimator

Description
The MVDREstimator2D object computes a 2-D minimum variance distortionless response (MVDR)
spatial spectrum estimate. This DOA estimator is also referred to as a Capon estimator.

To estimate the spatial spectrum:

1 Define and set up your 2-D MVDR spatial spectrum estimator. See “Construction” on page 1-
1051.

2 Call step to estimate the spatial spectrum according to the properties of
phased.MVDREstimator2D. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.MVDREstimator2D creates a 2-D MVDR spatial spectrum estimator System object, H.
The object estimates the signal’s spatial spectrum using a narrowband MVDR beamformer.

H = phased.MVDREstimator2D(Name,Value) creates object, H, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be an array object in the phased
package. The array cannot contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed. You can specify this property as single or double precision.

Default: 0

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with conjugate symmetric array manifold.

Default: false

AzimuthScanAngles

Azimuth scan angles (degrees)

Specify the azimuth scan angles (in degrees) as a real vector. The angles must be between –180 and
180, inclusive. You must specify the angles in ascending order. You can specify this property as single
or double precision.

Default: -90:90

ElevationScanAngles

Elevation scan angles

Specify the elevation scan angles (in degrees) as a real vector or scalar. The angles must be between
–90 and 90, inclusive. You must specify the angles in ascending order. You can specify this property as
single or double precision.

Default: 0

DOAOutputPort

Enable DOA output

To obtain the signal's direction of arrival (DOA), set this property to true and use the corresponding
output argument when invoking step. If you do not want to obtain the DOA, set this property to
false.
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Default: false

NumSignals

Number of signals

Specify the number of signals for DOA estimation as a positive scalar integer. This property applies
when you set the DOAOutputPort property to true. You can specify this property as single or double
precision.

Default: 1

Methods
plotSpectrum Plot spatial spectrum
reset Reset states of 2-D MVDR spatial spectrum estimator object
step Perform spatial spectrum estimation

Common to All System Objects
release Allow System object property value changes

Examples

Estimate DOA of Two Signals Arriving at URA

Estimate the DOAs of two signals received by a 50-element URA with a rectangular lattice. The
antenna operating frequency is 150 MHz. The actual direction of the first signal is −37° in azimuth
and 0° in elevation. The direction of the second signal is 17° in azimuth and 20° degrees in elevation.
Then, plot the spatial spectrum.

Create the arriving signals.

fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(array,[x1 x2],[-37 0;17 20]',fc);

Add noise.

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

Create the MVDR DOA estimator and estimate the DOAs.

estimator = phased.MVDREstimator2D('SensorArray',array,...
    'OperatingFrequency',fc,...
    'DOAOutputPort',true,'NumSignals',2,...
    'AzimuthScanAngles',-50:50,...
    'ElevationScanAngles',-30:30);
[~,doas] = estimator(x + noise);
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Plot the spectrum.

plotSpectrum(estimator)

Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
phased.MVDREstimator | phitheta2azel | uv2azel

Introduced in R2011a
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plotSpectrum
System object: phased.MVDREstimator2D
Package: phased

Plot spatial spectrum

Syntax
plotSpectrum(estimator)
plotSpectrum(estimator,Name,Value)
hl = plotSpectrum( ___ )

Description
plotSpectrum(estimator) plots the spatial spectrum resulting from the most recent execution of
the object.

plotSpectrum(estimator,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

hl = plotSpectrum( ___ ) returns the line handle in the figure.

Input Arguments
H

Spatial spectrum estimator object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

NormalizeResponse

Set this value to true to plot the normalized spectrum. Setting this value to false plots the
spectrum without normalization.

Default: false

Title

Character vector to use as figure title.

Default: ''

Unit

Plot units, specified as 'db', 'mag', or 'pow'.
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Default: 'db'

Examples

Estimate DOA Using 2D MVDR

Estimate the DOAs of two signals received by a 50-element URA with a rectangular lattice. The
antenna operating frequency is 150 MHz. The actual direction of the first signal is -37° in azimuth
and 0° in elevation. The direction of the second signal is 17° in azimuth and 20° in elevation.

Create signals sampled at 8 kHz.

fc = 150e6;
fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
array.Element.FrequencyRange = [100e6 300e6];
x = collectPlaneWave(array,[x1 x2],[-37 0;17 20]',fc);

Add complex noise.

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

Create the MVDR DOA estimator for URA.

estimator = phased.MVDREstimator2D('SensorArray',array,...
    'OperatingFrequency',fc,...
    'DOAOutputPort',true,'NumSignals',2,...
    'AzimuthScanAngles',-50:50,...
    'ElevationScanAngles',-30:30);

Use the step method to the DOA estimates.

[~,doas] = estimator(x + noise)

doas = 2×2

    17   -37
    20     0

Plot the spectrum.

plotSpectrum(estimator)
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reset
System object: phased.MVDREstimator2D
Package: phased

Reset states of 2-D MVDR spatial spectrum estimator object

Syntax
reset(H)

Description
reset(H) resets the states of the MVDREstimator2D object, H.

 reset
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step
System object: phased.MVDREstimator2D
Package: phased

Perform spatial spectrum estimation

Syntax
Y = step(H,X)
[Y,ANG] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) estimates the spatial spectrum from X using the estimator H. X is a matrix whose
columns correspond to channels. Y is a matrix representing the magnitude of the estimated 2-D
spatial spectrum. The row dimension of Y is equal to the number of angles in the
ElevationScanAngles and the column dimension of Y is equal to the number of angles in the
AzimuthScanAngles property. You can specify the argument, X, as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

[Y,ANG] = step(H,X) returns additional output ANG as the signal’s direction of arrival (DOA)
when the DOAOutputPort property is true. ANG is a two-row matrix where the first row represents
estimated azimuth and the second row represents estimated elevation (in degrees).

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Estimate DOA Using 2D MVDR

Estimate the DOAs of two signals received by a 50-element URA with a rectangular lattice. The
antenna operating frequency is 150 MHz. The actual direction of the first signal is -37° in azimuth
and 0° in elevation. The direction of the second signal is 17° in azimuth and 20° in elevation.

Create signals sampled at 8 kHz.
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fc = 150e6;
fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.URA('Size',[5 10],'ElementSpacing',[1 0.6]);
array.Element.FrequencyRange = [100e6 300e6];
x = collectPlaneWave(array,[x1 x2],[-37 0;17 20]',fc);

Add complex noise.

noise = 0.1*(randn(size(x))+1i*randn(size(x)));

Create the MVDR DOA estimator for URA.

estimator = phased.MVDREstimator2D('SensorArray',array,...
    'OperatingFrequency',fc,...
    'DOAOutputPort',true,'NumSignals',2,...
    'AzimuthScanAngles',-50:50,...
    'ElevationScanAngles',-30:30);

Use the step method to the DOA estimates.

[~,doas] = estimator(x + noise)

doas = 2×2

    17   -37
    20     0

Plot the spectrum.

plotSpectrum(estimator)
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See Also
azel2phitheta | azel2uv
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phased.MultipathChannel
Package: phased

Propagate signals in multipath channel

Description
The phased.MultipathChannel System object propagates a signal through a multipath channel. To
run the object, you must provide characteristics for each path: time delay, gain, Doppler factor,
reflection loss, and spreading loss.

For sonar applications, you can use the phased.IsoSpeedUnderwaterPaths System object to
generate channel path characteristics. You can also supply these characteristics independently.

To model signal propagation through a multipath channel:

1 Define and set up the propagator. You can set phased.MultipathChannel properties at
construction time or leave them to their default values. See “Construction” on page 1-1063.
Some properties that you set at construction time can be changed later. These properties are
tunable.

2 To compute the propagated signal, call the step method of phased.MultipathChannel. The
output of the step method depends on the properties of the phased.MultipathChannel
System object. You can change tunable properties at any time.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
propagator = phased.MultipathChannel creates a signal propagator System object for a
multipath underwater channel.

propagator = phased.MultipathChannel(Name,Value) creates a signal propagator System
object with each specified property Name set to the specified Value. You can specify additional name
and value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
OperatingFrequency — Signal carrier frequency
20e3 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in Hz.
Example: 10000
Data Types: double

SampleRate — Signal sample rate
1e3 (default) | positive real-valued scalar
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Signal sample rate, specified as a positive real-valued scalar. Units are in Hz. The System object uses
this quantity to calculate the propagation delay in units of samples.
Example: 3e3
Data Types: double

MaximumDelaySource — Source of maximum delay
'Auto' (default) | 'Property'

Source of the maximum delay value, specified as 'Auto' or 'Property'. When you set this property
to 'Auto', the channel automatically allocates enough memory to simulate the propagation delay.
When you set this property to 'Property', you can specify the maximum delay by using the
MaximumDelay property. Signals arriving after the maximum delay are ignored.

MaximumDelay — Maximum signal delay
1 (default) | positive scalar

Maximum signal delay, specified as a positive scalar. Delays greater than this value are ignored. Units
are in seconds.

Dependencies

To enable this property, set the MaximumDelaySource property to 'Property'.
Data Types: double

InterpolationMethod — Interpolation method to implement fractional delay
'Linear' (default) | 'Oversample'

Interpolation method used to implement signal fractional delay and doppler time-dilation and
compression, specified as 'Linear' or 'Oversample'. When this property is set to 'Linear', the
input signal is linearly interpolated directly onto a uniform grid to propagate the signal. When this
property is set to 'Oversample', the input signal is resampled to a higher rate before linear
interpolation. For broadband signals, oversampling preserves spectral shape.
Data Types: char

Methods
step Propagate signal through multipath sound channel
reset Reset state of System object

Common to All System Objects
release Allow System object property value changes

Examples

One-Way Signal Propagation in Multipath Underwater Sound Channel

Create a five-path underwater sound channel and compute the propagation path matrix, the Doppler
factor, and the absorption loss. Assume that the source is stationary and the receiver is moving along
the x-axis toward the source at 20 km/h. Assume the default one-way propagation.
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Create the channel and specify the source and receiver locations and velocities.

numpaths = 5;
channel = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',10, ...
    'NumPathsSource','Property','NumPaths',numpaths);
tstep = 1;
srcpos = [0;0;-160];
rcvpos = [100;0;-50];
speed = -20*1000/3600;
srcvel = [0;0;0];
rcvvel = [speed;0;0];

Compute the path matrix, Doppler factor, and losses.

[pathmat,dop,absloss] = channel(srcpos,rcvpos,srcvel,rcvvel,tstep);

Create 500 samples of a 100 Hz signal. Assume all the paths have the same signal. Propagate the
signals to the receiver.

fs = 1e3;
nsamp = 500;
propagator = phased.MultipathChannel('OperatingFrequency',10e3,'SampleRate',fs);
t = [0:(nsamp-1)]'/fs;
sig0 = sin(2*pi*100*t);
sig = repmat(sig0,1,numpaths);
propsig = propagator(sig,pathmat,dop,absloss);

Plot the real part of the coherent sum of the propagated signals.

plot(t*1000,real(sum(propsig,2)))
xlabel('Time (millisec)')
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Two-Way Signal Propagation in Multipath Underwater Sound Channel

Create a seven-path underwater sound channel and display the propagation path matrix. Assume that
the source is stationary and that the receiver is moving along the x-axis toward the source at 20
km/h. Assume two-way propagation.

speed = -20*1000/3600;
numpaths = 7;
csound = 1515.0;
channel = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200, ...
    'PropagationSpeed',csound,'BottomLoss',10,'NumPathsSource','Property', ...
    'NumPaths',numpaths,'TwoWayPropagation',true);
tstep = 1;
srcpos = [0;0;-160];
tgtpos = [500;0;-50];
srcvel = [0;0;0];
tgtvel = [speed;0;0];

Obtain the path matrix, Doppler factor, loss, and target reflection and transmit angles.

[pathmat,dop,aloss,tgtangs,srcangs] = channel(srcpos,tgtpos,srcvel,tgtvel,tstep);

Create a 100 Hz signal with 500 samples. Assume that all the paths have the same signal but with
different amplitudes. Then, propagate the signals to the target and back. You can use the angle
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information to calculate any angular dependence of the source and target responses. Each channel
can have a different amplitude. This example uses a simple cosine model.

fs = 1e3;
nsamp = 500;
propagator = phased.MultipathChannel('OperatingFrequency',10e3,'SampleRate',fs);
t = [0:(nsamp-1)]'/fs;
ampsrc = cosd(srcangs(2,:));
amptgt = cosd(tgtangs(2,:));
sig0 = sin(2*pi*100*t);
sig = repmat(sig0,1,numpaths);
amptotal = ampsrc.^2.*amptgt;
sig = bsxfun(@times,amptotal,sig);

Because of the finite propagation delay, the first call to the propagator does not return the signal. Call
propagator twice to obtain the returned signal.

propsig = propagator(sig,pathmat,dop,aloss);
propsig = propagator(sig,pathmat,dop,aloss);

Plot the real part of the coherent sum of the propagated signals. Compute the round trip time.

rng = rangeangle(srcpos,tgtpos);
tr = rng/csound;
plot((t+tr)*1000,real(sum(propsig,2)))
xlabel('Time (millisec)')
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Propagate Sound in Channel Having Unknown Number of Paths

Create an underwater sound channel and plot the combined received signal. Automatically find the
number of paths. Assume that the source is stationary and that the receiver is moving along the x-axis
toward the source at 20 km/h. Assume the default one-way propagation.

speed = -20*1000/3600;
channel = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',5, ...
    'NumPathsSource','Auto','CoherenceTime',5);
tstep = 1;
srcpos = [0;0;-160];
rcvpos = [500;0;-50];
srcvel = [0;0;0];
rcvvel = [speed;0;0];

Compute the path matrix, Doppler factor, and losses. The propagator outputs 51 paths output but
some paths can contain Nan values.

[pathmat,dop,absloss,rcvangs,srcangs] = channel(srcpos,rcvpos,srcvel,rcvvel,tstep);

Create of a 100 Hz signal with 500 samples. Assume that all the paths have the same signal. Use a
phased.MultipathChannel System object to propagate the signals to the receiver.
phased.MultipathChannel accepts as input all paths produced by
phased.IsoSpeedUnderwaterPaths but ignores paths that have NaN values.

fs = 1e3;
nsamp = 500;
propagator = phased.MultipathChannel('OperatingFrequency',10e3,'SampleRate',fs);
t = [0:(nsamp-1)]'/fs;
sig0 = sin(2*pi*100*t);
numpaths = size(pathmat,2);
sig = repmat(sig0,1,numpaths);
propsig = propagator(sig,pathmat,dop,absloss);

Plot the real part of the coherent sum of the propagated signals.

plot(t*1000,real(sum(propsig,2)))
xlabel('Time (millisec)')
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Doppler Stretching of Sonar Signal

Compare the duration of a propagated signal from a stationary sonar to that of a moving sonar. The
moving sonar has a radial velocity of 25 m/s away from the target. In each case, propagate the signal
along a single path. Assume one-way propagation.

Define the sonar system parameters: maximum unambiguous range, required range resolution,
operating frequency, and propagation speed.

maxrange = 5000.0;
rngres = 10.0;
fc = 20.0e3;
csound = 1520.0;

Use a rectangular waveform for the transmitted signal.

prf = csound/(2*maxrange);
pulseWidth = 8*rngres/csound;
pulseBW = 1/pulseWidth;
fs = 80*pulseBW;
waveform = phased.RectangularWaveform('PulseWidth',pulseWidth,'PRF',prf, ...
    'SampleRate',fs);

Specify the sonar positions.
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sonarplatform1 = phased.Platform('InitialPosition',[0;0;-60],'Velocity',[0;0;0]);
sonarplatform2 = phased.Platform('InitialPosition',[0;0;-60],'Velocity',[0;-25;0]);

Specify the target position.

targetplatform = phased.Platform('InitialPosition',[0;500;-60],'Velocity',[0;0;0]);

Define the underwater path and propagation channel objects.

paths = phased.IsoSpeedUnderwaterPaths('ChannelDepth',100, ...
    'CoherenceTime',0,'NumPathsSource','Property','NumPaths',1, ...
    'PropagationSpeed',csound);
propagator = phased.MultipathChannel('SampleRate',fs,'OperatingFrequency',fc);

Create the transmitted waveform.

wav = waveform();
nsamp = size(wav,1);
rxpulses = zeros(nsamp,2);
t = (0:nsamp-1)/fs;

Transmit the signal and then receive the echo at the stationary sonar.

[pathmat,dop,aloss,~,~] = paths(sonarplatform1.InitialPosition, ...
    targetplatform.InitialPosition,sonarplatform1.InitialVelocity, ...
    targetplatform.InitialVelocity,1/prf);
rxpulses(:,1) = propagator(wav,pathmat,dop,aloss);

Transmit and receive at the moving sonar.

[pathmat,dop,aloss,~,~] = paths(sonarplatform2.InitialPosition, ...
    targetplatform.InitialPosition,sonarplatform2.Velocity, ...
    targetplatform.Velocity,1/prf);
rxpulses(:,2) = propagator(wav,pathmat,dop,aloss);

Plot the received pulses.

plot(abs(rxpulses))
xlim([490 650])
ylim([0 1.65e-3])
legend('Stationary sonar','Moving sonar')
xlabel('Received Sample Time (sec)')
ylabel('Integrated Received Pulses')
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The signal received at the moving sonar has increased in duration compared to the stationary sonar.

References
[1] Urick, R.J. Principles of Underwater Sound, 3rd Edition. New York: Peninsula Publishing, 1996.

[2] Sherman, C.S. and J.Butler Transducers and Arrays for Underwater Sound. New York: Springer,
2007.

[3] Allen, J.B. and D. Berkely, “Image method for efficiently simulating small-room acoustics”, J.
Acoust. Soc. Am, Vol 65, No. 4. April 1979.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
Objects
phased.BackscatterSonarTarget | phased.IsoSpeedUnderwaterPaths |
phased.IsotropicHydrophone | phased.IsotropicProjector

Topics
“Underwater Target Detection with an Active Sonar System”
“Locating an Acoustic Beacon with a Passive Sonar System”
“Doppler Effect for Sound”

Introduced in R2017a
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step
System object: phased.MultipathChannel
Package: phased

Propagate signal through multipath sound channel

Syntax
propsig = step(propagator,sig,pathmat,dop,aloss)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

propsig = step(propagator,sig,pathmat,dop,aloss) returns a signal, propsig,
propagated through a multipath channel. sig is the input signal to the channel. The pathmat matrix
contains the path time delay, the total reflection coefficient, and the spreading loss. dop specifies the
Doppler factor and aloss specifies the frequency-dependent absorption loss. The matrix can describe
one-way or two-way propagation from the signal source position to the signal destination position.

• When you use this method for one-way propagation, the source refers to the origin of the signal
and the destination refers to the receiver. You can use one-way propagation modeling to model
passive sonar and underwater communications.

• When you use this method for two-way propagation, the destination refers to the reflecting target,
not the sonar receiver. A two-way path consists of a two identical one-way paths from source to
target and back to receiver (collocated with the source). You can use two-way propagation to
model active sonar systems.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Input Arguments
propagator — Multipath channel propagator
phased.MultipathChannel System object

Multipath channel propagator, specified as a phased.MultipathChannel System object.
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Example: phased.MultipathChannel

sig — Channel input signal
complex-valued M-by-N matrix

Channel input signal, specified as a complex-valued M-by-N matrix. M is the number of samples in the
signal and N is the number of paths.
Data Types: double

pathmat — Propagation paths matrix
real-valued 3-by-N matrix

Propagation paths matrix, specified as a real-valued 3-by-N matrix. N is the number of paths in the
channel. Each column represents a path. The matrix rows represent:

Row Data
1 Propagation delays for each path. Units are in seconds.
2 Total reflection coefficient for each path. Units are dimensionless
3 Spreading loss for each path. Units are in dB.

Except for the direct path, paths consist of alternating surface and bottom reflections. The losses for
multiple reflections at the boundaries are multiplied. When you use
phased.IsoSpeedUnderwaterPaths to create a path matrix, some of the columns can contain NaN
values. phased.MultipathChannel ignores these paths.
Data Types: double

dop — Doppler factor
real-valued N-by-1 row vector

Doppler factor, specified as a real-valued N-by-1 row vector where N is the number of paths. The
Doppler factor multiplies the transmitted frequency to produce the Doppler-shifted frequency for
each path. The factor also defines the time contraction or dilation of a signal. Units are
dimensionless.
Data Types: double

aloss — Frequency-dependent absorption loss
real-valued K-by-N+1 matrix

Frequency-dependent absorption loss, specified as a real-valued K-by-N+1 matrix. K is the number of
frequencies and N is the number of paths. The first column of aloss contains the absorption-loss
frequencies in Hz. The remaining columns contain the absorption losses for the corresponding
frequency. Units are in dB.
Data Types: double

Output Arguments
propsig — Channel output signal
complex-valued M-by-N matrix
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Channel output signal, returned as a complex-valued M-by-N matrix. M is the number of samples in
the signal and N is the number of paths. The output is the signal propagated through the channel.
propsig has the same dimensions as the input signal, sig.

Examples

One-Way Signal Propagation in Multipath Underwater Sound Channel

Create a five-path underwater sound channel and compute the propagation path matrix, the Doppler
factor, and the absorption loss. Assume that the source is stationary and the receiver is moving along
the x-axis toward the source at 20 km/h. Assume the default one-way propagation.

Create the channel and specify the source and receiver locations and velocities.

numpaths = 5;
channel = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',10, ...
    'NumPathsSource','Property','NumPaths',numpaths);
tstep = 1;
srcpos = [0;0;-160];
rcvpos = [100;0;-50];
speed = -20*1000/3600;
srcvel = [0;0;0];
rcvvel = [speed;0;0];

Compute the path matrix, Doppler factor, and losses.

[pathmat,dop,absloss] = channel(srcpos,rcvpos,srcvel,rcvvel,tstep);

Create 500 samples of a 100 Hz signal. Assume all the paths have the same signal. Propagate the
signals to the receiver.

fs = 1e3;
nsamp = 500;
propagator = phased.MultipathChannel('OperatingFrequency',10e3,'SampleRate',fs);
t = [0:(nsamp-1)]'/fs;
sig0 = sin(2*pi*100*t);
sig = repmat(sig0,1,numpaths);
propsig = propagator(sig,pathmat,dop,absloss);

Plot the real part of the coherent sum of the propagated signals.

plot(t*1000,real(sum(propsig,2)))
xlabel('Time (millisec)')

 step
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Two-Way Signal Propagation in Multipath Underwater Sound Channel

Create a seven-path underwater sound channel and display the propagation path matrix. Assume that
the source is stationary and that the receiver is moving along the x-axis toward the source at 20
km/h. Assume two-way propagation.

speed = -20*1000/3600;
numpaths = 7;
csound = 1515.0;
channel = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200, ...
    'PropagationSpeed',csound,'BottomLoss',10,'NumPathsSource','Property', ...
    'NumPaths',numpaths,'TwoWayPropagation',true);
tstep = 1;
srcpos = [0;0;-160];
tgtpos = [500;0;-50];
srcvel = [0;0;0];
tgtvel = [speed;0;0];

Obtain the path matrix, Doppler factor, loss, and target reflection and transmit angles.

[pathmat,dop,aloss,tgtangs,srcangs] = channel(srcpos,tgtpos,srcvel,tgtvel,tstep);

Create a 100 Hz signal with 500 samples. Assume that all the paths have the same signal but with
different amplitudes. Then, propagate the signals to the target and back. You can use the angle

1 Objects

1-1076



information to calculate any angular dependence of the source and target responses. Each channel
can have a different amplitude. This example uses a simple cosine model.

fs = 1e3;
nsamp = 500;
propagator = phased.MultipathChannel('OperatingFrequency',10e3,'SampleRate',fs);
t = [0:(nsamp-1)]'/fs;
ampsrc = cosd(srcangs(2,:));
amptgt = cosd(tgtangs(2,:));
sig0 = sin(2*pi*100*t);
sig = repmat(sig0,1,numpaths);
amptotal = ampsrc.^2.*amptgt;
sig = bsxfun(@times,amptotal,sig);

Because of the finite propagation delay, the first call to the propagator does not return the signal. Call
propagator twice to obtain the returned signal.

propsig = propagator(sig,pathmat,dop,aloss);
propsig = propagator(sig,pathmat,dop,aloss);

Plot the real part of the coherent sum of the propagated signals. Compute the round trip time.

rng = rangeangle(srcpos,tgtpos);
tr = rng/csound;
plot((t+tr)*1000,real(sum(propsig,2)))
xlabel('Time (millisec)')

 step
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Propagate Sound in Channel Having Unknown Number of Paths

Create an underwater sound channel and plot the combined received signal. Automatically find the
number of paths. Assume that the source is stationary and that the receiver is moving along the x-axis
toward the source at 20 km/h. Assume the default one-way propagation.

speed = -20*1000/3600;
channel = phased.IsoSpeedUnderwaterPaths('ChannelDepth',200,'BottomLoss',5, ...
    'NumPathsSource','Auto','CoherenceTime',5);
tstep = 1;
srcpos = [0;0;-160];
rcvpos = [500;0;-50];
srcvel = [0;0;0];
rcvvel = [speed;0;0];

Compute the path matrix, Doppler factor, and losses. The propagator outputs 51 paths output but
some paths can contain Nan values.

[pathmat,dop,absloss,rcvangs,srcangs] = channel(srcpos,rcvpos,srcvel,rcvvel,tstep);

Create of a 100 Hz signal with 500 samples. Assume that all the paths have the same signal. Use a
phased.MultipathChannel System object to propagate the signals to the receiver.
phased.MultipathChannel accepts as input all paths produced by
phased.IsoSpeedUnderwaterPaths but ignores paths that have NaN values.

fs = 1e3;
nsamp = 500;
propagator = phased.MultipathChannel('OperatingFrequency',10e3,'SampleRate',fs);
t = [0:(nsamp-1)]'/fs;
sig0 = sin(2*pi*100*t);
numpaths = size(pathmat,2);
sig = repmat(sig0,1,numpaths);
propsig = propagator(sig,pathmat,dop,absloss);

Plot the real part of the coherent sum of the propagated signals.

plot(t*1000,real(sum(propsig,2)))
xlabel('Time (millisec)')
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Introduced in R2017a
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reset
System object: phased.MultipathChannel
Package: phased

Reset state of System object

Syntax
reset(propagator)

Description
reset(propagator) resets the internal state of the phased.MultipathChannel object,
propagator.

Input Arguments
propagator — Multipath channel
phased.MultipathChannel System object

Multipath channel, specified as a phased.MultipathChannel System object.
Example: phased.MultipathChannel

Introduced in R2017a
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phased.MUSICEstimator
Package: phased

Estimate direction of arrival using narrowband MUSIC algorithm for ULA

Description
The phased.MUSICEstimator System object implements the narrowband multiple signal
classification (MUSIC) algorithm for uniform linear arrays (ULA). MUSIC is a high-resolution
direction-finding algorithm capable of resolving closely-spaced signal sources. The algorithm is based
on eigenspace decomposition of the sensor spatial covariance matrix.

To estimate directions of arrival (DOA):

1 Define and set up a phased.MUSICEstimator System object. See “Construction” on page 1-
1081.

2 Call the step method to estimate the DOAs according to the properties of
phased.MUSICEstimator.

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
estimator = phased.MUSICEstimator creates a MUSIC DOA estimator System object,
estimator.

estimator = phased.MUSICEstimator(Name,Value) creates a System object, estimator,
with each specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray — ULA sensor array
phased.ULA System object (default)

ULA sensor array, specified as a phased.ULA System object. If you do not specify any name-value
pair properties for the ULA sensor array, the default properties of the array are used.

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double
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OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: single | double

ForwardBackwardAveraging — Enable forward-backward averaging
false (default) | true

Enable forward-backward averaging, specified as false or true. Set this property to true to use
forward-backward averaging to estimate the covariance matrix for sensor arrays with a conjugate
symmetric array manifold.
Data Types: logical

ScanAngles — Broadside scan angles
[-90:90] (default) | real-valued K-length vector

Broadside scan angles, specified as a real-valued vector. Units are in degrees. Broadside angles are
between the search direction and the ULA array axis. The angles lie between –90° and 90°, inclusive.
Specify the angles in increasing value.
Example: [-20:20]
Data Types: single | double

DOAOutputPort — Enable directions of arrival output
false (default) | true

Option to enable directions-of-arrival (DOA) output, specified as false or true. To obtain the DOA of
signals, set this property to true. The DOAs are returned in the second output argument when the
object is executed.
Data Types: logical

NumSignalsSource — Source of number of signals
'Auto' (default) | 'Property'

Source of the number of arriving signals, specified as 'Auto' or 'Property'.

• 'Auto' — The System object estimates the number of arriving signals using the method specified
in the NumSignalsMethod property.

• 'Property' — Specify the number of arriving signals using the NumSignals property.

Data Types: char

NumSignalsMethod — Method used to estimate number of arriving signals
'AIC' (default) | 'MDL'

Method used to estimate the number of arriving signals, specified as 'AIC' or 'MDL'.

• 'AIC' — Akaike Information Criterion
• 'MDL' — Minimum Description Length criterion
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Dependencies

To enable this property, set NumSignalsSource to 'Auto'.
Data Types: char

NumSignals — Number of arriving signals
1 (default) | positive integer

Number of arriving signals for DOA estimation, specified as a positive integer.
Example: 3
Dependencies

To enable this property, set NumSignalsSource to 'Property'.
Data Types: single | double

SpatialSmoothing — Enable spatial smoothing
0 (default) | nonnegative integer

Option to enable spatial smoothing, specified as a nonnegative integer. Use spatial smoothing to
compute the arrival directions of coherent signals. A value of zero specifies no spatial smoothing. A
positive value represents the number of subarrays used to compute the smoothed (averaged) source
covariance matrix. Each increment in this value lets you handle one additional coherent source, but
reduces the effective number of array elements by one. The length of the smoothing aperture, L,
depends on the array length, M, and the averaging number, K, by L = M – K + 1. The maximum value
of K is M – 2.
Example: 5
Data Types: double

Methods
plotSpectrum Plot MUSIC spectrum
reset Reset states of System object
step Estimate direction of arrival using MUSIC

Common to All System Objects
release Allow System object property value changes

Examples

Plot MUSIC Spectrum of Two Signals Arriving at ULA

Estimate the DOAs of two signals received by a standard 10-element ULA having an element spacing
of 1 meter. Then plot the MUSIC spectrum.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Create the ULA array. The antenna operating frequency is 150 MHz.
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fc = 150.0e6;
array = phased.ULA('NumElements',10,'ElementSpacing',1.0);

Create the arriving signals at the ULA. The true direction of arrival of the first signal is 10° in
azimuth and 20° in elevation. The direction of the second signal is 60° in azimuth and -5° in elevation.

fs = 8000.0;
t = (0:1/fs:1).';
sig1 = cos(2*pi*t*300.0);
sig2 = cos(2*pi*t*400.0);
sig = collectPlaneWave(array,[sig1 sig2],[10 20; 60 -5]',fc);
noise = 0.1*(randn(size(sig)) + 1i*randn(size(sig)));

Estimate the DOAs.

estimator = phased.MUSICEstimator('SensorArray',array,...
    'OperatingFrequency',fc,...
    'DOAOutputPort',true,'NumSignalsSource','Property',...
    'NumSignals',2);
[y,doas] = estimator(sig + noise);
doas = broadside2az(sort(doas),[20 -5])

doas = 1×2

    9.5829   60.3813

Plot the MUSIC spectrum.

plotSpectrum(estimator,'NormalizeResponse',true)
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Compute DOA of Two Nearby Signals Using MUSIC

First, estimate the DOAs of two signals received by a standard 10-element ULA having an element
spacing of one-half wavelength.Then, plot the spatial spectrum.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

The antenna operating frequency is 150 MHz. The arrival directions of the two signals are separated
by 2°. The direction of the first signal is 30° azimuth and 0° elevation. The direction of the second
signal is 32° azimuth and 0° elevation. Estimate the number of signals using the Minimum
Description Length (MDL) criterion.

Create the signals arriving at the ULA.

fs = 8000;
t = (0:1/fs:1).';
f1 = 300.0;
f2 = 600.0;
sig1 = cos(2*pi*t*f1);
sig2 = cos(2*pi*t*f2);
fc = 150.0e6;
c = physconst('LightSpeed');
lam = c/fc;
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array = phased.ULA('NumElements',10,'ElementSpacing',0.5*lam);
sig = collectPlaneWave(array,[sig1 sig2],[30 0; 32 0]',fc);
noise = 0.1*(randn(size(sig)) + 1i*randn(size(sig)));

Estimate the DOAs.

estimator = phased.MUSICEstimator('SensorArray',array,...
    'OperatingFrequency',fc,'DOAOutputPort',true,...
    'NumSignalsSource','Auto','NumSignalsMethod','MDL');
[y,doas] = estimator(sig + noise);
doas = broadside2az(sort(doas),[0 0])

doas = 1×2

   30.0000   32.0000

Plot the MUSIC spectrum.

plotSpectrum(estimator,'NormalizeResponse',true)

Algorithms
MUSIC Algorithm

MUSIC is a high-resolution direction-finding algorithm that estimates directions of arrival (DOA) of
signals at an array from the covariance matrix of array sensor data. MUSIC belongs to the subspace-
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decomposition family of direction-finding algorithms. Unlike conventional beamforming, MUSIC can
resolve closely spaced signal sources.

Based on eigenspace decomposition of the sensor covariance matrix, MUSIC divides the observation
space into orthogonal signal and noise subspaces. Eigenvectors corresponding to the largest
eigenvalues span the signal subspace. Eigenvectors corresponding to the smaller eigenvalues span
the noise subspace. Because arrival (or steering) vectors lie in the signal subspace, they are
orthogonal to the noise subspace. For ULAs, arrival vectors are functions of the broadside direction
angles of the sources. The algorithm searches a grid of arrival angles to find the arrival vectors that
have zero or small projections into the noise subspace. These angles are the directions of the sources.

MUSIC requires that the number of source signals is known. If the number of specified sources does
not match the actual number of sources, the algorithm degrades. Generally, you must provide an
estimate of the number of sources or use one of the built-in source number estimation methods. For a
description of the methods used to estimate the number of sources, see the aictest or mdltest
functions.

In place of the true sensor covariance matrix, the algorithm computes the sample covariance matrix
from the sensor data. MUSIC applies to noncoherent signals but can be extended to coherent signals
using spatial smoothing and/or forward-backward averaging techniques. For a high-level description
of the algorithm, see “MUSIC Super-Resolution DOA Estimation”.

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Van Trees, H. L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
Functions
aictest | broadside2az | mdltest | rootmusicdoa | spsmooth
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System Objects
phased.MUSICEstimator2D | phased.RootMUSICEstimator

Topics
“MUSIC Super-Resolution DOA Estimation”
“Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC”
“High Resolution Direction of Arrival Estimation”
“Spherical Coordinates”

Introduced in R2016b
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plotSpectrum
System object: phased.MUSICEstimator
Package: phased

Plot MUSIC spectrum

Syntax
plotSpectrum(estimator)
output_args = method(estimator,Name,Value)
lh = plotSpectrum( ___ )

Description
plotSpectrum(estimator) plots the MUSIC spectrum computed by the most recent step method
execution for the phased.MUSICEstimator System object, estimator.

output_args = method(estimator,Name,Value) plots the MUSIC spatial spectrum with
additional options specified by one or more Name,Value pair arguments.

lh = plotSpectrum( ___ ) returns the line handle to the figure.

Input Arguments
estimator — MUSIC estimator
phased.MUSICEstimator System object.

MUSIC estimator, specified as a phased.MUSICEstimator System object

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Unit — Units used for plotting
'db' (default) | 'mag' | 'pow'

Units used for plotting, specified as the comma-separated pair consisting of 'Unit' and 'db',
'mag', or 'pow'.
Data Types: char

NormalizeResponse — Plot normalized spectrum
false (default) | true

Plot a normalized spectrum, specified as the comma-separated pair consisting of
'NormalizedResponse' and false or true. Normalization sets the magnitude of the largest
spectrum value to one.
Data Types: char
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Title — Title of plot
'MUSIC Spatial Spectrum' (default) | character vector

Title of plot, specified as a comma-separated pair consisting of 'Title' and a character vector.
Example: true
Data Types: char

Output Arguments
lh — Line handle of plot
line handle

Line handle of plot.

Examples

Plot MUSIC Spectrum of Two Signals Arriving at ULA

Estimate the DOAs of two signals received by a standard 10-element ULA having an element spacing
of 1 meter. Then plot the MUSIC spectrum.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Create the ULA array. The antenna operating frequency is 150 MHz.

fc = 150.0e6;
array = phased.ULA('NumElements',10,'ElementSpacing',1.0);

Create the arriving signals at the ULA. The true direction of arrival of the first signal is 10° in
azimuth and 20° in elevation. The direction of the second signal is 60° in azimuth and -5° in elevation.

fs = 8000.0;
t = (0:1/fs:1).';
sig1 = cos(2*pi*t*300.0);
sig2 = cos(2*pi*t*400.0);
sig = collectPlaneWave(array,[sig1 sig2],[10 20; 60 -5]',fc);
noise = 0.1*(randn(size(sig)) + 1i*randn(size(sig)));

Estimate the DOAs.

estimator = phased.MUSICEstimator('SensorArray',array,...
    'OperatingFrequency',fc,...
    'DOAOutputPort',true,'NumSignalsSource','Property',...
    'NumSignals',2);
[y,doas] = estimator(sig + noise);
doas = broadside2az(sort(doas),[20 -5])

doas = 1×2

    9.5829   60.3813

Plot the MUSIC spectrum.
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plotSpectrum(estimator,'NormalizeResponse',true)

Introduced in R2016b
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reset
System object: phased.MUSICEstimator
Package: phased

Reset states of System object

Syntax
reset(estimator)

Description
reset(estimator) resets the internal state of the phased.MUSICEstimator System object,
estimator.

Input Arguments
estimator — MUSIC estimator
phased.MUSICEstimator System object

MUSIC estimator, specified as a phased.MUSICEstimator System object.

Introduced in R2016b
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step
System object: phased.MUSICEstimator
Package: phased

Estimate direction of arrival using MUSIC

Syntax
spectrum = step(estimator,X)
[spectrum,doa] = step(estimator,X)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

spectrum = step(estimator,X) returns the MUSIC spectrum for a signal specified by X.

[spectrum,doa] = step(estimator,X) also returns the signal broadside directions of arrival,
doa. To use this syntax, set the DOAOutputPort property to true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
estimator — MUSIC estimator
phased.MUSICEstimator System object

MUSIC estimator, specified as a phased.MUSICEstimator System object.
Example: phased.MUSICEstimator

X — Received signal
M-by-N complex-valued matrix

Received signal, specified as an M-by-N complex-valued matrix. The quantity M is the number of
sample values (snapshots) contained in the signal, and N is the number of sensor elements in the
array.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
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Example: [[0;1;2;3;4;3;2;1;0],[1;2;3;4;3;2;1;0;0]]
Data Types: double
Complex Number Support: Yes

Output Arguments
spectrum — MUSIC spatial spectrum
nonnegative, real-valued K-length column vector

MUSIC spatial spectrum, returned as a non-negative, real-valued K-length column vector
representing the magnitude of the estimated MUSIC spatial spectrum. Each entry corresponds to an
angle specified by the ScanAngles property.

doa — Directions of arrival
real-valued L-length row vector

Directions of arrival of the signals, returned as a real-valued L-length row vector. The direction of
arrival angle is the angle between the source direction and the array axis or broadside angle. Angle
units are in degrees. L is the number of signals specified by the NumSignals property or computed
using the method specified by the NumSignalsMethod property.
Dependencies

To enable this output argument, set the DOAOutputPort property to true.

Examples

Plot MUSIC Spectrum of Two Signals Arriving at ULA

Estimate the DOAs of two signals received by a standard 10-element ULA having an element spacing
of 1 meter. Then plot the MUSIC spectrum.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Create the ULA array. The antenna operating frequency is 150 MHz.

fc = 150.0e6;
array = phased.ULA('NumElements',10,'ElementSpacing',1.0);

Create the arriving signals at the ULA. The true direction of arrival of the first signal is 10° in
azimuth and 20° in elevation. The direction of the second signal is 60° in azimuth and -5° in elevation.

fs = 8000.0;
t = (0:1/fs:1).';
sig1 = cos(2*pi*t*300.0);
sig2 = cos(2*pi*t*400.0);
sig = collectPlaneWave(array,[sig1 sig2],[10 20; 60 -5]',fc);
noise = 0.1*(randn(size(sig)) + 1i*randn(size(sig)));

Estimate the DOAs.

estimator = phased.MUSICEstimator('SensorArray',array,...
    'OperatingFrequency',fc,...
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    'DOAOutputPort',true,'NumSignalsSource','Property',...
    'NumSignals',2);
[y,doas] = estimator(sig + noise);
doas = broadside2az(sort(doas),[20 -5])

doas = 1×2

    9.5829   60.3813

Plot the MUSIC spectrum.

plotSpectrum(estimator,'NormalizeResponse',true)

Compute DOA of Two Nearby Signals Using MUSIC

First, estimate the DOAs of two signals received by a standard 10-element ULA having an element
spacing of one-half wavelength.Then, plot the spatial spectrum.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

The antenna operating frequency is 150 MHz. The arrival directions of the two signals are separated
by 2°. The direction of the first signal is 30° azimuth and 0° elevation. The direction of the second

 step

1-1095



signal is 32° azimuth and 0° elevation. Estimate the number of signals using the Minimum
Description Length (MDL) criterion.

Create the signals arriving at the ULA.

fs = 8000;
t = (0:1/fs:1).';
f1 = 300.0;
f2 = 600.0;
sig1 = cos(2*pi*t*f1);
sig2 = cos(2*pi*t*f2);
fc = 150.0e6;
c = physconst('LightSpeed');
lam = c/fc;
array = phased.ULA('NumElements',10,'ElementSpacing',0.5*lam);
sig = collectPlaneWave(array,[sig1 sig2],[30 0; 32 0]',fc);
noise = 0.1*(randn(size(sig)) + 1i*randn(size(sig)));

Estimate the DOAs.

estimator = phased.MUSICEstimator('SensorArray',array,...
    'OperatingFrequency',fc,'DOAOutputPort',true,...
    'NumSignalsSource','Auto','NumSignalsMethod','MDL');
[y,doas] = estimator(sig + noise);
doas = broadside2az(sort(doas),[0 0])

doas = 1×2

   30.0000   32.0000

Plot the MUSIC spectrum.

plotSpectrum(estimator,'NormalizeResponse',true)
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Introduced in R2016b
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phased.MUSICEstimator2D
Package: phased

Estimate 2D direction of arrival using narrowband MUSIC algorithm

Description
The phased.MUSICEstimator2D System object implements the narrowband multiple signal
classification (MUSIC) algorithm for 2-D planar or 3-D arrays such as a uniform rectangular array
(URA). MUSIC is a high-resolution direction-finding algorithm capable of resolving closely-spaced
signal sources. The algorithm is based on the eigenspace decomposition of the sensor covariance
matrix.

To estimate directions of arrival (DOA):

1 Define and set up a phased.MUSICEstimator2D System object. See “Construction” on page 1-
1098.

2 Call the step method to estimate the DOAs according to the properties of
phased.MUSICEstimator2D.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
estimator = phased.MUSICEstimator2D creates a MUSIC DOA estimator System object,
estimator.

estimator = phased.MUSICEstimator2D(Name,Value) creates a System object, estimator,
with each specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray — Sensor array
phased.ULA array with default array properties (default) | Phased Array System Toolbox array System
object

Sensor array, specified as a Phased Array System Toolbox array System object.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
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Example: 3e8
Data Types: single | double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: single | double

ForwardBackwardAveraging — Enable forward-backward averaging
false (default) | true

Enable forward-backward averaging, specified as false or true. Set this property to true to use
forward-backward averaging to estimate the covariance matrix for sensor arrays with a conjugate
symmetric array manifold.
Data Types: logical

AzimuthScanAngles — Azimuth scan angles
[-90:90] (default) | real-valued row vector

Azimuth scan angles, specified as a or real-valued row vector. Angle units are in degrees. The angle
values must lie between –180° and 180°, inclusive, and be in ascending order.
Example: [-30:20]
Data Types: single | double

ElevationScanAngles — Elevation scan angles
0 (default) | real-valued row vector

Elevation scan angles, specified as a real-valued row vector. Angle units are in degrees. The angle
values must lie between –90° and 90°, inclusive, and be in ascending order.
Example: [-70:75]
Data Types: single | double

DOAOutputPort — Enable directions of arrival output
false (default) | true

Option to enable directions-of-arrival (DOA) output, specified as false or true. To obtain the DOA of
signals, set this property to true. The DOAs are returned in the second output argument when the
object is executed.
Data Types: logical

NumSignalsSource — Source of number of signals
'Auto' (default) | 'Property'

Source of the number of arriving signals, specified as 'Auto' or 'Property'.

• 'Auto' — The System object estimates the number of arriving signals using the method specified
in the NumSignalsMethod property.

 phased.MUSICEstimator2D

1-1099



• 'Property' — Specify the number of arriving signals using the NumSignals property.

Data Types: char

NumSignalsMethod — Method used to estimate number of arriving signals
'AIC' (default) | 'MDL'

Method used to estimate the number of arriving signals, specified as 'AIC' or 'MDL'.

• 'AIC' — Akaike Information Criterion
• 'MDL' — Minimum Description Length criterion

Dependencies

To enable this property, set NumSignalsSource to 'Auto'.
Data Types: char

NumSignals — Number of arriving signals
1 (default) | positive integer

Number of arriving signals for DOA estimation, specified as a positive integer.
Example: 3

Dependencies

To enable this property, set NumSignalsSource to 'Property'.
Data Types: single | double

Methods
plotSpectrum Plot 2-D MUSIC spectrum
reset Reset states of System object
step Estimate direction of arrival using 2-D MUSIC

Common to All System Objects
release Allow System object property value changes

Examples

Estimate DOAs of Two Signals

Assume that two sinusoidal waves of frequencies 450 Hz and 600 Hz strike a URA from two different
directions. Signals arrive from -37° azimuth, 0° elevation and 17° azimuth, 20° elevation. Use 2-D
MUSIC to estimate the directions of arrival of the two signals. The array operating frequency is 150
MHz and the signal sampling frequency is 8 kHz.

f1 = 450.0;
f2 = 600.0;
doa1 = [-37;0];
doa2 = [17;20];
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fc = 150e6;
c = physconst('LightSpeed');
lam = c/fc;
fs = 8000;

Create the URA with default isotropic elements. Set the frequency response range of the elements.

array = phased.URA('Size',[11 11],'ElementSpacing',[lam/2 lam/2]);
array.Element.FrequencyRange = [50.0e6 500.0e6];

Create the two signals and add random noise.

t = (0:1/fs:1).';
x1 = cos(2*pi*t*f1);
x2 = cos(2*pi*t*f2);
x = collectPlaneWave(array,[x1 x2],[doa1,doa2],fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));

Create and execute the 2-D MUSIC estimator to find the directions of arrival.

estimator = phased.MUSICEstimator2D('SensorArray',array,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property',...
    'DOAOutputPort',true,'NumSignals',2,...
    'AzimuthScanAngles',-50:.5:50,...
    'ElevationScanAngles',-30:.5:30);
[~,doas] = estimator(x + noise)

doas = 2×2

   -37    17
     0    20

The estimated DOAs exactly match the true DOAs.

Plot the 2-D spatial spectrum

plotSpectrum(estimator);
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Estimate DOAs of Two Signals at Disk Array

Assume that two sinusoidal waves of frequencies 1.6 kHz and 1.8 kHz strike a disk array from two
different directions. The spacing between elements of the disk is 1/2 wavelength. Signals arrive from
-31° azimuth, -11° elevation and 35° azimuth, 55° elevation. Use 2-D MUSIC to estimate the
directions of arrival of the two signals. The array operating frequency is 300 MHz and the signal
sampling frequency is 8 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

f1 = 1.6e3;
f2 = 1.8e3;
doa1 = [-31;-11];
doa2 = [35;55];
fc = 300e6;
c = physconst('LightSpeed');
lam = c/fc;
fs = 8.0e3;

Create a conformal array with default isotropic elements. First, create a URA to get the element
positions.
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uraarray = phased.URA('Size',[21 21],'ElementSpacing',[lam/2 lam/2]);
pos = getElementPosition(uraarray);

Extract a subset of these to form an inscribed disk.

radius = 10.5*lam/2;
pos(:,sum(pos.^2) > radius^2) = [];

Then, create the conformal array using these positions.

confarray = phased.ConformalArray('ElementPosition',pos);
viewArray(confarray)

Set the frequency response range of the elements.

confarray.Element.FrequencyRange = [50.0e6 600.0e6];

Create the two signals and add random noise.

t = (0:1/fs:1.5).';
x1 = cos(2*pi*t*f1);
x2 = cos(2*pi*t*f2);
x = collectPlaneWave(confarray,[x1 x2],[doa1,doa2],fc);
noise = 0.1*(randn(size(x)) + 1i*randn(size(x)));

Create and execute the 2-D MUSIC estimator to find the directions of arrival.

estimator = phased.MUSICEstimator2D('SensorArray',confarray,...
    'OperatingFrequency',fc,...
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    'NumSignalsSource','Property',...
    'DOAOutputPort',true,'NumSignals',2,...
    'AzimuthScanAngles',-60:.1:60,...
    'ElevationScanAngles',-60:.1:60);
[~,doas] = estimator(x + noise)

doas = 2×2

    35   -31
    55   -11

The estimated DOAs exactly match the true DOAs.

Plot the 2-D spatial spectrum

plotSpectrum(estimator);

Algorithms
MUSIC Algorithm

MUSIC stands for MUltiple SIgnal Classification. MUSIC is a high-resolution direction-finding
algorithm that estimates directions of arrival (DOA) of signals at an array from the covariance matrix
of array sensor data. MUSIC belongs to the subspace-decomposition family of direction-finding
algorithms. Unlike conventional beamforming, MUSIC can resolve closely-spaced signal sources.
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Based on eigenspace decomposition of the sensor covariance matrix, MUSIC divides the observation
space into orthogonal signal and noise subspaces. Eigenvectors corresponding to the largest
eigenvalues span the signal subspace. Eigenvectors corresponding to the smaller eigenvalues span
the noise subspace. Because arrival (or steering) vectors lie in the signal subspace, they are
orthogonal to the noise subspace. The arrival vectors depend on the direction of arrival of a signals.
For a 2-D or 3-D array. the directions are determined by the azimuth and elevation of the sources. By
searching over a grid of arrival angles, the algorithm finds those arrival vectors whose projection into
the noise subspace is zero or at least very small.

MUSIC requires that the number of source signals is known. The algorithm degrades if the number of
specified sources does not match the actual number of sources. Generally, you must provide an
estimate of the number of sources or use one of the built-in source number estimation methods. For a
description of the methods used to estimate the number of sources, see the aictest or mdltest
functions.

In place of the true sensor covariance matrix, the algorithm computes the sample covariance matrix
from the sensor data. MUSIC applies to noncoherent signals but can be extended to coherent signals
using forward-backward averaging techniques. For a high-level description of the algorithm, see
“MUSIC Super-Resolution DOA Estimation”.

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Van Trees, H. L., Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
Functions
aictest | mdltest | musicdoa | rootmusicdoa

Objects
phased.MUSICEstimator | phased.RootMUSICEstimator
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Topics
“MUSIC Super-Resolution DOA Estimation”
“Direction of Arrival Estimation with Beamscan, MVDR, and MUSIC”
“High Resolution Direction of Arrival Estimation”
“Spherical Coordinates”

Introduced in R2016b
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plotSpectrum
System object: phased.MUSICEstimator2D
Package: phased

Plot 2-D MUSIC spectrum

Syntax
plotSpectrum(estimator)
output_args = method(estimator,Name,Value)
lh = plotSpectrum( ___ )

Description
plotSpectrum(estimator) plots the 2-D MUSIC spatial spectrum computed by the most recent
step method execution for the phased.MUSICEstimator2D, estimator.

output_args = method(estimator,Name,Value) plots the 2-D MUSIC spatial spectrum with
additional options specified by one or more Name,Value pair arguments.

lh = plotSpectrum( ___ ) returns the line handle to the figure.

Input Arguments
estimator — 2-D MUSIC estimator
phased.MUSICEstimator2D System object

2-D MUSIC estimator, specified as a phased.MUSICEstimator2D System object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Unit — Units used for plotting
'db' (default) | 'mag' | 'pow'

Units used for plotting, specified as the comma-separated pair consisting of 'Unit' and 'db',
'mag', or 'pow'.
Example:
Data Types: char

NormalizeResponse — Plot normalized spectrum
false (default) | true

Plot a normalized spectrum, specified as the comma-separated pair consisting of
'NormalizedResponse' and false or true. Normalization sets the magnitude of the largest
spectrum value to one.
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Example: true
Data Types: char

Title — Title of plot
'2D MUSIC Spatial Spectrum' (default) | character vector

Title of plot, specified as a comma-separated pair consisting of 'Title' and a character vector.
Example: true
Data Types: char

Output Arguments
lh — Line handle of plot
line handle

Line handle of plot.

Examples

Estimate DOAs of Two Signals

Assume that two sinusoidal waves of frequencies 450 Hz and 600 Hz strike a URA from two different
directions. Signals arrive from -37° azimuth, 0° elevation and 17° azimuth, 20° elevation. Use 2-D
MUSIC to estimate the directions of arrival of the two signals. The array operating frequency is 150
MHz and the signal sampling frequency is 8 kHz.

f1 = 450.0;
f2 = 600.0;
doa1 = [-37;0];
doa2 = [17;20];
fc = 150e6;
c = physconst('LightSpeed');
lam = c/fc;
fs = 8000;

Create the URA with default isotropic elements. Set the frequency response range of the elements.

array = phased.URA('Size',[11 11],'ElementSpacing',[lam/2 lam/2]);
array.Element.FrequencyRange = [50.0e6 500.0e6];

Create the two signals and add random noise.

t = (0:1/fs:1).';
x1 = cos(2*pi*t*f1);
x2 = cos(2*pi*t*f2);
x = collectPlaneWave(array,[x1 x2],[doa1,doa2],fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));

Create and execute the 2-D MUSIC estimator to find the directions of arrival.

estimator = phased.MUSICEstimator2D('SensorArray',array,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property',...
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    'DOAOutputPort',true,'NumSignals',2,...
    'AzimuthScanAngles',-50:.5:50,...
    'ElevationScanAngles',-30:.5:30);
[~,doas] = estimator(x + noise)

doas = 2×2

   -37    17
     0    20

The estimated DOAs exactly match the true DOAs.

Plot the 2-D spatial spectrum

plotSpectrum(estimator);

Introduced in R2016b
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reset
System object: phased.MUSICEstimator2D
Package: phased

Reset states of System object

Syntax
reset(estimator)

Description
reset(estimator) resets the internal state of the phased.MUSICEstimator2D System object,
estimator.

Input Arguments
estimator — 2-D MUSIC estimator
phased.MUSICEstimator2D System object

2-D MUSIC estimator, specified as a phased.MUSICEstimator2D System object.

Introduced in R2016b
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step
System object: phased.MUSICEstimator2D
Package: phased

Estimate direction of arrival using 2-D MUSIC

Syntax
spectrum = step(estimator,X)
[spectrum,doa] = step(estimator,X)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

spectrum = step(estimator,X) returns the 2-D MUSIC spectrum of a signal specified in X.

[spectrum,doa] = step(estimator,X) also returns the signal directions of arrival angles, doa.
To use this syntax, set the DOAOutputPort property to true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
estimator — 2-D MUSIC estimator
phased.MUSICEstimator2D System object

2-D MUSIC estimator, specified as a phased.MUSICEstimator2D System object.

X — Received signal
M-by-N complex-valued matrix

Received signal, specified as an M-by-N complex-valued matrix. The quantity M is the number of
sample values (snapshots) contained in the signal and N is the number of sensor elements in the
array.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [[0;1;2;3;4;3;2;1;0],[1;2;3;4;3;2;1;0;0]]
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Data Types: single | double
Complex Number Support: Yes

Output Arguments
spectrum — 2-D MUSIC spatial spectrum
nonnegative, real-valued K-length column vector

2-D MUSIC spatial spectrum, returned as a nonnegative, real-valued K-length column vector
representing the magnitude of the estimated MUSIC spatial spectrum. Each entry corresponds to an
angle specified by the AzimuthScanAngles and ElevationScanAngles properties.

doa — Directions of arrival
real-valued 2-by-L matrix

Directions of arrival of the signals, returned as a real-valued 2-by-L matrix. The direction of arrival
angle is defined by the azimuth and elevation angles of the source with respect to the array local
coordinate system. The first row of the matrix contains the azimuth angles and the second row
contains the elevation angles. Angle units are in degrees. L is the number of signals specified by the
NumSignals property or derived using the method specified by the NumSignalsMethod property.
Dependencies

To enable this output argument, set the DOAOutputPort property to true.

Examples

Estimate DOAs of Two Signals

Assume that two sinusoidal waves of frequencies 450 Hz and 600 Hz strike a URA from two different
directions. Signals arrive from -37° azimuth, 0° elevation and 17° azimuth, 20° elevation. Use 2-D
MUSIC to estimate the directions of arrival of the two signals. The array operating frequency is 150
MHz and the signal sampling frequency is 8 kHz.

f1 = 450.0;
f2 = 600.0;
doa1 = [-37;0];
doa2 = [17;20];
fc = 150e6;
c = physconst('LightSpeed');
lam = c/fc;
fs = 8000;

Create the URA with default isotropic elements. Set the frequency response range of the elements.

array = phased.URA('Size',[11 11],'ElementSpacing',[lam/2 lam/2]);
array.Element.FrequencyRange = [50.0e6 500.0e6];

Create the two signals and add random noise.

t = (0:1/fs:1).';
x1 = cos(2*pi*t*f1);
x2 = cos(2*pi*t*f2);
x = collectPlaneWave(array,[x1 x2],[doa1,doa2],fc);
noise = 0.1*(randn(size(x))+1i*randn(size(x)));
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Create and execute the 2-D MUSIC estimator to find the directions of arrival.

estimator = phased.MUSICEstimator2D('SensorArray',array,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property',...
    'DOAOutputPort',true,'NumSignals',2,...
    'AzimuthScanAngles',-50:.5:50,...
    'ElevationScanAngles',-30:.5:30);
[~,doas] = estimator(x + noise)

doas = 2×2

   -37    17
     0    20

The estimated DOAs exactly match the true DOAs.

Plot the 2-D spatial spectrum

plotSpectrum(estimator);

Estimate DOAs of Two Signals at Disk Array

Assume that two sinusoidal waves of frequencies 1.6 kHz and 1.8 kHz strike a disk array from two
different directions. The spacing between elements of the disk is 1/2 wavelength. Signals arrive from

 step

1-1113



-31° azimuth, -11° elevation and 35° azimuth, 55° elevation. Use 2-D MUSIC to estimate the
directions of arrival of the two signals. The array operating frequency is 300 MHz and the signal
sampling frequency is 8 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

f1 = 1.6e3;
f2 = 1.8e3;
doa1 = [-31;-11];
doa2 = [35;55];
fc = 300e6;
c = physconst('LightSpeed');
lam = c/fc;
fs = 8.0e3;

Create a conformal array with default isotropic elements. First, create a URA to get the element
positions.

uraarray = phased.URA('Size',[21 21],'ElementSpacing',[lam/2 lam/2]);
pos = getElementPosition(uraarray);

Extract a subset of these to form an inscribed disk.

radius = 10.5*lam/2;
pos(:,sum(pos.^2) > radius^2) = [];

Then, create the conformal array using these positions.

confarray = phased.ConformalArray('ElementPosition',pos);
viewArray(confarray)

1 Objects

1-1114



Set the frequency response range of the elements.

confarray.Element.FrequencyRange = [50.0e6 600.0e6];

Create the two signals and add random noise.

t = (0:1/fs:1.5).';
x1 = cos(2*pi*t*f1);
x2 = cos(2*pi*t*f2);
x = collectPlaneWave(confarray,[x1 x2],[doa1,doa2],fc);
noise = 0.1*(randn(size(x)) + 1i*randn(size(x)));

Create and execute the 2-D MUSIC estimator to find the directions of arrival.

estimator = phased.MUSICEstimator2D('SensorArray',confarray,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property',...
    'DOAOutputPort',true,'NumSignals',2,...
    'AzimuthScanAngles',-60:.1:60,...
    'ElevationScanAngles',-60:.1:60);
[~,doas] = estimator(x + noise)

doas = 2×2

    35   -31
    55   -11

The estimated DOAs exactly match the true DOAs.
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Plot the 2-D spatial spectrum

plotSpectrum(estimator);

Introduced in R2016b
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phased.OmnidirectionalMicrophoneElement
Package: phased

Omnidirectional microphone

Description
The OmnidirectionalMicrophoneElement object models an omnidirectional microphone with an
equal response in all directions.

To compute the response of the microphone element for specified directions:

1 Define and set up your omnidirectional microphone element. See “Construction” on page 1-1117.
2 Call step to estimate the microphone response according to the properties of

phased.OmnidirectionalMicrophoneElement. The behavior of step is specific to each
object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.OmnidirectionalMicrophoneElement creates an omnidirectional microphone
system object, H, that models an omnidirectional microphone element whose response is 1 in all
directions.

H = phased.OmnidirectionalMicrophoneElement(Name,Value) creates an omnidirectional
microphone object, H, with each specified property set to the specified value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
FrequencyRange

Operating frequency range

Specify the operating frequency range (in Hz) of the microphone element as a 1x2 row vector in the
form of [LowerBound HigherBound]. The microphone element has no response outside the
specified frequency range.

Default: [0 1e20]

BackBaffled

Baffle the back of microphone element

 phased.OmnidirectionalMicrophoneElement

1-1117



Set this property to true to baffle the back of the microphone element. In this case, the microphone
responses to all azimuth angles beyond +/– 90 degrees from the broadside (0 degree azimuth and
elevation) are 0.

When the value of this property is false, the back of the microphone element is not baffled.

Default: false

Methods
Specific to phased.OmnidirectionalMicrophoneElement Object
beamwidth Compute and display beamwidth of sensor element pattern
directivit
y

Directivity of omnidirectional microphone element

isPolariza
tionCapabl
e

Polarization capability

pattern Plot omnidirectional microphone element directivity and patterns
patternAzi
muth

Plot omnidirectional microphone element directivity or pattern versus azimuth

patternEle
vation

Plot omnidirectional microphone element directivity or pattern versus elevation

plotRespon
se

Plot response pattern of microphone

step Output response of microphone

Common to All System Objects
release Allow System object property value changes

Examples

Display Omni-Directional Microphone Pattern

Create an omnidirectional microphone. Find the microphone response at 200, 300, and 400 Hz for
the incident angle 0° azimuth and 0° elevation. Then, plot the azimuth response of the microphone at
three frequencies.

microphone = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 2e3]);
fc = [200 300 400];
ang = [0;0];
resp = microphone(fc,ang);

Plot the response pattern. Response patterns for all three frequencies are the same.

pattern(microphone,fc,[-180:180],0,'CoordinateSystem','polar','Type','power');
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, and plotResponse methods are not
supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CustomMicrophoneElement | phased.ULA | phased.URA

Introduced in R2011a
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directivity
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Directivity of omnidirectional microphone element

Syntax
D = directivity(H,FREQ,ANGLE)

Description
D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-1122 of an
omnidirectional microphone element, H, at frequencies specified by FREQ and in direction angles
specified by ANGLE.

Input Arguments
H — Omnidirectional Microphone Element
System object

Omnidirectional microphone element specified as a
phased.OmnidirectionalMicrophoneElement System object.
Example: H = phased.OmnidirectionalMicrophoneElement

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.
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If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Omnidirectional Microphone Element

Compute the directivity of an omnidirectional microphone element for several different directions.

Create the omnidirectional microphone element system object.

myMic = phased.OmnidirectionalMicrophoneElement();

Select the angles of interest at constant elevation angle set equal to zero degrees. Select seven
azimuth angles centered at boresight (zero degrees azimuth and zero degrees elevation). Finally, set
the desired frequency to 1 kHz.

ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
freq = 1000;

Compute the directivity along the constant elevation cut.

d = directivity(myMic,freq,ang)

d = 7×1

     0
     0
     0
     0
     0
     0
     0
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Next select the angles of interest to be at constant azimuth angle at zero degrees. All elevation angles
are centered around boresight. The five elevation angles range from -20 to +20 degrees. Set the
desired frequency to 1 GHz.

ang = [0,0,0,0,0; -20,-10,0,10,20];
freq = 1000;

Compute the directivity along the constant azimuth cut.

d = directivity(myMic,freq,ang)

d = 5×1

     0
     0
     0
     0
     0

For an omnidirectional microphone, the directivity is independent of direction.

More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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isPolarizationCapable
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(microphone)

Description
flag = isPolarizationCapable(microphone) returns a Boolean value, flag, indicating
whether the phased.OmnidirectionalMicrophoneElement supports polarization. An element
supports polarization if it can create or respond to polarized fields. This microphone element, as all
microphone elements, does not support polarization.

Input Arguments
microphone — Omni-directional microphone element

Omni-directional microphone element specified as a
phased.OmnidirectionalMicrophoneElement System object

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the microphone element supports
polarization or false if it does not. Because the phased.OmnidirectionalMicrophoneElement
object does not support polarization, flag is always returned as false.

Examples

Omnidirectional Microphone Element Does Not Support Polarization

Determine whether a phased.OmnidirectionalMicrophoneElement microphone element
supports polarization.

microphone = phased.OmnidirectionalMicrophoneElement;
isPolarizationCapable(microphone)

ans = logical
   0

The returned value 0 shows that the omnidirectional microphone element does not support
polarization.

 isPolarizationCapable
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pattern
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Plot omnidirectional microphone element directivity and patterns

Syntax
pattern(sElem,FREQ)
pattern(sElem,FREQ,AZ)
pattern(sElem,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the element specified in
sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the element directivity pattern at the specified azimuth angle.

pattern(sElem,FREQ,AZ,EL) plots the element directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the element pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the element pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-1132 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sElem — Omnidirectional microphone element
System object

Omnidirectional microphone element, specified as a
phased.OmnidirectionalMicrophoneElement System object.
Example: sElem = phased.OmnidirectionalMicrophoneElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

 pattern

1-1125



Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
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must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Output Arguments
PAT — Element pattern
N-by-M real-valued matrix

Element pattern, returned as an N-by-M real-valued matrix. The pattern is a function of azimuth and
elevation. The rows of PAT correspond to the azimuth angles in the vector specified by EL_ANG. The
columns correspond to the elevation angles in the vector specified by AZ_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.
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EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Magnitude and Directivity Patterns of Omnidirectional Microphone

Construct an omnidirectional microphone and plot the magnitude and directivity patterns. The
microphone operating frequency spans the range 20 to 20000 Hz.

Construct the omnidirectional microphone.

sOmni = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20e3]);

Plot the microphone magnitude pattern at 200 Hz.

fc = 200;
pattern(sOmni,fc,[-180:180],0,...
    'CoordinateSystem','rectangular',...
    'Type','efield')
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Plot the microphone directivity.

pattern(sOmni,fc,[-180:180],0,...
    'CoordinateSystem','rectangular',...
    'Type','directivity')

The directivity is 0 dbi as expected for an omnidirectional element.

3-D Magnitude Pattern of Omnidirectional Microphone

Construct an omnidirectional microphone with response in the frequency range 20-20000 Hz. Then,
plot the 3-D magnitude pattern over a range of angles.

Construct the microphone element.

sOmin = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20e3]);

Plot the 3-D pattern at 500 Hz between -30 to 30 degrees in both azimuth and elevation in 0.1 degree
increments.

fc = 500;
pattern(sOmin,fc,[-30:0.1:30],[-30:0.1:30],...
    'CoordinateSystem','polar',...
    'Type','efield')
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Plot Directivity of Crossed-Dipole Antenna

Create a crossed-dipole antenna. Assume the antenna works between 1 and 2 GHz and its operating
frequency is 1.5 GHz. Then, plot the directivity at a constant azimuth of 0∘.

antenna = phased.CrossedDipoleAntennaElement('FrequencyRange',[1e9 2e9]);
fc = 1.5e9;
pattern(antenna,fc,0,-90:90,'Type','directivity', ...
    'CoordinateSystem','rectangular')
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The directivity is maximum at 0∘ elevation and attains a value of approximately 1.75 dB.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Plot omnidirectional microphone element directivity or pattern versus azimuth

Syntax
patternAzimuth(sElem,FREQ)
patternAzimuth(sElem,FREQ,EL)
patternAzimuth(sElem,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus azimuth (in dBi)
for the element sElem at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity pattern versus
azimuth (in dBi) at the elevation angle specified by EL. When EL is a vector, multiple overlaid plots
are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Azimuth' parameter and
the EL input argument.

Input Arguments
sElem — Omnidirectional microphone element
System object

Omnidirectional microphone element, specified as a
phased.OmnidirectionalMicrophoneElement System object.
Example: sElem = phased.OmnidirectionalMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension
N is the number of elevation angles, as determined by the EL input argument.

Examples

Azimuth Pattern of Omnidirectional Microphone Element

Create an omnidirectional microphone element. Plot an azimuth cut of the directivity at 0 and 30
degrees elevation. Assume an operating frequency of 500 Hz.

Create the microphone element.

sOmni = phased.OmnidirectionalMicrophoneElement('FrequencyRange',[100,900]);
fc = 500;

Plot the azimuth pattern.

patternAzimuth(sOmni,fc,[0 30])

Because of the omnidirectionality of the microphone, the two patterns coincide.

Plot a reduced range of azimuth angles using the Azimuth parameter.

patternAzimuth(sOmni,fc,[0 30],'Azimuth',[-20:20])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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Introduced in R2015a
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patternElevation
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Plot omnidirectional microphone element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)
patternElevation(sElem,FREQ,AZ)
patternElevation(sElem,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus elevation (in
dBi) for the element sElem at zero degrees azimuth angle. The argument FREQ specifies the
operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity pattern versus
elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid plots
are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sElem — Omnidirectional microphone element
System object

Omnidirectional microphone element, specified as a
phased.OmnidirectionalMicrophoneElement System object.
Example: sElem = phased.OmnidirectionalMicrophoneElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of elevation angles determined by the 'Elevation' name-value pair argument. The
dimension N is the number of azimuth angles determined by the AZ argument.

Examples

Elevation Pattern of Omnidirectional Microphone Element

Construct an omnidirectional microphone element. Plot an elevation cut of the power 45 and 55
degrees azimuth. Assume the operating frequency is 500 Hz.

Create the microphone element.

fc = 500;
sOmni = phased.OmnidirectionalMicrophoneElement('FrequencyRange',[100,900]);

Display the power pattern.

patternElevation(sOmni,fc,[45 55],'Type','powerdb')

Because of the omnidirectionality, the two plots coincide.

Plot a reduced range of elevation angles using the Elevation parameter.
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patternElevation(sOmni,fc,[45 55],...
    'Elevation',[-20:20],...
    'Type','powerdb')

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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See Also
pattern | patternAzimuth

Introduced in R2015a
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plotResponse
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Plot response pattern of microphone

Syntax
plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ) plots the element response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must lie within the
range specified by the FrequencyVector property of H. If you set the 'RespCut' property of H to
'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If
RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

1 Objects

1-1146



Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the antenna response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This parameter is
not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.
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Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

AzimuthAngles

Azimuth angles for plotting element response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting element response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When you set the RespCut parameter to '3D', you
can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting element response, specified as a row vector. The UGrid parameter
sets the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting element response, specified as a row vector. The VGrid parameter
sets the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples
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Plot Response and Directivity of Omnidirectional Microphone

This example shows how to construct an omnidirectional microphone and how to plot its response
and directivity. The microphone operating frequency spans the range 20 to 20000 Hz.

Construct the omnidirectional microphone.

sOmni = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20e3]);

Plot the microphone response at 200 Hz.

fc = 200;
plotResponse(sOmni,fc,'Unit','mag');

Plot the microphone directivity.

plotResponse(sOmni,fc,'Unit','dbi');
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Plot 3-D Response of Omnidirectional Microphone

This example shows how to construct an omnidirection microphone with response in the frequency
range 20 - 20000 Hz and how to plot its 3-D response over a range of angles.

Construct the microphone element.

sOmin = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20e3]);

Plot the 3-D response at 500 Hz. Show the response between -30 to 30 degrees in both azimuth and
elevation in 0.1 degree increments.

plotResponse(sOmin,500,'Format','Polar',...
    'RespCut','3D','Unit','mag',...
    'AzimuthAngles',[-30:0.1:30],...
    'ElevationAngles',[-30:0.1:30]);
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See Also
azel2uv | uv2azel
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step
System object: phased.OmnidirectionalMicrophoneElement
Package: phased

Output response of microphone

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the microphone’s magnitude response, RESP, at frequencies
specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Microphone object.

FREQ

Frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.

1 Objects

1-1152



Output Arguments
RESP

Response of microphone. RESP is an M-by-L matrix that contains the responses of the microphone
element at the M angles specified in ANG and the L frequencies specified in FREQ.

Examples

Display Omni-Directional Microphone Pattern

Create an omnidirectional microphone. Find the microphone response at 200, 300, and 400 Hz for
the incident angle 0° azimuth and 0° elevation. Then, plot the azimuth response of the microphone at
three frequencies.

microphone = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 2e3]);
fc = [200 300 400];
ang = [0;0];
resp = microphone(fc,ang);

Plot the response pattern. Response patterns for all three frequencies are the same.

pattern(microphone,fc,[-180:180],0,'CoordinateSystem','polar','Type','power');
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See Also
phitheta2azel | uv2azel
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phased.PartitionedArray
Package: phased

Phased array partitioned into subarrays

Description
The PartitionedArray object represents a phased array that is partitioned into one or more
subarrays.

To obtain the response of the subarrays in a partitioned array:

1 Define and set up your partitioned array. See “Construction” on page 1-1155.
2 Call step to compute the response of the subarrays according to the properties of

phased.PartitionedArray. The behavior of step is specific to each object in the toolbox.

You can also specify a PartitionedArray object as the value of the SensorArray or Sensor
property of objects that perform beamforming, steering, and other operations.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.PartitionedArray creates a partitioned array System object, H. This object
represents an array that is partitioned into subarrays.

H = phased.PartitionedArray(Name,Value) creates a partitioned array object, H, with each
specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Array

Sensor array

Sensor array, specified as any array System object belonging to Phased Array System Toolbox.

Default: phased.ULA('NumElements',4)

SubarraySelection

Subarray definition matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the
number of elements in the array. Each row of the matrix corresponds to a subarray and each entry in
the row indicates whether or not an element belongs to the subarray. When the entry is zero, the
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element does not belong to the subarray. A nonzero entry represents a complex-valued weight applied
to the corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray is at the subarray geometric center. The SubarraySelection
and Array properties determine the geometric center.

Default: [1 1 0 0; 0 0 1 1]

SubarraySteering

Subarray steering method

Specify the method of subarray steering as either 'None' | 'Phase' | 'Time' | 'Custom'.

• When you set this property to 'Phase', a phase shifter is used to steer the subarray. Use the
STEERANG argument of the step method to define the steering direction.

• When you set this property to 'Time', subarrays are steered using time delays. Use the
STEERANG argument of the step method to define the steering direction.

• When you set this property to 'Custom', subarrays are steered by setting independent weights
for all elements in each subarray. Use the WS argument of the step method to define the weights
for all subarrays.

Default: 'None'

PhaseShifterFrequency

Subarray phase shifter frequency

Specify the operating frequency of phase shifters that perform subarray steering. The property value
is a positive scalar in hertz. This property applies when you set the SubarraySteering property to
'Phase'.

Default: 300e6

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Default: 0

Methods
Specific to phased.PartitionedArray Object
beamwidth Compute and display beamwidth for a subarray
collectPla
neWave

Simulate received plane waves

directivit
y

Directivity of partitioned array
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Specific to phased.PartitionedArray Object
getElement
Position

Positions of array elements

getNumElem
ents

Number of elements in array

getNumSuba
rrays

Number of subarrays in array

getSubarra
yPosition

Positions of subarrays in array

isPolariza
tionCapabl
e

Polarization capability

pattern Plot partitioned array directivity, field, and power patterns
patternAzi
muth

Plot partitioned array directivity or pattern versus azimuth

patternEle
vation

Plot partitioned array directivity or pattern versus elevation

plotRespon
se

Plot response pattern of array

step Output responses of subarrays
viewArray View array geometry

Common to All System Objects
release Allow System object property value changes

Examples

Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two 2-element ULA's. The element
spacing is one-half wavelength.

Create the ULA, and partition it into two 2-element ULA's.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);
sPA = phased.PartitionedArray('Array',sULA,...
    'SubarraySelection',[1 1 0 0;0 0 1 1]);

Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the propagation
speed is the speed of light.

fc = 1e9;
pattern(sPA,fc,[-180:180],0,'Type','powerdb',...
    'CoordinateSystem','polar',...
    'Normalize',true)
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Response of Subarrays of Partitioned ULA

Create a 4-element ULA. Then partition the ULA into two 2-element ULAs. Then, calculate the
response at boresight of a 4-element ULA partitioned into two 2-element ULAs.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);
sPA = phased.PartitionedArray('Array',sULA,...
   'SubarraySelection',[1 1 0 0;0 0 1 1]);

Calculate the response at 1 GHz. The signal propagation speed is the speed of light.

fc = 1e9;
resp = step(sPA,fc,[0;0],physconst('LightSpeed'))

resp = 2×1

     2
     2
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Subarray Element Weights for Partitioned Array

Create a partitioned URA array with three subarrays of different sizes. The subarrays have 8, 16, and
32 elements. Use different sets of subarray element weights for each subarray.

Create a 4-by-56 element URA.

antenna = phased.IsotropicAntennaElement;
fc = 300e6;
c = physconst('LightSpeed');
lambda = c/fc;
n1 = 2^3;
n2 = 2^4;
n3 = 2^5;
nrows = 4;
ncols = n1 + n2 + n3;
array = phased.URA('Element',antenna,'Size',[nrows,ncols]);

Select the three subarrays by setting the selection matrix.

sel1 = zeros(nrows,ncols);
sel2 = sel1;
sel3 = sel1;
sel = zeros(3,nrows*ncols);
for r = 1:nrows
    sel1(r,1:n1) = 1;
    sel2(r,(n1+1):(n1+n2)) = 1;
    sel3(r,((n1+n2)+1):ncols) = 1;
end
sel(1,:) = sel1(:);
sel(2,:) = sel2(:);
sel(3,:) = sel3(:);

Create the partitioned array.

partarray = phased.PartitionedArray('Array',array, ...
    'SubarraySelection',sel,'SubarraySteering','Custom');
viewArray(partarray,'ShowSubarray','All');
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Set weights for each subarray and get the response of each subarray. Put the weights in a cell array.

wts1 = ones(nrows*n1,1);
wts2 = 1.5*ones(nrows*n2,1);
wts3 = 3*ones(nrows*n3,1);
resp = partarray(fc,[30;0],c,{wts1,wts2,wts3})

resp = 3×1 complex

   0.0246 + 0.0000i
   0.0738 - 0.0000i
   0.2951 - 0.0000i

References
[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• pattern, patternAzimuth, patternElevation, plotResponse, and viewArray methods are
not supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
phased.ConformalArray | phased.ReplicatedSubarray | phased.UCA | phased.ULA |
phased.URA

Apps
Sensor Array Analyzer

Topics
Subarrays in Phased Array Antennas
Phased Array Gallery
“Subarrays Within Arrays”

Introduced in R2012a

 phased.PartitionedArray

1-1161



directivity
System object: phased.PartitionedArray
Package: phased

Directivity of partitioned array

Syntax
D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)

Description
D = directivity(H,FREQ,ANGLE) returns the “Directivity” on page 1-1165 of a partitioned array
of antenna or microphone elements, H, at frequencies specified by FREQ and in angles of direction
specified by ANGLE.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

D = directivity(H,FREQ,ANGLE,Name,Value) returns the directivity with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
H — Partitioned array
System object

Partitioned array, specified as a phased.PartitionedArray System object.
Example: H = phased.PartitionedArray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double
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ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Subarray weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-M complex-valued matrix. The dimension N is the number of
subarrays in the array. The dimension L is the number of frequencies specified by the FREQ argument.

Weights dimension FREQ dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
‘Weights’ for the
corresponding frequency in the
FREQ argument.

Example: 'Weights',ones(N,M)
Data Types: double
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SteerAngle — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of 'SteerAngle' and a
scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180° and 180°, inclusive. The elevation angle must be between –90° and 90°,
inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the elevation angle is
assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object is set to
'Phase' or 'Time'.
Example: 'SteerAngle',[20;30]
Data Types: double

ElementWeights — Weights applied to elements within subarray
1 (default) | complex-valued NSE-by-N matrix | 1-by-N cell array

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array. Weights
are applied to the individual elements within a subarray. Subarrays can have different dimensions and
sizes.

If ElementWeights is a complex-valued NSE-by-N matrix, NSE is the number of elements in the
largest subarray and N is the number of subarrays. Each column of the matrix specifies the weights
for the corresponding subarray. Only the first K entries in each column are applied as weights where
K is the number of elements in the corresponding subarray.

If ElementWeights is a 1-by-N cell array. Each cell contains a complex-valued column vector of
weights for the corresponding subarray. The column vectors have lengths equal to the number of
elements in the corresponding subarray.

Dependencies

To enable this name-value pair, set the SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples
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Directivity of Partitioned Array

Compute the directivity of a partitioned array formed from a single 20-element ULA with elements
spaced one-quarter wavelength apart. The subarrays are then phase-steered towards 30 degrees
azimuth. The directivities are computed at azimuth angles from 0 to 60 degrees.

c = physconst('LightSpeed');
fc = 3e8;
lambda = c/fc;
angsteer = [30;0];
ang = [0:10:60;0,0,0,0,0,0,0];

Create a partitioned ULA array using the SubarraySelection property.

myArray = phased.PartitionedArray('Array',...
    phased.ULA(20,lambda/4),'SubarraySelection',...
    [ones(1,10) zeros(1,10);zeros(1,10) ones(1,10)],...
    'SubarraySteering','Phase','PhaseShifterFrequency',fc);

Create the steering vector and compute the directivity.

myStv = phased.SteeringVector('SensorArray',myArray,...
    'PropagationSpeed',c);
d = directivity(myArray,fc,ang,'PropagationSpeed',c,'Weights',...
    step(myStv,fc,angsteer),'SteerAngle',angsteer)

d = 7×1

   -7.5778
   -4.7676
   -2.0211
   10.0996
    0.9714
   -3.5575
  -10.8439

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
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array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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collectPlaneWave
System object: phased.PartitionedArray
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H, when the
input signals indicated by X arrive at the array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal carrier
frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal propagation speed in
C.

Input Arguments
H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an individual
incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the corresponding signal in
X. Each column of ANG is in the form [azimuth; elevation]. The azimuth angle must be between
–180° and 180°, inclusive. The elevation angle must be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this case, the
corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8
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C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments
Y

Received signals. Y is an N-column matrix, where N is the number of subarrays in the array H. Each
column of Y is the received signal at the corresponding subarray, with all incoming signals combined.

Examples

Plane Waves Received at Array Containing Subarrays

Simulate the received signal at a 16-element ULA partitioned into four 4-element ULAs.

Create a 16-element ULA, and partition it into 4-element ULAs.

ula = phased.ULA('NumElements',16);
array = phased.PartitionedArray('Array',ula,...
   'SubarraySelection',....
   [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;...
    0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;...
    0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;...
    0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]);

Simulate received signals from 10° and 30° azimuth. Both signals have an elevation angle of 0°.
Assume the propagation speed is the speed of light and the carrier frequency of the signal is 100
MHz.

sig = collectPlaneWave(array,randn(4,2),[10 30],1.0e8,physconst('LightSpeed'))

sig = 4×4 complex

  -0.0710 - 0.4765i   0.6616 - 0.4676i   0.6616 + 0.4676i  -0.0710 + 0.4765i
   2.1529 - 1.6304i   1.0607 + 0.4802i   1.0607 - 0.4802i   2.1529 + 1.6304i
  -0.6074 + 2.0037i  -2.3274 + 1.1797i  -2.3274 - 1.1797i  -0.6074 - 2.0037i
   0.0547 - 0.7644i   0.9768 - 0.6037i   0.9768 + 0.6037i   0.0547 + 0.7644i

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the delay caused by
the direction of arrival. This method does not account for the response of individual elements in the
array and only models the array factor among subarrays. Therefore, the result does not depend on
whether the subarray is steered.
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See Also
phitheta2azel | uv2azel
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getElementPosition
System object: phased.PartitionedArray
Package: phased

Positions of array elements

Syntax
POS = getElementPosition(H)

Description
POS = getElementPosition(H) returns the element positions in the array H.

Input Arguments
H

Partitioned array object.

Output Arguments
POS

Element positions in array. POS is a 3-by-N matrix, where N is the number of elements in H. Each
column of POS defines the position of an element in the local coordinate system, in meters, using the
form [x; y; z].

Examples

Element Positions in Partitioned Array

Obtain the positions of the six elements in a partitioned array.

array = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...
    'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);
pos = getElementPosition(array)

pos = 3×6

         0         0         0         0         0         0
   -0.5000   -0.5000         0         0    0.5000    0.5000
    0.2500   -0.2500    0.2500   -0.2500    0.2500   -0.2500

See Also
getSubarrayPosition
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getNumElements
System object: phased.PartitionedArray
Package: phased

Number of elements in array

Syntax
N = getNumElements(H)

Description
N = getNumElements(H) returns the number of elements in the array object H.

Input Arguments
H

Partitioned array object.

Examples

Number of Elements in Partitioned Array

Obtain the number of elements in an array that is partitioned into subarrays.

array = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...
   'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);
N = getNumElements(array)

N = 6

See Also
getNumSubarrays
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getNumSubarrays
System object: phased.PartitionedArray
Package: phased

Number of subarrays in array

Syntax
N = getNumSubarrays(H)

Description
N = getNumSubarrays(H) returns the number of subarrays in the array object H. This number
matches the number of rows in the SubarraySelection property of H.

Input Arguments
H

Partitioned array object.

Examples

Number of Subarrays in Partitioned Array

Obtain the number of subarrays in a partitioned array.

array = phased.PartitionedArray('Array',...
   phased.ULA('NumElements',5),...
   'SubarraySelection',[1 1 1 0 0; 0 0 1 1 1]);
N = getNumSubarrays(array)

N = 2

See Also
getNumElements
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getSubarrayPosition
System object: phased.PartitionedArray
Package: phased

Positions of subarrays in array

Syntax
POS = getSubarrayPosition(H)

Description
POS = getSubarrayPosition(H) returns the subarray positions in the array H.

Input Arguments
H

Partitioned array object.

Output Arguments
POS

Subarrays positions in array. POS is a 3-by-N matrix, where N is the number of subarrays in H. Each
column of POS defines the position of a subarray in the local coordinate system, in meters, using the
form [x; y; z].

Examples

Subarray Positions in Partitioned Array

Obtain the positions of the two subarrays in a partitioned array.

array = phased.PartitionedArray('Array',phased.URA('Size',[2 3]),...
    'SubarraySelection',[1 0 1 0 1 0; 0 1 0 1 0 1]);
pos = getSubarrayPosition(array)

pos = 3×2

         0         0
         0         0
    0.2500   -0.2500

See Also
getElementPosition
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isPolarizationCapable
System object: phased.PartitionedArray
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the array
supports polarization. An array supports polarization if all its constituent sensor elements support
polarization.

Input Arguments
h — Partitioned array

Partitioned array specified as a phased.PartitionedArray System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value. This value is true, if the array supports
polarization or false, if it does not.

Examples

Partitioned Array of Short-Dipole Antenna Elements Supports Polarization

Determine whether a partitioned array of phased.ShortDipoleAntennaElements supports
polarization.

antenna = phased.ShortDipoleAntennaElement('FrequencyRange',[1e9 10e9]);
ulaarray = phased.ULA(4,'Element',antenna);
partitionedarray = phased.PartitionedArray('Array',ulaarray,...
     'SubarraySelection',[1 1 0 0; 0 0 1 1]);
isPolarizationCapable(partitionedarray)

ans = logical
   1

The returned value 1 shows that this array supports polarization.

1 Objects

1-1174



pattern
System object: phased.PartitionedArray
Package: phased

Plot partitioned array directivity, field, and power patterns

Syntax
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array specified in
sArray. The operating frequency is specified in FREQ.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the array pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-1183 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sArray — Partitioned array
System object

Partitioned array, specified as a phased.PartitionedArray System object.
Example: sArray= phased.PartitionedArray;
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FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
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'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component
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Example: 'V'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Subarray weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-M complex-valued matrix. The dimension N is the number of
subarrays in the array. The dimension L is the number of frequencies specified by the FREQ argument.

Weights dimension FREQ dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
‘Weights’ for the
corresponding frequency in the
FREQ argument.

Example: 'Weights',ones(N,M)
Data Types: double

SteerAngle — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of 'SteerAngle' and a
scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180° and 180°, inclusive. The elevation angle must be between –90° and 90°,
inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the elevation angle is
assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object is set to
'Phase' or 'Time'.
Example: 'SteerAngle',[20;30]
Data Types: double

ElementWeights — Weights applied to elements within subarray
1 (default) | complex-valued NSE-by-N matrix | 1-by-N cell array
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Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array. Weights
are applied to the individual elements within a subarray. Subarrays can have different dimensions and
sizes.

If ElementWeights is a complex-valued NSE-by-N matrix, NSE is the number of elements in the
largest subarray and N is the number of subarrays. Each column of the matrix specifies the weights
for the corresponding subarray. Only the first K entries in each column are applied as weights where
K is the number of elements in the corresponding subarray.

If ElementWeights is a 1-by-N cell array. Each cell contains a complex-valued column vector of
weights for the corresponding subarray. The column vectors have lengths equal to the number of
elements in the corresponding subarray.
Dependencies

To enable this name-value pair, set the SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

Output Arguments
PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT correspond to the
dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two 2-element ULA's. The element
spacing is one-half wavelength.

Create the ULA, and partition it into two 2-element ULA's.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);
sPA = phased.PartitionedArray('Array',sULA,...
    'SubarraySelection',[1 1 0 0;0 0 1 1]);
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Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the propagation
speed is the speed of light.

fc = 1e9;
pattern(sPA,fc,[-180:180],0,'Type','powerdb',...
    'CoordinateSystem','polar',...
    'Normalize',true)

Plot Pattern and Directivity of Partitioned URA Over Restricted Range of Angles

Convert a 2-by-6 URA of isotropic antenna elements into a 1-by-3 partitioned array so that each
subarray of the partitioned array is a 2-by-2 URA. Assume that the frequency response of the
elements lies between 1 and 6 GHz. The elements are spaced one-half wavelength apart
corresponding to the highest frequency of the element response. Plot an azimuth cut from -50 to 50
degrees for different two sets of weights. For partitioned arrays, weights are applied to the subarrays
instead of the elements.

Create partitioned array

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
sIso = phased.IsotropicAntennaElement(...
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    'FrequencyRange',[fmin,fmax],...
    'BackBaffled',false);
sURA = phased.URA('Element',sIso,'Size',[2,6],...
    'ElementSpacing',[lam/2,lam/2]);
subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...
    [0,0,0,0,1,1,1,1,0,0,0,0];...
    [0,0,0,0,0,0,0,0,1,1,1,1]];
sPA = phased.PartitionedArray('Array',sURA,...
    'SubarraySelection',subarraymap);

Plot power pattern

Plot the response of the array at 5 GHz over the restricted range of azimuth angles.

fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
pattern(sPA,fc,[-50:0.1:50],0,...
    'Type','powerdb',...
    'CoordinateSystem','polar',...
    'Weights',wts)

The plot of the response shows the broadening of the main lobe and the reduction of the strength of
the sidelobes caused by the weight tapering.

Plot directivity

Plot an azimuth cut of the directivity of the array at 5 GHz over the restricted range of azimuth
angles for the two different sets of weights.
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fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
pattern(sPA,fc,[-50:0.1:50],0,...
    'Type','directivity',...
    'CoordinateSystem','rectangular',...
    'Weights',wts)

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
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array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.PartitionedArray
Package: phased

Plot partitioned array directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus azimuth (in dBi) for
the array sArray at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternAzimuth(sArray,FREQ,EL), in addition, plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When EL is a vector,
multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the array pattern. PAT is a matrix whose entries represent
the pattern at corresponding sampling points specified by the 'Azimuth' parameter and the EL
input argument.

Input Arguments
sArray — Partitioned array
System object

Partitioned array, specified as a phased.PartitionedArray System object.
Example: sArray= phased.PartitionedArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Subarray weights
M-by-1 complex-valued column vector
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Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Subarray weights are applied to the subarrays of the array to produce
array steering, tapering, or both. The dimension M is the number of subarrays in the array.
Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

SteerAngle — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of 'SteerAngle' and a
scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180° and 180°, inclusive. The elevation angle must be between –90° and 90°,
inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the elevation angle is
assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object is set to
'Phase' or 'Time'.
Example: 'SteerAngle',[20;30]
Data Types: double

ElementWeights — Weights applied to elements within subarray
1 (default) | complex-valued NSE-by-N matrix | 1-by-N cell array

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array. Weights
are applied to the individual elements within a subarray. Subarrays can have different dimensions and
sizes.

If ElementWeights is a complex-valued NSE-by-N matrix, NSE is the number of elements in the
largest subarray and N is the number of subarrays. Each column of the matrix specifies the weights
for the corresponding subarray. Only the first K entries in each column are applied as weights where
K is the number of elements in the corresponding subarray.

If ElementWeights is a 1-by-N cell array. Each cell contains a complex-valued column vector of
weights for the corresponding subarray. The column vectors have lengths equal to the number of
elements in the corresponding subarray.

Dependencies

To enable this name-value pair, set the SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
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Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension N is the
number of elevation angles, as determined by the EL input argument.

Examples

Plot Azimuth Directivity of Partitioned URA

Convert a 2-by-6 URA of isotropic antenna elements into a 1-by-3 partitioned array so that each
subarray of the partitioned array is a 2-by-2 URA. Assume that the frequency response of the
elements lies between 1 and 6 GHz. The elements are spaced one-half wavelength apart
corresponding to the highest frequency of the element response. Plot the azimuth directivity. For
partitioned arrays, weights are applied to the subarrays instead of the elements.

Create partitioned array

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[fmin,fmax],...
    'BackBaffled',false);
sURA = phased.URA('Element',sIso,'Size',[2,6],...
    'ElementSpacing',[lam/2,lam/2]);
subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...
    [0,0,0,0,1,1,1,1,0,0,0,0];...
    [0,0,0,0,0,0,0,0,1,1,1,1]];
sPA = phased.PartitionedArray('Array',sURA,...
    'SubarraySelection',subarraymap);

Plot azimuth directivity pattern

Plot the response of the array at 5 GHz

fc = 5e9;
wts = [0.862,1.23,0.862]';
patternAzimuth(sPA,fc,0,...
    'Type','directivity',...
    'PropagationSpeed',physconst('LightSpeed'),...
    'Weights',wts)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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patternElevation
System object: phased.PartitionedArray
Package: phased

Plot partitioned array directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus elevation (in dBi)
for the array sArray at zero degrees azimuth angle. When AZ is a vector, multiple overlaid plots are
created. The argument FREQ specifies the operating frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the array pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sArray — Partitioned array
System object

Partitioned array, specified as a phased.PartitionedArray System object.
Example: sArray= phased.PartitionedArray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Subarray weights
M-by-1 complex-valued column vector
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Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Subarray weights are applied to the subarrays of the array to produce
array steering, tapering, or both. The dimension M is the number of subarrays in the array.
Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

SteerAngle — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of 'SteerAngle' and a
scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180° and 180°, inclusive. The elevation angle must be between –90° and 90°,
inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the elevation angle is
assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object is set to
'Phase' or 'Time'.
Example: 'SteerAngle',[20;30]
Data Types: double

ElementWeights — Weights applied to elements within subarray
1 (default) | complex-valued NSE-by-N matrix | 1-by-N cell array

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array. Weights
are applied to the individual elements within a subarray. Subarrays can have different dimensions and
sizes.

If ElementWeights is a complex-valued NSE-by-N matrix, NSE is the number of elements in the
largest subarray and N is the number of subarrays. Each column of the matrix specifies the weights
for the corresponding subarray. Only the first K entries in each column are applied as weights where
K is the number of elements in the corresponding subarray.

If ElementWeights is a 1-by-N cell array. Each cell contains a complex-valued column vector of
weights for the corresponding subarray. The column vectors have lengths equal to the number of
elements in the corresponding subarray.

Dependencies

To enable this name-value pair, set the SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
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Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of elevation angles determined by the 'Elevation' name-value pair argument. The dimension N is
the number of azimuth angles determined by the AZ argument.

Examples

Plot Elevation Directivity of Partitioned URA

Convert a 2-by-6 URA of isotropic antenna elements into a 1-by-3 partitioned array so that each
subarray of the partitioned array is a 2-by-2 URA. Assume that the frequency response of the
elements lies between 1 and 6 GHz. The elements are spaced one-half wavelength apart
corresponding to the highest frequency of the element response. Plot the directivity for elevation
angles from -45 to 45 degrees. For partitioned arrays, weights are applied to the subarrays instead of
the elements.

Create partitioned array

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[fmin,fmax],...
    'BackBaffled',false);
sURA = phased.URA('Element',sIso,'Size',[2,6],...
    'ElementSpacing',[lam/2,lam/2]);
subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...
    [0,0,0,0,1,1,1,1,0,0,0,0];...
    [0,0,0,0,0,0,0,0,1,1,1,1]];
sPA = phased.PartitionedArray('Array',sURA,...
    'SubarraySelection',subarraymap);

Plot elevation directivity pattern

Plot the response of the array at 5 GHz

fc = 5e9;
wts = [0.862,1.23,0.862]';
azimangle = 0;
patternElevation(sPA,fc,azimangle,...
    'Type','directivity',...
    'PropagationSpeed',physconst('LightSpeed'),...
    'Elevation',[-45:45],...
    'Weights',wts)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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plotResponse
System object: phased.PartitionedArray
Package: phased

Plot response pattern of array

Syntax
plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ. The propagation speed is specified
in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Array object.

FREQ

Operating frequency in hertz. Typical values are within the range specified by a property of
H.Array.Element. That property is named FrequencyRange or FrequencyVector, depending on
the type of element in the array. The element has zero response at frequencies outside that range. If
FREQ is a nonscalar row vector, the plot shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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CutAngle

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If
RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, then FREQ must be a
vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the array response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where:

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This parameter is not
applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.
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• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

SteerAng

Subarray steering angle. SteerAng can be either a 2-element column vector or a scalar.

If SteerAng is a 2-element column vector, it has the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation angle must be between –90 and 90
degrees, inclusive.

If SteerAng is a scalar, it specifies the azimuth angle. In this case, the elevation angle is assumed to
be 0.

This option is applicable only if the SubarraySteering property of H is 'Phase' or 'Time'.

Default: [0;0]

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.

Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

Weights

Weight values applied to the array, specified as a length-N column vector or N-by-M matrix. The
dimension N is the number of subarrays in the array. The interpretation of M depends upon whether
the input argument FREQ is a scalar or row vector.

Weights Dimension FREQ Dimension Purpose
N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for the

same single frequency or all M
frequencies.

N-by-M matrix

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

 plotResponse

1-1201



AzimuthAngles

Azimuth angles for plotting subarray response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting subarray response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When you set the RespCut parameter to '3D', you
can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting subarray response, specified as a row vector. The UGrid parameter
sets the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting subarray response, specified as a row vector. The VGrid parameter
sets the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Azimuth Response of Partitioned ULA

Plot the azimuth response of a 4-element ULA partitioned into two 2-element ULA's. The element
spacing is one-half wavelength.

Create the ULA, and partition it into two 2-element ULA's.

sULA = phased.ULA('NumElements',4,'ElementSpacing',0.5);
sPA = phased.PartitionedArray('Array',sULA,...
    'SubarraySelection',[1 1 0 0;0 0 1 1]);
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Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the propagation
speed is the speed of light.

fc = 1e9;
pattern(sPA,fc,[-180:180],0,'Type','powerdb',...
    'CoordinateSystem','polar',...
    'Normalize',true)

Plot Response and Directivity of Partitioned URA Over Restricted Range of Angles

Convert a 2-by-6 URA of isotropic antenna elements into a 1-by-3 partitioned array so that each
subarray of the partitioned array is a 2-by-2 URA. Assume that the frequency response of the
elements lies between 1 and 6 GHz. The elements are spaced one-half wavelength apart
corresponding to the highest frequency of the element response. Plot an azimuth cut from -50 to 50
degrees for different two sets of weights. For partitioned arrays, weights are applied to the subarrays
instead of the elements.

Set up the partitioned array.

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
s_iso = phased.IsotropicAntennaElement(...
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    'FrequencyRange',[fmin,fmax],...
    'BackBaffled',false);
s_ura = phased.URA('Element',s_iso,'Size',[2,6],...
    'ElementSpacing',[lam/2,lam/2]);
subarraymap = [[1,1,1,1,0,0,0,0,0,0,0,0];...
    [0,0,0,0,1,1,1,1,0,0,0,0];...
    [0,0,0,0,0,0,0,0,1,1,1,1]];
s_pa = phased.PartitionedArray('Array',s_ura,...
    'SubarraySelection',subarraymap);

Plot the response of the array at 5 GHz over the restricted range of azimuth angles.

fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
plotResponse(s_pa,fc,c,'RespCut','Az',...
    'AzimuthAngles',[-50:0.1:50],...
    'Unit','db','Format','Polar',...
    'Weights',wts);

The plot of the response shows the broadening of the main lobe and the reduction of the strength of
the sidelobes caused by the weight tapering.

Next, plot an azimuth cut of the directivity of the array at 5 GHz over the restricted range of azimuth
angles for the two different sets of weights.

fc = 5e9;
wts = [[1,1,1]',[.862,1.23,.862]'];
plotResponse(s_pa,fc,c,'RespCut','Az',...
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    'AzimuthAngles',[-50:0.1:50],...
    'Unit','dbi',...
    'Weights',wts);

See Also
azel2uv | uv2azel
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step
System object: phased.PartitionedArray
Package: phased

Output responses of subarrays

Syntax
RESP = step(H,FREQ,ANG,V)
RESP = step(H,FREQ,ANG,V,STEERANGLE)
RESP = step(H,FREQ,ANG,V,WS)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG,V) returns the responses RESP of the subarrays in the array, at
operating frequencies specified in FREQ and directions specified in ANG. The phase center of each
subarray is at its geometric center. V is the propagation speed. The elements within each subarray
are connected to the subarray phase center using an equal-path feed.

RESP = step(H,FREQ,ANG,V,STEERANGLE) uses STEERANGLE as the subarray’s steering
direction. This syntax is available when you set the SubarraySteering property to either 'Phase'
or 'Time'.

RESP = step(H,FREQ,ANG,V,WS) uses WS as the subarray element weights. This syntax is
available when you set the SubarraySteering property to 'Custom'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Partitioned array object.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of H.Array.Element. That property is named FrequencyRange

1 Objects

1-1206



or FrequencyVector, depending on the type of element in the array. The element has zero response
at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.

V

Propagation speed in meters per second. This value must be a scalar.

STEERANGLE

Subarray steering direction. STEERANGLE can be either a 2-element column vector or a scalar.

If STEERANGLE is a 2-element column vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180 and 180 degrees, inclusive. The elevation angle must be between –90
and 90 degrees, inclusive.

If STEERANGLE is a scalar, it specifies the direction’s azimuth angle. In this case, the elevation angle
is assumed to be 0.

WS

Subarray element weights

Subarray element weights, specified as a complex-valued NSE-by-N matrix or 1-by-N cell array where
N is the number of subarrays.

Subarrays do not have to have the same dimensions and sizes. In this case, you specify subarray
weights as

• an NSE-by-N matrix, where NSE is the number of elements in the largest subarray. The first Q
entries in each column are the element weights for the subarray where Q is the number of
elements in the subarray.

• a 1-by-N cell array. Each cell contains a column vector of weights for the corresponding subarray.
The column vectors have lengths equal to the number of elements in the corresponding subarray.

Dependencies

To enable this argument, set the SubarraySteering to 'Custom'.

Output Arguments
RESP

Voltage responses of the subarrays of a phased array. The output depends on whether the array
supports polarization or not.
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• If the array is not capable of supporting polarization, the voltage response, RESP, has the
dimensions N-by-M-by-L. The size N represents the number of subarrays in the phased array, M
represents the number of angles specified in ANG, and L represents the number of frequencies
specified in FREQ. For a particular subarray, each column of RESP contains the responses of the
subarray for the corresponding direction specified in ANG. Each of the L pages of RESP contains
the responses of the subarrays for the corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a MATLAB
struct containing two fields, RESP.H and RESP.V. The field RESP.H represents the array’s
horizontal polarization response while RESP.V represents the array’s vertical polarization
response. Each field has the dimensions N-by-M-by-L. The size N represents the number of
subarrays in the phased array, M represents the number of angles specified in ANG, and L
represents the number of frequencies specified in FREQ. For a particular subarray, each column of
RESP contains the responses of the subarray for the corresponding direction specified in ANG.
Each of the L pages of RESP contains the responses of the subarrays for the corresponding
frequency specified in FREQ.

Examples

Response of Subarrays in Partitioned ULA

Calculate the response at boresight of a 4-element ULA partitioned into two 2-element ULAs.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set up the partitioned array.

hula = phased.ULA('NumElements',4,'ElementSpacing',0.5);
partitionedarray = phased.PartitionedArray('Array',hula,...
   'SubarraySelection',[1 1 0 0;0 0 1 1]);

Calculate the response of the subarrays at boresight. Assume the operating frequency is 1 GHz and
the propagation speed is the speed of light.

resp = partitionedarray(1.0e9,[0;0],physconst('Lightspeed'))

resp = 2×1

     2
     2

Subarray Element Weights for Partitioned Array

Create a partitioned URA array with three subarrays of different sizes. The subarrays have 8, 16, and
32 elements. Use different sets of subarray element weights for each subarray.

Create a 4-by-56 element URA.

antenna = phased.IsotropicAntennaElement;
fc = 300e6;
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c = physconst('LightSpeed');
lambda = c/fc;
n1 = 2^3;
n2 = 2^4;
n3 = 2^5;
nrows = 4;
ncols = n1 + n2 + n3;
array = phased.URA('Element',antenna,'Size',[nrows,ncols]);

Select the three subarrays by setting the selection matrix.

sel1 = zeros(nrows,ncols);
sel2 = sel1;
sel3 = sel1;
sel = zeros(3,nrows*ncols);
for r = 1:nrows
    sel1(r,1:n1) = 1;
    sel2(r,(n1+1):(n1+n2)) = 1;
    sel3(r,((n1+n2)+1):ncols) = 1;
end
sel(1,:) = sel1(:);
sel(2,:) = sel2(:);
sel(3,:) = sel3(:);

Create the partitioned array.

partarray = phased.PartitionedArray('Array',array, ...
    'SubarraySelection',sel,'SubarraySteering','Custom');
viewArray(partarray,'ShowSubarray','All');

 step
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Set weights for each subarray and get the response of each subarray. Put the weights in a cell array.

wts1 = ones(nrows*n1,1);
wts2 = 1.5*ones(nrows*n2,1);
wts3 = 3*ones(nrows*n3,1);
resp = partarray(fc,[30;0],c,{wts1,wts2,wts3})

resp = 3×1 complex

   0.0246 + 0.0000i
   0.0738 - 0.0000i
   0.2951 - 0.0000i

See Also
phitheta2azel | uv2azel
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viewArray
System object: phased.PartitionedArray
Package: phased

View array geometry

Syntax
viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray( ___ )

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options specified by
one or more Name,Value pair arguments.

hPlot = viewArray( ___ ) returns the handles of the array elements in the figure window. All
input arguments described for the previous syntaxes also apply here.

Input Arguments
H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each number in the vector must be an
integer between 1 and the number of elements. You can also specify the value 'All' to show indices
of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

Set this value to true to show the normal directions of all elements of the array. Set this value to
false to plot the elements without showing normal directions.

Default: false

 viewArray
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ShowTaper

Set this value to true to specify whether to change the element color brightness in proportion to the
element taper magnitude. When this value is set to false, all elements are drawn with the same
color. The default value is false.

Default: false

ShowSubarray

Vector specifying the indices of subarrays to highlight in the figure. Each number in the vector must
be an integer between 1 and the number of subarrays. You can also specify the value 'All' to
highlight all subarrays of the array or 'None' to suppress the subarray highlighting. The highlighting
uses different colors for different subarrays, and white for elements that occur in multiple subarrays.

Default: 'All'

Title

Character vector specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handles of array elements in figure window.

Examples

Highlight Overlapped Subarrays

Display the geometry of a uniform linear array having overlapped subarrays.

Create a 16-element ULA that has five 4-element subarrays. Some elements occur in more than one
subarray.

h = phased.ULA(16);
ha = phased.PartitionedArray('Array',h,...
    'SubarraySelection',...
    [1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;...
    0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0;...
    0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0;...
    0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0;...
    0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1]);

Display the geometry of the array, highlighting all subarrays.

viewArray(ha);

1 Objects

1-1212



Each color other than white represents a different subarray. White represents elements that occur in
multiple subarrays.

Examine the overlapped subarrays by creating separate figures that highlight the first, second, and
third subarrays. In each figure, dark blue represents the highlighted elements.

for idx = 1:3
    figure;
    viewArray(ha,'ShowSubarray',idx,...
        'Title',['Subarray #' num2str(idx)]);
end

 viewArray
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See Also
phased.ArrayResponse

Topics
“Phased Array Gallery”
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phased.PhaseCodedWaveform
Package: phased

Phase-coded pulse waveform

Description
The PhaseCodedWaveform object creates a phase-coded pulse waveform.

To obtain waveform samples:

1 Define and set up your phase-coded pulse waveform. See “Construction” on page 1-1217.
2 Call step to generate the phase-coded pulse waveform samples according to the properties of

phased.PhaseCodedWaveform. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Construction
H = phased.PhaseCodedWaveform creates a phase-coded pulse waveform System object, H. The
object generates samples of a phase-coded pulse.

H = phased.PhaseCodedWaveform(Name,Value) creates a phase-coded pulse waveform object,
H, with additional options specified by one or more Name,Value pair arguments. Name is a property
name on page 1-1217, and Value is the corresponding value. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.

Properties
SampleRate

Sample rate

Specify the sample rate in hertz as a positive scalar. The default value of this property corresponds to
1 MHz. The value of this property must satisfy these constraints:

• (SampleRate./PRF) is a scalar or vector that contains only integers — the number of samples in
a pulse must be an integer.

• (SampleRate*ChipWidth) is an integer value — the number of samples in a chip must be an
integer.

Default: 1e6
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Code

Phase code type

Specify the phase code type used in phase modulation. Valid values are:

• 'Barker'
• 'Frank'
• 'P1'
• 'P2'
• 'P3'
• 'P4'
• 'Px'
• 'Zadoff-Chu'

Default: 'Frank'

ChipWidth

Time duration of each chip

Specify the time duration of each chip in a phase-coded waveform as a positive scalar. Units are
seconds. For this waveform, the pulse duration is equal to the product of the chip width and number
of chips.

The value of this property must satisfy these constraints:

• ChipWidth is less than or equal to (1./(NumChips*PRF)) — the total time duration of all chips
cannot exceed the duration of the pulse.

• (SampleRate*ChipWidth) is an integer value — the number of samples in a chip must be an
integer.

Default: 1e-5

NumChips

Number of chips

Specify the number of chips per pulse in a phase-coded waveform as a positive integer. The value of
this property must be less than or equal to (1./(ChipWidth*PRF)) — the total time duration of all
chips cannot exceed the pulse repetition interval.

The table shows additional constraints on the number of chips for different code types.

If the Code property is ... Then the NumChips property must be...
'Frank', 'P1', or 'Px' A perfect square
'P2' An even number that is a perfect square
'Barker' 2, 3, 4, 5, 7, 11, or 13

Default: 4
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SequenceIndex

Zadoff-Chu sequence index

Specify the sequence index used in Zadoff-Chu code as a positive integer. This property applies only
when you set the Code property to 'Zadoff-Chu'. The value of SequenceIndex must be relatively
prime to the value of the NumChips property.

Default: 1

PRF

Pulse repetition frequency

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. ThePRF must satisfy
these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval. For the phase-
coded waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to any element of PRF must be an integer. This condition expresses the
requirement that the number of samples in one pulse repetition interval is an integer.

You can select the value of PRF using property settings alone or using property settings in
conjunction with the prfidx input argument of the step method.

• When PRFSelectionInputPort is false, you set the PRF using properties only. You can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-valued entries.

Then, each call to the step method uses successive elements of this vector for the PRF. If the
last element of the vector is reached, the process continues cyclically with the first element of
the vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by specifying PRF
as a row vector with positive real-valued entries. But this time, when you execute the step
method, select a PRF by passing an argument specifying an index into the PRF vector.

In all cases, the number of output samples is fixed when you set the OutputFormat property to
'Samples'. When you use a varying PRF and set the OutputFormat property to 'Pulses', the
number of samples can vary.

Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property to false,
the step method uses the values set in the PRF property. When you set this property to true, you
pass an index argument into the step method to select a value from the PRF vector.

Default: false
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FrequencyOffsetSource

Source of frequency offset

Source of frequency offset for the waveform, specified as 'Property' or 'Input port'.

• When you set this property to 'Property', the offset is determined by the value of the
FrequencyOffset property.

• When you set this property to 'Input port', the FrequencyOffset is determined by the
freqoffset input argument.

Default: 'Property'

FrequencyOffset

Frequency offset

Frequency offset in Hz, specified as a scalar.
Dependencies

This property applies when you set the FrequencyOffsetSource property to 'Input port'.

Default: 0 Hz

OutputFormat

Output signal format

Specify the format of the output signal as 'Pulses' or 'Samples'. When you set the
OutputFormat property to 'Pulses', the output of the step method takes the form of multiple
pulses specified by the value of the NumPulses property. The number of samples per pulse can vary if
you change the pulse repetition frequency during the simulation.

When you set the OutputFormat property to 'Samples', the output of the step method is in the
form of multiple samples. In this case, the number of output signal samples is the value of the
NumSamples property and is fixed.

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Pulses'.

Default: 1
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PRFOutputPort

Set this property to true to output the PRF for the current pulse using a step method argument.
Dependencies

This property can be used only when the OutputFormat property is set to 'Pulses'.

Default: false

CoefficientsOutputPort

Enable matched filter coefficients output port

Enable the matched filter coefficients output port, specified as false or true. When you set this
property to false, the object does not provide the matched filter coefficients used during the
simulation as an output. When you set this property to true, the object provides the matched filter
coefficients used during the simulation as an output.

Default: false

Methods
bandwidth Bandwidth of phase-coded waveform
getMatchedFilter Matched filter coefficients for waveform
plot Plot phase-coded pulse waveform
reset Reset states of phase-coded waveform object
step Samples of phase-coded waveform

Common to All System Objects
release Allow System object property value changes

Examples

Plot Phase-Coded Waveform and Spectrum

Create and plot a two-pulse phase-coded waveform that uses the Zadoff-Chu code.

sPCW = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...
    'ChipWidth',5e-6,'NumChips',16,...
    'OutputFormat','Pulses','NumPulses',2);
fs = sPCW.SampleRate;

Generate signal samples and plot the magnitude and phase of the waveforms.

wav = step(sPCW);
nsamp = size(wav,1);
t = [0:(nsamp-1)]/fs;
plot(t*1e6,abs(wav),'.-')
title('Magnitude')
xlabel('Time (\mu sec)')
ylabel('Amplitude')
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plot(t*1e6,180/pi*angle(wav))
title('Phase Angle')
xlabel('Time (\mu sec)')
ylabel('Phase Angle (deg)')
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Plot the spectrum.

nsamp = size(wav,1);
nfft = 2^nextpow2(nsamp);
Z = fft(wav,nfft);
fr = [0:(nfft-1)]/nfft*fs;
fr = fr - fs/2;
plot(fr/1000,abs(fftshift(Z)))
xlabel('Frequency (kHz)')
ylabel('Amplitude')
grid
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Apply Frequency Offset to Phase-Coded Waveform

Apply a frequency offset to a phase-coded waveform that uses the Zadoff-Chu code. Plot the
frequency spectrum of the waveform with and without a frequency offset applied.

Create a phase-coded waveform object which is configured to set the frequency offset from an input
when the object is executed.

fs = 1e6;
sPCW = phased.PhaseCodedWaveform('SampleRate',fs,'Code','Zadoff-Chu', ...
    'ChipWidth',8e-6,'NumChips',4,'OutputFormat','Pulses', ...
    'NumPulses',1,'FrequencyOffsetSource','Input port');

Execute the object two times. First set the frequency offset set to 0 Hz, and then to 2e4 Hz.

pcwav = sPCW(0);
pcwav_foffset = sPCW(2e4);

Plot the frequency spectrum of the complex signals. The frequency offset signal is shifted to the right.

[Pxx,f] = pwelch(pcwav,[],[],[],fs,'centered');
[Pxx_offset,foffset] = pwelch(pcwav_foffset,[],[],[],fs,'centered');
plot(f/1000,Pxx,foffset/1000,Pxx_offset)
ylabel('PSD');
xlabel('Frequency (kHz)');
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legend({'No offset','Offset applied'},'Location','northwest');
grid on;

Algorithms
A 2-chip Barker code can use [1 –1] or [1 1] as the sequence of amplitudes. This software implements
[1 –1].

A 4-chip Barker code can use [1 1 –1 1] or [1 1 1 –1] as the sequence of amplitudes. This software
implements [1 1 –1 1].

A Zadoff-Chu code can use a clockwise or counterclockwise sequence of phases. This software
implements the latter, such as π ⋅ f (k) ⋅ SequenceIndex/NumChips instead of
−π ⋅ f (k) ⋅ SequenceIndex/NumChips. In these expressions, k is the index of the chip and f(k) is a
function of k.

For further details, see [1].

References

[1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John Wiley & Sons, 2004.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• plot method is not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.LinearFMWaveform | phased.RectangularWaveform | phased.SteppedFMWaveform

Topics
Waveform Analysis Using the Ambiguity Function
“Phase-Coded Waveforms”

Introduced in R2011b
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bandwidth
System object: phased.PhaseCodedWaveform
Package: phased

Bandwidth of phase-coded waveform

Syntax
bw = bandwidth(waveform)

Description
bw = bandwidth(waveform) returns the bandwidth (in hertz) of the pulses for the phase-coded
pulse waveform, waveform. The bandwidth value is the reciprocal of the chip width.

Input Arguments
waveform

Phase-coded waveform object.

Output Arguments
bw

Bandwidth of the pulses, in hertz.

Examples

Phase-Coded Waveform Bandwidth

Determine the bandwidth of a Frank phased-coded waveform.

waveform = phased.PhaseCodedWaveform;
bw = bandwidth(waveform)

bw = 1.0000e+05

 bandwidth
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getMatchedFilter
System object: phased.PhaseCodedWaveform
Package: phased

Matched filter coefficients for waveform

Syntax
Coeff = getMatchedFilter(H)
Coeff = getMatchedFilter(H,'FrequnecyOffset',FOFFSET)

Description
Coeff = getMatchedFilter(H) returns the matched filter coefficients for the phase-coded
waveform object, H. Coeff is a column vector.

Coeff = getMatchedFilter(H,'FrequnecyOffset',FOFFSET) adds a frequency offset when
matched filter coefficients are generated. FOFFSET must be a positive scalar. This option is available
when you set the FrequencyOffsetSource property to 'Input port' for the input object, H.

Input Arguments
H

Phase-coded waveform object.

Output Arguments
Coeff

Column vector containing coefficients of the matched filter for H.

Examples

Matched-Filter Coefficients for Pulse-Coded Waveform

Obtain the matched filter coefficients for a phase-coded pulse waveform that uses the Zadoff-Chu
code.

waveform = phased.PhaseCodedWaveform('Code','Zadoff-Chu','ChipWidth',1e-6, ...
    'NumChips',16,'OutputFormat','Pulses','NumPulses',2);
coeff = getMatchedFilter(waveform);
stem(real(coeff))
title('Matched Filter Coefficients, Real Part')
axis([0 17 -1.1 1.1])
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plot
System object: phased.PhaseCodedWaveform
Package: phased

Plot phase-coded pulse waveform

Syntax
plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot( ___ )

Description
plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one or more
Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker options as
are available in the MATLAB plot function.

h = plot( ___ ) returns the line handle in the figure.

Input Arguments
Hwav

Waveform object. This variable must be a scalar that represents a single waveform object.

LineSpec

Character vector to specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec applies to
both the real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PlotType

Specifies whether the function plots the real part, imaginary part, or both parts of the waveform.
Valid values are 'real', 'imag', and 'complex'.

Default: 'real'
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PulseIdx

Index of the pulse to plot. This value must be a scalar.

Default: 1

FrequencyOffset

Frequency offset

Frequency offset in Hz, specified as a scalar.

Dependencies

This property applies when you set the FrequencyOffsetSource property to 'Input port'.

Default: 0 Hz

Output Arguments
h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a column vector.
The first and second elements of this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples

Plot Pulse-Coded Waveform

Create and plot a phase-coded pulse waveform that uses the Zadoff-Chu code.

waveform = phased.PhaseCodedWaveform('Code','Zadoff-Chu','ChipWidth',1e-6, ...
    'NumChips',16,'OutputFormat','Pulses','NumPulses',2);
plot(waveform)
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reset
System object: phased.PhaseCodedWaveform
Package: phased

Reset states of phase-coded waveform object

Syntax
reset(H)

Description
reset(H) resets the states of the PhaseCodedWaveform object, H. Afterward, the next call to step
restarts the phase sequence from the beginning. Also, if the PRF property is a vector, the next call to
step uses the first PRF value in the vector.

 reset
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step
System object: phased.PhaseCodedWaveform
Package: phased

Samples of phase-coded waveform

Syntax
Y = step(sPCW)
Y = step(sPCW,prfidx)
Y = step(sRFM,freqoffset)
[Y,PRF] = step( ___ )
[Y,COEFF] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Y = step(sPCW) returns samples of the phase-coded pulse in a column vector, Y.

Y = step(sPCW,prfidx), uses the prfidx index to select the PRF from the predefined vector of
values specified by in the PRF property. This syntax applies when you set the
PRFSelectionInputPort property to true.

Y = step(sRFM,freqoffset), uses the freqoffset to generate the waveform with an offset as
specified at step time. Use this syntax for cases where the transmit pulse frequency needs to be
dynamically updated. This syntax applies when you set the FrequencyOffsetSource property to
'Input port'.

[Y,PRF] = step( ___ ) also returns the current pulse repetition frequency, PRF. To enable this
syntax, set the PRFOutputPort property to true and set the OutputFormat property to 'Pulses'.

[Y,COEFF] = step( ___ ) returns the matched filter coefficients, COEFF, for the current pulse. To
enable this syntax, set CoefficientsOutputPort to true. COEFF is returned as an NZ-by-1 vector,
where NZ is the maximum of the nonzero pulse width.

You can combine optional input and output arguments when their enabling properties are set.
Optional inputs and outputs must be listed in the same order as the order of the enabling properties.
For example, [Y,PRF,COEFF] = step(sRFM,prfidx,freqoffset).

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
sPCW

Phase-coded waveform object.

Output Arguments
Y

Column vector containing the waveform samples.

Examples

Create Pulse Coded Waveform

Generate samples of two pulses of a phase-coded pulse waveform that uses the Zadoff-Chu code.

sPCW = phased.PhaseCodedWaveform('Code','Zadoff-Chu',...
    'ChipWidth',1e-6,'NumChips',16,...
    'OutputFormat','Pulses','NumPulses',2);
wav = step(sPCW);
fs = sPCW.SampleRate;
nsamps = size(wav,1);
t = [0:(nsamps-1)]/fs;
plot(t*1e6,real(wav))
title('Waveform: Real Part')
xlabel('Time (\mu sec)')
ylabel('Amplitude')
grid
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Create Phase-Coded Waveform with Variable PRF

Create and plot two-pulse phase-coded waveforms that uses the Zadoff-Chu code. Set the sample rate
to 1 MHz, a chip width of 5 microseconds, 16 chips per pulse. Vary the pulse repetition frequency.

fs = 1e6;
PRF = [5000,10000];
waveform = phased.PhaseCodedWaveform('SampleRate',fs,...
    'Code','Zadoff-Chu','PRFSelectionInputPort',true,...
    'ChipWidth',5e-6,'NumChips',16,'PRF',PRF,...
    'OutputFormat','Pulses','NumPulses',2);

Obtain and plot the phase-coded waveforms. For the first call to the step method, set the PRF to
10kHz using the PRF index. For the next call, set the PRF to 25 kHz. For the final call, set the PRF to
10kHz.

wav = [];
wav1 = waveform(1);
wav = [wav; wav1];
wav1 = waveform(2);
wav = [wav; wav1];
wav1 = waveform(1);
wav = [wav; wav1];
nsamps = size(wav,1);
t = [0:(nsamps-1)]/fs;
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plot(t*1e6,real(wav))
xlabel('Time (\mu sec)')
ylabel('Amplitude')

Generate Matched Filter Coefficients of Phase-Coded Waveform

Generate output samples and matched filter coefficients of a Barker coded waveform.

waveform = phased.PhaseCodedWaveform('Code','Barker','NumChips',5, ...
    'CoefficientsOutputPort',true,'PRF',[1e4 2e4],'ChipWidth',5e-6, ...
    'OutputFormat','Samples','NumSamples',150);
[wav,coeff] = waveform();

Create a matched filter that applies the coefficients as an input argument. Use the coeficients when
applying the matched filter to the waveform. Plot the waveform and matched filter outputs.

mf = phased.MatchedFilter('CoefficientsSource','Input port');
mfOut = mf(wav,coeff);
subplot(211),plot(real(wav));
xlabel('Samples'),ylabel('Amplitude'),title('Waveform Output');
subplot(212),plot(abs(mfOut));
xlabel('Samples'),ylabel('Amplitude'),title('Matched Filter Output');

 step
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phased.PhaseShiftBeamformer
Package: phased

Narrowband phase shift beamformer

Description
The phased.PhaseShiftBeamformer object implements a narrowband phase-shift beamformer. A
phase-shift beamformer approximates a time-delay beamformer for narrowband signals by phase-
shifting the arriving signal. A phase shift beamformer belongs to the family of conventional
beamformers.

To beamform signals arriving at an array:

1 Create the phased.PhaseShiftBeamformer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
beamformer = phased.PhaseShiftBeamformer
beamformer = phased.PhaseShiftBeamformer(Name,Value)

Description

beamformer = phased.PhaseShiftBeamformer creates a phase-shift beamformer System object,
beamformer, with default property values.

beamformer = phased.PhaseShiftBeamformer(Name,Value) creates a phase-shift
beamformer with each property Name set to a specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in
single quotes.
Example: beamformer =
phased.PhaseShiftBeamformer('SensorArray',phased.URA,'OperatingFrequency',300
e6) sets the sensor array to a uniform rectangular array (URA) with default URA property values.
The beamformer has an operating frequency of 300 MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorArray — Sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox array

Sensor array, specified as an array System object belonging to Phased Array System Toolbox. The
sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: single | double

DirectionSource — Source of beamforming direction
'Property' (default) | 'Input port'

Source of beamforming direction, specified as 'Property' or 'Input port'. Specify whether the
beamforming direction comes from the Direction property of this object or from the input
argument, ANG. Values of this property are:

'Property' Specify the beamforming direction using the Direction
property.

'Input port' Specify the beamforming direction using the input argument,
ANG.

Data Types: char

Direction — Beamforming directions
[0;0] (default) | real-valued 2-by-1 vector | real-valued 2-by-L matrix

Beamforming directions, specified as a real-valued 2-by-1 vector or a real-valued 2-by-L matrix. For a
matrix, each column specifies a different beamforming direction. Each column has the form
[AzimuthAngle;ElevationAngle]. Azimuth angles must lie between –180° and 180° and
elevation angles must lie between –90° and 90°. All angles are defined with respect to the local
coordinate system of the array. Units are in degrees.
Example: [40;30]
Dependencies

To enable this property, set the DirectionSource property to 'Property'.
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Data Types: single | double

NumPhaseShifterBits — Number of phase shifter quantization bits
0 (default) | nonnegative integer

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights, specified as a nonnegative integer. A value of zero indicates that no quantization is
performed.
Example: 5
Data Types: single | double

WeightsNormalization — Approach for normalizing beamformer weights
'Distortionless' (default) | 'Preserve power'

If you set this property value to 'Distortionless', the gain in the beamforming direction is 0 dB.
If you set this property value to 'Preserve power', the norm of the weights is unity.
Example: 'Preserve power'
Data Types: char

WeightsOutputPort — Enable beamforming weights output
false (default) | true

Enable the output of beamforming weights, specified as false or true. To obtain the beamforming
weights, set this property to true and use the corresponding output argument, W. If you do not want
to obtain the weights, set this property to false.
Data Types: logical

Usage

Syntax
Y = beamformer(X)
Y = beamformer(X,ANG)
[Y,W] = beamformer( ___ )

Description

Y = beamformer(X) performs phase-shift beamforming on the input signal, X, and returns the
beamformed output in Y. To use this syntax, set DirectionSource to 'Property' and set the
beamforming direction using the Direction property.

Y = beamformer(X,ANG) uses the ANG input argument to set the beamforming direction. To use
this syntax, set the DirectionSource property to 'Input port'.

[Y,W] = beamformer( ___ ) returns the beamforming weights, W. To use this syntax, set the
WeightsOutputPort property to true.

Input Arguments

X — Input signal
complex-valued M-by-N matrix

 phased.PhaseShiftBeamformer

1-1241



Input signal, specified as a complex-valued M-by-N matrix. If the sensor array contains subarrays, N
is the number of subarrays; otherwise, N is the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: single | double
Complex Number Support: Yes

ANG — Beamforming directions
[0;0] (default) | real-valued 2-by-1 column vector | real-valued 2-by-L matrix

Beamforming directions, specified as a real-valued 2-by-1 column vector, or 2-by-L matrix. L is the
number of beamforming directions. Each column has the form [AzimuthAngle;ElevationAngle].
Units are in degrees. Each azimuth angle must lie between –180° and 180°, and each elevation angle
must lie between –90° and 90°.
Example: [40;10]

Dependencies

To enable this argument, set the DirectionSource property to 'Input port'.
Data Types: single | double

Output Arguments

Y — Beamformed output
complex-valued M-by-L matrix

Beamformed output, returned as a complex-valued M-by-L matrix, where M is the number of rows of
X and L is the number of beamforming directions.
Data Types: single | double
Complex Number Support: Yes

W — Beamforming weights
complex-valued N-by-L matrix.

Beamforming weights, returned as a complex-valued N-by-L matrix. If the sensor array contains
subarrays, N is the number of subarrays; otherwise, N is the number of elements. L is the number of
beamforming directions.

Dependencies

To enable this output, set the DirectionSource property to true.
Data Types: single | double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

1 Objects

1-1242



Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Phase-Shift ULA Beamformer

Apply phase-shift beamforming to a sinewave signal received by a 7-element ULA. The beamforming
direction is 45° azimuth and 0° elevation. Assume the array operates at 300 MHz. Specify the
beamforming direction using the Direction property.

Simulate the signal.

t = (0:1000)';
fsignal = 0.01;
x = sin(2*pi*fsignal*t);
c = physconst('Lightspeed');
fc = 300e6;
incidentAngle = [45;0];
array = phased.ULA('NumElements',7);
x = collectPlaneWave(array,x,incidentAngle,fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

Set up a phase-shift beamformer and then beamform the input data.

beamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
    'OperatingFrequency',fc,'PropagationSpeed',c,...
    'Direction',incidentAngle,'WeightsOutputPort',true);
[y,w] = beamformer(rx);

Plot the original signal at the middle element and the beamformed signal.

plot(t,real(rx(:,4)),'r:',t,real(y))
xlabel('Time (sec)')
ylabel('Amplitude')
legend('Input','Beamformed')
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Plot the array response pattern after applying the weights.

pattern(array,fc,[-180:180],0,'PropagationSpeed',c,'Type',...
    'powerdb','CoordinateSystem','polar','Weights',w)

1 Objects

1-1244



Phase-Shift Beamformer Using ULA

Apply phase-shift beamforming to the signal received by a 5-element ULA. The beamforming
direction is 45° azimuth and 0° elevation. Assume the array operates at 300 MHz. Specify the
beamforming direction using an input port.

Simulate a sinewave signal arriving at the array.

t = (0:1000)';
fsignal = 0.01;
x = sin(2*pi*fsignal*t);
c = physconst('LightSpeed');
fc = 300e6;
incidentAngle = [45;0];
array = phased.ULA('NumElements',5);
x = collectPlaneWave(array,x,incidentAngle,fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

Construct the phase-shift beamformer and then beamform the input data.

beamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
    'OperatingFrequency',fc,'PropagationSpeed',c,...
    'DirectionSource','Input port','WeightsOutputPort',true);
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Obtain the beamformed signal and the beamformer weights.

[y,w] = beamformer(rx,incidentAngle);

Plot the original signal at the middle element and the beamformed signal.

plot(t,real(rx(:,3)),'r:',t,real(y))
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')

Plot the array response pattern after applying the weights.

pattern(array,fc,[-180:180],0,'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',w)
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Algorithms
Phase Shift Beamforming

The phase shift beamformer uses the conventional delay-and-sum beamforming algorithm. The
beamformer assumes the signal is narrowband, so a phase shift can approximate the required delay.
The beamformer preserves the incoming signal power.

For more details, see [1].

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ: Prentice Hall,
1993.

 phased.PhaseShiftBeamformer

1-1247



[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial filtering”. IEEE
ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
phased.FrostBeamformer | phased.LCMVBeamformer | phased.MVDRBeamformer |
phased.SubbandMVDRBeamformer

Introduced in R2011a
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step
System object: phased.PhaseShiftBeamformer
Package: phased

Perform phase shift beamforming

Syntax
Y = step(H,X)
Y = step(H,X,ANG)
[Y,W] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) performs phase shift beamforming on the input, X, and returns the beamformed
output in Y.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This syntax is available when you set
the DirectionSource property to 'Input port'.

[Y,W] = step( ___ ) returns the beamforming weights, W. This syntax is available when you set the
WeightsOutputPort property to true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Beamformer object.

X

Input signal, specified as an M-by-N matrix. If the sensor array contains subarrays, N is the number
of subarrays; otherwise, N is the number of elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
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ANG

Beamforming directions, specified as a two-row matrix. Each column has the form [AzimuthAngle;
ElevationAngle], in degrees. Each azimuth angle must be between –180 and 180 degrees, and each
elevation angle must be between –90 and 90 degrees.

Output Arguments
Y

Beamformed output. Y is an M-by-L matrix, where M is the number of rows of X and L is the number
of beamforming directions.

W

Beamforming weights. W is an N-by-L matrix, where L is the number of beamforming directions. If the
sensor array contains subarrays, N is the number of subarrays; otherwise, N is the number of
elements.

Examples

Phase-Shift Beamformer Using ULA

Apply phase-shift beamforming to the signal received by a 5-element ULA. The beamforming
direction is 45° azimuth and 0° elevation. Assume the array operates at 300 MHz. Specify the
beamforming direction using an input port.

Simulate a sinewave signal arriving at the array.

t = (0:1000)';
fsignal = 0.01;
x = sin(2*pi*fsignal*t);
c = physconst('LightSpeed');
fc = 300e6;
incidentAngle = [45;0];
array = phased.ULA('NumElements',5);
x = collectPlaneWave(array,x,incidentAngle,fc,c);
noise = 0.1*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

Construct the phase-shift beamformer and then beamform the input data.

beamformer = phased.PhaseShiftBeamformer('SensorArray',array,...
    'OperatingFrequency',fc,'PropagationSpeed',c,...
    'DirectionSource','Input port','WeightsOutputPort',true);

Obtain the beamformed signal and the beamformer weights.

[y,w] = beamformer(rx,incidentAngle);

Plot the original signal at the middle element and the beamformed signal.

plot(t,real(rx(:,3)),'r:',t,real(y))
xlabel('Time')
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ylabel('Amplitude')
legend('Original','Beamformed')

Plot the array response pattern after applying the weights.

pattern(array,fc,[-180:180],0,'PropagationSpeed',c,'CoordinateSystem','rectangular','Weights',w)
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Algorithms
The phase shift beamformer uses the conventional delay-and-sum beamforming algorithm. The
beamformer assumes the signal is narrowband, so a phase shift can approximate the required delay.
The beamformer preserves the incoming signal power.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel
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phased.Platform
Package: phased

Model platform motion

Description
The phased.Platform System object models the translational motion of one or more platforms in
space. A platform can be a target such as a vehicle or airplane, or a sonar or radar transmitter and
receiver. The model assumes that the platform undergoes translational motion at constant velocity or
constant acceleration during each simulation step. Positions and velocities are always defined in the
global coordinate system.

To model a moving platform:

1 Define and set up your platform using the “Construction” on page 1-1253 procedure.
2 Repeatedly call the step method to move the platform along a path determined by the

phased.Platform properties.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
sPlat = phased.Platform creates a platform System object, sPlat. The object models a
stationary platform with position at the origin and velocity set to zero.

sPlat = phased.Platform(Name,Value) creates an object, sPlat, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

sPlat = phased.Platform(pos,vel,Name,Value) creates a platform object, sPlat, with
InitialPosition set to pos and Velocity set to vel. Other specified property Names are set to
specified Values. The pos and vel arguments are value-only. Value-only arguments do not require a
specified Name but are interpreted according to their argument positions. To specify any value-only
argument, specify all preceding value-only arguments.

The motion model is either a constant velocity, a constant acceleration, or a custom trajectory. You
can choose one of two motion models using the MotionModel property.

 phased.Platform

1-1253



MotionModel Value Usage
'Velocity' If you set the VelocitySource property to

'Property', the platform moves with constant
velocity determined by the Velocity property.
You can specify the InitialPosition property
or leave it to its default value. You can change the
tunable Velocity property at any simulation
step.

When you set the VelocitySource property to
'Input port', you can input instantaneous
velocity as an argument to the step method.
Specify the initial position using the
InitialPosition property or leave it as a
default value.

'Acceleration' When you set the AccelerationSource
property to 'Property', the platform moves
with constant acceleration determined by the
Acceleration property. You can specify the
InitialPosition and InitialVelocity
properties or leave them to their defaults. You
can change the tunable Acceleration property
at any simulation step.

When you set the AccelerationSource
property to 'Input port', you can input
instantaneous acceleration as an argument to the
step method. Specify the InitialPosition
and InitialVelocity properties or leave them
as their defaults.

'Custom' Specify the platform motion using a series of
waypoints in the CustomTrajectory property.

Properties
MotionModel

Object motion model

Object motion model, specified as 'Velocity', 'Acceleration', or 'Custom'. When you set this
property to 'Velocity', the platform follows a constant velocity trajectory during each simulation
step. When you set this property to 'Acceleration', the platform follows a constant acceleration
trajectory during each simulation step. When you set the property to 'Custom', the platform motion
follows a sequence of waypoints specified by the CustomTrajectory property. The object performs
a piecewise cubic interpolation on the waypoints to derive the position and velocity at each time step.

Default: 'Velocity'

InitialPosition

Initial position of platform
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Initial position of platform, specified as a real-valued 3-by-1 column vector in the form of [x;y;z] or
a real-valued 3-by-N matrix where N is the number of platforms. Each column takes the form
[x;y;z]. Position units are meters.

Default: [0;0;0]

InitialVelocity

Initial velocity of platform

Initial velocity of platform, specified as a real-valued 3-by-1 column vector in the form of [vx;vy;vz]
or a real-valued 3-by-N matrix where N is the number of platforms. Each column taking the form
[vx;vy;vz]. Velocity units are meters per second.

This property only applies when you set the MotionModel property to 'Velocity' and the
VelocitySource to 'Input port', or when you set the MotionModel property to
'Acceleration'.

Default: [0;0;0]

VelocitySource

Source of velocity data

Source of velocity data, specified as one of 'Property' or 'Input port'. When you set the value
of this property to 'Property', use Velocity property to set the velocity. When you set this
property to 'Input port', use an input argument of the step method to set the velocity.

This property applies when you set the MotionModel property to 'Velocity'.

Default: 'Property'

Velocity

Current velocity of platform

Specify the current velocity of the platform as a 3-by-1 real-valued column vector in the form of
[vx;vy;vz] or a 3-by-N real-valued matrix for multiple platforms. Each column taking the form
[vx;vy;vz]. Velocity units are meters/sec. The dimension N is the number of platforms.

This property applies when you set the MotionModel property to 'Velocity' and the
VelocitySource to 'Property'. This property is tunable.

Default: [0;0;0]

AccelerationSource

Source of acceleration data

Source of acceleration data, specified as one of 'Property' or 'Input port'. When you set the
value of this property to 'Property', specify the acceleration using the Acceleration property.
When you set this property to 'Input port', use an input argument of the step method to set the
acceleration.

This property applies when you set the MotionModel property to 'Acceleration'.
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Default: 'Property'

Acceleration

Acceleration of platform

Specify the current acceleration of the platform as a real-valued 3-by-1 column vector in the form
[ax;ay;az] or a real-valued 3-by-N matrix with each column taking the form [ax;ay;az]. The
dimension N is the number of platforms. Acceleration units are meters/sec/sec.

This property applies when you set the MotionModel property to 'Acceleration' and
AccelerationSource to 'Property'. This property is tunable.

Default: [0;0;0]

CustomTrajectory

Custom trajectory waypoints.

Custom trajectory waypoints, specified as a real-valued M-by-L matrix, or M-by-L-by-N array. M is the
number of waypoints. L is either 4 or 7.

• When L is 4, the first column indicates the times at which the platform position is measured. The
2nd through 4th columns are position measurements in x, y, and z coordinates. The velocity is
derived from the position measurements.

• When L is 7, the 5th through seventh columns in the matrix are velocity measurements in x, y, and
z coordinates.

When you set the CustomTrajectory property to a three-dimensional array, the number of pages,
N, represent the number of platforms. Time units are in seconds, position units are in meters, and
velocity units are in meters per second.

To enable this property, set the MotionModel property to 'Custom'.

ScanMode

Mechanical scanning mode

Mechanical scan mode for platform, specified as 'None', 'Circular'', or 'Sector', where
'None' is the default. When you set the ScanMode property to 'Circular', the platform scan
clockwise 360 degrees continuously in the azimuthal direction of the platform orientation axes. When
you set the ScanMode property to 'Sector', the platform scans clockwise in the azimuthal direction
in the platform orientation axes within a range specified by the AzimuthSpan property. When the
platform scan reaches the span limits, the scan reverses direction and scans back to the other scan
limit. Scanning happens within the orientation axes of the platform.

InitialScanAngle

Initial scan angle of platform

Initial scan angle of platform, specified as a 1-by-N vector where N is the number of platforms. The
scanning occurs in the local coordinate system of the platform. The InitialOrientationAxes
specifies the original local coordinate system. At the start of the simulation, the orientation axes
specified by the InitialOrientationAxes are rotated by the angle specified in the
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InitialScanAngle property. The default value is zero. Units are in degrees. This property applies
when you set the ScanMode property to 'Circular' or 'Sector'.
Example: [30 40]

AzimuthSpan

Azimuth span

The azimuth angle span, specified as an N-by-2 matrix where N is the number of platforms. Each row
of the matrix specifies the scan range of the corresponding platform in the form
[ScanAngleLowerBound ScanAngleHigherBound]. The default value is [-60 60]. Units are in
degrees. To enable this property, set the ScanMode to 'Sector'.

AzimuthScanRate

Azimuth scan rate

Azimuth scan rate, specified as a 1-by-N vector where N is the number of platforms. Each entry in the
vector is the azimuth scan rate for the corresponding platform. The default value is 10 degrees/
second. Units are in degrees/second. To enable this property, set the ScanMode property to
'Circular' or 'Sector'.

InitialOrientationAxes

Initial orientation axes of platform

Initial orientation axes of platform, specified as a 3-by-3 real-valued orthonormal matrix for a single
platform or as a 3-by-3-by-N real-valued matrix for multiple platforms. The dimension N is the
number of platforms. When the orientation matrix is 3-by-3, the three columns represent the axes of
the local coordinate system (xyz). When the orientation matrix is 3-by-3-by-N, for each page index,
the resulting 3-by-3 matrix represents the axes of a local coordinate system.

Default: [1 0 0;0 1 0;0 0 1]

OrientationAxesOutputPort

Output orientation axes

To obtain the instantaneous orientation axes of the platform, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the orientation
axes of the platform, set this property to false.

Default: false

Methods

reset Reset platform to initial position
step Output current position, velocity, and orientation axes of platform

Common to All System Objects
release Allow System object property value changes
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Examples

Simulate motion of a platform

Create a platform at the origin having a velocity of (100,100,0) meters per second. Simulate the
motion of the platform for two time steps, assuming the time elapsed for each step is one second. The
position of the platform is updated after each step.

sPlat = phased.Platform([0; 0; 0],[100; 100; 0]);
T = 1;

At the first call to step, the position is at its initial value.

[pos,v] = step(sPlat,T);
pos

pos = 3×1

     0
     0
     0

At the second call to step, the position changes.

[pos,v] = step(sPlat,T);
pos

pos = 3×1

   100
   100
     0

Model Motion of Circling Airplane

Start with an airplane moving at 150 kmph in a circle of radius 10 km and descending at the same
time at a rate of 20 m/sec. Compute the motion of the airplane from its instantaneous acceleration as
an argument to the step method. Set the initial orientation of the platform to the identity, coinciding
with the global coordinate system.

Set up the scenario

Specify the initial position and velocity of the airplane. The airplane has a ground range of 10 km and
an altitude of 20 km.

range = 10000;
alt = 20000;
initPos = [cosd(60)*range;sind(60)*range;alt];
originPos = [1000,1000,0]';
originVel = [0,0,0]';
vs = 150.0;
phi = atan2d(initPos(2)-originPos(2),initPos(1)-originPos(1));
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phi1 = phi + 90;
vx = vs*cosd(phi1);
vy = vs*sind(phi1);
initVel = [vx,vy,-20]';
platform = phased.Platform('MotionModel','Acceleration',...
    'AccelerationSource','Input port','InitialPosition',initPos,...
    'InitialVelocity',initVel,'OrientationAxesOutputPort',true,...
    'InitialOrientationAxes',eye(3));
relPos = initPos - originPos;
relVel = initVel - originVel;
rel2Pos = [relPos(1),relPos(2),0]';
rel2Vel = [relVel(1),relVel(2),0]';
r = sqrt(rel2Pos'*rel2Pos);
accelmag = vs^2/r;
unitvec = rel2Pos/r;
accel = -accelmag*unitvec;
T = 0.5;
N = 1000;

Compute the trajectory

Specify the acceleration of an object moving in a circle in the x-y plane. The acceleration is v^2/r
towards the origin.

posmat = zeros(3,N);
r1 = zeros(N);
v = zeros(N);
for n = 1:N
    [pos,vel,oax] = platform(T,accel);
    posmat(:,n) = pos;
    vel2 = vel(1)^2 + vel(2)^2;
    v(n) = sqrt(vel2);
    relPos = pos - originPos;
    rel2Pos = [relPos(1),relPos(2),0]';
    r = sqrt(rel2Pos'*rel2Pos);
    r1(n) = r;
    accelmag = vel2/r;
    accelmag = vs^2/r;
    unitvec = rel2Pos/r;
    accel = -accelmag*unitvec;
end

Display the final orientation of the local coordinate system.

disp(oax)

   -0.3658   -0.9307   -0.0001
    0.9307   -0.3658   -0.0010
    0.0009   -0.0005    1.0000

Plot the trajectory and the origin position
posmat = posmat/1000;
figure(1)
plot3(posmat(1,:),posmat(2,:),posmat(3,:),'b.')
hold on
plot3(originPos(1)/1000,originPos(2)/1000,originPos(3)/1000,'ro')
xlabel('X (km)')
ylabel('Y (km)')
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zlabel('Z (km)')
grid
hold off

Define Platform Motion Using Waypoints

This example shows

Create waypoints from parabolic motion.

x0 = 100;
y0 = -150;
z0 = 0;
vx = 5;
vy = 10;
vz = 0;
ax = 1;
ay = -1;

t = [0:2:20];
x = x0 + vx*t + ax/2*t.^2;
y = y0 + vy*t + ay/2*t.^2;
z = z0*ones(size(t));
wpts = [t.' x.' y.' z.'];

Create a platform object with motion determined using waypoints.
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pltfm = phased.Platform('MotionModel','Custom','CustomTrajectory',wpts);
tstep = .5;
nsteps = 40;
X = [];

Advance the platform in time steps of one half second;.

for k = 1:nsteps
    [pos,vel] = pltfm(tstep);
    X = [X;pos'];    
end
plot(x,y,'o'); hold on
plot(X(:,1),X(:,2),'.')
hold off;

More About
Platform Orientation

A platform has an associated local coordinate system defined by three orthonormal axis vectors. The
direction and magnitude of the velocity vector can change with each call to the step method. When
the platform undergoes curvilinear motion, the orientation of the local coordinate system axes rotates
with the motion of the platform. The change of direction of the velocity vector defines a rotation
matrix. The same rotation matrix is then used to rotate the local coordinate system as well. When the
velocity vector maintains a constant direction, the rotation matrix is the identity matrix. The initial
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orientation of the local coordinate system is specified using the InitialOrientationAxes
property. When you specify multiple platforms, each platform rotates independently.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
global2localcoord | local2globalcoord | phased.Collector | phased.Radiator |
rangeangle

Topics
“Motion Modeling in Phased Array Systems”

Introduced in R2011a
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reset
System object: phased.Platform
Package: phased

Reset platform to initial position

Syntax
reset(H)

Description
reset(H) resets the initial position of the Platform object, H.
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step
System object: phased.Platform
Package: phased

Output current position, velocity, and orientation axes of platform

Syntax
[Pos,Vel] = step(sPlat,T)
[Pos,Vel] = step(sPlat,T,V)
[Pos,Vel] = step(sPlat,T,A)
[Pos,Vel,Laxes] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[Pos,Vel] = step(sPlat,T) returns the current position, Pos, and velocity, Vel, of the platform.
The method then updates the position and velocity. When the MotionModel property is set to
'Velocity' and the VelocitySource property is set to 'Property', the position is updated using
the equation Pos = Pos + Vel*T where T specifies the elapsed time (in seconds) for the current step.
When the MotionModel property is set to 'Acceleration' and the AccelerationSource
property is set to 'Property', the position and velocity are updated using the equations Pos = Pos +
Vel*T + 1/2Acl*T^2 and Vel = Vel + Acl*T where T specifies the elapsed time (in seconds) for the
current step.

[Pos,Vel] = step(sPlat,T,V) returns the current position, Pos, and the current velocity, Vel,
of the platform. The method then updates the position and velocity using the equation Pos = Pos +
Vel*T where T specifies the elapsed time (in seconds) for the current step. This syntax applies when
you set the MotionModel property to 'Velocity' and the VelocitySource property to 'Input
port'.

[Pos,Vel] = step(sPlat,T,A) returns the current position, Pos, and the current velocity, Vel,
of the platform. The method then updates the position and velocity using the equations Pos = Pos +
Vel*T + 1/2Acl*T^2 and Vel = Vel + Acl*T where T specifies the elapsed time (in seconds) for the
current step. This syntax applies when you set the MotionModel property to 'Acceleration' and
the AccelerationSource property to 'Input port'.

[Pos,Vel,Laxes] = step( ___ ) returns the additional output Laxes as the platform's orientation
axes when you set the OrientationAxesOutputPort property to true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
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issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
sPlat

Platform

Platform, specified as a phased.Platform System object.

T

Step time

Step time, specified as a real-valued scalar. Units are seconds

V

Platform velocity

Platform velocity, specified as a real-valued 3-by-N matrix where N is the number of platforms to
model. This argument applies when you set the MotionModel property to 'Velocity' and the
VelocitySource property to 'Input port'. Units are meters per second.

A

Platform acceleration

Platform acceleration, specified as a real-valued 3-by-N matrix where N is the number of platforms to
model. This argument applies when you set the MotionModel property to 'Acceleration' and the
AccelerationSource property to 'Input port'. Units are meters per second-squared.

Output Arguments
Pos

Current platform position

Current position of platform, specified as a real-valued 3-by-1 column vector in the form of [x;y;z]
or a real-valued 3-by-N matrix where N is the number of platforms to model. Each column takes the
form [x;y;z]. Units are meters.

Vel

Current platform velocity

Current velocity of platform, specify as a real-valued 3-by-1 column vector in the form of [vx;vy;vz]
or a real-valued 3-by-N matrix where N is the number of platforms to model. Each column taking the
form [vx;vy;vz]. Velocity units are meters per second.

Laxes

Current platform orientation axes
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Current platform orientation axes, returned as real-valued 3-by-3-by-N matrix where N is the number
of platforms to model. Each 3-by-3 submatrix is an orthonormal matrix. This output is enabled when
you set the OrientationAxesOutputPort property to true. The current platform axes rotate
around the normal vector to the path of the platform.

Examples

Simulate motion of two platforms

Create two moving platforms. The first platform, starting at the origin, has a velocity of (100,100,0)
meters per second. The second starts at (1000,0,0) meters and has a velocity of (0,200,0) meters per
second. Next, specify different local coordinate axes for each platform defined by rotation matrices.
Setting the OrientationAxesOutputPort property to true lets you retrieve the local coordinate
axes at each step.

Set up the platform object.

pos0 = [[0;0;0],[1000;0;0]];
vel0 = [[100;100;0],[0;200;0]];
R1 = rotx(30);
R2 = roty(45);
laxes(:,:,1) = R1;
laxes(:,:,2) = R2;
sPlat = phased.Platform(pos0,vel0,...
    'OrientationAxesOutputPort',true,...
    'InitialOrientationAxes',laxes);

Simulate the motion of the platform for two time steps, assuming the time elapsed for each step is
one second. The position of the platform is updated after each step.

T = 1;

At the first step, the position and velocity equal the initial values.

[pos,v,lax] = step(sPlat,T);
pos

pos = 3×2

           0        1000
           0           0
           0           0

lax

lax = 
lax(:,:,1) =

    1.0000         0         0
         0    0.8660   -0.5000
         0    0.5000    0.8660

lax(:,:,2) =
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    0.7071         0    0.7071
         0    1.0000         0
   -0.7071         0    0.7071

At the second step, the position is updated.

[pos,v,lax] = step(sPlat,T);
pos

pos = 3×2

         100        1000
         100         200
           0           0

lax

lax = 
lax(:,:,1) =

    1.0000         0         0
         0    0.8660   -0.5000
         0    0.5000    0.8660

lax(:,:,2) =

    0.7071         0    0.7071
         0    1.0000         0
   -0.7071         0    0.7071

Free Falling Accelerating Platform

Find the trajectory of a platform which starts with some initial upward velocity but accelerates
downward with a constant gravitational acceleration of -9.8 m/sec/sec. Update the platform position
and velocity every two seconds.

Construct the platform System object™.

platform = phased.Platform('MotionModel','Acceleration','InitialPosition',[2000,100,3000]',...
    'InitialVelocity',[300,150,20]','AccelerationSource','Property','Acceleration',[0,0,-9.8]');
T = 2;
N = 100;

Call the step method for 100 time samples.

posmat = zeros(3,N);
for n = 1:N
    [pos,vel] = platform(T);
    posmat(:,n) = pos;
end

Plot the trajectory.
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plot3(posmat(1,:),posmat(2,:),posmat(3,:),'b.')
axis equal
xlabel('m')
ylabel('m')
zlabel('m')
grid
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phased.PulseCompressionLibrary
Package: phased

Create a library of pulse compression specifications

Description
The phased.PulseCompressionLibrary System object creates a pulse compression library. The
library contains sets of parameters that describe pulse compression operations performed on
received signals to generate their range response. You can use this library to perform matched
filtering or stretch processing. This object can process waveforms created by the
phased.PulseWaveformLibrary object.

To make a pulse compression library

1 Create the phased.PulseCompressionLibrary object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
complib = phased.PulseCompressionLibrary()
complib = phased.PulseCompressionLibrary(Name,Value)

Description

complib = phased.PulseCompressionLibrary() System object creates a pulse compression
library, complib, with default property values.

complib = phased.PulseCompressionLibrary(Name,Value) creates a pulse compression
library with each property Name set to a specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single
quotes.
Example: complib =
phased.PulseCompressionLibrary('SampleRate',1e9,'WaveformSpecification',
{{'Rectangular','PRF',1e4,'PulseWidth',100e-6},
{'SteppedFM','PRF',1e4}},'ProcessingSpecification',
{{'MatchedFilter','SpectrumWindow','Hann'},
{'MatchedFilter','SpectrumWindow','Taylor'}}) creates a library with two matched filters.
One is matched to a rectangular waveform and the other to a stepped FM waveform. The matched
filters use a Hann window and a Taylor window, respectively.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Waveform sample rate
1e6 (default) | positive scalar

Waveform sample rate, specified as a positive scalar. All waveforms have the same sample rate. Units
are in hertz.
Example: 100e3
Data Types: double

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

WaveformSpecification — Pulse waveforms
{{'Rectangular','PRF',10e3,'PulseWidth',100e-6},
{'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,'SweepDirection
','Up','SweepInterval','Positive'}} (default) | cell array

Pulse waveforms, specified as a cell array. Each cell of the array contains the specification of one
waveform.
{{Waveform 1 Specification},{Waveform 2 Specification},{Waveform 3 Specification}, ...}

Each waveform specification is also a cell array containing the parameters of the waveform. The
entries in a specification cell are the pulse identifier and a set of name-value pairs specific to that
waveform.
{PulseIdentifier,Name1,Value1,Name2,Value2, ...}

This System object supports four built-in waveforms and also lets you specify custom waveforms. For
the built-in waveforms, the waveform specifier consists of a waveform identifier followed by several
name-value pairs setting the properties of the waveform. For the custom waveforms, the waveform
specifier consists of a handle to a user-define waveform function and the functions input arguments.
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Waveform Types

Pulse Type Pulse Identifier Waveform Arguments
Linear FM 'LinearFM' “Linear FM Waveform

Arguments” on page 1-1272
Phase coded 'PhaseCoded' “Phase-Coded Waveform

Arguments” on page 1-1274
Rectangular 'Rectangular' “Rectangular Waveform

Arguments” on page 1-1275
Stepped FM 'SteppedFM' “Stepped FM Waveform

Arguments” on page 1-1276
Custom Function handle “Custom Waveform Arguments”

on page 1-1293

Example: {{'Rectangular','PRF',10e3,'PulseWidth',100e-6},
{'Rectangular','PRF',100e3,'PulseWidth',20e-6}}

Data Types: cell

ProcessingSpecification — Pulse compression descriptions
{{'MatchedFilter','SpectrumWindow','None'},
{'StretchProcessor','RangeSpan',200,'ReferenceRange',5e3,'RangeWindow','None'
}} (default) | cell array

Pulse compression descriptions, specified as a cell array of processing specifications. Each cell
defines a different processing specification. Each processing specification is itself a cell array
containing the processing type and processing arguments.
{{Processing 1 Specification},{Processing 2 Specification},{Processing 3 Specification}, ...}

Each processing specification indicates which type of processing to apply to a waveform and the
arguments needed for processing.
{ProcessType,Name,Value,...}

The value of ProcessType is either 'MatchedFilter' or 'StretchProcessor'.

• 'MatchedFilter' – The name-value pair arguments are

• 'Coefficients',coeff – specifies the matched filter coefficients, coeff, as a column vector.
When not specified, the coefficients are calculated from the WaveformSpecification
property. For the Stepped FM waveform containing multiple pulses, coeff corresponds to
each pulse until the pulse index, idx changes.

• 'SpectrumWindow',sw – specifies the spectrum weighting window, sw, applied to the
waveform. Window values are one of 'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser',
and 'Taylor'. The default value is 'None'.

• 'SidelobeAttenuation',slb – specifies the sidelobe attenuation window, slb, of the
Chebyshev or Taylor window as a positive scalar. The default value is 30. This parameter
applies when you set 'SpectrumWindow' to 'Chebyshev' or 'Taylor'.

• 'Beta',beta – specifies the parameter, beta, that determines the Kaiser window sidelobe
attenuation as a nonnegative scalar. The default value is 0.5. This parameter applies when you
set 'SpectrumWindow' to 'Kaiser'.
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• 'Nbar',nbar – specifies the number of nearly constant level sidelobes, nbar, next to the main
lobe in a Taylor window as a positive integer. The default value is 4. This parameter applies
when you set 'SpectrumWindow' to 'Taylor'.

• 'SpectrumRange',sr – specifies the spectrum region, sr, on which the spectrum window is
applied as a 1-by-2 vector having the form [StartFrequency EndFrequency]. The default
value is [0 1.0e5]. This parameter applies when you set the 'SpectrumWindow' to any value
other than 'None'. Units are in Hz.

Both StartFrequency and EndFrequency are measured in the baseband region [-Fs/2 Fs/2].
Fs is the sample rate specified by the SampleRate property. StartFrequency cannot be
larger than EndFrequency.

• 'StretchProcessor' – The name-value pair arguments are

• 'ReferenceRange',refrng – specifies the center of the ranges of interest, refrng, as a
positive scalar. The refrng must be within the unambiguous range of one pulse. The default
value is 5000. Units are in meters.

• 'RangeSpan',rngspan – specifies the span of the ranges of interest. rngspan, as a positive
scalar. The range span is centered at the range value specified in the 'ReferenceRange'
parameter. The default value is 500. Units are in meters.

• 'RangeFFTLength',len – specifies the FFT length in the range domain, len, as a positive
integer. If not specified, the default value is same as the input data length.

• 'RangeWindow',rw specifies the window used for range processing, rw, as one of 'None',
'Hamming', 'Chebyshev', 'Hann', 'Kaiser', and 'Taylor'. The default value is 'None'.

Example: 'StretchProcessor'
Data Types: string | struct

Linear FM Waveform Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: {'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,...
'SweepDirection','Up','SweepInterval','Positive'}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 1-1300 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
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Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

SweepBandwidth — Bandwidth of the FM sweep
1e5 (default) | positive scalar

Bandwidth of the FM sweep, specified as a positive scalar. Units are in hertz.
Example: 100e3
Data Types: double

SweepDirection — Bandwidth of the FM sweep
'Up' (default) | 'Down'

Direction of the FM sweep, specified as 'Up' or 'Down'. 'Up' corresponds to increasing frequency.
'Down' corresponds to decreasing frequency.
Data Types: char

SweepInterval — FM sweep interval
'Positive' (default) | 'Symmetric'

FM sweep interval, specified as 'Positive' or 'Symmetric'. If you set this property value to
'Positive', the waveform sweeps the interval between 0 and B, where B is the SweepBandwidth
argument value. If you set this property value to 'Symmetric', the waveform sweeps the interval
between –B/2 and B/2.
Example: 'Symmetric'
Data Types: char

Envelope — Envelope function
'Rectangular' (default) | 'Gaussian'

Envelope function, specified as 'Rectangular' or 'Gaussian'.
Example: 'Gaussian'
Data Types: char

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

 phased.PulseCompressionLibrary

1-1273



Phase-Coded Waveform Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: {'PhaseCoded','PRF',1e4,'Code','Zadoff-Chu',
'SequenceIndex',3,'ChipWidth',5e-6,'NumChips',8}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 1-1300 for restrictions on the PRF.
Example: 20e3
Data Types: double

Code — Type of phase modulation code
'Frank' (default) | 'P1' | 'P2''Px' | 'Zadoff-Chu' | 'P3' | 'P4' | 'Barker'

Type of phase modulation code, specified as 'Frank', 'P1', 'P2', 'Px', 'Zadoff-Chu', 'P3',
'P4', or 'Barker'.
Example: 'P1'
Data Types: char

SequenceIndex — Zadoff-Chu sequence index
1 (default) | positive integer

Sequence index used for the Zadoff-Chu code, specified as a positive integer. The value of
SequenceIndex must be relatively prime to the value of NumChips.
Example: 3
Dependencies

To enable this name-value pair, set the Code property to 'Zadoff-Chu'.
Data Types: double

ChipWidth — Chip duration
1e-5 (default) | positive scalar

Chip duration, specified as a positive scalar. Units are in seconds. See “Chip Restrictions” on page 1-
1301 for restrictions on chip sizes.
Example: 30e-3
Data Types: double

NumChips — Number of chips in waveform
4 (default) | positive integer

Number of chips in waveform, specified as a positive integer. See “Chip Restrictions” on page 1-1301
for restrictions on chip sizes.
Example: 3
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Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Rectangular Waveform Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: {'Rectangular','PRF',10e3,'PulseWidth',100e-6}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 1-1300 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double
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Stepped FM Waveform Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: {'SteppedFM','PRF',10e-4}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 1-1300 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

NumSteps — Number of frequency steps in waveform
5 (default) | positive integer

Number of frequency steps in waveform, specified as a positive integer.
Example: 3
Data Types: double

FrequencyStep — Linear frequency step size
20e3 (default) | positive scalar

Linear frequency step size, specified as a positive scalar.
Example: 100.0
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar
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Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Custom Waveform Arguments

You can create a custom waveform from a user-defined function. The first input argument of the
function must be the sample rate. For example, specify a hyperbolic waveform function,

function wav = HyperbolicFM(fs,prf,pw,freq,bw,fcent),

where fs is the sample rate and prf, pw, freq, bw, and fcent are other waveform arguments. The
function must have at least one output argument, wav, to return the samples of each pulse. This
output must be a column vector. There can be other outputs returned following the waveform
samples.

Then, create a waveform specification using a function handle instead of the waveform identifier. The
first cell in the waveform specification must be a function handle. The remaining cells contain all
function input arguments except the sample rate. Specify all input arguments in the order they are
passed into the function.

waveformspec = {@HyperbolicFM,prf,pw,freq,bw,fcent}

See “Add Custom Waveform to Pulse Waveform Library” on page 1-1299 for an example that uses a
custom waveform.

Usage

Syntax
[Y,rng] = pulselib(X,idx)

Description

[Y,rng] = pulselib(X,idx) returns samples of a compressed pulse waveform, Y, specified by its
index, idx, in the library. RNG denotes the ranges corresponding to Y.

Input Arguments

X — Input signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Input signal, specified as a complex-valued K-by-L matrix, complex-valued K-by-N matrix, or a
complex-valued K-by-N-by-L array. K denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams.
Data Types: double

idx — Index of processing specification in pulse compression library
positive integer

Index of the processing specification in the pulse compression library, specified as a positive integer.
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Data Types: double

Output Arguments

Y — Output signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Output signal, returned as a complex-valued M-by-L matrix, complex-valued M-by-N matrix, or a
complex-valued M-by-N-by-L array. M denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams. The number of
dimensions of Y matches the number of dimensions of X.

When matched filtering is performed, M is equal to the number of rows in X. When stretch processing
is performed and you specify a value for the RangeFFTLength name-value pair, M is set to the value
of RangeFFTLength. When you do not specify RangeFFTLength, M is equal to the number of rows
in X.
Data Types: double

rng — Sample range
real-valued length-M vector

Sample ranges, returned as a real-valued length-M vector where M is the number of rows of Y.
Elements of this vector denote the ranges corresponding to the rows of Y.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to phased.PulseCompressionLibrary
plotResponse Plot range response from pulse compression library

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Range Processing of Two Waveforms

Create a rectangular waveform and a linear FM waveform. Use the processing methods in the pulse
compression library to range-process the waveforms. Use matched filtering for the rectangular
waveform and stretch processing for the linear FM waveform.
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Create two waveforms using the phased.PulseWaveformLibrary System object. The sampling
frequency is 1 MHz and the pulse repetition frequency for both waveforms is 1 kHz . The pulse width
is also the same at 50 microsec.

fs = 1.0e6;
prf = 1e3;
pw = 50e-6;
waveform1 = {'Rectangular','PRF',prf,'PulseWidth',pw};
waveform2 = {'LinearFM','PRF',prf,'PulseWidth',pw,...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
pulselib = phased.PulseWaveformLibrary('WaveformSpecification',...
    {waveform1,waveform2},'SampleRate',fs);

Retrieve the waveforms for processing by the pulse compression library.

rectwav = pulselib(1);
lfmwav = pulselib(2);

Create the compression processing library using the phased.PulseCompressionLibrary System
object with two processing specifications. The first processing specification is matched filtering and
the second is stretch processing.

mf = getMatchedFilter(pulselib,1);
procspec1 = {'MatchedFilter','Coefficients',mf};
procspec2 = {'StretchProcessor','ReferenceRange',5000,...
    'RangeSpan',200,'RangeWindow','Hamming'};
comprlib = phased.PulseCompressionLibrary( ...,
    'WaveformSpecification',{waveform1,waveform2}, ...
    'ProcessingSpecification',{procspec1,procspec2}, ...
    'SampleRate',fs,'PropagationSpeed',physconst('Lightspeed'));

Process both waveforms.

rect_out = comprlib(rectwav,1);
lfm_out = comprlib(lfmwav,2);
nsamp = fs/prf;
t = [0:(nsamp-1)]/fs;

plot(t*1000,real(rect_out))
hold on
plot(t*1000,real(lfm_out))
hold off
title('Pulse Compression Output')
xlabel('Time (millsec)')
ylabel('Amplitude')
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Range Response of Three Targets

Plot the range response of an LFM signal hitting three targets. The ranges are 2000, 4000, and 5500
meters. Assume the radar maximum range is 10 km. Set the pulse repetition interval from the
maximum range.

Create the pulse waveform.

rmax = 10.0e3;
c = physconst('Lightspeed');
pri = 2*rmax/c;
fs = 1e6;
pri = ceil(pri*fs)/fs;
prf = 1/pri;
nsamp = pri*fs;
rxdata = zeros(nsamp,1);
t1 = 2*2000/c;
t2 = 2*4000/c;
t3 = 2*5500/c;
idx1 = floor(t1*fs);
idx2 = floor(t2*fs);
idx3 = floor(t3*fs);
lfm = phased.LinearFMWaveform('PulseWidth',10/fs,'PRF',prf, ...
    'SweepBandwidth',(30*fs)/40);
w = lfm();
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Imbed the waveform part of the pulse into the received signal.

x = w(1:11);
rxdata(idx1:idx1+10) = x;
rxdata(idx2:idx2+10) = x;
rxdata(idx3:idx3+10) = x;

Create the pulse waveform library.

w1 = {'LinearFM','PulseWidth',10/fs,'PRF',prf,...
    'SweepBandwidth',(30*fs)/40};
wavlib = phased.PulseWaveformLibrary('SampleRate',fs,'WaveformSpecification',{w1});
wav = wavlib(1);

Generate the range response signal.

p1 = {'MatchedFilter','Coefficients',getMatchedFilter(wavlib,1),'SpectrumWindow','None'};
idx = 1;
complib = phased.PulseCompressionLibrary( ...
    'WaveformSpecification',{w1},...
    'ProcessingSpecification',{p1},...
    'SampleRate',fs,...
    'PropagationSpeed',c);
y = complib(rxdata,1);

Plot range response of processed data

plotResponse(complib,rxdata,idx,'Unit','mag');
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More About
Pulse Repetition Frequency Restrictions

The PRF property must satisfy these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval.

• The ratio of SampleRate to PRF must be an integer. This condition expresses the requirement
that the number of samples in one pulse repetition interval is an integer.

Chip Restrictions

The values of the ChipWidth and NumChips properties must satisfy these constraints:

• The product of PRF, ChipWidth, and NumChips must be less than or equal to one. This condition
expresses the requirement that the sum of the durations of all chips is less than one pulse
repetition interval.

• The product of SampleRate and ChipWidth must be an integer. This condition expresses the
requirement that the number of samples in a chip must be an integer.

The table shows additional constraints on the number of chips for different code types.

If the Code Property Is ... Then the NumChips Property Must Be...
'Frank', 'P1', or 'Px' A perfect square.
'P2' An even number that is a perfect square.
'Barker' 2, 3, 4, 5, 7, 11, or 13

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The plotResponse object function is not supported for code generation.

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Apps
Radar Waveform Analyzer

Objects
phased.LinearFMWaveform | phased.MatchedFilter | phased.PhaseCodedWaveform |
phased.PulseWaveformLibrary | phased.RangeDopplerResponse | phased.RangeResponse
| phased.RectangularWaveform | phased.SteppedFMWaveform | phased.StretchProcessor

1 Objects

1-1282



Introduced in R2018a
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plotResponse
Package: phased

Plot range response from pulse compression library

Syntax
plotResponse(complib,X,idx)
plotResponse( ___ ,pulseidx)
plotResponse( ___ ,'Unit',unit)

Description
plotResponse(complib,X,idx) plots the range response of the input waveform, X, using the idx
processing specification.

plotResponse( ___ ,pulseidx) also specifies the index, pulseidx, of the pulse to plot.

plotResponse( ___ ,'Unit',unit) plots the response in the units specified by unit.

Examples

Range Response of Three Targets

Plot the range response of an LFM signal hitting three targets. The ranges are 2000, 4000, and 5500
meters. Assume the radar maximum range is 10 km. Set the pulse repetition interval from the
maximum range.

Create the pulse waveform.

rmax = 10.0e3;
c = physconst('Lightspeed');
pri = 2*rmax/c;
fs = 1e6;
pri = ceil(pri*fs)/fs;
prf = 1/pri;
nsamp = pri*fs;
rxdata = zeros(nsamp,1);
t1 = 2*2000/c;
t2 = 2*4000/c;
t3 = 2*5500/c;
idx1 = floor(t1*fs);
idx2 = floor(t2*fs);
idx3 = floor(t3*fs);
lfm = phased.LinearFMWaveform('PulseWidth',10/fs,'PRF',prf, ...
    'SweepBandwidth',(30*fs)/40);
w = lfm();

Imbed the waveform part of the pulse into the received signal.
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x = w(1:11);
rxdata(idx1:idx1+10) = x;
rxdata(idx2:idx2+10) = x;
rxdata(idx3:idx3+10) = x;

Create the pulse waveform library.

w1 = {'LinearFM','PulseWidth',10/fs,'PRF',prf,...
    'SweepBandwidth',(30*fs)/40};
wavlib = phased.PulseWaveformLibrary('SampleRate',fs,'WaveformSpecification',{w1});
wav = wavlib(1);

Generate the range response signal.

p1 = {'MatchedFilter','Coefficients',getMatchedFilter(wavlib,1),'SpectrumWindow','None'};
idx = 1;
complib = phased.PulseCompressionLibrary( ...
    'WaveformSpecification',{w1},...
    'ProcessingSpecification',{p1},...
    'SampleRate',fs,...
    'PropagationSpeed',c);
y = complib(rxdata,1);

Plot range response of processed data

plotResponse(complib,rxdata,idx,'Unit','mag');
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Input Arguments
complib — Pulse compression library
phased.PulseCompressionLibrary System object

Pulse compression library, specified as a phased.PulseCompressionLibrary System object.

X — Input signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Input signal, specified as a complex-valued K-by-L matrix, complex-valued K-by-N matrix, or a
complex-valued K-by-N-by-L array. K denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams.
Data Types: double

idx — Index of processing specification in pulse compression library
positive integer

Index of processing specification in the pulse waveform library, specified as a positive integer.
Example: 3
Data Types: double

pulseidx — Stepped FM waveform subpulse
1 (default) | positive integer

Stepped FM waveform subpulse, specified as a positive integer. This index selects which subpulses of
a stepped-FM waveform to plot. This argument only applies to stepped-FM waveforms.
Example: 5
Data Types: double

unit — Plot units
'db' (default) | 'mag' | 'pow'

Plot units, specified as 'db', 'mag', or 'pow'. who

• 'db' – plot the response power in dB.
• 'mag' – plot the magnitude of the response.
• 'pow' – plot the response power.

Example: 'mag'
Data Types: char | string

Introduced in R2018b
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phased.PulseWaveformLibrary
Package: phased

Create a library of pulse waveforms

Description
The phased.PulseWaveformLibrary System object creates a library of pulse waveforms. The
waveforms in the library can be of different types or be of the same type with different parameters.
You can use this library to transmit different kinds of pulses during a simulation.

To make a waveform library

1 Create the phased.PulseWaveformLibrary object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
pulselib = phased.PulseWaveformLibrary
pulselib = phased.PulseWaveformLibrary(Name,Value)

Description

pulselib = phased.PulseWaveformLibrary System object creates a library of pulse
waveforms, pulselib, with default property values. The default consists of a rectangular waveform
and a linear FM waveform.

pulselib = phased.PulseWaveformLibrary(Name,Value) creates a pulse waveform library
with each property Name set to a specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single
quotes.
Example: pulselib =
phased.PulseWaveformLibrary('SampleRate',1e9,'WaveformSpecification',
{{'Rectangular','PRF',1e4,'PulseWidth',100e-6},{'SteppedFM','PRF',1e4}})
creates a library containing one rectangular waveform and one stepped-FM waveform, both sampled
at 1 GHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

SampleRate — Waveform sample rate
1e6 (default) | positive scalar

Waveform sample rate, specified as a positive scalar. All waveforms have the same sample rate. Units
are in hertz.
Example: 100e3
Data Types: double

WaveformSpecification — Pulse waveforms
{{'Rectangular','PRF',10e3,'PulseWidth',100e-6},
{'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,'SweepDirection
','Up','SweepInterval','Positive'}} (default) | cell array

Pulse waveforms, specified as a cell array. Each cell of the array contains the specification of one
waveform.
{{Waveform 1 Specification},{Waveform 2 Specification},{Waveform 3 Specification}, ...}

Each waveform specification is also a cell array containing the parameters of the waveform. The
entries in a specification cell are the pulse identifier and a set of name-value pairs specific to that
waveform.
{PulseIdentifier,Name1,Value1,Name2,Value2, ...}

This System object supports four built-in waveforms and also lets you specify custom waveforms. For
the built-in waveforms, the waveform specifier consists of a waveform identifier followed by several
name-value pairs setting the properties of the waveform. For the custom waveforms, the waveform
specifier consists of a handle to a user-define waveform function and the functions input arguments.

Waveform Types

Waveform type Waveform identifier Waveform arguments
Linear FM 'LinearFM' “Linear FM Waveform

Arguments” on page 1-1289
Phase coded 'PhaseCoded' “Phase-Coded Waveform

Arguments” on page 1-1290
Rectangular 'Rectangular' “Rectangular Waveform

Arguments” on page 1-1291
Stepped FM 'SteppedFM' “Stepped FM Waveform

Arguments” on page 1-1292
Custom Function handle “Custom Waveform Arguments”

on page 1-1293

Example: {{'Rectangular','PRF',10e3,'PulseWidth',100e-6},
{'Rectangular','PRF',100e3,'PulseWidth',20e-6}}

Data Types: cell
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Linear FM Waveform Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: {'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,...
'SweepDirection','Up','SweepInterval','Positive'}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 1-1300 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

SweepBandwidth — Bandwidth of the FM sweep
1e5 (default) | positive scalar

Bandwidth of the FM sweep, specified as a positive scalar. Units are in hertz.
Example: 100e3
Data Types: double

SweepDirection — Bandwidth of the FM sweep
'Up' (default) | 'Down'

Direction of the FM sweep, specified as 'Up' or 'Down'. 'Up' corresponds to increasing frequency.
'Down' corresponds to decreasing frequency.
Data Types: char

SweepInterval — FM sweep interval
'Positive' (default) | 'Symmetric'
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FM sweep interval, specified as 'Positive' or 'Symmetric'. If you set this property value to
'Positive', the waveform sweeps the interval between 0 and B, where B is the SweepBandwidth
argument value. If you set this property value to 'Symmetric', the waveform sweeps the interval
between –B/2 and B/2.
Example: 'Symmetric'
Data Types: char

Envelope — Envelope function
'Rectangular' (default) | 'Gaussian'

Envelope function, specified as 'Rectangular' or 'Gaussian'.
Example: 'Gaussian'
Data Types: char

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Phase-Coded Waveform Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: {'PhaseCoded','PRF',1e4,'Code','Zadoff-Chu',
'SequenceIndex',3,'ChipWidth',5e-6,'NumChips',8}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 1-1300 for restrictions on the PRF.
Example: 20e3
Data Types: double

Code — Type of phase modulation code
'Frank' (default) | 'P1' | 'P2''Px' | 'Zadoff-Chu' | 'P3' | 'P4' | 'Barker'

Type of phase modulation code, specified as 'Frank', 'P1', 'P2', 'Px', 'Zadoff-Chu', 'P3',
'P4', or 'Barker'.
Example: 'P1'
Data Types: char

SequenceIndex — Zadoff-Chu sequence index
1 (default) | positive integer
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Sequence index used for the Zadoff-Chu code, specified as a positive integer. The value of
SequenceIndex must be relatively prime to the value of NumChips.
Example: 3
Dependencies

To enable this name-value pair, set the Code property to 'Zadoff-Chu'.
Data Types: double

ChipWidth — Chip duration
1e-5 (default) | positive scalar

Chip duration, specified as a positive scalar. Units are in seconds. See “Chip Restrictions” on page 1-
1301 for restrictions on chip sizes.
Example: 30e-3
Data Types: double

NumChips — Number of chips in waveform
4 (default) | positive integer

Number of chips in waveform, specified as a positive integer. See “Chip Restrictions” on page 1-1301
for restrictions on chip sizes.
Example: 3
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Rectangular Waveform Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: {'Rectangular','PRF',10e3,'PulseWidth',100e-6}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 1-1300 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar
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Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
Example: 0.7
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Stepped FM Waveform Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: {'SteppedFM','PRF',10e-4}

PRF — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency (PRF), specified as a positive scalar. Units are in hertz. See “Pulse
Repetition Frequency Restrictions” on page 1-1300 for restrictions on the PRF.
Example: 20e3
Data Types: double

PulseWidth — Pulse duration
5e-5 (default) | positive scalar

Pulse duration, specified as a positive scalar. Units are in seconds. You cannot specify both
PulseWidth and DutyCycle.
Example: 100e-6
Data Types: double

DutyCycle — Pulse duty cycle
0.5 | positive scalar

Pulse duty cycle, specified as a positive scalar greater than zero and less than or equal to one. You
cannot specify both PulseWidth and DutyCycle.
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Example: 0.7
Data Types: double

NumSteps — Number of frequency steps in waveform
5 (default) | positive integer

Number of frequency steps in waveform, specified as a positive integer.
Example: 3
Data Types: double

FrequencyStep — Linear frequency step size
20e3 (default) | positive scalar

Linear frequency step size, specified as a positive scalar.
Example: 100.0
Data Types: double

FrequencyOffset — Frequency offset of pulse
0 (default) | scalar

Frequency offset of pulse, specified as a scalar. The frequency offset shifts the frequency of the
generated pulse waveform. Units are in hertz.
Example: 100e3
Data Types: double

Custom Waveform Arguments

You can create a custom waveform from a user-defined function. The first input argument of the
function must be the sample rate. For example, specify a hyperbolic waveform function,

function wav = HyperbolicFM(fs,prf,pw,freq,bw,fcent),

where fs is the sample rate and prf, pw, freq, bw, and fcent are other waveform arguments. The
function must have at least one output argument, wav, to return the samples of each pulse. This
output must be a column vector. There can be other outputs returned following the waveform
samples.

Then, create a waveform specification using a function handle instead of the waveform identifier. The
first cell in the waveform specification must be a function handle. The remaining cells contain all
function input arguments except the sample rate. Specify all input arguments in the order they are
passed into the function.

waveformspec = {@HyperbolicFM,prf,pw,freq,bw,fcent}

See “Add Custom Waveform to Pulse Waveform Library” on page 1-1299 for an example that uses a
custom waveform.
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Usage

Syntax
waveform = pulselib(idx)

Description

waveform = pulselib(idx) returns samples of a waveform, waveform, specified by its index,
idx, in the library.

Input Arguments

idx — Index of the waveform in the waveform library
positive integer

Index of the waveform in the waveform library, specified as a positive integer.
Example: 2
Data Types: double

Output Arguments

waveform — Waveform samples
complex-valued vector

Waveform samples, returned as a complex-valued vector.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to phased.PulseWaveformLibrary
getMatchedFilter Matched filter coefficients for pulse waveform
plot Plot waveform from waveform library

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples
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Obtain and Plot Phase-Coded Waveform from Waveform Library

Construct a waveform library consisting of three waveforms. The library contains a rectangular, a
linear FM, and a phase-coded waveform. Then, obtain and plot the real and imaginary parts of the
phase-coded waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth', 50e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',50e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
waveform3 = {'PhaseCoded','PRF',1e4,'Code','Zadoff-Chu', ...
    'SequenceIndex',3,'ChipWidth',5e-6,'NumChips',8};
fs = 1e6;
wavlib = phased.PulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Extract the waveform from the library.

wav3 = wavlib(3);

Plot the waveform using the plot method.

plot(wavlib,3,'PlotType','complex')
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Plot Stepped FM Waveform

Construct a waveform library consisting of three waveforms. The library contains one rectangular,
one linear FM, and one stepped-FM waveforms. Then, plot the real parts of the first three pulses of
the stepped-fm waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth',70e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',70e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
waveform3 = {'SteppedFM','PRF',1e4,'PulseWidth', 70e-6,'NumSteps',5, ...
    'FrequencyStep',50000,'FrequencyOffset',0};
fs = 1e6;
wavlib = phased.PulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Plot the first three pulses of the waveform using the plot method.

plot(wavlib,3,'PulseIdx',1)

plot(wavlib,3,'PulseIdx',2)
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plot(wavlib,3,'PulseIdx',3)
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Plot Matched Filter Coefficients of Two Pulses

This example shows how to put two waveforms into a waveform library and how to extract and plot
their matched filter coefficients.

Create a pulse library consisting of a rectangular and a linear FM waveform.

waveform1 = {'Rectangular','PRF',10e3 'PulseWidth',50e-6};
waveform2 = {'LinearFM','PRF',10e3,'PulseWidth',50e-6,'SweepBandwidth',1e5, ...
    'SweepDirection','Up','SweepInterval', 'Positive'};
pulsesib = phased.PulseWaveformLibrary('SampleRate',1e6,...
    'WaveformSpecification',{waveform1,waveform2});

Retrieve the matched filter coefficients for each waveform and plot their real parts.

coeff1 = getMatchedFilter(pulsesib,1,1);
subplot(2,1,1)
stem(real(coeff1))
title('Matched filter coefficients, real part')
coeff2 = getMatchedFilter(pulsesib,2,1);
subplot(2,1,2)
stem(real(coeff2))
title('Matched filter coefficients, real part')
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Add Custom Waveform to Pulse Waveform Library

Define a custom hyperbolic FM waveform and add it to a phased.PulseWaveformLibrary System
object together with a linear FM waveform. Plot the hyperbolic waveform.

Specify the hyperbolic FM waveform parameters. The pulse width is 75 ms and the pulse repetition
interval is 100 ms. The center frequency is 500 Hz and the bandwidth is 400 Hz.

fs = 50e3;
pri = 0.1;
prf = 1/pri;
freq = 1000;
pw = 0.075;
bw = 400.0;
fcent = 500.0;

Create a pulse waveform library consisting of a hyperbolic FM waveform and a linear FM waveform.

pulselib = phased.PulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{{@HyperbolicFM,prf,pw,freq,bw,fcent}, ...
    {'LinearFM','PRF',prf,'PulseWidth',pw, ...
    'SweepBandwidth',bw,'SweepDirection','Up',...
    'SweepInterval','Positive'}});

Plot the complex hyperbolic FM waveform.
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plot(pulselib,1,'PlotType','complex')

Define the Hyperbolic FM waveform function.

function y = HyperbolicFM(fs,prf,pw,freq,bw,fcent)
pri = 1/prf;
t = [0:1/fs:pri]';
idx = find(t <= pw);
fl = fcent - bw/2;
fh = fcent + bw/2;
y = zeros(size(t));
arg = 2*pi*fl*fh/bw*pw*log(1.0 - bw*t(idx)/fh/pw);
y(idx) = exp(1i*arg);
end

More About
Pulse Repetition Frequency Restrictions

The PRF property must satisfy these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval.

• The ratio of SampleRate to PRF must be an integer. This condition expresses the requirement
that the number of samples in one pulse repetition interval is an integer.
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Chip Restrictions

The values of the ChipWidth and NumChips properties must satisfy these constraints:

• The product of PRF, ChipWidth, and NumChips must be less than or equal to one. This condition
expresses the requirement that the sum of the durations of all chips is less than one pulse
repetition interval.

• The product of SampleRate and ChipWidth must be an integer. This condition expresses the
requirement that the number of samples in a chip must be an integer.

The table shows additional constraints on the number of chips for different code types.

If the Code Property Is ... Then the NumChips Property Must Be...
'Frank', 'P1', or 'Px' A perfect square
'P2' An even number that is a perfect square
'Barker' 2, 3, 4, 5, 7, 11, or 13

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

The plot object function is not supported.

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Apps
Radar Waveform Analyzer

Objects
phased.LinearFMWaveform | phased.PhaseCodedWaveform |
phased.PulseCompressionLibrary | phased.RectangularWaveform |
phased.SteppedFMWaveform

Introduced in R2018a
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getMatchedFilter
Package: phased

Matched filter coefficients for pulse waveform

Syntax
coeff = getMatchedFilter(pulselib,idx)
coeff = getMatchedFilter(pulselib,idx,pidx)

Description
coeff = getMatchedFilter(pulselib,idx) returns matched filter coefficients, coeff, for the
waveform specified by the index, idx, in the waveform library, pulselib.

coeff = getMatchedFilter(pulselib,idx,pidx) also specifies the pulse index, pidx, of a
stepped FM waveform.

Examples

Plot Matched Filter Coefficients of Two Pulses

This example shows how to put two waveforms into a waveform library and how to extract and plot
their matched filter coefficients.

Create a pulse library consisting of a rectangular and a linear FM waveform.

waveform1 = {'Rectangular','PRF',10e3 'PulseWidth',50e-6};
waveform2 = {'LinearFM','PRF',10e3,'PulseWidth',50e-6,'SweepBandwidth',1e5, ...
    'SweepDirection','Up','SweepInterval', 'Positive'};
pulsesib = phased.PulseWaveformLibrary('SampleRate',1e6,...
    'WaveformSpecification',{waveform1,waveform2});

Retrieve the matched filter coefficients for each waveform and plot their real parts.

coeff1 = getMatchedFilter(pulsesib,1,1);
subplot(2,1,1)
stem(real(coeff1))
title('Matched filter coefficients, real part')
coeff2 = getMatchedFilter(pulsesib,2,1);
subplot(2,1,2)
stem(real(coeff2))
title('Matched filter coefficients, real part')
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Input Arguments
pulselib — Waveform library
phased.PulseWaveformLibrary System object

Pulse waveform library, specified as a phased.PulseWaveformLibrary System object.

idx — Waveform index
1 (default) | positive integer

Waveform index, specified as a positive integer. The index specifies which waveform coefficients to
return.
Data Types: double

pidx — Pulse index
1 (default) | positive integer

Pulse index, specified as a positive integer. The index specifies which pulse matched-filter coefficients
to return. This argument applies only to stepped FM waveforms.
Data Types: double
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Output Arguments
coeff — Matched filter coefficients
complex-valued vector | complex-valued matrix

Matched filter coefficients, specified as a complex-valued vector or complex-valued matrix. For the
stepped FM pulse, the output is a complex-valued matrix. Each matrix column corresponds to a step
in the waveform. For all other waveforms, the output is a column vector.
Data Types: double

See Also

Introduced in R2018a
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plot
Package: phased

Plot waveform from waveform library

Syntax
plot(pulselib,idx)
plot(pulselib,idx,'PlotType',Type)
plot( ___ ,'PulseIdx',pidx)
plot( ___ ,LineSpec)
hndl = plot( ___ )

Description
plot(pulselib,idx) plots the real part of the waveform specified by idx belonging to the pulse
waveform library, pulselib.

plot(pulselib,idx,'PlotType',Type) also specifies whether to plot the real and/or imaginary
parts of the waveform using the ('PlotType',Type) name-value pair argument.

plot( ___ ,'PulseIdx',pidx) also specifies the index, pidx, of the pulse to plot using the
('PulseIdx',pidx) name-value pair argument.

plot( ___ ,LineSpec) specifies the line color, line style, or marker options. These options are the
same options found in the MATLAB plot function. When both real and imaginary plots are specified,
the LineSpec applies to both subplots. This argument is always the last input to the method.

hndl = plot( ___ ) returns the line handle, hndl, in the figure.

Examples

Plot Linear FM Waveform

Construct a waveform library consisting of three waveforms. The library contains one rectangular,
one linear FM, and one stepped-FM waveforms. Then, plot the linear fm waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth',70e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',70e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
waveform3 = {'SteppedFM','PRF',1e4,'PulseWidth', 70e-6,'NumSteps',5, ...
    'FrequencyStep',50000,'FrequencyOffset',0};
fs = 1e6;
wavlib = phased.PulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Plot the waveform using the plot method.

plot(wavlib,2)
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Obtain and Plot Phase-Coded Waveform from Waveform Library

Construct a waveform library consisting of three waveforms. The library contains a rectangular, a
linear FM, and a phase-coded waveform. Then, obtain and plot the real and imaginary parts of the
phase-coded waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth', 50e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',50e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
waveform3 = {'PhaseCoded','PRF',1e4,'Code','Zadoff-Chu', ...
    'SequenceIndex',3,'ChipWidth',5e-6,'NumChips',8};
fs = 1e6;
wavlib = phased.PulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Extract the waveform from the library.

wav3 = wavlib(3);

Plot the waveform using the plot method.

plot(wavlib,3,'PlotType','complex')
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Plot Stepped FM Waveform

Construct a waveform library consisting of three waveforms. The library contains one rectangular,
one linear FM, and one stepped-FM waveforms. Then, plot the real parts of the first three pulses of
the stepped-fm waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth',70e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',70e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
waveform3 = {'SteppedFM','PRF',1e4,'PulseWidth', 70e-6,'NumSteps',5, ...
    'FrequencyStep',50000,'FrequencyOffset',0};
fs = 1e6;
wavlib = phased.PulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Plot the first three pulses of the waveform using the plot method.

plot(wavlib,3,'PulseIdx',1)
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plot(wavlib,3,'PulseIdx',2)
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plot(wavlib,3,'PulseIdx',3)
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Plot Linear FM Waveform With Dotted Lines

Construct a waveform library consisting of three waveforms. The library contains one rectangular,
one linear FM, and one stepped-FM waveforms. Then, plot the linear fm waveform.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth',70e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',70e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
waveform3 = {'SteppedFM','PRF',1e4,'PulseWidth', 70e-6,'NumSteps',5, ...
    'FrequencyStep',50000,'FrequencyOffset',0};
fs = 1e6;
wavlib = phased.PulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});

Plot the waveform using the plot method.

plot(wavlib,2,':')
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Obtain Line Handle of Waveform Plot

Construct a waveform library consisting of two rectangular waveforms. Then, plot the real part of
each waveform and obtain the handle to the second plot.

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth',50.0e-6};
waveform2 = {'Rectangular','PRF',2e4,'PulseWidth',20.0e-6};
fs = 1e6;
pulselib = phased.PulseWaveformLibrary('SampleRate',fs,'WaveformSpecification', ...
    {waveform1,waveform2});

Plot the waveforms using the plot method.

hndl1 = plot(pulselib,1);
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hndl2 = plot(pulselib,2)
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hndl2 = 
  Line with properties:

              Color: [0 0.4470 0.7410]
          LineStyle: '-'
          LineWidth: 0.5000
             Marker: 'none'
         MarkerSize: 6
    MarkerFaceColor: 'none'
              XData: [1x20 double]
              YData: [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]
              ZData: [1x0 double]

  Show all properties

Input Arguments
pulselib — Waveform library
phased.PulseWaveformLibrary System object

Waveform library, specified as a phased.PulseWaveformLibrary System object.

idx — Index of waveform in pulse waveform library
positive integer

 plot
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Index of waveform in pulse waveform library, specified as a positive integer.
Example: 3
Data Types: double

Type — Plot type
'real' (default) | 'imag' | 'complex'

Plot type, specified as 'real', 'imag',or 'complex'. Use this argument in the 'Type' name-value
pair.
Data Types: char | string

pidx — Index of plot to pulse
1 (default) | positive integer

Index of plot to pulse, specified as a positive integer. Use this argument in the 'PulseIdx' name-
value pair. This argument only affects the stepped-FM waveform.
Data Types: double

LineSpec — Line color, style, and marker options
'b' (default) | character vector

Line color, style, and marker options, specified as a character vector. These options are the same as in
the MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec applies
to both the real and imaginary subplots.
Example: 'ko'
Data Types: char

Name-Value Pair Arguments
Example: 'PlotType','imag'

PlotType — Plot real or imaginary components of waveform
'real' (default) | 'imag' | 'complex'

Components of waveform, specified as 'real', 'imag', or 'complex'.
Example: 'complex'
Data Types: char

PulseIdx — Plot stepped FM waveform subpulse
1 (default) | positive integer

Plot stepped FM waveform subpulse, specified as a positive integer. This argument only affects the
stepped-FM waveform.
Example: 5
Data Types: double

Output Arguments
hndl — Handles of lines in figure
scalar | 2-by-1 real-valued vector
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Handle of lines in figure, returned as a scalar or 2-by-1 real-valued vector. For the case when both
real and imaginary plots are specified, the vector includes handles to the lines in both subplots, in the
form of [RealLineHandle;ImagLineHandle].

See Also
plot

Introduced in R2018a
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phased.RadarTarget
Package: phased

Radar target

Description
The RadarTarget System object models how a signal is reflected from a radar target. The quantity
that determines the response of a target to incoming signals is called the radar target cross-section
(RCS). While all electromagnetic radar signals are polarized, you can sometimes ignore polarization
and process them as if they were scalar signals. To ignore polarization, specify the
EnablePolarization property as false. To utilize polarization, specify the EnablePolarization
property as true. For non-polarized processing, the radar cross section is encapsulated in a single
scalar quantity called the MeanRCS. For polarized processing, specify the radar cross-section as a 2-
by-2 scattering matrix in the ScatteringMatrix property. For both polarization processing types,
there are several Swerling models available that can generate random fluctuations in the RCS.
Choose these models using the Model property. The SeedSource and Seed properties control the
random fluctuations.

The properties that you can use to model the radar cross-section or scattering matrix depend upon
the polarization type.

EnablePolarization Value Use These Properties
false • MeanRCSSource

• MeanRCS
true • ScatteringMatrixSource

• ScatteringMatrix
• Mode

To compute the signal reflected from a radar target:

1 Define and set up your radar target. See “Construction” on page 1-1316.
2 Call step to compute the reflected signal according to the properties of phased.RadarTarget.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.RadarTarget creates a radar target System object, H, that computes the reflected
signal from a target.

H = phased.RadarTarget(Name,Value) creates a radar target object, H, with each specified
property set to the specified value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).
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Properties
EnablePolarization

Allow polarized signals

Set this property to true to allow the target to simulate the reflection of polarized radiation. Set this
property to false to ignore polarization.

Default: false

Mode

Target scattering mode

Target scattering mode specified as one of 'Monostatic' or 'Bistatic'. If you set this property to
'Monostatic', the reflected signal direction is opposite to its incoming direction. If you set this
property to 'Bistatic', the reflected direction of the signal differs from its incoming direction. This
property applies when you set the EnablePolarization property to true.

Default: 'Monostatic'

ScatteringMatrixSource

Sources of mean scattering matrix of target

Source of mean scattering matrix of target specified as one of 'Property' or 'Input port'. If you
set the ScatteringMatrixSource property to 'Property', the target’s mean scattering matrix is
determined by the value of the ScatteringMatrix property. If you set this property to 'Input
port', the mean scattering matrix is determined by an input argument of the step method. This
property applies only when you set the EnablePolarization property to true. When the
EnablePolarization property is set to false, use the MeanRCSSource property instead, together
with the MeanRCS property, if needed.

Default: 'Property'

ScatteringMatrix

Mean radar scattering matrix for polarized signal

Mean radar scattering matrix specified as a complex–valued 2-by-2 matrix. This matrix represents the
mean value of the target's radar cross-section. Units are in square meters. The matrix has the form
[s_hh s_hv;s_vh s_vv]. In this matrix, the component s_hv specifies the complex scattering
response when the input signal is vertically polarized and the reflected signal is horizontally
polarized. The other components are defined similarly. This property applies when you set the
ScatteringMatrixSource property to 'Property' and the EnablePolarization property to
true. When the EnablePolarization property is set to false, use the MeanRCS property instead,
together with the MeanRCSSource property. This property is tunable.

Default: [1 0;0 1i]

MeanRCSSource

Source of mean radar cross section
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Specify whether the mean RCS value of the target comes from the MeanRCS property of this object or
from an input argument in step. Values of this property are:

'Property' The MeanRCS property of this object specifies the mean RCS
value(s).

'Input port' An input argument in each invocation of step specifies the
mean RCS value.

When EnablePolarization property is set to true, use the ScatteringMatrixSource property
together with the ScatteringMatrix property.

Default: 'Property'

MeanRCS

Mean radar cross section

Specify the mean value of the target's radar cross section as a nonnegative scalar or as a 1-by-M real-
valued, nonnegative row vector. Units are in square meters. Using a vector lets you simultaneously
process multiple targets. The quantity M is the number of targets. This property is used when
MeanRCSSource is set to 'Property'. This property is tunable.

When EnablePolarization property is set to true, use the ScatteringMatrix property together
with the ScatteringMatrixSource.

Default: 1

Model

Target statistical model

Specify the statistical model of the target as one of 'Nonfluctuating', 'Swerling1',
'Swerling2', 'Swerling3', or 'Swerling4'. If you set this property to a value other than
'Nonfluctuating', you must use the UPDATERCS input argument when invoking step. You can set
the mean value of the radar cross-section model by specifying MeanRCS or use its default value.

Default: 'Nonfluctuating'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Default: Speed of light

OperatingFrequency

Signal carrier frequency

Specify the carrier frequency of the signal you are reflecting from the target, as a scalar in hertz.

Default: 3e8
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SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces the
random numbers. Use 'Auto' if you are using this object with
Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator to
produce random numbers. The Seed property of this object
specifies the seed of the random number generator. Use
'Property' if you want repeatable results and are not using this
object with Parallel Computing Toolbox software.

The random numbers are used to model random RCS values. This property applies when the Model
property is 'Swerling1', 'Swerling2','Swerling3', or 'Swerling4'.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–1. This
property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods
reset Reset states of radar target object
step Reflect incoming signal

Common to All System Objects
release Allow System object property value changes

Examples

Compute Reflected Signal from a Non-fluctuating Radar Target

Create a simple signal and compute the value of the reflected signal from a target having a radar
cross section of 10m2. Set the radar cross section using the MeanRCS property. Set the radar
operating frequency to 600 MHz.

x = ones(10,1);
target = phased.RadarTarget('Model','Nonfluctuating',...
        'MeanRCS',10,...
        'OperatingFrequency',600e6);
y = target(x);
disp(y(1:3))
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   22.4355
   22.4355
   22.4355

This value agrees with the formula y = Gx where

G = 4πσ/λ2

Algorithms
For a narrowband nonpolarized signal, the reflected signal, Y, is

Y = G ⋅ X,

where:

• X is the incoming signal.
• G is the target gain factor, a dimensionless quantity given by

G = 4πσ
λ2 .

• σ is the mean radar cross-section (RCS) of the target.
• λ is the wavelength of the incoming signal.

The incident signal on the target is scaled by the square root of the gain factor.

For narrowband polarized waves, the single scalar signal, X, is replaced by a vector signal, (EH, EV),
with horizontal and vertical components. The scattering matrix, S, replaces the scalar cross-section,
σ. Through the scattering matrix, the incident horizontal and vertical polarized signals are converted
into the reflected horizontal and vertical polarized signals.

EH
(scat)

EV
(scat)

= 4π
λ2

SHH SVH
SHV SVV

EH
(inc)

EV
(inc)

= 4π
λ2 S

EH
(inc)

EV
(inc)

For further details, see Mott, [1] or Richards, [2] .

References

[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.BackscatterPedestrian | phased.BackscatterRadarTarget |
phased.BackscatterSonarTarget | phased.FreeSpace | phased.Platform |
phased.WidebandBackscatterRadarTarget

Topics
“Radar Target”

Introduced in R2011a
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reset
System object: phased.RadarTarget
Package: phased

Reset states of radar target object

Syntax
reset(H)

Description
reset(H) resets the states of the RadarTarget object, H. This method resets the random number
generator state if the SeedSource property is applicable and has the value 'Property'.
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step
System object: phased.RadarTarget
Package: phased

Reflect incoming signal

Syntax
Y = step(H,X)
Y = step(H,X,MEANRCS)
Y = step(H,X,UPDATERCS)
Y = step(H,X,MEANRCS,UPDATERCS)

Y = step(H,X,ANGLE_IN,LAXES)
Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES)
Y = step(H,X,ANGLE_IN,LAXES,SMAT)
Y = step(H,X,ANGLE_IN,LAXES,UPDATESMAT)
Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES,SMAT,UPDATESMAT)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) returns the reflected signal Y due to the incident signal X. The argument X is a
complex-valued N-by-1 column vector or N-by-M matrix. The value M is the number of signals. Each
signal corresponds to a different target. The value N is the number of samples in each signal. Use this
syntax when you set the Model property of H to 'Nonfluctuating'. In this case, the value of the
MeanRCS property is used as the Radar cross-section (RCS) value. This syntax applies only when the
EnablePolarization property is set to false. If you specify M incident signals, you can specify
the radar cross-section as a scalar or as a 1-by-M vector. For a scalar, the same value will be applied
to all signals.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Y = step(H,X,MEANRCS) uses MEANRCS as the mean RCS value. This syntax is available when you
set the MeanRCSSource property to 'Input port' and set Model to 'Nonfluctuating'. The
value of MEANRCS must be a nonnegative scalar or 1-by-M row vector for multiple targets. This syntax
applies only when the EnablePolarization property is set to false.

Y = step(H,X,UPDATERCS) uses UPDATERCS as the indicator of whether to update the RCS value.
This syntax is available when you set the Model property to 'Swerling1', 'Swerling2',
'Swerling3', or 'Swerling4'. If UPDATERCS is true, a new RCS value is generated. If
UPDATERCS is false, the previous RCS value is used. This syntax applies only when the
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EnablePolarization property is set to false. In this case, the value of the MeanRCS property is
used as the radar cross-section (RCS) value.

Y = step(H,X,MEANRCS,UPDATERCS) lets you can combine optional input arguments when their
enabling properties are set. In this syntax, MeanRCSSource is set to 'Input port' and Model is
set to one of the Swerling models. This syntax applies only when the EnablePolarization
property is set to false. For this syntax, changes in MEANRCS will be ignored after the first call to the
step method.

Y = step(H,X,ANGLE_IN,LAXES) returns the reflected signal Y from an incident signal X. This
syntax applies only when the EnablePolarization property is set to true. The input argument,
ANGLE_IN, specifies the direction of the incident signal with respect to the target’s local coordinate
system. The input argument, LAXES, specifies the direction of the local coordinate axes with respect
to the global coordinate system. This syntax requires that you set the Model property to
'Nonfluctuating' and the Mode property to 'Monostatic'. In this case, the value of the
ScatteringMatrix property is used as the scattering matrix value.

X is a 1-by-M row array of MATLAB struct type, each member of the array representing a different
signal. The struct contains three fields, X.X, X.Y, and X.Z. Each field corresponds to the x, y, and z
components of the polarized input signal. Polarization components are measured with respect to the
global coordinate system. Each field is a column vector representing a sequence of values for each
incoming signal. The X.X, X.Y, and Y.Z fields must all have the same dimension. The argument,
ANGLE_IN, is a 2-by-M matrix representing the signals’ incoming directions with respect to the
target’s local coordinate system. Each column of ANGLE_IN specifies the incident direction of the
corresponding signal in the form [AzimuthAngle; ElevationAngle]. Angle units are in degrees.
The number of columns in ANGLE_IN must equal the number of signals in the X array. The argument,
LAXES, is a 3-by-3 matrix. The columns are unit vectors specifying the local coordinate system's
orthonormal x, y, and z axes, respectively, with respect to the global coordinate system. Each column
is written in [x;y;z] form.

Y is a row array of struct type having the same size as X. Each struct contains the three reflected
polarized fields, Y.X, Y.Y, and Y.Z. Each field corresponds to the x, y, and z component of the signal.
Polarization components are measured with respect to the global coordinate system. Each field is a
column vector representing one reflected signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a changing
signal length such as a pulse waveform with variable pulse repetition frequency.

Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES), in addition, specifies the reflection angle,
ANGLE_OUT, of the reflected signal when you set the Mode property to 'Bistatic'. This syntax
applies only when the EnablePolarization property is set to true. ANGLE_OUT is a 2-row matrix
representing the reflected direction of each signal. Each column of ANGLE_OUT specifies the reflected
direction of the signal in the form [AzimuthAngle; ElevationAngle]. Angle units are in degrees.
The number of columns in ANGLE_OUT must equal the number of members in the X array. The number
of columns in ANGLE_OUT must equal the number of elements in the X array.

Y = step(H,X,ANGLE_IN,LAXES,SMAT) specifies SMAT as the scattering matrix. This syntax
applies only when the EnablePolarization property is set to true. The input argument SMAT is a
2-by-2 matrix. You must set the ScatteringMatrixSource property 'Input port' to use SMAT.

Y = step(H,X,ANGLE_IN,LAXES,UPDATESMAT) specifies UPDATESMAT to indicate whether to
update the scattering matrix when you set the Model property to 'Swerling1', 'Swerling2'',
'Swerling3', or 'Swerling4'. This syntax applies only when the EnablePolarization property
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is set to true. If UPDATESMAT is set to true, a scattering matrix value is generated. If UPDATESMAT
is false, the previous scattering matrix value is used.

Y = step(H,X,ANGLE_IN,ANGLE_OUT,LAXES,SMAT,UPDATESMAT). You can combine optional
input arguments when their enabling properties are set. Optional inputs must be listed in the same
order as the order of their enabling properties.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Compute Reflected Signals from Two Non-fluctuating Radar Targets

Create two sinusoidal signals and compute the value of the reflected signals from targets having
radar cross section of 5m2 and 10m2, respectively. Set the radar cross sections in the step method by
choosing Input port for the value of the MeanRCSSource property. Set the radar operating
frequency to 600 MHz.

sRadarTarget = phased.RadarTarget('Model','Nonfluctuating',...
        'MeanRCSSource','Input port',...
        'OperatingFrequency',600e6);
t = linspace(0,1,1000);
x = [cos(2*pi*250*t)',10*sin(2*pi*250*t)'];
y = step(sRadarTarget,x,[5,10]);
disp(y(1:3,1:2))

   15.8643         0
   -0.0249  224.3546
  -15.8642   -0.7055

Algorithms
For a narrowband nonpolarized signal, the reflected signal, Y, is

Y = G ⋅ X,

where:

• X is the incoming signal.
• G is the target gain factor, a dimensionless quantity given by

G = 4πσ
λ2 .

• σ is the mean radar cross-section (RCS) of the target.
• λ is the wavelength of the incoming signal.

 step
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The incident signal on the target is scaled by the square root of the gain factor.

For narrowband polarized waves, the single scalar signal, X, is replaced by a vector signal, (EH, EV),
with horizontal and vertical components. The scattering matrix, S, replaces the scalar cross-section,
σ. Through the scattering matrix, the incident horizontal and vertical polarized signals are converted
into the reflected horizontal and vertical polarized signals.

EH
(scat)

EV
(scat)

= 4π
λ2

SHH SVH
SHV SVV

EH
(inc)

EV
(inc)

= 4π
λ2 S

EH
(inc)

EV
(inc)

For further details, see Mott [1] or Richards[2].
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[1] Mott, H. Antennas for Radar and Communications.John Wiley & Sons, 1992.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.
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See Also
Topics
“Swerling 1 Target Models”
“Swerling Target Models”
“Swerling 3 Target Models”
“Swerling 4 Target Models”
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phased.Radiator
Package: phased

Narrowband signal radiator

Description
The phased.Radiator System object implements a narrowband signal radiator. A radiator converts
signals into radiated wavefields transmitted from arrays and individual sensor elements such as
antennas, microphone elements, and sonar transducers. The radiator output represents the fields at a
reference distance of one meter from the phase center of the element or array. You can then
propagate the signals to the far field using, for example, the phased.FreeSpace,
phased.LOSChannel, or phased.TwoRayChannel System objects.

The object radiates fields in one of two ways controlled by the CombineRadiatedSignals property.

• If the CombineRadiatedSignals is set to true, the radiated field in a specified directions is the
coherent sum of the delayed radiated fields from all elements (or subarrays when subarrays are
supported). The object uses the phase-shift approximation of time delays for narrowband signals.

• If the CombineRadiatedSignals is set to false, each element can radiate in an independent
direction.

You can use this object to

• model electromagnetic radiated signals as polarized or non-polarized fields depending upon
whether the element or array supports polarization and the value of the “Polarization” on page 1-
0  property. Using polarization, you can transmit a signal as a polarized electromagnetic field,
or transmit two independent signals using dual polarizations.

• model acoustic radiated fields by using nonpolarized microphone and sonar transducer array
elements and by setting the “Polarization” on page 1-0  to 'None'. You must also set the
PropagationSpeed to a value appropriate for the medium.

• radiate fields from subarrays created by the phased.ReplicatedSubarray and
phased.PartitionedArray objects. You can steer all subarrays in the same direction using the
steering angle argument, STEERANG, or steer each subarray in a different direction using the
Subarray element weights argument, WS. The radiator distributes the signal powers equally
among the elements of each subarray. You cannot set the CombineRadiatedSignals property to
false for subarrays.

To radiate signals:

1 Create the phased.Radiator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.
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Creation
Syntax
radiator = phased.Radiator
radiator = phased.Radiator(Name,Value)

Description

radiator = phased.Radiator creates a narrowband signal radiator object, radiator, with
default property values.

radiator = phased.Radiator(Name,Value) creates a narrowband signal radiator with each
property Name set to a specified Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: radiator =
phased.Radiator('Sensor',phased.URA,'OperatingFrequency',300e6) sets the sensor
array to a uniform rectangular array (URA) with default URA property values. The beamformer has
an operating frequency of 300 MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Sensor — Sensor element or sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox sensor or
array

Sensor element or sensor array, specified as a System object belonging to Phased Array System
Toolbox. A sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
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Example: 1e9
Data Types: double

CombineRadiatedSignals — Combine radiated signals
true (default) | false

Combine radiated signals, specified as true or false. This property enables the coherent summation
of the radiated signals from all elements of an array to produce plane waves. Set this property to
false to obtain individual radiated signal for each radiating element.

• If the CombineRadiatedSignals is set to true, the radiated field in a specified directions is the
coherent sum of the delayed radiated fields from all elements (or subarrays when subarrays are
supported). The object uses the phase-shift approximation of time delays for narrowband signals.

• If the CombineRadiatedSignals is set to false, each element can radiate in an independent
direction. If the Sensor property is an array that contains subarrays, you cannot set the
CombineRadiatedSignals property to 'false.

Data Types: logical

SensorGainMeasure — Specify sensor gain
'dB' (default) | 'dBi'

Sensor gain measure, specified as 'dB' or 'dBi'.

• When you set this property to 'dB', the input signal power is scaled by the sensor power pattern
(in dB) at the corresponding direction and then combined.

• When you set this property to 'dBi', the input signal power is scaled by the directivity pattern (in
dBi) at the corresponding direction and then combined. This option is useful when you want to
compare results with the values computed by the radar equation that uses dBi to specify the
antenna gain. The computation using the 'dBi' option is expensive as it requires an integration
over all directions to compute the total radiated power of the sensor.

Dependencies

To enable this property, set the CombineRadiatedSignals property to true.
Data Types: char

Polarization — Polarization configuration
'None' (default) | 'Combined' | 'Dual'

Polarization configuration, specified as 'None', 'Combined', or 'Dual'. When you set this property
to 'None', the output field is considered a scalar field. When you set this property to 'Combined',
the radiated fields are polarized and are interpreted as a single signal in the sensor's inherent
polarization. When you set this property to 'Dual', the H and V polarization components of the
radiated field are independent signals.
Example: 'Dual'
Data Types: char

WeightsInputPort — Enable weights input
false (default) | true
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Enable weights input, specified as false or true. When true, use the object input argument W to
specify weights. Weights are applied to individual array elements (or at the subarray level when
subarrays are supported).
Data Types: logical

Usage

Syntax
Y = radiator(X,ANG)
Y = radiator(X,ANG,LAXES)
Y = radiator(XH,XV,ANG,LAXES)
Y = radiator( ___ ,W)
Y = radiator( ___ ,STEERANG)
Y = radiator( ___ ,WS)
Y = radiator(X,ANG,LAXES,W,STEERANG)

Description

Y = radiator(X,ANG) radiates the fields, Y, derived from signals, X in the directions specified by
ANG.

Y = radiator(X,ANG,LAXES) also specifies LAXES as the local coordinate system axes directions.
To use this syntax, set the “Polarization” on page 1-0  property to 'Combined'.

Y = radiator(XH,XV,ANG,LAXES) specifies a horizontal-polarization port signal, XH, and a
vertical-polarization port signal, XV. To use this syntax, set the “Polarization” on page 1-0
property to 'Dual'.

Y = radiator( ___ ,W) also specifies W as element or subarray weights. To use this syntax, set the
WeightsInputPort property to true.

Y = radiator( ___ ,STEERANG) also specifies STEERANG as the subarray steering angle. To use
this syntax, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of that array to either 'Phase' or 'Time'.

Y = radiator( ___ ,WS) also specifies WS as weights applied to each element within each subarray.
To use this syntax, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of the array to 'Custom'.

You can combine optional input arguments when their enabling properties are set, for example, Y =
radiator(X,ANG,LAXES,W,STEERANG) combines several input arguments. Optional inputs must
be listed in the same order as the order of the enabling properties.

Input Arguments

X — Signal to radiate
complex-valued M-by-1 vector | complex-valued M-by-N matrix

Signal to radiate, specified as a complex-valued M-by-1 vector or complex-valued M-by-N matrix. M is
the length of the signal, and N is the number of array elements (or subarrays when subarrays are
supported).
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Dimensions of X

Dimension Signal
M-by-1 vector The same signal is radiated from all array

elements (or all subarrays when subarrays are
supported).

M-by-N matrix Each column corresponds to the signal radiated
by the corresponding array element (or
corresponding subarrays when subarrays are
supported).

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined'.
Data Types: double
Complex Number Support: Yes

ANG — Radiating directions of signals
real-valued 2-by-L matrix

Radiating directions of signals, specified as a real-valued 2-by-L matrix. Each column specifies a
radiating direction in the form [AzimuthAngle;ElevationAngle]. The azimuth angle must lie
between –180° and 180°, inclusive. The elevation angle must lie between –90° and 90°, inclusive.
When the CombineRadiatedSignals property is false, the number of angles must equal the number
of array elements, N. Units are in degrees.
Example: [30,20;45,0]
Data Types: double

LAXES — Local coordinate system
real-valued 3-by-3 orthogonal matrix

Local coordinate system, specified as a real-valued 3-by-3 orthogonal matrix. The matrix columns
specify the local coordinate system's orthonormal x, y, and z axes with respect to the global
coordinate system.
Example: rotx(30)

Dependencies

To enable this argument, set the Polarization property to 'Combined' or 'Dual'.
Data Types: double

XH — H-polarization port signal to radiate
complex-valued M-by-1 vector | complex-valued M-by-N matrix

H-polarization port signal to radiate, specified as a complex-valued M-by-1 vector or complex-valued
M-by-N matrix. M is the length of the signal, and N is the number of array elements (or subarrays
when subarrays are supported).
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Dimensions of XH

Dimension Signal
M-by-1 vector The same signal is radiated from all array

elements (or all subarrays when subarrays are
supported).

M-by-N matrix Each column corresponds to the signal radiated
by the corresponding array element (or
corresponding subarrays when subarrays are
supported).

The dimensions and sizes of XH and XV must be the same.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

XV — V-polarization port signal to radiate
complex-valued M-by-1 vector | complex-valued M-by-N matrix

V-polarization port signal to radiate, specified as a complex-valued M-by-1 vector or complex-valued
M-by-N matrix. M is the length of the signal, and N is the number of array elements (or subarrays
when subarrays are supported).

Dimensions of XV

Dimension Signal
M-by-1 vector The same signal is radiated from all array

elements (or all subarrays when subarrays are
supported).

M-by-N matrix Each column corresponds to the signal radiated
by the corresponding array element (or
corresponding subarrays when subarrays are
supported).

The dimensions and sizes of XH and XV must be the same.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes
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W — Element or subarray weights
N-by-1 column vector

Element or subarray weights, specified as a complex-valued N-by-1 column vector where N is the
number of array elements (or subarrays when the array supports subarrays).

Dependencies

To enable this argument, set the WeightsInputPort property to true.
Data Types: double
Complex Number Support: Yes

WS — Subarray element weights
complex-valued NSE-by-N matrix | 1-by-N cell array

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.

Subarray element weights

Sensor Array Subarray weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray Subarrays may not have the same dimensions and
sizes. In this case, you can specify subarray
weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and set the
SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

STEERANG — Subarray steering angle
real-valued 2-by-1 vector
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Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuthAngle;elevationAngle]. The azimuth angle must be between –180° and 180°,
inclusive. The elevation angle must be between –90° and 90°, inclusive. Units are in degrees.
Example: [20;15]
Dependencies

To enable this argument, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of that array to either 'Phase' or 'Time'
Data Types: double

Output Arguments

Y — Radiated signals
complex-valued M-by-L matrix | complex-valued 1-by-L cell array of structures

Radiated signals, specified as a complex-valued M-by-L matrix or a 1-by-L cell array, where L is the
number of radiating angles, ANG. M is the length of the input signal, X.

• If the Polarization property value is set to 'None', the output argument Y is an M-by-L matrix.
• If the Polarization property value is set to 'Combined' or 'Dual', Y is a 1-by-L cell array of

structures. Each cell corresponds to a separate radiating signal. Each struct contains three
column vectors containing the X, Y, and Z components of the polarized fields defined with respect
to the global coordinate system.

Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Radiation from 5-Element ULA

Propagate and combine radiation from five isotropic antenna elements. Set up a uniform line array of
five isotropic antennas.

First construct a ULA array.

array = phased.ULA('NumElements',5);

Construct a radiator object.
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radiator = phased.Radiator('Sensor',array,...
    'OperatingFrequency',300e6,'CombineRadiatedSignals',true);

Create a simple signal to radiate.

x = [1;-1;1;-1;1;-1];

Specify the azimuth and elevation of the radiating direction.

radiatingAngle = [30;10];

Radiate the signal.

y = radiator(x,radiatingAngle)

y = 6×1 complex

  -0.9523 - 0.0000i
   0.9523 + 0.0000i
  -0.9523 - 0.0000i
   0.9523 + 0.0000i
  -0.9523 - 0.0000i
   0.9523 + 0.0000i

Radiation from 5-Element ULA of Polarized Antennas

Propagate and combine the radiation from five short-dipole antenna elements.

Set up a uniform line array of five short-dipole antennas with polarization enabled. Then, construct
the radiator object.

antenna = phased.ShortDipoleAntennaElement;
array = phased.ULA('Element',antenna,'NumElements',5);
radiator = phased.Radiator('Sensor',array,'OperatingFrequency',300e6,...
    'CombineRadiatedSignals',true,'Polarization','Combined');

Rotate the local coordinate system from the global coordinates by 10° around the x-axis. Demonstrate
that the output represents a polarized field.

Specify a simple signal to radiate and specify the radiating direction in azimuth and elevation.
Radiate the fields in two directions.

x = [1;-1;1;-1;1;-1];
radiatingAngles = [30 30; 0 20];
y = radiator(x,radiatingAngles,rotx(10))

y=1×2 struct array with fields:
    X
    Y
    Z

Show the y-component of the polarized field radiating in the first direction.

disp(y(1).Y)
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  -0.2131 + 0.0000i
   0.2131 - 0.0000i
  -0.2131 + 0.0000i
   0.2131 - 0.0000i
  -0.2131 + 0.0000i
   0.2131 - 0.0000i

Radiate Signal From Isotropic Antenna

Radiate a signal from a single isotropic antenna.

antenna = phased.IsotropicAntennaElement;
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',300e6);
sig = [1;1];
radiatingAngles = [30 10]';
y = radiator(sig,radiatingAngles);

Radiate a far-field signal in two directions from a 5-element array.

array = phased.ULA('NumElements',5);
radiator = phased.Radiator('Sensor',array,'OperatingFrequency',300e6);
sig = [1;1];
radiatingAngles = [30 10; 20 0]';
y = radiator(sig,radiatingAngles);

Radiate signals from a 3-element antenna array. Each antenna radiates a separate signal in a
separate direction.

array = phased.ULA('NumElements',3);
radiator = phased.Radiator('Sensor',array,'OperatingFrequency',1e9,...
    'CombineRadiatedSignals',false);
sig = [1 2 3; 2 8 -1];
radiatingAngles = [10 0; 20 5; 45 2]';
y = radiator(sig,radiatingAngles)

y = 2×3

     1     2     3
     2     8    -1

Measure Target Scattering Matrix Using Dual Polarization

Use a dual-polarization system to obtain target scattering information. Simulate a transmitter and
receiver where the vertical and horizontal components are transmitted successively using the input
ports of the transmitter. The signals from the two polarization output ports of the receiver is then
used to determine the target scattering matrix.

scmat = [0 1i; 1i 2];
radiator = phased.Radiator('Sensor', ...
    phased.CustomAntennaElement('SpecifyPolarizationPattern',true), ...
    'Polarization','Dual');
target = phased.RadarTarget('EnablePolarization',true,'ScatteringMatrix', ...
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    scmat);
collector = phased.Collector('Sensor', ...
    phased.CustomAntennaElement('SpecifyPolarizationPattern',true), ...
    'Polarization','Dual');
xh = 1;
xv = 1;

Transmit a horizontal component and display the reflected Shh and Svh polarization components.

x = radiator(xh,0,[0;0],eye(3));
xrefl = target(x,[0;0],eye(3));
[Shh,Svh] = collector(xrefl,[0;0],eye(3))

Shh = 0

Svh = 0.0000 + 3.5474i

Transmit a vertical component and display the reflected Shv and Svv polarization components.

x = radiator(0,xv,[0;0],eye(3));
xrefl = target(x,[0;0],eye(3));
[Shv,Svv] = collector(xrefl,[0;0],eye(3))

Shv = 0.0000 + 3.5474i

Svv = 7.0947

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.Collector | phased.FreeSpace | phased.TwoRayChannel |
phased.WidebandCollector | phased.WidebandRadiator

Introduced in R2011a
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step
System object: phased.Radiator
Package: phased

Radiate signals

Syntax
Y = step(H,X,ANG)
Y = step(H,X,ANG,LAXES)
Y = step(H,X,ANG,WEIGHTS)
Y = step(H,X,ANG,STEERANGLE)
Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X,ANG) radiates signal X in the direction ANG. Y is the radiated signal. The radiating
process depends on the CombineRadiatedSignals property of H, as follows:

• If CombineRadiatedSignals has the value true, each radiating element or subarray radiates X
in all the directions in ANG. Y combines the outputs of all radiating elements or subarrays. If the
Sensor property of H contains subarrays, the radiating process distributes the power equally
among the elements of each subarray.

• If CombineRadiatedSignals has the value false, each radiating element radiates X in only one
direction in ANG. Each column of Y contains the output of the corresponding element. The false
option is available when the Sensor property of H does not contain subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate system axes directions. This syntax
is available when you set the EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This syntax is available when
you set the WeightsInputPort property to true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle. This syntax is
available when you configure H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all input arguments. This syntax is
available when you configure H so that H.EnablePolarization is true, H.WeightsInputPort is
true, H.Sensor is an array that contains subarrays, and H.Sensor.SubarraySteering is either
'Phase' or 'Time'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
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the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Radiator object.

X

Signals to radiate. X can be either a vector or a matrix.

If X is a vector, that vector is radiated through all radiating elements or subarrays. The computation
does not divide the signal’s power among elements or subarrays, but rather treats the X vector the
same as a matrix in which each column equals this vector.

If X is a matrix, the number of columns of X must equal the number of subarrays if H.Sensor is an
array that contains subarrays, or the number of radiating elements otherwise. Each column of X is
radiated by the corresponding element or subarray.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

ANG

Radiating directions of signals. ANG is a two-row matrix. Each column specifies a radiating direction
in the form [AzimuthAngle;ElevationAngle], in degrees.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns specify the local coordinate
system's orthonormal x, y, and z axes, respectively. Each axis is specified in terms of [x;y;z] with
respect to the global coordinate system. This argument is only used when the EnablePolarization
property is set to true.

WEIGHTS

Vector of weights. WEIGHTS is a column vector whose length equals the number of radiating elements
or subarrays.

STEERANGLE

Subarray steering angle, specified as a length-2 column vector. The vector has the form [azimuth;
elevation], in degrees. The azimuth angle must be between –180 and 180 degrees, inclusive. The
elevation angle must be between –90° and 90°, inclusive.

Output Arguments
Y

Radiated signals
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• If the EnablePolarization property value is set to false, the output argument Y is a matrix.
The number of columns of the matrix equals the number of radiating signals. Each column of Y
contains a separate radiating signal. The number of radiating signals depends upon the
CombineRadiatedSignals property of H.

• If the EnablePolarization property value is set to true, Y is a row vector of elements of
MATLAB struct type. The length of the struct vector equals the number of radiating signals.
Each struct contains a separate radiating signal. The number of radiating signals depends upon
the CombineRadiatedSignals property of H. Each struct contains three column-vector fields,
X, Y, and Z. These fields represent the x, y, and z components of the polarized wave vector signal
in the global coordinate system.

Examples

Radiation from 5-Element ULA

Propagate and combine radiation from five isotropic antenna elements. Set up a uniform line array of
five isotropic antennas.

First construct a ULA array.

array = phased.ULA('NumElements',5);

Construct a radiator object.

radiator = phased.Radiator('Sensor',array,...
    'OperatingFrequency',300e6,'CombineRadiatedSignals',true);

Create a simple signal to radiate.

x = [1;-1;1;-1;1;-1];

Specify the azimuth and elevation of the radiating direction.

radiatingAngle = [30;10];

Radiate the signal.

y = radiator(x,radiatingAngle)

y = 6×1 complex

  -0.9523 - 0.0000i
   0.9523 + 0.0000i
  -0.9523 - 0.0000i
   0.9523 + 0.0000i
  -0.9523 - 0.0000i
   0.9523 + 0.0000i

Radiation from 5-Element ULA of Polarized Antennas

Propagate and combine the radiation from five short-dipole antenna elements.
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Set up a uniform line array of five short-dipole antennas with polarization enabled. Then, construct
the radiator object.

antenna = phased.ShortDipoleAntennaElement;
array = phased.ULA('Element',antenna,'NumElements',5);
radiator = phased.Radiator('Sensor',array,'OperatingFrequency',300e6,...
    'CombineRadiatedSignals',true,'Polarization','Combined');

Rotate the local coordinate system from the global coordinates by 10° around the x-axis. Demonstrate
that the output represents a polarized field.

Specify a simple signal to radiate and specify the radiating direction in azimuth and elevation.
Radiate the fields in two directions.

x = [1;-1;1;-1;1;-1];
radiatingAngles = [30 30; 0 20];
y = radiator(x,radiatingAngles,rotx(10))

y=1×2 struct array with fields:
    X
    Y
    Z

Show the y-component of the polarized field radiating in the first direction.

disp(y(1).Y)

  -0.2131 + 0.0000i
   0.2131 - 0.0000i
  -0.2131 + 0.0000i
   0.2131 - 0.0000i
  -0.2131 + 0.0000i
   0.2131 - 0.0000i
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RangeAngleResponse
Package: phased

Range-angle response

Description
The RangeAngleResponse System object creates an range-angle response object. This object
calculate the range-angle response of a signal using either a matched filter or an FFT.

The input to the range-angle response object is a data cube. The organization of the data cube follows
the Phased Array System Toolbox convention. The first dimension of the cube represents the fast-time
samples or ranges of the received signals. The second dimension represents multiple channels such
as sensors or beams. The third dimension, slow time, represents pulses or sweeps. If the data
contains only one channel, for example, the data cube can contain fewer than three dimensions.
Range processing operates along the first dimension of the cube. Angle processing operates along the
second dimension.

The output of the object is also a data cube with the same number of dimensions as the input. The
first dimension contains range-processed data but its length can differ from the first dimension of the
input. The second dimension contains angle-processed data. Its length can differ from the last
dimension of the input.

To obtain the range-angle response:

1 Create the RangeAngleResponse object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
response = phased.RangeAngleResponse
response = phased.RangeAngleResponse(Name,Value)

Description

response = phased.RangeAngleResponse creates a phased.RangeAngleResponse System
object, response, with default property values.

response = phased.RangeAngleResponse(Name,Value) sets properties for the
phased.RangeAngleResponse object using one or more name-value pairs. For example, response
= phased.RangeAngleResponse('RangeMethod','FFT','SampleRate',1e6) creates an
object that uses an FFT range processing method at a sample rate of 1 MHz. Enclose property names
in quotes.
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorArray — Sensor array
phased.ULA array with default array properties (default) | Phased Array System Toolbox array System
object

Sensor array, specified as a Phased Array System Toolbox array System object.
Example: phased.URA

RangeMethod — Range processing method
'Matched filter' (default) | 'FFT'

Range processing method, specified as 'Matched filter' or 'FFT'.

• 'Matched filter' — The object match-filters the incoming signal. This approach is commonly
used for pulsed signals, where the matched filter is the time reverse of the transmitted signal.

• 'FFT' — The object applies an FFT to the input signal. This approach is commonly used for
chirped signals such as FMCW and linear FM pulsed signals.

Example: 'Matched filter'
Data Types: char

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6

 RangeAngleResponse

1-1343



Data Types: double

SweepSlope — Linear FM sweep slope
1.0e9 (default) | scalar

Linear FM sweep slope, specified as a scalar. The fast-time dimension of the signal input argument
to step must correspond to sweeps having this slope.
Example: 1.5e9

Dependencies

To enable this property, set the RangeMethod property to 'FFT'.
Data Types: double

DechirpInput — Enable dechirping of input signals
false (default) | true

Option to enable dechirping of input signals, specified as false or true. Set this property to false
to indicate that the input signal is already dechirped and no dechirp operation is necessary. Set this
property to true when the input signal requires dechirping.

Dependencies

To enable this property, set the RangeMethod property to 'FFT'.
Data Types: logical

DecimationFactor — Decimation factor for dechirped signals
1 (default) | positive integer

Decimation factor for dechirped signals, specified as a positive integer. The decimation algorithm
uses a 30th-order FIR filter generated by fir1(30,1/D), where D is the decimation factor. The
default value of 1 implies no decimation.

When processing FMCW signals, decimating the dechirped signal is useful for reducing the load on
A/D converters.

Dependencies

To enable this property, set the RangeMethod property to 'FFT' and the DechirpInput property to
true.
Data Types: double

RangeFFTLengthSource — Source of FFT length for range processing of dechirped signals
'Auto (default) | 'Property'

Source of the FFT length used for the range processing of dechirped signals, specified as 'Auto' or
'Property'.

• 'Auto' — The FFT length equals the length of the fast-time dimension of the input data cube.
• 'Property' — Specify the FFT length by using the RangeFFTLength property.

Dependencies

To enable this property, set the RangeMethod property to 'FFT'.
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Data Types: char

RangeFFTLength — FFT length used for range processing
1024 (default) | positive integer

FFT length used for range processing, specified as a positive integer.
Dependencies

To enable this property, set the RangeMethod property to 'FFT' and the RangeFFTLengthSource
property to 'Property'
Data Types: double

RangeWindow — FFT weighting window for range processing
'None' (default) | 'Hamming' | 'Chebyshev' | 'Hann' | 'Kaiser' | 'Taylor' | 'Custom'

FFT weighting window for range processing, specified as 'None', 'Hamming', 'Chebyshev',
'Hann', 'Kaiser', 'Taylor', or 'Custom'.

If you set this property to 'Taylor', the generated Taylor window has four nearly constant sidelobes
next to the mainlobe.
Dependencies

To enable this property, set the RangeMethod property to 'FFT'.
Data Types: char

RangeSidelobeAttenuation — Sidelobe attenuation for range processing
30 (default) | positive scalar

Sidelobe attenuation for range processing, specified as a positive scalar. Attenuation applies to
Kaiser, Chebyshev, or Taylor windows. Units are in dB.
Dependencies

To enable this property, set the RangeMethod property to 'FFT' and the RangeWindow property to
'Kaiser', 'Chebyshev', or 'Taylor'.

CustomRangeWindow — Custom window for range processing
@hamming (default) | function handle | cell array

Custom window for range processing, specified as a function handle or a cell array containing a
function handle as its first entry. If you do not specify a window length, the object computes the
window length and passes that into the function. If you specify a cell array, the remaining cells of the
array can contain arguments to the function. If you use only the function handle without passing in
arguments, all arguments take their default values.

If you write your own window function, the first argument must be the length of the window.

Note Instead of using a cell array, you can pass in all arguments by constructing a handle to an
anonymous function. For example, you can set the value of CustomRangeWindow to
@(n)taylorwin(n,nbar,sll), where you have previously set the values of nbar and sll.

Example: {@taylor,5,-35}
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Dependencies

To enable this property, set the RangeMethod property to 'FFT' and the RangeWindow property to
'Custom'.
Data Types: function_handle | cell

ReferenceRangeCentered — Set reference range at center of range grid
true (default) | false

Set reference range at center of range grid, specified as true or false. Setting this property to
true enables you to set the reference range at the center of the range grid. Setting this property to
false sets the reference range to the beginning of the range grid.
Dependencies

To enable this property, set the RangeMethod to 'FFT'.
Data Types: logical

ReferenceRange — Reference range of range grid
0.0 (default) | nonnegative scalar

Reference range of the range grid, specified as a nonnegative scalar.

• If you set the RangeMethod property to 'Matched filter', the reference range is set to the
start of the range grid.

• If you set the RangeMethod property to 'FFT', the reference range is determined by the
ReferenceRangeCentered property.

• When you set the ReferenceRangeCentered property to true, the reference range is set to
the center of the range grid.

• When you set the ReferenceRangeCentered property to false, the reference range is set to
the start of the range grid.

Units are in meters.

This property is tunable.
Example: 1000.0
Data Types: double

MaximumNumInputSamplesSource — Source of maximum number of input signal samples
'Auto' (default) | 'Property'

Source of the maximum number of input signal samples, specified as 'Auto' or 'Property'. When
you set this property to 'Auto', the object automatically allocates enough memory to buffer the
input signal. When you set this property to 'Property', you specify the maximum number of
samples in the input signal using the MaximumNumInputSamples property. Any input signal longer
than that value is truncated.

To use this object with a variable-size signal in a MATLAB Function Block in Simulink, set this
property to 'Property' and set a value for the MaximumNumInputSamples property.
Dependencies

To enable this property, set the MaximumDistanceSource property to 'Property'.
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MaximumNumInputSamples — Maximum number of input signal samples
100 (default) | positive integer

Maximum number of samples in the input signal, specified as a positive integer. This property limits
the size of the input signal. The input signal is the first argument to the object. The number of
samples is the number of rows in the input. An input signal longer than this value is truncated.
Example: 1024

Dependencies

To enable this property, set the RangeMethod property to 'Matched filter' and set the
MaximumNumInputSamplesSource property to 'Property'.
Data Types: double

ElevationAngleSource — Source of elevation angle
'Property' (default) | 'Input port'

Source of elevation angle, specified as 'Property' or 'Input port'.

'Property' The elevation angle comes from the ElevationAngle
property.

'Input port' The elevation angle comes from an input argument.

ElevationAngle — Elevation angle
0 (default) | scalar

Specify the elevation angle in degrees used to calculate the range-angle response as a scalar. The
angle must lie in the range from –90° to 90°. Units are in degrees.
Example: 45.0

Dependencies

To enable this property, set the ElevationAngleSource property to 'Property'.
Data Types: double

AngleSpan — Angle response span
[-90 90] (default) | real-valued 1-by-2 vector

Angle response span, specified as a real-valued 2-by-1 vector. The object calculates the range-angle
response within the angle range, [min_angle max_angle].
Example: [-45 45]
Data Types: double

NumAngleSamples — Number of samples in angle span
positive integer greater than two

Number of samples in angle span used to calculate range-angle response, specified as a positive
integer greater than two.
Example: [256]
Data Types: double
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You can combine optional input arguments when their enabling properties are set. Optional inputs
must be listed in the same order as the order of the enabling properties. For example,

[RESP,RANGE,ANG] = response(X,XREF,EL)

or

[RESP,RANGE,ANG] = response(X,COEFF,EL)

Usage

Syntax
[RESP,RANGE,ANG] = response(X)
[RESP,RANGE,ANG] = response(X,XREF)
[RESP,RANGE,ANG] = response(X,COEFF)
[RESP,RANGE,ANG] = response( ___ ,EL)

Description

[RESP,RANGE,ANG] = response(X) returns the range-angle response, RESP, the ranges, RANGE,
and the angles, ANG. X is a dechirped signal. This syntax applies when you set the RangeMethod
property to 'FFT' and the DechirpInput property to false. This syntax is often applied to FMCW
signals.

[RESP,RANGE,ANG] = response(X,XREF) also specifies the reference signal, XREF to dechirped
the signal. This syntax applies when you set the RangeMethod property to 'FFT' and the
DechirpInput property to true. This syntax is often applied to FMCW signals. Then, the reference
signal can be the transmitted signal.

[RESP,RANGE,ANG] = response(X,COEFF) also specifies COEFF as matched filter coefficients.
This syntax applies when you set the RangeMethod property to 'MatchedFilter'. This syntax is
often applied to pulsed signals.

[RESP,RANGE,ANG] = response( ___ ,EL) also specifies EL as the elevation angle. This syntax
applies when you set the ElevationAngleSource property to 'Input port'.

Input Arguments

X — Input signal data cube
complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Input signal cube, specified as a complex-valued K-by-N matrix or complex-valued K-by-N-by-L array.
The contents of the data cube depend on the type of range-angle processing specified by the different
syntaxes.

• K is the number of fast-time or range samples.
• N is the number of independent spatial channels such as sensors or beams.
• L is the slow-time dimension that corresponds to the number of pulses or sweeps in the input

signal.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
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XREF — Reference signal used for dechirping
complex-valued K-by-1 column vector

Reference signal used for dechirping, specified as a complex-valued K-by-1 column vector. The
number of rows must equal the length of the fast-time dimension of X.

Dependencies

To enable this input argument, set the value of RangeMethod to 'FFT' and DechirpInput to true.
Data Types: double

COEFF — Matched filter coefficients
complex-valued P-by-1 column vector

Matched filter coefficients, specified as a complex-valued P-by-1 column vector. P must be less than or
equal to K. K is the number of fast-time or range sample.

Dependencies

To enable this input argument, set the value of RangeMethod to 'Matched filter'.
Data Types: double

EL — Elevation angle
scalar

Elevation angle of response, specified as a scalar between –90° and +90°. The range-angle response
is computed for this elevation. Units are in degrees.

Dependencies

To enable this argument, set the ElevationAngleSource property to 'Input port'.
Data Types: double

Output Arguments

RESP — Range response data cube
complex-valued M-element column vector | complex-valued M-by-L matrix | complex-valued M-by-N
by-L array

Range response data cube, returned as one of the following:

• Complex-valued M-element column vector
• Complex-valued M-by-L matrix
• Complex-valued M-by-N by-L array

The value of M depends on the type of processing
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RangeMethod Property DechirpInput Property Value of M
'FFT' false If you set the RangeFFTLength

property to 'Auto', M = K, the
length of the fast-time
dimension of x. Otherwise, M
equals the value of the
RangeFFTLength property.

true M equals the quotient of the
number of rows, K, of the input
signal by the value of the
decimation factor, D, specified
in DecimationFactor.

'Matched filter' n/a M = K, the length of the fast-
time dimension of x.

Data Types: double

RANGE — Range values along range dimension
real-valued M-by-1 column vector

Range values along range dimension, returned as a real-valued M-by-1 column vector. rnggrid
defines the ranges corresponding to the fast-time dimension of the RESP output data cube. M is the
length of the fast-time dimension of RESP. Range values are monotonically increasing and equally
spaced. Units are in meters.
Data Types: double

ANG — Angle values along angle direction
P-by-1 real-valued vector

Angle values along angle direction, returned as a P-by-1 real-valued vector. Units are in degrees.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to RangeAngleResponse
plotResponse Plot range-angle response

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object
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Examples

Range Angle Response of Antenna Array

Calculate the range-angle response from a pulsed radar transmitting a rectangular waveform using
the matched filter approach. The signal includes three target returns. Two are approximately 2000 m
away and the third is approximately 3500 m away. In addition, two targets are stationary relative to
the radar while the third is moving away from the radar at approximately 100 m/s. The signals arrive
at an 8-element uniform linear array.

First, load the example data.

load('RangeAngleResponseExampleData','rectdata');
fs = rectdata.fs;
propspeed = rectdata.propspeed;
fc = rectdata.fc;
rxdata = rectdata.rxdata;
mfcoeffs = rectdata.mfcoeffs;
%noisepower = rectdata.noisepower;
antennaarray = rectdata.antennaarray;

Second, create the range-angle response object for matched filter processing.

rngangresp = phased.RangeAngleResponse(...
    'SensorArray',antennaarray,'OperatingFrequency',fc,...
    'SampleRate',fs,'PropagationSpeed',propspeed);

Obtain the range-angle map.

[resp,rng_grid,ang_grid] = rngangresp(rxdata,mfcoeffs);

Plot the response.

plotResponse(rngangresp,rxdata,mfcoeffs,'Unit','db');
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Algorithms
Range-Angle Response

The object generates the response by first processing the input signal in the range domain using
either a matched filter or a dechirp operation and then by processing along azimuth angles.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The CustomRangeWindow property is not supported.
• The plotResponse object function is not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
bw2range | chebwin | dechirp | fir1 | hamming | hann | kaiser | rangeangle | taylorwin
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System Objects
phased.AngleDopplerResponse | phased.CFARDetector | phased.CFARDetector2D |
phased.DopplerEstimator | phased.MatchedFilter | phased.RangeDopplerResponse |
phased.RangeEstimator | phased.RangeResponse

Introduced in R2018b
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plotResponse
Package: phased

Plot range-angle response

Syntax
plotResponse(response,X)
plotResponse(response,X,XREF)
plotResponse(response,X,COEFF)
plotResponse( ___ ,'Unit',unit)

Description
plotResponse(response,X) plots the range response of a dechirped input signal, X, from the
phased.RangeAngleResponse object, response. This syntax applies when you set the
RangeMethod property to 'FFT' and the DechirpInput property to false.

plotResponse(response,X,XREF) plots the range response X, after performing a dechirp
operation using the reference signal, XREF. This syntax applies when you set the RangeMethod
property to 'FFT' and the DechirpInput property to true.

plotResponse(response,X,COEFF) plots the range response of X after match filtering using the
match filter coefficients, coeff. This syntax applies when you set the RangeMethod property to
'Matched filter'.

plotResponse( ___ ,'Unit',unit) plots the response in the units specified by units.

Examples

Range Angle Response of Antenna Array

Calculate the range-angle response from a pulsed radar transmitting a rectangular waveform using
the matched filter approach. The signal includes three target returns. Two are approximately 2000 m
away and the third is approximately 3500 m away. In addition, two targets are stationary relative to
the radar while the third is moving away from the radar at approximately 100 m/s. The signals arrive
at an 8-element uniform linear array.

First, load the example data.

load('RangeAngleResponseExampleData','rectdata');
fs = rectdata.fs;
propspeed = rectdata.propspeed;
fc = rectdata.fc;
rxdata = rectdata.rxdata;
mfcoeffs = rectdata.mfcoeffs;
%noisepower = rectdata.noisepower;
antennaarray = rectdata.antennaarray;

Second, create the range-angle response object for matched filter processing.
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rngangresp = phased.RangeAngleResponse(...
    'SensorArray',antennaarray,'OperatingFrequency',fc,...
    'SampleRate',fs,'PropagationSpeed',propspeed);

Obtain the range-angle map.

[resp,rng_grid,ang_grid] = rngangresp(rxdata,mfcoeffs);

Plot the response.

plotResponse(rngangresp,rxdata,mfcoeffs,'Unit','db');

Input Arguments
response — Range-angle response object
phased.RangeAngleResponse System object

Range-angle response object, specified as a phased.RangeAngleResponse System object.

X — Input data
complex-valued K-by-N matrix

Input data, specified as a complex-valued K-by-N matrix. The contents of the data cube depend on the
type of range-angle processing specified by the different syntaxes. K always specifies the number of
fast-time samples and N is always the number of channels, either array elements or beams.
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• K is the number of fast-time or range samples.
• N is the number of independent spatial channels such as sensors or directions.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

XREF — Reference signal used for dechirping
complex-valued K-by-1 column vector

Reference signal used for dechirping, specified as a complex-valued K-by-1 column vector. The
number of rows must equal the length of the fast-time dimension of X.

Dependencies

To enable this input argument, set the value of RangeMethod to 'FFT' and DechirpInput to true.
Data Types: double

COEFF — Matched filter coefficients
complex-valued P-by-1 column vector

Matched filter coefficients, specified as a complex-valued P-by-1 column vector. P must be less than or
equal to K. K is the number of fast-time or range sample.

Dependencies

To enable this input argument, set the value of RangeMethod to 'Matched filter'.
Data Types: double

unit — Plot units
'db' (default) | 'mag' | 'pow'

Plot units, specified as 'db', 'mag', or 'pow'. who

• 'db' – plot the response power in dB.
• 'mag' – plot the magnitude of the response.
• 'pow' – plot the response power.

Example: 'mag'
Data Types: char | string

Introduced in R2018b

1 Objects

1-1356



phased.RangeDopplerScope
Package: phased

Range-Doppler scope

Description
The phased.RangeDopplerScope System object creates a scope for viewing a range- response
map. The map is a 2-D image of response intensity as a function of range and (or speed). You can
input two types of data - in-phase and quadrature (I/Q) data and response data.

• I/Q data – The data consists of fast-time and slow-time I/Q samples of pulses or sweeps. The scope
computes and displays the response map. To use I/Q data, set the IQDataInput property to true.
In this mode, you can set the properties shown in “Properties Applicable to I/Q Data” on page 1-
1367.

• Response data – The data consists of the range- response itself. The scope displays the range-
response map. For example, you can obtain range- response from
phased.RangeDopplerResponse object. To use response data, set the IQDataInput property
to false. In this mode, you can set the properties shown in “Properties Applicable to Response
Data” on page 1-1368.

To display a range-Doppler response map using the scope,

1 Create the phased.RangeDopplerScope object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
scope = phased.RangeDopplerScope
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scope = phased.phased.RangeDopplerScope(Name,Value)

Description

scope = phased.RangeDopplerScope creates a range-Doppler scope System object, scope. This
object displays the range-Doppler response of the input data.

scope = phased.phased.RangeDopplerScope(Name,Value) creates a range-Doppler scope
object, scope, with each specified property set to the specified value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose property
names in quotes. For example,

scope = phased.RangeDopplerScope('IQInputData',true,'RangeMethod', ...
        'FFT','SampleRate',1e6,'DopplerOutput','Speed', ...
        'OperatingFrequency',10e6,'SpeedUnits','km/h');

creates a scope object that uses FFT-based range processing for I/Q data having a sample rate of 1
MHz. The Doppler output units are speed in kilometers per hour.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Name — Display caption
'Range-Doppler Scope' (default) | character vector

Display caption, specified as a character vector. The caption appears in the title bar of the window.
Example: 'Aircraft Range-Doppler Response'

Tunable: Yes
Data Types: char

Position — Location and size of intensity scope window
depends on display-resolution (default) | 1-by-4 vector of positive values

Location and size of the intensity scope window, specified as a 1-by-4 vector having the form [left
bottom width height].

• left and bottom specify the location of the bottom-left corner of the window.
• width and height specify the width and height of the window.

Units are in pixels.

The default value of this property depends on the resolution of your display. By default, the window is
positioned in the center of the screen, with a width and height of 800 and 450 pixels, respectively.
Example: [100 100 500 400]

Tunable: Yes
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Data Types: double

IQDataInput — Type of input data
true (default) | false

Type of input data, specified as true or false. When true, the object assumes that the input
consists of I/Q sample data and further processing is required in the range and Doppler domains.
When false, the object assumes that the data is response data that has already been processed.
Data Types: logical

ResponseUnits — Response units label
'db' (default) | 'magnitude' | 'power'

Response units, specified as 'db', 'magnitude', or 'power'.
Data Types: char

RangeLabel — Range-axis label
'Range (m)' (default) | character vector

Range-axis label, specified as a character vector.
Example: 'Range (km)'

Tunable: Yes

Dependencies

To enable this property, set the IQDataInput to false.
Data Types: char

DopplerLabel — Doppler-axis label
'Doppler Frequency (Hz)' (default) | character vector

Doppler-axis label, specified as a character vector.
Example: 'Doppler Frequency (kHz)'

Tunable: Yes

Dependencies

To enable this property, set the IQDataInput to false.
Data Types: char

RangeMethod — Range processing method
'Matched filter' (default) | 'FFT'

Range-processing method, specified as 'Matched filter' or 'FFT'.

'Matched filter' The object applies a matched filter to the incoming signal. This
approach is commonly used with pulsed signals, where the matched
filter is a time-reversed replica of the transmitted signal.
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'FFT' Algorithm performs range processing by applying an FFT to the
input signal. This approach is commonly used with FMCW
continuous signals and linear FM pulsed signals.

Dependencies

To enable this property, set the IQDataInput property to true.

RangeUnits — Range units
'm' (default) | 'km' | 'mi' | 'nmi'

Range units, specified as:

• 'm' – meters
• 'km' – kilometers
• 'mi' – miles
• 'nmi' – nautical miles

Example: 'mi'

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: char

PropagationSpeed — Signal propagation speed
physconst('Lightspeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. The default value of this property is the
speed of light. See physconst. Units are in meters/second.
Example: 3e8

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

SampleRate — Sample rate
1e6 (default) | positive scalar

Sample rate, specified as a positive scalar. Units are in Hz.
Example: 10e3

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

SweepSlope — FM sweep slope
1e9 (default) | scalar

Slope of the linear FM sweep, specified as a scalar. Units are in Hz/sec.
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Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: double

DechirpInput — Dechirp input signal
false (default) | true

Set this property to true to dechirp the input signal before performing range processing. false
indicates that the input signal is already dechirped and no dechirp operation is necessary.
Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: logical

RangeFFTLength — FFT length used in range processing
1024 (default) | positive integer

FFT length used for range processing, specified as a positive integer.
Example: 128
Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: double

ReferenceRangeCentered — Set reference range at center of range span
true (default) | false

Set this property to true to set the reference range to the center of the range span. Set this property
to false to set the reference range to the beginning of the range span.
Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: logical

ReferenceRange — Reference range
0.0 (default) | nonnegative scalar

Reference range of the range span, specified as a nonnegative scalar.

• If you set the RangeMethod property to 'Matched filter', the reference range marks the start
of the range span.

• If you set the RangeMethod property to 'FFT', the position of the reference range depends on
the ReferenceRangeCentered property.

• If you set the ReferenceRangeCentered property to true, the reference range marks the
center of the range span.
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• If you set the ReferenceRangeCentered property to false, the reference range marks the
start of the range span.

Units are in meters.

Example: 1000.0

Tunable: Yes

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

PRFSource — Source of pulse repetition frequency
'Auto' (default) | 'Property'

Source of the pulse repetition frequency (PRF) of the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the PRF is a function of the number of rows in
the input signal and the value of the SampleRate property. When you set this property to
'Property', you can specify the PRF using the PRF property.

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: char

PRF — Pulse repetition frequency of input signal
10e3 (default) | positive scalar

Pulse repetition frequency of input signal, specified as a positive scalar. Units are in Hz.
Example: 1.4e3

Dependencies

To enable this property, set the IQDataInput property to true and set the PRFSource property to
'Property'.
Data Types: double

DopplerFFTLength — FFT length used in Doppler processing
1024 (default) | positive integer

FFT length used in Doppler processing, specified as a positive integer.
Example: 67

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

DopplerOutput — Doppler output
'Frequency' (default) | 'Speed'
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Doppler output, specified as 'Frequency' or 'Speed'. If you set this property to 'Frequency', the
Doppler output, Dop, at object execution time is the Doppler shift. If you set this property to
'Speed', the Doppler output is the equivalent radial speed.

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: char

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar.

Dependencies

To enable this property, set the IQDataInput property to true and the DopplerOutput to
'Speed'.
Data Types: double

NormalizeDoppler — Normalize Doppler
false (default) | true

Set this property to true to plot the range-Doppler response with normalized Doppler frequency. Set
this property to false to plot the range-Doppler response without normalizing the Doppler
frequency.

Dependencies

To enable this property, set the IQDataInput property to true and the DopplerOutput to
'Frequency'.
Data Types: logical

SpeedUnits — Doppler speed units
'm/s' (default) | 'km/h' | 'mph' | 'kt'

Doppler speed units:

• 'm/s' – meters per second
• 'km/h' – kilometers per hour
• 'mph' – miles per hour
• 'kt' – knots or nautical miles per hour

Example: 'mph'

Dependencies

To enable this property, set the IQDataInput property to true and the DopplerOutput property to
'Speed'.
Data Types: char

FrequencyUnits — Doppler frequency units
'Hz' (default) | 'kHz' | 'MHz'
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Doppler frequency units, specified as 'Hz', 'kHz', or 'MHz'.
Example: 'MHz'

Dependencies

To enable this property, set the IQDataInput property to true, the DopplerOutput to
'Frequency', and the NormalizedDoppler property to false.
Data Types: char

Usage

Syntax
scope(X,Range,Dop)

scope(X)
scope(X,XREF)
scope(X,COEFF)

Description

scope(X,Range,Dop) displays a range-Doppler response map, X, at the ranges, Range, and Doppler
shifts, Dop. This syntax applies when you set the IQDataInput to false.

scope(X) computes and displays the range-Doppler response map. This syntax applies when you set
the IQDataInput property to true, the RangeMethod property to 'FFT', and the DechirpInput
property to false. This syntax is most commonly used with FMCW signals. All sweeps in X are
assumed to be contiguous. If the sweeps are not contiguous, set the PRF by setting the PRFSource
property to 'Property' and the PRF of the input data to the PRF.

scope(X,XREF) also specifies a reference signal to use for dechirping the input signal, X. This
syntax applies when you set the IQDataInput property to true, the RangeMethod property to
'FFT', and the DechirpInput property to true. This syntax is most commonly used with FMCW
signals. XREF is generally the transmitted signal.

scope(X,COEFF) also specifies matched filter coefficients, COEFF. This syntax applies when you set
the IQDataInput property to true and the RangeMethod property to 'Matched Filter'. This
syntax is most commonly used with pulsed signals.

Input Arguments

X — Input data
complex-valued K-by-L matrix

Input data, specified as a complex-valued K-by-L matrix. The interpretation of the data depends on
the value of the IQDataInput property.

• When IQDataInput is true, the input consists of received fast-time (range) samples for each PRI
pulse or FMCW sweep. K denotes the number of fast-time samples. L is the number of Doppler
samples. The number of Doppler samples is the number of pulses in the case of pulsed signals or
the number of dechirped frequency sweeps for FMCW signals. The scope computes and displays
the range-Doppler response.
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• When RangeMethod is set to 'FFT' and DechirpInput is false, X has previously been
dechirped.

• When RangeMethod is set to 'FFT' and DechirpInput is true, X has not been previously
dechirped. Use the syntax that includes XREF as input data.

• When RangeMethod is set to 'MatchedFilter', X has not been match filtered. Use the
syntax that includes COEFF as input data.

• When IQDataInput is false, the input already consists of response data in the range-Doppler
domain such as that produced by phased.RangeDopplerResponse. Each row of the response
map corresponds to an element of the Range vector. Each column corresponds to an element of
the Dop vector. The scope serves only as a display of the range-Doppler response.

Range — Range grid values of range-Doppler response map
real-valued K-by-1 column vector

Range grid values of response map, specified as a real-valued K-by-1 column vector. Range denotes
the range values at which the response has been computed. Elements of Range correspond to the
rows of X.

Dependencies

To enable this argument, set the IQInputData property to false.
Data Types: double

Dop — Doppler grid values of range-Doppler response map
real-valued L-by-1 column vector

Doppler grid values of response map, specified as a real-valued L-by-1 column vector. Dop denotes the
Doppler values at which the response has been computed. Elements of Dop correspond to the
columns of X. Dop can contain either Doppler or speed values at which the range-Doppler response is
evaluated.

Dependencies

To enable this argument, set the IQInputData property to false.
Data Types: double

XREF — Reference signal
complex-valued K-by-1 column vector

Reference signal used to dechirp X. XREF must be a column vector with the same number of rows as
X.

Dependencies

To enable this argument, set the IQDataInput property to true, the RangeMethod property to
'FFT' and the DechirpInput property to false
Data Types: double
Complex Number Support: Yes

COEFF — Matched filter coefficients
complex-valued column vector

Matched filter coefficients, specified as a complex-valued column vector.
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Dependencies

To enable this argument, set the IQDataInput property to true and the RangeMethod property to
'Matched Filter'.
Data Types: double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Scope Objects
show Turn on visibility of scopes
hide Turn off visibility of scope
isVisible Visibility of scopes

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

View Target Response Using Range-Doppler Scope

Calculate and visualize the range-Doppler response from a pulsed radar transmitting a rectangular
waveform. Compute the response using matched filtering. The signal contains returns from three
targets. One target is approximately 2000 m away and is stationary relative to the radar. The second
target is approximately 3500 m away and is also stationary relative to the radar. The third is
approximately 2000 m away and is moving away from the radar at approximately 100 m/s.

Load the IQ data and obtain the signals and parameters.

load('RangeDopplerResponseExampleData','rectdata');
fs = rectdata.fs;
c = rectdata.propspeed;
fc = rectdata.fc;
rxdata = rectdata.rxdata;
mfcoeffs = rectdata.mfcoeffs;

Create the range-Doppler scope for matched filter processing and visualization. Set the Doppler FFT
size to 1024. The display shows the three targets.

scope = phased.RangeDopplerScope( ...
    'IQDataInput',true,'RangeMethod','Matched filter', ...
    'Name','Range-Doppler Scope', ...
    'Position',[560 375 560 420],'ResponseUnits','db', ...
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    'RangeUnits','m','DopplerFFTLength',1024, ...
    'DopplerOutput','Speed','OperatingFrequency',fc, ...
    'SampleRate',fs,'PropagationSpeed',c);
scope(rxdata,mfcoeffs);

More About
Properties Applicable to I/Q Data

These properties are applicable when IQDataInput is true.

Properties
Name Position
ResponseUnits RangeMethod
RangeUnits PropagationSpeed
SampleRate SweepSlope
DechirpInput RangeFFTLength
ReferenceRangeCentered ReferenceRange
PRFSource PRF
DopplerFFTLength DopplerOutput
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Properties
OperatingFrequency NormalizeDoppler
SpeedUnits FrequencyUnits

Properties Applicable to Response Data

These properties are applicable when IQDataInput is false.

Properties
Name Position
ResponseUnits RangeLabel
DopplerLabel  

See Also
hide | isVisible | phased.AngleDopplerScope | phased.RangeAngleScope |
phased.RangeDopplerResponse | show

Introduced in R2019a
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phased.RangeAngleScope
Package: phased

View range-angle response

Description
The phased.RangeAngleScope System object creates a scope for displaying a range-angle
response map. The map is a 2-D representation of response intensity as a function of range and angle
of arrival. You can input two types of data – in-phase and quadrature (I/Q) data and response data.

• I/Q data – The data consists of fast-time I/Q samples of pulses or sweeps from multiple sensors.
The scope computes and displays the response map. To use I/Q data, set the IQDataInput
property to true. In this mode, you can set the properties shown in “Properties Applicable to I/Q
Data” on page 1-1379.

• Response data – The data consists of the range-angle response itself. The scope displays the
range-angle response map. You can obtain range-angle response data from the
RangeAngleResponse object. To use response data, set the IQDataInput property to false. In
this mode, you can set the properties shown in “Properties Applicable to Response Data” on page
1-1379.

To display a range-angle response map using a scope,

1 Create the phased.RangeAngleScope object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
scope = phased.RangeAngleScope
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scope = phased.phased.RangeAngleScope(Name,Value)

Description

scope = phased.RangeAngleScope creates a range-angle scope System object for displaying the
range-angle response.

scope = phased.phased.RangeAngleScope(Name,Value) creates a range-angle scope with
each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose property names in quotes. For
example,

scope = phased.RangeAngleScope('IQInputData',true,'RangeMethod', ...
        'FFT','SampleRate',1e6)

creates a scope object that uses FFT-based range processing to process I/Q data with a sample rate of
1 MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Name — Display caption
'Range-Angle Scope' (default) | character vector

Display caption, specified as a character vector. The caption appears in the title bar of the window.
Example: 'Aircraft Range-Angle Response'

Tunable: Yes
Data Types: char

Position — Location and size of intensity scope window
depends on display-resolution (default) | 1-by-4 vector of positive values

Location and size of the intensity scope window, specified as a 1-by-4 vector having the form [left
bottom width height].

• left and bottom specify the location of the bottom-left corner of the window.
• width and height specify the width and height of the window.

Units are in pixels.

The default value of this property depends on the resolution of your display. By default, the window is
positioned in the center of the screen, with a width and height of 800 and 450 pixels, respectively.
Example: [100 100 500 400]

Tunable: Yes
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Data Types: double

IQDataInput — Type of input data
true (default) | false

Type of input data, specified as true or false. When true, the object assumes that the input
consists of I/Q sample data and further processing is required in the range and angle domains. When
false, the object assumes that the data is response data that has already been processed.
Data Types: logical

ResponseUnits — Response units label
'db' (default) | 'magnitude' | 'power'

Response units, specified as 'db', 'magnitude', or 'power'.
Data Types: char

RangeLabel — Range-axis label
'Range (m)' (default) | character vector

Range-axis label, specified as a character vector.
Example: 'Range (km)'

Tunable: Yes
Dependencies

To enable this property, set the IQDataInput to false.
Data Types: char

AngleLabel — Angle-axis label
'Angle (degrees)' (default) | character vector

Angle-axis label, specified as a character vector.
Example: 'Angle Span (degrees)'

Tunable: Yes
Dependencies

To enable this property, set the IQDataInput to false.
Data Types: char

SensorArray — Sensor array
phased.ULA array with default array properties (default) | Phased Array System Toolbox array
System object

Sensor array, specified as a Phased Array System Toolbox array System object. See phased.ULA for
the default values of a uniform linear array.
Example: phased.URA
Dependencies

To enable this property, set the IQDataInput to true.
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RangeMethod — Range processing method
'Matched filter' (default) | 'FFT'

Range-processing method, specified as 'Matched filter' or 'FFT'.

'Matched filter' The object applies a matched filter to the incoming signal. This
approach is commonly used with pulsed signals, where the matched
filter is a time-reversed replica of the transmitted signal.

'FFT' Algorithm performs range processing by applying an FFT to the
input signal. This approach is commonly used with FMCW
continuous signals and linear FM pulsed signals.

Dependencies

To enable this property, set the IQDataInput property to true.

RangeUnits — Range units
'm' (default) | 'km' | 'mi' | 'nmi'

Range units, specified as:

• 'm' – meters
• 'km' – kilometers
• 'mi' – miles
• 'nmi' – nautical miles

Example: 'mi'

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: char

PropagationSpeed — Signal propagation speed
physconst('Lightspeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. The default value of this property is the
speed of light. See physconst. Units are in meters/second.
Example: 3e8

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.

Dependencies

To enable this property, set the IQDataInput property to true.
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Data Types: double

SampleRate — Sample rate
1e6 (default) | positive scalar

Sample rate, specified as a positive scalar. Units are in Hz.
Example: 10e3

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

SweepSlope — FM sweep slope
1e9 (default) | scalar

Slope of the linear FM sweep, specified as a scalar. Units are in Hz/sec.

Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: double

DechirpInput — Dechirp input signal
false (default) | true

Set this property to true to dechirp the input signal before performing range processing. false
indicates that the input signal is already dechirped and no dechirp operation is necessary.

Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: logical

RangeFFTLength — FFT length used in range processing
1024 (default) | positive integer

FFT length used for range processing, specified as a positive integer.
Example: 128

Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: double

ReferenceRangeCentered — Set reference range at center of range span
true (default) | false

Set this property to true to set the reference range to the center of the range span. Set this property
to false to set the reference range to the beginning of the range span.
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Dependencies

To enable this property, set the IQDataInput property to true and the RangeMethod property to
'FFT'.
Data Types: logical

ReferenceRange — Reference range
0.0 (default) | nonnegative scalar

Reference range of the range span, specified as a nonnegative scalar.

• If you set the RangeMethod property to 'Matched filter', the reference range marks the start
of the range span.

• If you set the RangeMethod property to 'FFT', the position of the reference range depends on
the ReferenceRangeCentered property.

• If you set the ReferenceRangeCentered property to true, the reference range marks the
center of the range span.

• If you set the ReferenceRangeCentered property to false, the reference range marks the
start of the range span.

Units are in meters.

Example: 1000.0

Tunable: Yes

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

ElevationAngle — Elevation angle of response
0 (default) | scalar

Elevation angle at which to calculate the response, specified as a scalar. The elevation angle must lie
in the interval from –90° to 90°, inclusive. Units are in degrees.
Example: 45.0

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

AngleSpan — Azimuth angle span of response
[-90 90] (default) | real-valued 1-by-2 vector

Azimuth angle span at which to calculate response, specified as a real-valued 1-by-2 row vector. The
object calculates the range-angle response within the angle range, [min_angle max_angle].
Angles must lie in the interval from –90° to 90°, inclusive. Units are in degrees.
Example: [-45 45]
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Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

NumAngleSamples — Number of samples in azimuth angle span
256 (default) | positive integer greater than two

Number of samples in the azimuth angle span at which to calculate the range-angle response,
specified as a positive integer greater than two.
Example: 256
Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

Usage

Syntax
scope(X,Range,Ang)

scope(X)
scope(X,XREF)
scope(X,COEFF)

Description

scope(X,Range,Ang) displays a range-angle response map, X, at the ranges, Range, and angles,
Ang. This syntax applies when you set the IQDataInput to false.

scope(X) computes and displays the range-angle response map for the dechirped signal X. This
syntax applies when you set the IQDataInput property to true, the RangeMethod property to
'FFT', and the DechirpInput property to false. This syntax is most commonly used with FMCW
signals.

scope(X,XREF) also specifies a reference signal to use for dechirping the input signal, X. This
syntax applies when you set the IQDataInput property to true, the RangeMethod property to
'FFT', and the DechirpInput property to true. This syntax is most commonly used with FMCW
signals. XREF is generally the transmitted signal.

scope(X,COEFF) also specifies matched filter coefficients, COEFF. This syntax applies when you set
the IQDataInput property to true and the RangeMethod property to 'Matched Filter'. This
syntax is most commonly used with pulsed signals.

Input Arguments

X — Input data
complex-valued K-by-L matrix

Input data, specified as a complex-valued K-by-L matrix. The interpretation of the data depends on
the value of the IQDataInput property.
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• When IQDataInput is true, the input consists of received fast-time data samples for each PRI
pulse or FMCW sweep and for each array or subarray element. K denotes the number of fast-time
(range) samples. L is the number of elements. If SensorArray contains subarrays, L is the
number of subarrays. The scope computes and displays the range-angle response.

• When RangeMethod is set to 'FFT' and DechirpInput is false, X has previously been
dechirped.

• When RangeMethod is set to 'FFT' and DechirpInput is true, X has not been previously
dechirped. Use the syntax that includes XREF as input data.

• When RangeMethod is set to 'MatchedFilter', X has not been match filtered. Use the
syntax that includes COEFF as input data.

• When IQDataInput is false, the input already consists of response data in the range-angle
domain, such as the data produced, for example, by RangeAngleResponse. Each row of the
response map corresponds to an element of the Range vector. K is the number of range samples.
Each column of the response map corresponds to an element of the Ang vector. L is the number of
angles. The scope serves only as a display of the range-angle response.

Range — Range grid values of range-angle response map
real-valued K-by-1 column vector

Range grid values of range-angle response map, specified as a real-valued K-by-1 column vector.
Range denotes the range values at which the response has been computed. Elements of Range
correspond to the rows of X.

Dependencies

To enable this argument, set the IQInputData property to false.
Data Types: double

Ang — Angle grid values of range-angle response map
real-valued L-by-1 column vector

Angle grid values of response map, specified as a real-valued K-by-1 column vector. Ang denotes the
angle values at which the response has been computed. Elements of Ang correspond to the columns
of X.

Dependencies

To enable this argument, set the IQInputData property to false.
Data Types: double

XREF — Reference signal
complex-valued K-by-1 column vector

Reference signal used to dechirp X. XREF must be a column vector with the same number of rows as
X.

Dependencies

To enable this argument, set the IQDataInput property to true, the RangeMethod property to
'FFT' and the DechirpInput property to false
Data Types: double
Complex Number Support: Yes
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COEFF — Matched filter coefficients
complex-valued column vector

Matched filter coefficients, specified as a complex-valued column vector.
Dependencies

To enable this argument, set the IQDataInput property to true and the RangeMethod property to
'Matched Filter'.
Data Types: double
Complex Number Support: Yes

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Scope Objects
show Turn on visibility of scopes
hide Turn off visibility of scope
isVisible Visibility of scopes

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

View Target Response Using Range-Angle Scope

Calculate and visualize the range-angle response from a pulsed radar transmitting a rectangular
waveform using a matched filter. One target is approximately 2000 m away and is stationary relative
to the radar. The second target is approximately 3500 m away and is also stationary relative to the
radar. The third is approximately 2000 m away and is moving away from the radar at approximately
100 m/s. The signals arrive at an 8-element uniform linear array.

Load the data to obtain signals and parameters.

load('RangeAngleResponseExampleData','rectdata');
fs = rectdata.fs;
c = rectdata.propspeed;
fc = rectdata.fc;
rxdata = rectdata.rxdata;
mfcoeffs = rectdata.mfcoeffs;
noisepower = rectdata.noisepower;
array = rectdata.antennaarray;

Create a range-angle scope for processing.
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scope = phased.RangeAngleScope( ...
    'IQDataInput',true,'RangeMethod','Matched filter', ...
    'Name','Range-Angle Scope','ResponseUnits','magnitude', ...
    'Position',[560 375 560 420],'RangeUnits','m', ...
    'SensorArray',array,'OperatingFrequency',fc, ...
    'SampleRate',fs,'PropagationSpeed',c);

Call the scope to display the response map.

scope(rxdata,mfcoeffs);
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More About
Properties Applicable to I/Q Data

These properties are applicable when IQDataInput is true.

Properties
Name Position
ResponseUnits SensorArray
RangeMethod PropagationSpeed
OperatingFrequency RangeUnits
SampleRate SweepSlope
DechirpInput RangeFFTLength
ReferenceRangeCentered ReferenceRange
ElevationAngle AngleSpan
NumAngleSamples  

Properties Applicable to Response Data

These properties are applicable when IQDataInput is false.
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Properties
Name Position
ResponseUnits RangeLabel
AngleLabel  

See Also
RangeAngleResponse | hide | isVisible | phased.AngleDopplerScope |
phased.RangeDopplerScope | show

Introduced in R2019a

1 Objects

1-1380



phased.AngleDopplerScope
Package: phased

Angle-Doppler scope

Description
The phased.AngleDopplerScope System object creates a scope for displaying an angle-Doppler
response map. The map is a 2-D representation of response intensity as a function of angle and
Doppler shift. You can input two types of data - in-phase and quadrature (I/Q) data and response data.

• I/Q data – The data consists of I/Q samples at the same range from multiple sensors over all pulses
or sweeps. The scope computes and displays the response map. To use I/Q data, set the
IQDataInput property to true. In this mode, you can set the properties listed in “Properties
Applicable to I/Q Data” on page 1-1389.

• Response data – The data consists of the angle-Doppler response itself. The scope only displays
the angle-Doppler response map. You can obtain angle-Doppler response data from the
phased.AngleDopplerResponse object. To display response data, set the IQDataInput
property to false. In this mode, you can set the properties listed in “Properties Applicable to
Response Data” on page 1-1389.

To display an angle-Doppler response map using a scope,

1 Create the phased.AngleDopplerScope object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
scope = phased.AngleDopplerScope
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scope = phased.phased.AngleDopplerScope(Name,Value)

Description

scope = phased.AngleDopplerScope creates an angle-Doppler scope System object for
displaying the angle-Doppler response map.

scope = phased.phased.AngleDopplerScope(Name,Value)creates an angle-Doppler scope
with each specified property set to the specified value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose property names in quotes. For
example,

scope = phased.AngleDopplerScope('IQInputData',true, ...
      'NumAngleSamples',128,'NumDopplerSamples',64)

creates a scope object that computes and displays the angle-Doppler response at 128 angle values
and 64 Doppler values from I/Q data input.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Name — Display caption
'Angle-Doppler Scope' (default) | character vector

Display caption, specified as a character vector. The caption appears in the title bar of the window.
Example: 'Aircraft Angle-Doppler Response'

Tunable: Yes
Data Types: char

Position — Location and size of intensity scope window
depends on display-resolution (default) | 1-by-4 vector of positive values

Location and size of the intensity scope window, specified as a 1-by-4 vector having the form [left
bottom width height].

• left and bottom specify the location of the bottom-left corner of the window.
• width and height specify the width and height of the window.

Units are in pixels.

The default value of this property depends on the resolution of your display. By default, the window is
positioned in the center of the screen, with a width and height of 800 and 450 pixels, respectively.
Example: [100 100 500 400]

Tunable: Yes
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Data Types: double

IQDataInput — Type of input data
true (default) | false

Type of input data, specified as true or false. When true, the object assumes that the input
consists of I/Q sample data and further processing is required in the range, angle, or Doppler
domains. When false, the object assumes that the data is response data that has already been
processed.
Data Types: logical

ResponseUnits — Response units label
'db' (default) | 'magnitude' | 'power'

Response units, specified as 'db', 'magnitude', or 'power'.
Data Types: char

AngleLabel — Angle-axis label
'Angle (degrees)' (default) | character vector

Angle-axis label, specified as a character vector.
Example: 'Angle Span (degrees)'

Tunable: Yes

Dependencies

To enable this property, set the IQDataInput to false.
Data Types: char

DopplerLabel — Doppler-axis label
'Doppler Frequency (Hz)' (default) | character vector

Doppler-axis label, specified as a character vector.
Example: 'Doppler Frequency (kHz)'

Tunable: Yes

Dependencies

To enable this property, set the IQDataInput to false.
Data Types: char

SensorArray — Sensor array
phased.ULA array with default array properties (default) | Phased Array System Toolbox array
System object

Sensor array, specified as a Phased Array System Toolbox array System object. See phased.ULA for
the default values of a uniform linear array.
Example: phased.URA
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Dependencies

To enable this property, set the IQDataInput to true.

PropagationSpeed — Signal propagation speed
physconst('Lightspeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. The default value of this property is the
speed of light. See physconst. Units are in meters/second.
Example: 3e8
Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

PRF — Pulse repetition frequency of input signal
1 (default) | positive scalar

Pulse repetition frequency of input signal, specified as a positive scalar. Units are in Hz.
Example: 1.4e3
Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

ElevationAngle — Elevation angle of response
0 (default) | scalar

Elevation angle at which to calculate the response, specified as a scalar. The elevation angle must lie
in the interval from –90° to 90°, inclusive. Units are in degrees.
Example: 45.0
Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

NumAngleSamples — Number of bins in angle span
256 (default) | positive integer greater than two

Number of bins in the angle span at which to calculate the response, specified as a positive integer
greater than two.
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Example: 256

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

NumDopplerSamples — Number of Doppler bins
256 (default) | positive integer greater than two

Number of bins in the Doppler domain used to calculate angle-Doppler response, specified as a
positive integer greater than two.
Example: 512

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: double

NormalizeDoppler — Normalize Doppler
false (default) | true

Set this property to true to plot the angle-Doppler response at the normalized Doppler frequency.
Set this property to false to plot the angle-Doppler response without normalizing the Doppler
frequency.

Dependencies

To enable this property, set the IQDataInput property to true.
Data Types: logical

FrequencyUnits — Doppler frequency units
'Hz' (default) | 'kHz' | 'MHz'

Doppler frequency units, specified as 'Hz', 'kHz', or 'MHz'.
Example: 'MHz'

Dependencies

To enable this property, set the IQDataInput property to true and the NormalizedDoppler
property to false.
Data Types: char

Usage

Syntax
scope(X,Ang,Dop)

scope(X)
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Description

scope(X,Ang,Dop) displays an angle-Doppler response map for the response data, scope, for
direction azimuth angles, Ang, and Doppler shifts, Dop. This syntax applies when you set the
IQDataInput to false.

scope(X) computes and displays the angle-Doppler response map of the I/Q data X. This syntax
applies when you set the IQDataInput property to true.

Input Arguments

X — Input data
real-valued P-by-Q matrix | complex-valued P-by-Q matrix | complex-valued L-by-1 column vector

Input data, specified as a real-valued P-by-Q or complex-valued P-by-Q matrix. The processing of the
data depends on the value of the IQDataInput property.

• When IQDataInput is true, x consists of I/Q samples at fixed range of pulses or sweeps from
multiple elements or subarrays. P is the number of array elements. If SensorArray contains
subarrays, P is the number of subarrays. Q is the number of pulses. The scope computes and
displays the angle-Doppler response.

When x is a column vector, L must be equal to an integer multiple of P.
• When IQDataInput is false, x consists of real-valued angle-Doppler response data such as the

data produced by phased.AngleDopplerResponse. P is the number of Doppler samples and Q
is the number of angle samples. Each row represents a Doppler value corresponding to an
element of Dop. Each column represents an angle value corresponding to an element of the Ang
vector. The scope serves only as a display of the angle-Doppler response.

Ang — Azimuth angle grid values of response map
real-valued Q-by-1 column vector

Azimuth angle grid values of response map, specified as a real-valued Q-by-1 column vector. Ang
contains the angle values corresponding to the columns of X.

Dependencies

To enable this argument, set the IQInputData property to false.
Data Types: double

Dop — Doppler grid values of response map
real-valued P-by-1 column vector

Doppler grid values of response map, specified as a real-valued P-by-1 column vector. Dop contains
the Doppler values corresponding to the rows of X.

Dependencies

To enable this argument, set the IQInputData property to false.
Data Types: double
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Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Scope Objects
show Turn on visibility of scopes
hide Turn off visibility of scope
isVisible Visibility of scopes

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

View Target Response Using Angle-Doppler Scope

Calculate and visualize the angle-Doppler response at a single range cell of a collected data cube.

Load the I/Q data and analyze the 43th range cell.

load STAPExampleData;
x = shiftdim(STAPEx_ReceivePulse(43,:,:));

Create a scope object that processes I/Q data.

scope = phased.AngleDopplerScope( ...
    'IQDataInput', true, ...
    'Name','Angle-Doppler Scope', ...
    'Position',[560 375 560 420], ...
    'NormalizeDoppler',false, ...
    'ResponseUnits','db', ...
    'SensorArray',STAPEx_HArray, ...
    'OperatingFrequency',STAPEx_OperatingFrequency, ...
    'PropagationSpeed',STAPEx_PropagationSpeed, ...
    'PRF',STAPEx_PRF,'NumDopplerSamples',512);

Compute and visualize the angle-Doppler response.

scope(x)
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More About
Properties Applicable to I/Q Data

These properties are applicable when IQDataInput is true.

Properties
Name Position
ResponseUnits SensorArray
PropagationSpeed OperatingFrequency
NumAngleSamples NumDopplerSamples
PRF ElevationAngle
NormalizeDoppler FrequencyUnits

Properties Applicable to Response Data

These properties are applicable when IQDataInput is false.

Properties
Name Position
ResponseUnits DopplerLabel
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Properties
AngleLabel  

See Also
hide | isVisible | phased.AngleDopplerResponse | phased.RangeAngleScope |
phased.RangeDopplerScope | show

Introduced in R2019a
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hide
Package: phased

Turn off visibility of scope

Syntax
hide(scope)

Description
hide(scope) hides the display window of the scope System object.

Input Arguments
scope — Scope system object
scope System object

Scope, specified as a scope System object such as RangeDopplerScope.

See Also
isVisible | phased.AngleDopplerScope | phased.DTIScope | phased.RTIScope |
phased.RangeAngleScope | phased.RangeDopplerScope | show

Introduced in R2019a

 hide

1-1391



isVisible
Package: phased

Visibility of scopes

Syntax
vis = isVisible(scope)

Description
vis = isVisible(scope) returns the visibility of the scope System object.

Input Arguments
scope — Scope system object
scope System object

Scope, specified as a scope System object such as RangeDopplerScope.

Output Arguments
vis — Visibility of scope
true | false

Visibility of scope, returned as true or false. When true, scope is visible. When false, scope is
hidden.
Data Types: logical

See Also
hide | phased.AngleDopplerScope | phased.DTIScope | phased.RTIScope |
phased.RangeAngleScope | phased.RangeDopplerScope | show

Introduced in R2019a
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show
Package: phased

Turn on visibility of scopes

Syntax
show(scope)

Description
show(scope) shows the display window of the scope System object.

Input Arguments
scope — Scope system object
scope System object

Scope, specified as a scope System object such as RangeDopplerScope.

See Also
hide | isVisible | phased.AngleDopplerScope | phased.DTIScope | phased.RTIScope |
phased.RangeAngleScope | phased.RangeDopplerScope

Introduced in R2019a
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phased.RangeDopplerResponse
Package: phased

Range-Doppler response

Description
The phased.RangeDopplerResponse System object calculates the filtered response to fast-time
and slow-time data. or equivalently, range data, using either a matched filter or an FFT.

The input to the Doppler response object is a data cube. The organization of the data cube follows the
Phased Array System Toolbox convention. The first dimension of the cube represents the fast-time
samples or ranges of the received signals. The second dimension represents multiple channels such
as sensors or beams. The third dimension, slow time, represent pulses. If the data contains only one
channel or pulse, the data cube can contain fewer than three dimensions. Range processing operates
along the first dimension of the cube. Doppler processing operates along the last dimension.

The output of the object is also a data cube with the same number of dimensions as the input. The
first dimension contains range-processed data but its length can differ from the first dimension of the
input. The last dimension contains Doppler processed data. Its length can differ from the last
dimension of the input.

To compute the range-Doppler response:

1 Define and set up your phased.RangeDopplerResponse System object. See “Construction” on
page 1-1394.

2 Call step to compute the range-Doppler response of the input signal according to the properties
of phased.RangeDopplerResponse. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.RangeDopplerResponse creates a range-Doppler response System object, H. The
object calculates the range-Doppler response of the input data.

H = phased.RangeDopplerResponse(Name,Value) creates a range-Doppler response object, H,
with additional options specified by one or more Name,Value pair arguments. Name is a property
name on page 1-1395, and Value is the corresponding value. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as Name1,Value1,
…,NameN,ValueN.
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Properties
RangeMethod

Range processing method

Specify the method of range processing as 'Matched filter' or 'FFT'.

'Matched filter' Algorithm applies a matched filter to the incoming signal. This
approach is common with pulsed signals, where the matched filter
is the time reverse of the transmitted signal.

'FFT' Algorithm performs range processing by applying an FFT to the
input signal. This approach is commonly used with FMCW and
linear FM pulsed signals.

Default: 'Matched filter'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. This property can be specified as single or
double precision. The default value corresponds to 1 MHz.

Default: 1e6

SweepSlope

FM sweep slope

Specify the slope of the linear FM sweeping, in hertz per second, as a scalar. The x data you provide
to step or plotResponse must correspond to sweeps having this slope. This property can be
specified as single or double precision.

To enable this property, set the RangeMethod property to 'FFT'.

Default: 1e9

DechirpInput

Option to dechirp input signal

Set this property to true to have the range-Doppler response object dechirp the input signal. Set this
property to false to indicate that the input signal is already dechirped and no dechirp operation is
necessary.
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To enable this property, set the RangeMethod property to 'FFT'.

Default: false

DecimationFactor

Decimation factor for dechirped signal

Specify the decimation factor for the dechirped signal as a positive integer. When processing FMCW
signals, you can often decimate the dechirped signal to reduce the requirements on the analog-to-
digital converter.

To enable this property, set the RangeMethod property to 'FFT' and the DechirpInput property to
true. This property can be specified as single or double precision. The default value indicates no
decimation.

Default: 1

RangeFFTLengthSource

Source of FFT length used in range processing

Specify how the object determines the FFT length used in range processing. Values of this property
are:

'Auto' The FFT length equals the number of rows of the input signal.
'Property' The RangeFFTLength property of this object specifies the FFT

length.

To enable this property, set the RangeMethod property to 'FFT'.

Default: 'Auto'

RangeFFTLength

FFT length in range processing

Specify the FFT length in the range domain as a positive integer. This property can be specified as
single or double precision.

To enable this property, set the RangeMethod property to 'FFT' and the RangeFFTLengthSource
property to 'Property'.

Default: 1024

RangeWindow

Window for range weighting

Specify the window used for range processing using one of 'None', 'Hamming', 'Chebyshev',
'Hann', 'Kaiser', 'Taylor', or 'Custom'. If you set this property to 'Taylor', the generated
Taylor window has four nearly constant sidelobes adjacent to the mainlobe.

To enable this property, set the RangeMethod property to 'FFT'.

Default: 'None'
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RangeSidelobeAttenuation

Sidelobe attenuation level for range processing

Specify the sidelobe attenuation level of a Kaiser, Chebyshev, or Taylor window in range processing as
a positive scalar, in decibels. This property can be specified as single or double precision.

To enable this property, set the RangeMethod property to 'FFT' and the RangeWindow property to
'Kaiser', 'Chebyshev', or 'Taylor'.

Default: 30

CustomRangeWindow

User-defined window for range processing

Specify the user-defined window for range processing using a function handle or a cell array.

To enable this property, set the RangeMethod property to 'FFT' and the RangeWindow property to
'Custom'.

If CustomRangeWindow is a function handle, the specified function takes the window length as the
input and generates appropriate window coefficients.

If CustomRangeWindow is a cell array, then the first cell must be a function handle. The specified
function takes the window length as the first input argument, with other additional input arguments,
if necessary. The function then generates appropriate window coefficients. The remaining entries in
the cell array are the additional input arguments to the function, if any.

Default: @hamming

ReferenceRangeCentered

Set reference range at center of range grid, specified as true or false. Setting this property to
true enables you to set the reference range at the center of the range grid. Setting this property to
false sets the reference range to the beginning of the range grid.
Dependencies

To enable this property, set the RangeMethod to 'FFT'.

Default: true

ReferenceRange

Reference range of the range grid, specified as a nonnegative scalar.

• If you set the RangeMethod property to 'Matched filter', the reference range is set to the
start of the range grid.

• If you set the RangeMethod property to 'FFT', the reference range is determined by the
ReferenceRangeCentered property.

• When you set the ReferenceRangeCentered property to true, the reference range is set to
the center of the range grid.

• When you set the ReferenceRangeCentered property to false, the reference range is set to
the start of the range grid.
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This property can be specified as single or double precision. Units are in meters.

This property is tunable.
Example: 1000.0

Default: 0.0

PRFSource

Source of pulse repetition frequency

Source of pulse repetition frequency, specified as

• 'Auto' — You assume that the pulse repetition frequency (prf) is the inverse of the duration of
the input signal to the step method. Then the prf equals the sample rate of the signal divided by
the number of rows in the input signal.

• 'Property'— specify the pulse repetition frequency using the PRF property.
• 'Input port'— specify the PRF using an input argument of the step method.

Use the 'Property' or 'Input port' option when the pulse repetition frequency cannot be
determined by the signal duration, as is the case with range-gated data.

Default: 'Auto'

PRF

Pulse repetition frequency of input signal

Pulse repetition frequency of the input signal, specified as a positive scalar. PRF must be less than or
equal to the sample rate divided by the number of rows of the input signal to the step method. When
the signal length is variable, use the maximum possible number of rows of the input signal instead.
This property can be specified as single or double precision.

To enable this property, set the PRFSource property to 'Property'.

Default: 10e3

DopplerFFTLengthSource

Source of FFT length in Doppler processing

Specify how the object determines the FFT length in Doppler processing. Values of this property are:

'Auto' The FFT length is equal to the number of rows of the input signal.
'Property' The DopplerFFTLength property of this object specifies the FFT

length.

To enable this property, set the RangeMethod property to 'FFT'.

Default: 'Auto'

DopplerFFTLength

FFT length for Doppler processing
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FFT length for Doppler processing, specified as a positive integer. This property can be specified as
single or double precision.

To enable this property, set the RangeMethod property to 'FFT' and the
DopplerFFTLengthSource property to 'Property'.

Default: 1024

DopplerWindow

Window for Doppler weighting

Specify the window used for Doppler processing using one of 'None', 'Hamming', 'Chebyshev',
'Hann', 'Kaiser', 'Taylor', or 'Custom'. If you set this property to 'Taylor', the generated
Taylor window has four nearly constant sidelobes adjacent to the mainlobe.

To enable this property, set the RangeMethod property to 'FFT'.

Default: 'None'

DopplerSidelobeAttenuation

Sidelobe attenuation level for Doppler processing

Specify the sidelobe attenuation level of a Kaiser, Chebyshev, or Taylor window in Doppler processing
as a positive scalar, in decibels. This property can be specified as single or double precision.

To enable this property, set the RangeMethod property to 'FFT' and the DopplerWindow property
to 'Kaiser', 'Chebyshev', or 'Taylor'.

Default: 30

CustomDopplerWindow

User-defined window for Doppler processing

Specify the user-defined window for Doppler processing using a function handle or a cell array..

If CustomDopplerWindow is a function handle, the specified function takes the window length as the
input and generates appropriate window coefficients.

If CustomDopplerWindow is a cell array, then the first cell must be a function handle. The specified
function takes the window length as the first input argument, with other additional input arguments,
if necessary. The function then generates appropriate window coefficients. The remaining entries in
the cell array are the additional input arguments to the function, if any.

To enable this property, set the RangeMethod property to 'FFT' and the DopplerWindow property
to 'Custom'

Default: @hamming

DopplerOutput

Doppler domain output
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Specify the Doppler domain output as 'Frequency' or 'Speed'. The Doppler domain output is the
DOP_GRID argument of step.

'Frequency' DOP_GRID is the Doppler shift, in hertz.
'Speed' DOP_GRID is the radial speed corresponding to the Doppler shift, in

meters per second.

Default: 'Frequency'

OperatingFrequency

Signal carrier frequency

Specify the carrier frequency, in hertz, as a scalar. The default value of this property corresponds to
300 MHz. This property can be specified as single or double precision.

To enable this property, set the DopplerOutput property to 'Speed'

Default: 3e8

MaximumNumInputSamplesSource

Source of maximum number of samples

The source of the maximum number of samples of the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the object automatically allocates enough
memory to buffer the input signal. When you set this property to 'Property', specify the maximum
number of samples in the input signal using the MaximumNumInputSamples property. Any input
signal longer than that value is truncated.

Default: 'Auto'

MaximumNumInputSamples

Maximum number of input signal samples

Maximum number of samples in the input signal, specified as a positive integer. This property limits
the size of the input signal. Any input signal longer than this value is truncated. The input signal is
the first argument to the step method. The number of samples is the number of rows in the input.
This property can be specified as single or double precision.

To enable this property, set the RangeMethod property to 'Matched filter' and set the
MaximumNumInputSamplesSource property to 'Property'.

Default: 100

Methods

plotResponse Plot range-Doppler response
step Calculate range-Doppler response
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Common to All System Objects
release Allow System object property value changes

Examples

Range-Doppler Response Using Matched Filter

Compute the range-doppler response of a pulsed radar signal using a matched filter.

Load data for a pulsed radar signal. The signal includes three target returns. Two targets are
approximately 2000 m away, while the third is approximately 3500 m away. In addition, two of the
targets are stationary relative to the radar. The third is moving away from the radar at about 100 m/s.

load RangeDopplerExampleData;

Create a range-Doppler response object.

response = phased.RangeDopplerResponse('DopplerFFTLengthSource','Property', ...
   'DopplerFFTLength',RangeDopplerEx_MF_NFFTDOP, ...
   'SampleRate',RangeDopplerEx_MF_Fs,'DopplerOutput','Speed', ...
   'OperatingFrequency',RangeDopplerEx_MF_Fc);

Calculate the range-Doppler response.

[resp,rng_grid,dop_grid] = response(RangeDopplerEx_MF_X, ...
    RangeDopplerEx_MF_Coeff);

Plot the range-Doppler response.

imagesc(dop_grid,rng_grid,mag2db(abs(resp)));
xlabel('Speed (m/s)');
ylabel('Range (m)');
title('Range-Doppler Map');
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Range-Doppler Response of FMCW Signal

Compute the range-Doppler response of an FMCW signal using an FFT.

Load data for an FMCW signal that has not been dechirped. The signal contains the return from a
target about 2200 m away. The signal has a normalized Doppler frequency of approximately -0.36
relative to the radar.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
   'RangeMethod','FFT',...
   'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...
   'SampleRate',RangeDopplerEx_Dechirp_Fs,...
   'DechirpInput',true,...
   'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

Plot the range-Doppler response.

plotResponse(hrdresp,...
   RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref,...
   'Unit','db','NormalizeDoppler',true)
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Estimate Doppler and Range with Specified PRF

Estimate the Doppler and range responses for three targets. Two targets are approximately 2000 m
away, while the third is approximately 3500 m away. In addition, two of the targets are stationary
relative to the radar. The third is moving away from the radar at about 100 m/s. Specify the pulse
repetition frequency.

Load data for a pulsed radar signal.

load RangeDopplerExampleData;

Create a range-Doppler response object. Set the PRF to 25 kHz.

response = phased.RangeDopplerResponse('DopplerFFTLengthSource','Property', ...
   'DopplerFFTLength',RangeDopplerEx_MF_NFFTDOP,'SampleRate', ...
   RangeDopplerEx_MF_Fs,'DopplerOutput','Speed','OperatingFrequency', ...
   RangeDopplerEx_MF_Fc,'PRFSource','Property','PRF',25.0e3);

Calculate the range-Doppler response.

[resp,rng_grid,dop_grid] = response(RangeDopplerEx_MF_X, ...
    RangeDopplerEx_MF_Coeff);

Plot the range-Doppler response.
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plotResponse(response,RangeDopplerEx_MF_X,RangeDopplerEx_MF_Coeff,'Unit','db')

Algorithms
Response Algorithm

The phased.RangeDopplerResponse object generates a response as follows:

1 Processes the input signal in the fast-time dimension using either a matched filter or dechirp/FFT
operation.

2 Processes the input signal in the pulse dimension using an FFT.

The decimation algorithm uses a 30th order FIR filter generated by fir1(30,1/R), where R is the
value of the DecimationFactor property.

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The CustomRangeWindow and CustomDopplerWindow properties are not supported.
• The plotResponse method is not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
Functions
bw2range | chebwin | dechirp | fir1 | hamming | hann | kaiser | rangeangle | taylorwin

Objects
phased.AngleDopplerResponse | phased.CFARDetector | phased.CFARDetector2D |
phased.DopplerEstimator | phased.MatchedFilter | phased.RangeAngleResponse |
phased.RangeEstimator | phased.RangeResponse

Topics
“Automotive Adaptive Cruise Control Using FMCW Technology”
“Radar Data Cube Concept”

Introduced in R2012b
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plotResponse
System object: phased.RangeDopplerResponse
Package: phased

Plot range-Doppler response

Syntax
plotResponse(H,x)
plotResponse(H,x,xref)
plotResponse(H,x,coeff)
plotResponse( ___ ,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,x) plots the range-Doppler response of the input signal, x, in decibels. This
syntax is available when you set the RangeMethod property to 'FFT' and the DechirpInput
property to false.

plotResponse(H,x,xref) plots the range-Doppler response after performing a dechirp operation
on x using the reference signal, xref. This syntax is available when you set the RangeMethod
property to 'FFT' and the DechirpInput property to true.

plotResponse(H,x,coeff) plots the range-Doppler response after performing a matched filter
operation on x using the matched filter coefficients in coeff. This syntax is available when you set
the RangeMethod property to 'Matched filter'.

plotResponse( ___ ,Name,Value) plots the angle-Doppler response with additional options
specified by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns the handle of the image in the figure window, using any of
the input arguments in the previous syntaxes.

Input Arguments
H

Range-Doppler response object.

x

Input data. Specific requirements depend on the syntax:

• In the syntax plotResponse(H,x), each column of the matrix x represents a dechirped signal
from one frequency sweep. The function assumes all sweeps in x are consecutive.

• In the syntax plotResponse(H,x,xref), each column of the matrix x represents a signal from
one frequency sweep. The function assumes all sweeps in x are consecutive and have not been
dechirped yet.
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• In the syntax plotResponse(H,x,coeff), each column of the matrix x represents a signal from
one pulse. The function assumes all pulses in x are consecutive.

In the case of an FMCW waveform with a triangle sweep, the sweeps alternate between positive and
negative slopes. However, phased.RangeDopplerResponse is designed to process consecutive
sweeps of the same slope. To apply phased.RangeDopplerResponse for a triangle-sweep system,
use one of the following approaches:

• Specify a positive SweepSlope property value, with x corresponding to upsweeps only. In the plot,
change the tick mark labels on the horizontal axis to reflect that the Doppler or speed values are
half of what the plot shows by default.

• Specify a negative SweepSlope property value, with x corresponding to downsweeps only. In the
plot, change the tick mark labels on the horizontal axis to reflect that the Doppler or speed values
are half of what the plot shows by default.

You can specify this argument as single or double precision.

xref

Reference signal, specified as a column vector having the same number of rows as x. You can specify
this argument as single or double precision.

coeff

Matched filter coefficients, specified as a column vector. You can specify this argument as single or
double precision.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

NormalizeDoppler

Set this value to true to normalize the Doppler frequency. Set this value to false to plot the range-
Doppler response without normalizing the Doppler frequency. This parameter applies when you set
the DopplerOutput property of H to 'Frequency'.

Default: false

Unit

The unit of the plot. Valid values are 'db', 'mag', and 'pow'.

Default: 'db'

Examples

Range-Doppler Response of FMCW Signal

Compute the range-Doppler response of an FMCW signal using an FFT.

 plotResponse
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Load data for an FMCW signal that has not been dechirped. The signal contains the return from a
target about 2200 m away. The signal has a normalized Doppler frequency of approximately -0.36
relative to the radar.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
   'RangeMethod','FFT',...
   'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...
   'SampleRate',RangeDopplerEx_Dechirp_Fs,...
   'DechirpInput',true,...
   'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

Plot the range-Doppler response.

plotResponse(hrdresp,...
   RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref,...
   'Unit','db','NormalizeDoppler',true)

See Also
Topics
“Automotive Adaptive Cruise Control Using FMCW Technology”
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step
System object: phased.RangeDopplerResponse
Package: phased

Calculate range-Doppler response

Syntax
[resp,rnggrid,dopgrid] = step(H,x)
[resp,rnggrid,dopgrid] = step(H,x,xref)
[resp,rnggrid,dopgrid] = step(H,x,coeff)
[resp,rnggrid,dopgrid] = step(H, ___ ,prf)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

[resp,rnggrid,dopgrid] = step(H,x) calculates the range-Doppler response of the input
signal, x. resp is the complex range-Doppler response. rnggrid and dopgrid provide the range
samples and Doppler samples, respectively, at which the range-Doppler response is evaluated. This
syntax is available when you set the RangeMethod property to 'FFT' and the DechirpInput
property to false. This syntax is most commonly used with FMCW signals.

[resp,rnggrid,dopgrid] = step(H,x,xref) uses xref as the reference signal to dechirp x.
This syntax is available when you set the RangeMethod property to 'FFT' and the DechirpInput
property to true. This syntax is most commonly used with FMCW signals, where the reference signal
is typically the transmitted signal.

[resp,rnggrid,dopgrid] = step(H,x,coeff) uses coeff as the matched filter coefficients.
This syntax is available when you set the RangeMethod property to 'Matched filter'. This syntax
is most commonly used with pulsed signals, where the matched filter is the time reverse of the
transmitted signal.

[resp,rnggrid,dopgrid] = step(H, ___ ,prf) uses prf as the pulse repetition frequency.
These syntaxes are available when you set the PRFSource property to 'Input port'. This syntax is
most commonly used with pulsed signals, where the matched filter is the time reverse of the
transmitted signal.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
H

Range-Doppler response System object

x

Input data, specified as a complex-valued K-by-L matrix or K-by-N-by-L array where

• K denotes the number of fast-time samples.
• N denotes the number of channels such as beams or sensors. When N is one, only a single data

channel is present.
• L denotes the number of pulses for matched-filter processing and the number of sweeps for FFT

processing.

Specific requirements depend on the syntax:

• In the syntax step(H,x), each column of x represents a dechirped signal from one frequency
sweep. The function assumes all sweeps in x are consecutive.

• In the syntax step(H,x,xref), each column of x represents a signal from one frequency sweep.
The function assumes all sweeps in x are consecutive and are not dechirped.

• In the syntax step(H,x,coeff), each column of the matrix x represents a signal from one pulse.
The function assumes all pulses in x are consecutive.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

In the case of an FMCW waveform with a triangle sweep, the sweeps alternate between positive and
negative slopes. However, phased.RangeDopplerResponse is designed to process consecutive
sweeps of the same slope. To apply phased.RangeDopplerResponse for a triangle-sweep system,
use one of the following approaches:

• Specify a positive SweepSlope property value, with x corresponding to upsweeps only. After
obtaining the Doppler or speed values, divide them by 2.

• Specify a negative SweepSlope property value, with x corresponding to downsweeps only. After
obtaining the Doppler or speed values, divide them by 2.

You can specify this argument as single or double precision.

xref

Reference signal, specified as a column vector having the same number of rows as x. You can specify
this argument as single or double precision.

coeff

Matched filter coefficients, specified as a column vector. You can specify this argument as single or
double precision.
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prf

Pulse repetition frequency, specified as a positive scalar. prf must be less than or equal to the sample
rate specified in the SampleRate property divided by the length of the first dimension of the input
signal, x. You can specify this argument as single or double precision.

To enable this argument, set the PRFSource property to 'Input port'.

Output Arguments
resp

Range-Doppler response of x, returned as a complex-valued M-by-P matrix or a M-by-N-by-P array.
The values of P and M depend on the syntax. N has the same value as for the input argument, x.

Syntax Values of M and P
step(H,x) If you set the RangeFFTLength property to

'Auto', M = K, the length of the first dimension
of x. Otherwise, M equals the value of the
RangeFFTLength property.

If you set the DopplerFFTLength property to
'Auto', P = L, the length of the last dimension
of x. Otherwise, P equals the value of the
DopplerFFTLength property.

step(H,x,xref) M is the quotient of the length of the first
dimension of x divided by the value of the
DecimationFactor property.

If you set the DopplerFFTLength property to
'Auto', P = L, the length of the last dimension
of x. Otherwise, P equals the value of the
DopplerFFTLength property.

step(H,x,coeff) M is the number of rows of x.

If you set the DopplerFFTLength property to
'Auto', P = L, the length of the last dimension
of x. Otherwise, P equals the value of the
DopplerFFTLength property.

rnggrid

Range samples at which the range-Doppler response is evaluated. rnggrid is a column vector of
length M.

dopgrid

Doppler samples or speed samples at which the range-Doppler response is evaluated. dopgrid is a
column vector of length P. Whether dopgrid contains Doppler or speed samples depends on the
DopplerOutput property of H.
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Examples

Range-Doppler Response Using Matched Filter

Compute the range-doppler response of a pulsed radar signal using a matched filter.

Load data for a pulsed radar signal. The signal includes three target returns. Two targets are
approximately 2000 m away, while the third is approximately 3500 m away. In addition, two of the
targets are stationary relative to the radar. The third is moving away from the radar at about 100 m/s.

load RangeDopplerExampleData;

Create a range-Doppler response object.

response = phased.RangeDopplerResponse('DopplerFFTLengthSource','Property', ...
   'DopplerFFTLength',RangeDopplerEx_MF_NFFTDOP, ...
   'SampleRate',RangeDopplerEx_MF_Fs,'DopplerOutput','Speed', ...
   'OperatingFrequency',RangeDopplerEx_MF_Fc);

Calculate the range-Doppler response.

[resp,rng_grid,dop_grid] = response(RangeDopplerEx_MF_X, ...
    RangeDopplerEx_MF_Coeff);

Plot the range-Doppler response.

imagesc(dop_grid,rng_grid,mag2db(abs(resp)));
xlabel('Speed (m/s)');
ylabel('Range (m)');
title('Range-Doppler Map');
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Estimate Doppler and Range from Range-Doppler Response

Estimate the Doppler and range values of a single target from the range-Doppler response.

Load data for an FMCW signal that has not yet been dechirped. The signal contains the return from
one target.

load RangeDopplerExampleData;

Create a range-Doppler response object.

hrdresp = phased.RangeDopplerResponse(...
   'RangeMethod','FFT',...
   'PropagationSpeed',RangeDopplerEx_Dechirp_PropSpeed,...
   'SampleRate',RangeDopplerEx_Dechirp_Fs,...
   'DechirpInput',true,...
   'SweepSlope',RangeDopplerEx_Dechirp_SweepSlope);

Obtain the range-Doppler response data.

[resp,rng_grid,dop_grid] = step(hrdresp,...
   RangeDopplerEx_Dechirp_X,RangeDopplerEx_Dechirp_Xref);

Estimate the range and Doppler by finding the location of the maximum response.
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[x_temp,idx_temp] = max(abs(resp));
[~,dop_idx] = max(x_temp);
rng_idx = idx_temp(dop_idx);
dop_est = dop_grid(dop_idx)

dop_est = -712.8906

rng_est = rng_grid(rng_idx)

rng_est = 2250

The target is approximately 2250 meters away, and is moving fast enough to cause a Doppler shift of
approximately -713 Hz.
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phased.RangeEstimator
Package: phased

Range estimation

Description
The phased.RangeEstimator System object estimates the ranges of targets. Input to the estimator
consists of a range-response or range-Doppler response data cube, and detection locations from a
detector. When information about clusters of detections is available, the ranges are computed using
cluster information. Clustering associates multiple detections into one extended detection.

To compute the detections for a range-response or range-Doppler cube:

1 Define and set up a range estimator using the “Construction” on page 1-1415 procedure that
follows.

2 Call the step method to compute the range, using the properties you specify for the
phased.RangeEstimator System object.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
estimator = phased.RangeEstimator creates a range estimator System object, estimator.

estimator = phased.RangeEstimator(Name,Value) creates a System object, estimator,
with each specified property Name set to the specified Value. You can specify additional name and
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
NumEstimatesSource — Source of number of range estimates to report
'Auto' (default) | 'Property'

Source of the number of range estimates to report, specified as 'Auto' or 'Property'.

If you set this property to 'Auto', the number of reported estimates is determined from the number
of columns in the detidx input to the step method. If cluster IDs are provided, the number of
estimates is determined from the number of unique cluster IDs in the clusterids input to the step
method.

If you set this property to 'Property', the number of reported estimates is obtained from the value
of the NumEstimates property.
Data Types: char
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NumEstimates — Maximum number of estimates
1 (default) | positive integer

The maximum number of range estimates to report, specified as a positive integer. The number of
requested estimates can be greater than the number of columns in the detidx argument or the
number of unique IDs in the clusterids argument of the step method. In that case, the remainder
is filled with NaN.

Dependencies

To enable this property, set the NumEstimatesSource property to 'Property'.
Data Types: single | double

ClusterInputPort — Accept cluster IDs as input
false (default) | true

Option to accept cluster IDs as an input argument to the step method, specified as false or true.
Setting this property to true enables the clusterids input argument.
Data Types: logical

VarianceOutputPort — Output variance for range estimates
false (default) | true

Option to enable output of range estimate variances, specified as false or true. Range variances
are returned by the rngvar output argument of the step method.
Data Types: logical

RMSResolution — Root-mean-square range resolution
1.0 (default) | positive scalar

Root-mean-square range resolution of the detection, specified as a positive scalar. The value of the
RMSResolution must have the same units as the rangegrid input argument of the step method.

Dependencies

To enable this property, set the value of the VarianceOutputPort property to true.
Data Types: single | double

NoisePowerSource — Source of noise power values
'Property' (default) | 'Input port'

Source of noise power values, specified as 'Property' or 'Input port'. Noise power is used to
compute range estimation variance and SNR. If you set this property to 'Property', the value of the
NoisePower property represents the noise power at the detection locations. If you set this property
to 'Input port', you can specify noise power using the noisepower input argument, of the step
method.
Data Types: char

NoisePower — Noise power
1.0 (default) | positive scalar
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Constant noise power value over the range-response or range-Doppler response data cube, specified
as a positive real scalar. Noise power units are linear. The same noise power value is applied to all
detections.

Dependencies

To enable this property, set the value of the VarianceOutputPort property to true and set
NoisePowerSource to 'Property'.
Data Types: single | double

Methods

step Estimate target range

Common to All System Objects
release Allow System object property value changes

Examples

Estimate Range and Speed of Three Targets

To estimate the range and speed of three targets, create a range-Doppler map using the
phased.RangeDopplerResponse System object™. Then use the phased.RangeEstimator and
phased.DopplerEstimator System objects to estimate range and speed. The transmitter and
receiver are collocated isotropic antenna elements forming a monostatic radar system.

The transmitted signal is a linear FM waveform with a pulse repetition interval (PRI) of 7.0 μs and a
duty cycle of 2%. The operating frequency is 77 GHz and the sample rate is 150 MHz.

fs = 150e6;
c = physconst('LightSpeed');
fc = 77.0e9;
pri = 7e-6;
prf = 1/pri;

Set up the scenario parameters. The transmitter and receiver are stationary and located at the origin.
The targets are 500, 530, and 750 meters from the radar along the x-axis. The targets move along the
x-axis at speeds of –60, 20, and 40 m/s. All three targets have a nonfluctuating radar cross-section
(RCS) of 10 dB. Create the target and radar platforms.

Numtgts = 3;
tgtpos = zeros(Numtgts);
tgtpos(1,:) = [500 530 750];
tgtvel = zeros(3,Numtgts);
tgtvel(1,:) = [-60 20 40];
tgtrcs = db2pow(10)*[1 1 1];
tgtmotion = phased.Platform(tgtpos,tgtvel);
target = phased.RadarTarget('PropagationSpeed',c,'OperatingFrequency',fc, ...
    'MeanRCS',tgtrcs);
radarpos = [0;0;0];
radarvel = [0;0;0];
radarmotion = phased.Platform(radarpos,radarvel);
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Create the transmitter and receiver antennas.

txantenna = phased.IsotropicAntennaElement;
rxantenna = clone(txantenna);

Set up the transmitter-end signal processing. Create an upsweep linear FM signal with a bandwidth
of one half the sample rate. Find the length of the PRI in samples and then estimate the rms
bandwidth and range resolution.

bw = fs/2;
waveform = phased.LinearFMWaveform('SampleRate',fs, ...
    'PRF',prf,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',fs/2, ...
    'DurationSpecification','Duty cycle','DutyCycle',0.02);
sig = waveform();
Nr = length(sig);
bwrms = bandwidth(waveform)/sqrt(12);
rngrms = c/bwrms;

Set up the transmitter and radiator System object properties. The peak output power is 10 W and the
transmitter gain is 36 dB.

peakpower = 10;
txgain = 36.0;
txgain = 36.0;
transmitter = phased.Transmitter( ...
    'PeakPower',peakpower, ...
    'Gain',txgain, ...
    'InUseOutputPort',true);
radiator = phased.Radiator( ...
    'Sensor',txantenna,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);

Set up the free-space channel in two-way propagation mode.

channel = phased.FreeSpace( ...
    'SampleRate',fs, ...    
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc, ...
    'TwoWayPropagation',true);

Set up the receiver-end processing. Set the receiver gain and noise figure.

collector = phased.Collector( ...
    'Sensor',rxantenna, ...
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc);
rxgain = 42.0;
noisefig = 1;
receiver = phased.ReceiverPreamp( ...
    'SampleRate',fs, ...
    'Gain',rxgain, ...
    'NoiseFigure',noisefig);

Loop over the pulses to create a data cube of 128 pulses. For each step of the loop, move the target
and propagate the signal. Then put the received signal into the data cube. The data cube contains the
received signal per pulse. Ordinarily, a data cube has three dimensions where the last dimension
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corresponds to antennas or beams. Because only one sensor is used, the cube has only two
dimensions.

The processing steps are:

1 Move the radar and targets.
2 Transmit a waveform.
3 Propagate the waveform signal to the target.
4 Reflect the signal from the target.
5 Propagate the waveform back to the radar. Two-way propagation enables you to combine the

return propagation with the outbound propagation.
6 Receive the signal at the radar.
7 Load the signal into the data cube.

Np = 128;
dt = pri;
cube = zeros(Nr,Np);
for n = 1:Np
    [sensorpos,sensorvel] = radarmotion(dt);
    [tgtpos,tgtvel] = tgtmotion(dt);
    [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
    sig = waveform();
    [txsig,txstatus] = transmitter(sig);
    txsig = radiator(txsig,tgtang);
    txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);    
    tgtsig = target(txsig);   
    rxcol = collector(tgtsig,tgtang);
    rxsig = receiver(rxcol);
    cube(:,n) = rxsig;
end

Display the data cube containing signals per pulse.

imagesc([0:(Np-1)]*pri*1e6,[0:(Nr-1)]/fs*1e6,abs(cube))
xlabel('Slow Time {\mu}s')
ylabel('Fast Time {\mu}s')
axis xy
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Create and display the range-Doppler image for 128 Doppler bins. The image shows range vertically
and speed horizontally. Use the linear FM waveform for match filtering. The image is here is the
range-Doppler map.

ndop = 128;
rangedopresp = phased.RangeDopplerResponse('SampleRate',fs, ...
    'PropagationSpeed',c,'DopplerFFTLengthSource','Property', ...
    'DopplerFFTLength',ndop,'DopplerOutput','Speed', ...
    'OperatingFrequency',fc);
matchingcoeff = getMatchedFilter(waveform);
[rngdopresp,rnggrid,dopgrid] = rangedopresp(cube,matchingcoeff);
imagesc(dopgrid,rnggrid,10*log10(abs(rngdopresp)))
xlabel('Closing Speed (m/s)')
ylabel('Range (m)')
axis xy
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Because the targets lie along the positive x-axis, positive velocity in the global coordinate system
corresponds to negative closing speed. Negative velocity in the global coordinate system corresponds
to positive closing speed.

Estimate the noise power after matched filtering. Create a constant noise background image for
simulation purposes.

mfgain = matchingcoeff'*matchingcoeff;
dopgain = Np;
noisebw = fs;
noisepower = noisepow(noisebw,receiver.NoiseFigure,receiver.ReferenceTemperature);
noisepowerprc = mfgain*dopgain*noisepower;
noise = noisepowerprc*ones(size(rngdopresp));

Create the range and Doppler estimator objects.

rangeestimator = phased.RangeEstimator('NumEstimatesSource','Auto', ...
    'VarianceOutputPort',true,'NoisePowerSource','Input port', ...
    'RMSResolution',rngrms);
dopestimator = phased.DopplerEstimator('VarianceOutputPort',true, ...
    'NoisePowerSource','Input port','NumPulses',Np);

Locate the target indices in the range-Doppler image. Instead of using a CFAR detector, for simplicity,
use the known locations and speeds of the targets to obtain the corresponding index in the range-
Doppler image.

detidx = NaN(2,Numtgts);
tgtrng = rangeangle(tgtpos,radarpos);
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tgtspd = radialspeed(tgtpos,tgtvel,radarpos,radarvel);
tgtdop = 2*speed2dop(tgtspd,c/fc);
for m = 1:numel(tgtrng)
    [~,iMin] = min(abs(rnggrid-tgtrng(m)));
    detidx(1,m) = iMin;
    [~,iMin] = min(abs(dopgrid-tgtspd(m)));
    detidx(2,m) = iMin;
end

Find the noise power at the detection locations.

ind = sub2ind(size(noise),detidx(1,:),detidx(2,:));

Estimate the range and range variance at the detection locations. The estimated ranges agree with
the postulated ranges.

[rngest,rngvar] = rangeestimator(rngdopresp,rnggrid,detidx,noise(ind))

rngest = 3×1

  499.7911
  529.8380
  750.0983

rngvar = 3×1
10-4 ×

    0.0273
    0.0276
    0.2094

Estimate the speed and speed variance at the detection locations. The estimated speeds agree with
the predicted speeds.

[spdest,spdvar] = dopestimator(rngdopresp,dopgrid,detidx,noise(ind))

spdest = 3×1

   60.5241
  -19.6167
  -39.5838

spdvar = 3×1
10-5 ×

    0.0806
    0.0816
    0.6188

More About
Date Cube

One input to the range estimator is a response data cube. To create a response data cube, use the
phased.RangeDopplerResponse or phased.RangeResponse System objects. The first dimension
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of the cube represents the range. Only the first dimension is used to estimate range. All other
dimensions are ignored. To interpret the detection location, you must pass in the rnggrid vector
corresponding to the range values along this dimension. See “Radar Data Cube Concept”.

Algorithms
Range Estimation

The phased.RangeEstimator System object estimates the range of a detection by following these
steps:

1 Input a range-processed response data cube obtained from either the phased.RangeResponse
or phased.RangeDopplerResponse System object. The first dimension of the cube represents
the fast-time or equivalent range of the returned signal samples. Only this dimension is used to
estimate detection range. All others are ignored.

2 Input a matrix of detection indices that specify the location of detections in the data cube. Each
column denotes a separate detection. The row entries designate indices into the data cube. You
can obtain detection indices as an output of the phased.CFARDetector or
phased.CFARDetector2D detectors. To return these indices, set the OutputFormat property
of either CFAR detector to 'Detection index'.

3 Optionally input a row vector of cluster IDs. This vector is equal in length to the number of
detections. Each element of this vector assigns an ID to a corresponding detection. To form
clusters of detections, the same ID can be assigned to more than one detection. To enable this
option, set the ClusterInputPort property to true.

4 When ClusterInputPort is false, the object computes the range for each detection. The
algorithm finds the response values at the detection location and at two adjacent indices in the
cube along the range dimension. Then, the algorithm fits a quadratic curve to the magnitudes of
the range response at these three locations and finds the location of the peak. When detections
occur at the first or last sample in the range dimension, the range response is estimated from a
two-point centroid. The estimation is at the location of the detection index and at the sample
adjacent to the detection index.

When ClusterInputPort is true, the object computes range for each cluster. The algorithm
finds the indices of the largest response value in the cluster and fits a quadratic formula to that
detection in the same way as for individual detections.

5 Convert the fractional index values of the fitted peak locations to range. To convert the indices,
choose appropriate units for the rnggrid input argument of the step method. You can use
values for rnggrid obtained from either the phased.RangeResponse or
phased.RangeDopplerResponse System objects.

The object computes the estimated range variance using the Ziv-Zakai bound.

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
Functions
bw2range | rangeangle

Objects
phased.CFARDetector | phased.CFARDetector2D | phased.DopplerEstimator |
phased.RangeDopplerResponse | phased.RangeResponse

Topics
“Radar Data Cube Concept”

Introduced in R2017a
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step
System object: phased.RangeEstimator
Package: phased

Estimate target range

Syntax
rngest = step(estimator,resp,rnggrid,detidx)
[rngest,rngvar] = step(estimator,resp,rnggrid,detidx,noisepower)
[rngest,rngvar] = step(estimator,resp,rnggrid,detidx,clusterids)
[rngest,rngvar] = step(estimator,resp,rnggrid,detidx,noisepower,clusterids)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

rngest = step(estimator,resp,rnggrid,detidx) estimates ranges from detections derived
from the range response data cube, resp. Range estimates are computed for each detection position
reported in detidx. The rnggrid argument sets the units for the range dimension of the response
data cube.

[rngest,rngvar] = step(estimator,resp,rnggrid,detidx,noisepower) also specifies the
noise power. This syntax applies when you set the VarianceOutputPort property to true and the
NoisePowerSource property to 'Input port'.

[rngest,rngvar] = step(estimator,resp,rnggrid,detidx,clusterids) also specifies the
cluster IDs for the detections. This syntax applies when you set the ClusterInputPort to true.

You can combine optional input and output arguments when their enabling properties are set.
Optional inputs and outputs must be listed in the same order as the order of the enabling properties.
For example, [rngest,rngvar] = step(estimator,resp,rnggrid,detidx,noisepower,
clusterids).

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
estimator — Range estimator
phased.RangeEstimator System object
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Range estimator, specified as a phased.RangeEstimator System object.
Example: phased.RangeEstimator

resp — Range-processed response data cube
complex-valued M-by-1 column vector | complex-valued M-by-N matrix | complex-valued M-by-N-by-P
matrix

Range-processed response data cube, specified as a complex-valued M-by-1 column vector, a complex-
valued M-by-N matrix, or a complex-valued M-by-N-by-P array. M is the number of fast-time or range
samples. N is the number of spatial elements, such as sensor elements or beams, P is the number of
Doppler bins or pulses, depending on whether the data cube has been Doppler processed.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: single | double

rnggrid — Range values along range dimension
real-valued M-by-1 column vector

Range values along range dimension of the resp argument, specified as a real-valued M-by-1 column
vector. rnggrid defines the range values corresponding to the fast-time or range dimension. Range
values must be monotonically increasing and equally spaced. Units are in meters.
Example: [0.1,0.2,0.3]
Data Types: single | double

detidx — Detection indices
real-valued Nd-by-Q matrix

Detection indices, specified as a real-valued Nd-by-Q matrix. Q is the number of detections and Nd is
the number of dimensions of the response data cube, resp. Each column of detidx contains the Nd
indices of the detection in the response data cube.

To generate detection indices, you can use the phased.CFARDetector object or
phased.CFARDetector2D object.
Data Types: single | double

noisepower — Noise power at detection locations
positive scalar | real-valued 1-by-Q row vector of positive values

Noise power at detection locations, specified as a positive scalar or real-valued 1-by-Q row vector
where Q is the number of detections specified in detidx.

Dependencies

To enable this input argument, set the value of the NoisePowerSource property to 'Input port'.
Data Types: single | double

clusterids — Cluster IDs
real-valued 1-by-Q row vector of positive values
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Cluster IDs, specified as a real-valued 1-by-Q row vector, where Q is the number of detections
specified in detidx. Each element of clusterids corresponds to a column in detidx. Detections
with the same cluster ID are in the same cluster.

Dependencies

To enable this input argument, set the value of the ClusterInputPort property to true.
Data Types: single | double

Output Arguments
rngest — Range estimates
real-valued K-by-1 column vector

Range estimates, returned as a real-valued K-by-1 column vector.

• When ClusterInputPort is false, Doppler estimates are computed for each detection location
in the detidx argument. Then K equals the column dimension, Q, of detidx.

• When ClusterInputPort is true, Doppler estimates are computed for each cluster ID in the
clusterids argument. Then K equals the number of unique cluster IDs, Q.

Data Types: single | double

rngvar — Range estimation variance
positive, real-valued K-by-1 column vector

Range estimation variance, returned as a positive, real-valued K-by-1 column vector, where K is the
dimension of rngest. Each element of rngvar corresponds to an element of rngest. The estimator
variance is computed using the Ziv-Zakai bound.
Data Types: single | double

Examples

Estimate Range and Speed of Three Targets

To estimate the range and speed of three targets, create a range-Doppler map using the
phased.RangeDopplerResponse System object™. Then use the phased.RangeEstimator and
phased.DopplerEstimator System objects to estimate range and speed. The transmitter and
receiver are collocated isotropic antenna elements forming a monostatic radar system.

The transmitted signal is a linear FM waveform with a pulse repetition interval (PRI) of 7.0 μs and a
duty cycle of 2%. The operating frequency is 77 GHz and the sample rate is 150 MHz.

fs = 150e6;
c = physconst('LightSpeed');
fc = 77.0e9;
pri = 7e-6;
prf = 1/pri;

Set up the scenario parameters. The transmitter and receiver are stationary and located at the origin.
The targets are 500, 530, and 750 meters from the radar along the x-axis. The targets move along the
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x-axis at speeds of –60, 20, and 40 m/s. All three targets have a nonfluctuating radar cross-section
(RCS) of 10 dB. Create the target and radar platforms.

Numtgts = 3;
tgtpos = zeros(Numtgts);
tgtpos(1,:) = [500 530 750];
tgtvel = zeros(3,Numtgts);
tgtvel(1,:) = [-60 20 40];
tgtrcs = db2pow(10)*[1 1 1];
tgtmotion = phased.Platform(tgtpos,tgtvel);
target = phased.RadarTarget('PropagationSpeed',c,'OperatingFrequency',fc, ...
    'MeanRCS',tgtrcs);
radarpos = [0;0;0];
radarvel = [0;0;0];
radarmotion = phased.Platform(radarpos,radarvel);

Create the transmitter and receiver antennas.

txantenna = phased.IsotropicAntennaElement;
rxantenna = clone(txantenna);

Set up the transmitter-end signal processing. Create an upsweep linear FM signal with a bandwidth
of one half the sample rate. Find the length of the PRI in samples and then estimate the rms
bandwidth and range resolution.

bw = fs/2;
waveform = phased.LinearFMWaveform('SampleRate',fs, ...
    'PRF',prf,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',fs/2, ...
    'DurationSpecification','Duty cycle','DutyCycle',0.02);
sig = waveform();
Nr = length(sig);
bwrms = bandwidth(waveform)/sqrt(12);
rngrms = c/bwrms;

Set up the transmitter and radiator System object properties. The peak output power is 10 W and the
transmitter gain is 36 dB.

peakpower = 10;
txgain = 36.0;
txgain = 36.0;
transmitter = phased.Transmitter( ...
    'PeakPower',peakpower, ...
    'Gain',txgain, ...
    'InUseOutputPort',true);
radiator = phased.Radiator( ...
    'Sensor',txantenna,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);

Set up the free-space channel in two-way propagation mode.

channel = phased.FreeSpace( ...
    'SampleRate',fs, ...    
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc, ...
    'TwoWayPropagation',true);

Set up the receiver-end processing. Set the receiver gain and noise figure.
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collector = phased.Collector( ...
    'Sensor',rxantenna, ...
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc);
rxgain = 42.0;
noisefig = 1;
receiver = phased.ReceiverPreamp( ...
    'SampleRate',fs, ...
    'Gain',rxgain, ...
    'NoiseFigure',noisefig);

Loop over the pulses to create a data cube of 128 pulses. For each step of the loop, move the target
and propagate the signal. Then put the received signal into the data cube. The data cube contains the
received signal per pulse. Ordinarily, a data cube has three dimensions where the last dimension
corresponds to antennas or beams. Because only one sensor is used, the cube has only two
dimensions.

The processing steps are:

1 Move the radar and targets.
2 Transmit a waveform.
3 Propagate the waveform signal to the target.
4 Reflect the signal from the target.
5 Propagate the waveform back to the radar. Two-way propagation enables you to combine the

return propagation with the outbound propagation.
6 Receive the signal at the radar.
7 Load the signal into the data cube.

Np = 128;
dt = pri;
cube = zeros(Nr,Np);
for n = 1:Np
    [sensorpos,sensorvel] = radarmotion(dt);
    [tgtpos,tgtvel] = tgtmotion(dt);
    [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
    sig = waveform();
    [txsig,txstatus] = transmitter(sig);
    txsig = radiator(txsig,tgtang);
    txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);    
    tgtsig = target(txsig);   
    rxcol = collector(tgtsig,tgtang);
    rxsig = receiver(rxcol);
    cube(:,n) = rxsig;
end

Display the data cube containing signals per pulse.

imagesc([0:(Np-1)]*pri*1e6,[0:(Nr-1)]/fs*1e6,abs(cube))
xlabel('Slow Time {\mu}s')
ylabel('Fast Time {\mu}s')
axis xy
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Create and display the range-Doppler image for 128 Doppler bins. The image shows range vertically
and speed horizontally. Use the linear FM waveform for match filtering. The image is here is the
range-Doppler map.

ndop = 128;
rangedopresp = phased.RangeDopplerResponse('SampleRate',fs, ...
    'PropagationSpeed',c,'DopplerFFTLengthSource','Property', ...
    'DopplerFFTLength',ndop,'DopplerOutput','Speed', ...
    'OperatingFrequency',fc);
matchingcoeff = getMatchedFilter(waveform);
[rngdopresp,rnggrid,dopgrid] = rangedopresp(cube,matchingcoeff);
imagesc(dopgrid,rnggrid,10*log10(abs(rngdopresp)))
xlabel('Closing Speed (m/s)')
ylabel('Range (m)')
axis xy
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Because the targets lie along the positive x-axis, positive velocity in the global coordinate system
corresponds to negative closing speed. Negative velocity in the global coordinate system corresponds
to positive closing speed.

Estimate the noise power after matched filtering. Create a constant noise background image for
simulation purposes.

mfgain = matchingcoeff'*matchingcoeff;
dopgain = Np;
noisebw = fs;
noisepower = noisepow(noisebw,receiver.NoiseFigure,receiver.ReferenceTemperature);
noisepowerprc = mfgain*dopgain*noisepower;
noise = noisepowerprc*ones(size(rngdopresp));

Create the range and Doppler estimator objects.

rangeestimator = phased.RangeEstimator('NumEstimatesSource','Auto', ...
    'VarianceOutputPort',true,'NoisePowerSource','Input port', ...
    'RMSResolution',rngrms);
dopestimator = phased.DopplerEstimator('VarianceOutputPort',true, ...
    'NoisePowerSource','Input port','NumPulses',Np);

Locate the target indices in the range-Doppler image. Instead of using a CFAR detector, for simplicity,
use the known locations and speeds of the targets to obtain the corresponding index in the range-
Doppler image.

detidx = NaN(2,Numtgts);
tgtrng = rangeangle(tgtpos,radarpos);
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tgtspd = radialspeed(tgtpos,tgtvel,radarpos,radarvel);
tgtdop = 2*speed2dop(tgtspd,c/fc);
for m = 1:numel(tgtrng)
    [~,iMin] = min(abs(rnggrid-tgtrng(m)));
    detidx(1,m) = iMin;
    [~,iMin] = min(abs(dopgrid-tgtspd(m)));
    detidx(2,m) = iMin;
end

Find the noise power at the detection locations.

ind = sub2ind(size(noise),detidx(1,:),detidx(2,:));

Estimate the range and range variance at the detection locations. The estimated ranges agree with
the postulated ranges.

[rngest,rngvar] = rangeestimator(rngdopresp,rnggrid,detidx,noise(ind))

rngest = 3×1

  499.7911
  529.8380
  750.0983

rngvar = 3×1
10-4 ×

    0.0273
    0.0276
    0.2094

Estimate the speed and speed variance at the detection locations. The estimated speeds agree with
the predicted speeds.

[spdest,spdvar] = dopestimator(rngdopresp,dopgrid,detidx,noise(ind))

spdest = 3×1

   60.5241
  -19.6167
  -39.5838

spdvar = 3×1
10-5 ×

    0.0806
    0.0816
    0.6188
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phased.RangeResponse
Package: phased

Range response

Description
The phased.RangeResponse System object performs range filtering on fast-time (range) data, using
either a matched filter or an FFT-based algorithm. The output is typically used as input to a detector.
Matched filtering improves the SNR of pulsed waveforms. For continuous FM signals, FFT processing
extracts the beat frequency of FMCW waveforms. Beat frequency is directly related to range.

The input to the range response object is a radar data cube. The organization of the data cube follows
the Phased Array System Toolbox convention.

• The first dimension of the cube represents the fast-time samples or ranges of the received signals.
• The second dimension represents multiple spatial channels, such as different sensors or beams.
• The third dimension, slow-time, represent pulses.

Range filtering operates along the fast-time dimension of the cube. Processing along the other
dimensions is not performed. If the data contains only one channel or pulse, the data cube can
contain fewer than three dimensions. Because this object performs no Doppler processing, you can
use the object to process noncoherent radar pulses.

The output of the range response object is also a data cube with the same number of dimensions as
the input. Its first dimension contains range-processed data but its length can differ from the first
dimension of the input data cube.

To compute the range response:

1 Define and set up your phased.RangeResponse System object. See “Construction” on page 1-
1433.

2 Call the step method to compute the range response using the properties you specify for the
phased.RangeResponse System object.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
response = phased.RangeResponse creates a range response System object, response.

response = phased.RangeResponse(Name,Value) creates a System object, response, with
each specified property Name set to the specified Value. You can specify additional name and value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).
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Properties
RangeMethod — Range processing method
'Matched filter' (default) | 'FFT'

Range processing method, specified as 'Matched filter' or 'FFT'.

• 'Matched filter' — The object match-filters the incoming signal. This approach is commonly
used for pulsed signals, where the matched filter is the time reverse of the transmitted signal.

• 'FFT' — The object applies an FFT to the input signal. This approach is commonly used for
chirped signals such as FMCW and linear FM pulsed signals.

Example: 'Matched filter'
Data Types: char

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6
Data Types: single | double

SweepSlope — Linear FM sweep slope
1.0e9 (default) | scalar

Linear FM sweep slope, specified as a scalar. The fast-time dimension of the signal input argument
to step must correspond to sweeps having this slope.
Example: 1.5e9
Dependencies

To enable this property, set the RangeMethod property to 'FFT'.
Data Types: single | double

DechirpInput — Enable dechirping of input signals
false (default) | true

Option to enable dechirping of input signals, specified as false or true. Set this property to false
to indicate that the input signal is already dechirped and no dechirp operation is necessary. Set this
property to true when the input signal requires dechirping.
Dependencies

To enable this property, set the RangeMethod property to 'FFT'.
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Data Types: logical

DecimationFactor — Decimation factor for dechirped signals
1 (default) | positive integer

Decimation factor for dechirped signals, specified as a positive integer. The decimation algorithm
uses a 30th-order FIR filter generated by fir1(30,1/D), where D is the decimation factor. The
default value of 1 implies no decimation.

When processing FMCW signals, decimating the dechirped signal is useful for reducing the load on
A/D converters.

Dependencies

To enable this property, set the RangeMethod property to 'FFT' and the DechirpInput property to
true.
Data Types: single | double

RangeFFTLengthSource — Source of FFT length for range processing of dechirped signals
'Auto (default) | 'Property'

Source of the FFT length used for the range processing of dechirped signals, specified as 'Auto' or
'Property'.

• 'Auto' — The FFT length equals the length of the fast-time dimension of the input data cube.
• 'Property' — Specify the FFT length by using the RangeFFTLength property.

Dependencies

To enable this property, set the RangeMethod property to 'FFT'.
Data Types: char

RangeFFTLength — FFT length used for range processing
1024 (default) | positive integer

FFT length used for range processing, specified as a positive integer.

Dependencies

To enable this property, set the RangeMethod property to 'FFT' and the RangeFFTLengthSource
property to 'Property'
Data Types: single | double

RangeWindow — FFT weighting window for range processing
'None' (default) | 'Hamming' | 'Chebyshev' | 'Hann' | 'Kaiser' | 'Taylor' | 'Custom'

FFT weighting window for range processing, specified as 'None', 'Hamming', 'Chebyshev',
'Hann', 'Kaiser', 'Taylor', or 'Custom'.

If you set this property to 'Taylor', the generated Taylor window has four nearly constant sidelobes
next to the mainlobe.

Dependencies

To enable this property, set the RangeMethod property to 'FFT'.
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Data Types: char

RangeSidelobeAttenuation — Sidelobe attenuation for range processing
30 (default) | positive scalar

Sidelobe attenuation for range processing, specified as a positive scalar. Attenuation applies to
Kaiser, Chebyshev, or Taylor windows. Units are in dB.
Dependencies

To enable this property, set the RangeMethod property to 'FFT' and the RangeWindow property to
'Kaiser', 'Chebyshev', or 'Taylor'.
Data Types: single | double

CustomRangeWindow — Custom window for range processing
@hamming (default) | function handle | cell array

Custom window for range processing, specified as a function handle or a cell array containing a
function handle as its first entry. If you do not specify a window length, the object computes the
window length and passes that into the function. If you specify a cell array, the remaining cells of the
array can contain arguments to the function. If you use only the function handle without passing in
arguments, all arguments take their default values.

If you write your own window function, the first argument must be the length of the window.

Note Instead of using a cell array, you can pass in all arguments by constructing a handle to an
anonymous function. For example, you can set the value of CustomRangeWindow to
@(n)taylorwin(n,nbar,sll), where you have previously set the values of nbar and sll.

Example: {@taylor,5,-35}
Dependencies

To enable this property, set the RangeMethod property to 'FFT' and the RangeWindow property to
'Custom'.
Data Types: function_handle | cell

ReferenceRangeCentered — Set reference range at center of range grid
true (default) | false

Set reference range at center of range grid, specified as true or false. Setting this property to
true enables you to set the reference range at the center of the range grid. Setting this property to
false sets the reference range to the beginning of the range grid.
Dependencies

To enable this property, set the RangeMethod to 'FFT'.
Data Types: logical

ReferenceRange — Reference range of range grid
0.0 (default) | nonnegative scalar

Reference range of the range grid, specified as a nonnegative scalar.

1 Objects

1-1436



• If you set the RangeMethod property to 'Matched filter', the reference range is set to the
start of the range grid.

• If you set the RangeMethod property to 'FFT', the reference range is determined by the
ReferenceRangeCentered property.

• When you set the ReferenceRangeCentered property to true, the reference range is set to
the center of the range grid.

• When you set the ReferenceRangeCentered property to false, the reference range is set to
the start of the range grid.

Units are in meters.

This property is tunable.
Example: 1000.0
Data Types: single | double

MaximumNumInputSamplesSource — Source of maximum number of samples
'Auto' (default) | 'Property'

The source of the maximum number of samples the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the object automatically allocates enough
memory to buffer the input signal. When you set this property to 'Property', you specify the
maximum number of samples in the input signal using the MaximumNumInputSamples property. Any
input signal longer than that value is truncated.

To use this object with variable-size input signals in a MATLAB Function Block in Simulink, set the
MaximumNumInputSamplesSource property to 'Property' and set a value for the
MaximumNumInputSamples property.
Example: 'Property'

MaximumNumInputSamples — Maximum number of input signal samples
100 (default) | positive integer

Maximum number of samples in the input signal, specified as a positive integer. Any input signal
longer than this value is truncated. The input signal is the first argument to the step method. The
number of samples is the number of rows in the input.
Example: 2048

Dependencies

To enable this property, set the RangeMethod property to 'Matched filter' and set the
MaximumNumInputSamplesSource property to 'Property'.
Data Types: single | double

Methods

plotResponse Plot range response
step Range response
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Common to All System Objects
release Allow System object property value changes

Examples

Range Response of Three Targets

Compute the radar range response of three targets by using the phased.RangeResponse System
object™. The transmitter and receiver are collocated isotropic antenna elements forming a
monostatic radar system. The transmitted signal is a linear FM waveform with a pulse repetition
interval of 7.0 μs and a duty cycle of 2%. The operating frequency is 77 GHz and the sample rate is
150 MHz.

fs = 150e6;
c = physconst('LightSpeed');
fc = 77e9;
pri = 7e-6;
prf = 1/pri;

Set up the scenario parameters. The radar transmitter and receiver are stationary and located at the
origin. The targets are 500, 530, and 750 meters from the radars on the x-axis. The targets move
along the x-axis at speeds of −60, 20, and 40 m/s. All three targets have a nonfluctuating radar cross-
section (RCS) of 10 dB.

Create the target and radar platforms.

Numtgts = 3;
tgtpos = zeros(Numtgts);
tgtpos(1,:) = [500 530 750];
tgtvel = zeros(3,Numtgts);
tgtvel(1,:) = [-60 20 40];
tgtrcs = db2pow(10)*[1 1 1];
tgtmotion = phased.Platform(tgtpos,tgtvel);
target = phased.RadarTarget('PropagationSpeed',c,'OperatingFrequency',fc, ...
    'MeanRCS',tgtrcs);
radarpos = [0;0;0];
radarvel = [0;0;0];
radarmotion = phased.Platform(radarpos,radarvel);

Create the transmitter and receiver antennas.

txantenna = phased.IsotropicAntennaElement;
rxantenna = clone(txantenna);

Set up the transmitter-end signal processing. Create an upsweep linear FM signal with a bandwidth
of half the sample rate. Find the length of the pri in samples and then estimate the rms bandwidth
and range resolution.

bw = fs/2;
waveform = phased.LinearFMWaveform('SampleRate',fs, ...
    'PRF',prf,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',fs/2, ...
    'DurationSpecification','Duty cycle','DutyCycle',0.02);
sig = waveform();
Nr = length(sig);
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bwrms = bandwidth(waveform)/sqrt(12);
rngrms = c/bwrms;

Set up the transmitter and radiator System object properties. The peak output power is 10 W and the
transmitter gain is 36 dB.

peakpower = 10;
txgain = 36.0;
transmitter = phased.Transmitter( ...
    'PeakPower',peakpower, ...
    'Gain',txgain, ...
    'InUseOutputPort',true);
radiator = phased.Radiator( ...
    'Sensor',txantenna, ...
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc);

Create a free-space propagation channel in two-way propagation mode.

channel = phased.FreeSpace( ...
    'SampleRate',fs, ...    
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc, ...
    'TwoWayPropagation',true);

Set up the receiver-end processing. The receiver gain is 42 dB and noise figure is 10.

collector = phased.Collector( ...
    'Sensor',rxantenna, ...
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc);
rxgain = 42.0;
noisefig = 10;
receiver = phased.ReceiverPreamp( ...
    'SampleRate',fs, ...
    'Gain',rxgain, ...
    'NoiseFigure',noisefig);

Loop over 128 pulses to build a data cube. For each step of the loop, move the target and propagate
the signal. Then put the received signal into the data cube. The data cube contains the received
signal per pulse. Ordinarily, a data cube has three dimensions, where last dimension corresponds to
antennas or beams. Because only one sensor is used in this example, the cube has only two
dimensions.

The processing steps are:

1 Move the radar and targets.
2 Transmit a waveform.
3 Propagate the waveform signal to the target.
4 Reflect the signal from the target.
5 Propagate the waveform back to the radar. Two-way propagation mode enables you to combine

the returned propagation with the outbound propagation.
6 Receive the signal at the radar.
7 Load the signal into the data cube.
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Np = 128;
cube = zeros(Nr,Np);
for n = 1:Np
    [sensorpos,sensorvel] = radarmotion(pri);
    [tgtpos,tgtvel] = tgtmotion(pri);
    [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
    sig = waveform();
    [txsig,txstatus] = transmitter(sig);
    txsig = radiator(txsig,tgtang);
    txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);    
    tgtsig = target(txsig);   
    rxcol = collector(tgtsig,tgtang);
    rxsig = receiver(rxcol);
    cube(:,n) = rxsig;
end

Display the image of the data cube containing signals per pulse.

imagesc([0:(Np-1)]*pri*1e6,[0:(Nr-1)]/fs*1e6,abs(cube))
xlabel('Slow Time {\mu}s')
ylabel('Fast Time {\mu}s')

Create a phased.RangeResponse System object in matched filter mode. Then, display the range
response image for the 128 pulses. The image shows range vertically and pulse number horizontally.

matchingcoeff = getMatchedFilter(waveform);
ndop = 128;
rangeresp = phased.RangeResponse('SampleRate',fs,'PropagationSpeed',c);
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[resp,rnggrid] = rangeresp(cube,matchingcoeff);
imagesc([1:Np],rnggrid,abs(resp))
xlabel('Pulse')
ylabel('Range (m)')

Integrate 20 pulses noncoherently.

intpulse = pulsint(resp(:,1:20),'noncoherent');
plot(rnggrid,abs(intpulse))
xlabel('Range (m)')
title('Noncoherent Integration of 20 Pulses')
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Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Richards, M. Fundamentals of Radar Signal Processing, 2nd ed. McGraw-Hill Professional
Engineering, 2014.

[2] Richards, M., J. Scheer, and W. Holm, Principles of Modern Radar: Basic Principles. SciTech
Publishing, 2010.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• The CustomRangeWindow property is not supported.
• The plotResponse method is not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
Functions
bw2range | chebwin | dechirp | fir1 | hamming | hann | kaiser | rangeangle | taylorwin

Objects
phased.AngleDopplerResponse | phased.CFARDetector | phased.CFARDetector2D |
phased.DopplerEstimator | phased.MatchedFilter | phased.RangeAngleResponse |
phased.RangeDopplerResponse | phased.RangeEstimator

Topics
“Radar Data Cube”

Introduced in R2017a
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plotResponse
System object: phased.RangeResponse
Package: phased

Plot range response

Syntax
plotResponse(response,x)
plotResponse(response,x,xref)
plotResponse(response,x,coeff)
plotResponse(response, ___ ,Name,Value)

Description
plotResponse(response,x) plots the range response of a dechirped input signal, x. This syntax
applies when you set the RangeMethod property to 'FFT' and the DechirpInput property to
false.

plotResponse(response,x,xref) plots the range response x, after performing a dechirp
operation using the reference signal, xref. This syntax applies when you set the RangeMethod
property to 'FFT' and the DechirpInput property to true.

plotResponse(response,x,coeff) plots the range response of x after match filtering using the
match filter coefficients, coeff. This syntax applies when you set the RangeMethod property to
'Matched filter'.

plotResponse(response, ___ ,Name,Value) plots the range response with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
response — Range response
phased.RangeResponse System object

Range response, specified as a phased.RangeResponse System object.
Example: phased.RangeResponse

x — Input radar data cube
complex-valued K-element column vector | complex-valued K-by-L matrix | complex-valued K-by-N-by-
L array

Input radar data cube, specified as a complex-valued K-by-1 column vector, a K-by-L matrix, or K-by-
N-by-L array.

• K is the number of fast-time or range samples.
• N is the number of independent spatial channels such as sensors or directions.
• L is the slow-time dimension that corresponds to the number of pulses or sweeps in the input

signal.

1 Objects

1-1444



See “Radar Data Cube”.

Each K-element fast-time dimension is processed independently.

For FMCW waveforms with a triangle sweep, the sweeps alternate between positive and negative
slopes. However, phased.RangeResponse is designed to process consecutive sweeps of the same
slope. To apply phased.RangeResponse for a triangle-sweep system, use one of the following
approaches:

• Specify a positive SweepSlope property value, with x corresponding to upsweeps only. After
obtaining the Doppler or speed values, divide them by 2.

• Specify a negative SweepSlope property value, with x corresponding to downsweeps only. After
obtaining the Doppler or speed values, divide them by 2.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: single | double

xref — Reference signal used for dechirping
complex-valued K-by-1 column vector

Reference signal used for dechirping, specified as a complex-valued K-by-1 column vector. The value
of K must equal the length of the first dimension of x.
Dependencies

To enable this input argument, set the value of RangeMethod to 'FFT' and DechirpInput to true.
Data Types: single | double

coeff — Matched filter coefficients
complex-valued P-by-1 column vector

Matched filter coefficients, specified as a complex-valued P-by-1 column vector. P must be less than or
equal to K, the length of the fast-time dimension.
Dependencies

To enable this input argument, set RangeMethod property to 'Matched filter'.
Data Types: single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Unit — Vertical axes units
'db' (default) | 'mag' | 'pow'

Units for vertical axis of plot, specified as 'db', 'mag', or 'pow'.
Example: 'pow'
Data Types: char
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Examples

Plot Range Response of Three Targets

Plot the radar range response of three targets usin the plotResponse method of the
phased.RangeResponse System object™. The transmitter and receiver are collocated isotropic
antenna elements forming a monostatic radar system. The transmitted signal is a linear FM waveform
with a pulse repetition interval of 7.0 μs and a duty cycle of 2%. The operating frequency is 77 GHz
and the sample rate is 150 MHz.

fs = 150e6;fs = 150e6;
c = physconst('LightSpeed');
fc = 77e9;
pri = 7e-6;
prf = 1/pri;

Set up the scenario parameters. The radar transmitter and receiver are stationary and located at the
origin. The targets are 500, 530, and 750 meters from the radars on the x-axis. The targets move
along the x-axis at speeds of −60, 20, and 40 m/s. All three targets have a nonfluctuating RCS of 10
dB.

Create the target and radar platforms.

Numtgts = 3;
tgtpos = zeros(Numtgts);
tgtpos(1,:) = [500 530 750];
tgtvel = zeros(3,Numtgts);
tgtvel(1,:) = [-60 20 40];
tgtrcs = db2pow(10)*[1 1 1];
tgtmotion = phased.Platform(tgtpos,tgtvel);
target = phased.RadarTarget('PropagationSpeed',c,'OperatingFrequency',fc, ...
    'MeanRCS',tgtrcs);
radarpos = [0;0;0];
radarvel = [0;0;0];
radarmotion = phased.Platform(radarpos,radarvel);

Create the transmitter and receiver antennas.

txantenna = phased.IsotropicAntennaElement;
rxantenna = clone(txantenna);

Set up the transmitter-end signal processing. Construct an upsweep linear FM signal with a
bandwidth of half the sample rate. Find the rms bandwidth and rms range resolution.

bw = fs/2;
waveform = phased.LinearFMWaveform('SampleRate',fs,...
    'PRF',prf,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',fs/2,...
    'DurationSpecification','Duty cycle','DutyCycle',.02);
sig = waveform();
Nr = length(sig);
bwrms = bandwidth(waveform)/sqrt(12);
rngrms = c/bwrms;

Set up the transmitter and radiator System object properties. The peak output power is 10 W and the
transmitter gain is 36 dB.
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peakpower = 10;
txgain = 36.0;
transmitter = phased.Transmitter(...
    'PeakPower',peakpower,...
    'Gain',txgain,...
    'InUseOutputPort',true);
radiator = phased.Radiator(...
    'Sensor',txantenna,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);

Create a free-space propagation channel in two-way propagation mode.

channel = phased.FreeSpace(...
    'SampleRate',fs,...    
    'PropagationSpeed',c,...
    'OperatingFrequency',fc,...
    'TwoWayPropagation',true);

Set up the receiver-end processing. The receiver gain is 42 dB and noise figure is 10.

collector = phased.Collector(...
    'Sensor',rxantenna,...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc);
rxgain = 42.0;
noisefig = 10;
receiver = phased.ReceiverPreamp(...
    'SampleRate',fs,...
    'Gain',rxgain,...
    'NoiseFigure',noisefig);

Loop over 128 pulses to build a data cube. For each step of the loop, move the target and propagate
the signal. Then put the received signal into the data cube. The data cube contains the received
signal per pulse. Ordinarily, a data cube has three dimensions. The last dimension corresponds to
antennas or beams. Because only one sensor is used in this example, the cube has only two
dimensions.

The processing steps are:

1 Move the radar and targets.
2 Transmit a waveform.
3 Propagate the waveform signal to the target.
4 Reflect the signal from the target.
5 Propagate the waveform back to the radar. Two-way propagation mode allows the return

propagation to be combined with the outbound propagation.
6 Receive the signal at the radar.
7 Load the signal into the data cube.

Np = 128;
cube = zeros(Nr,Np);
for n = 1:Np
    [sensorpos,sensorvel] = radarmotion(pri);
    [tgtpos,tgtvel] = tgtmotion(pri);
    [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
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    sig = waveform();
    [txsig,txstatus] = transmitter(sig);
    txsig = radiator(txsig,tgtang);
    txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);    
    tgtsig = target(txsig);   
    rxcol = collector(tgtsig,tgtang);
    rxsig = receiver(rxcol);
    cube(:,n) = rxsig;
end

Create a phased.RangeResponse System object in matched filter mode. Then, call the
plotResponse method to show the first 20 pulses.

matchcoeff = getMatchedFilter(waveform);
rangeresp = phased.RangeResponse('SampleRate',fs,'PropagationSpeed',c);
plotResponse(rangeresp,cube(:,1:20),matchcoeff);

Introduced in R2017a
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step
System object: phased.RangeResponse
Package: phased

Range response

Syntax
[resp,rnggrid] = step(response,x)
[resp,rnggrid] = step(response,x,xref)
[resp,rnggrid] = step(response,x,coeff)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

[resp,rnggrid] = step(response,x) computes the range response, resp, for the input signal,
x, and the range values, rnggrid, corresponding to the response. This syntax applies when you set
RangeMethod to 'FFT' and DechirpInput to false. This syntax assumes that the input signal has
already been dechirped. This syntax is most commonly used with FMCW signals.

[resp,rnggrid] = step(response,x,xref) computes the range response of the input signal, x
using the reference signal, xref. This syntax applies when you set RangeMethod to 'FFT' and
DechirpInput to true. Often, the reference signal is the transmitted signal. This syntax assumes
that the input signal has not been dechirped. This syntax is most commonly used with FMCW signals.

[resp,rnggrid] = step(response,x,coeff) computes the range response of x using the
matched filter coeff. This syntax applies when you set RangeMethod to 'Matched filter'. This
syntax is most commonly used with pulsed signals.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
response — Range response
phased.RangeResponse System object

Range response, specified as a phased.RangeResponse System object.
Example: phased.RangeResponse
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x — Input radar data cube
complex-valued K-element column vector | complex-valued K-by-L matrix | complex-valued K-by-N-by-
L array

Input radar data cube, specified as a complex-valued K-by-1 column vector, a K-by-L matrix, or K-by-
N-by-L array.

• K is the number of fast-time or range samples.
• N is the number of independent spatial channels such as sensors or directions.
• L is the slow-time dimension that corresponds to the number of pulses or sweeps in the input

signal.

See “Radar Data Cube”.

Each K-element fast-time dimension is processed independently.

For FMCW waveforms with a triangle sweep, the sweeps alternate between positive and negative
slopes. However, phased.RangeResponse is designed to process consecutive sweeps of the same
slope. To apply phased.RangeResponse for a triangle-sweep system, use one of the following
approaches:

• Specify a positive SweepSlope property value, with x corresponding to upsweeps only. After
obtaining the Doppler or speed values, divide them by 2.

• Specify a negative SweepSlope property value, with x corresponding to downsweeps only. After
obtaining the Doppler or speed values, divide them by 2.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: single | double

xref — Reference signal used for dechirping
complex-valued K-by-1 column vector

Reference signal used for dechirping, specified as a complex-valued K-by-1 column vector. The
number of rows must equal the length of the fast-time dimension of x.

Dependencies

To enable this input argument, set the value of RangeMethod to 'FFT' and DechirpInput to true.
Data Types: single | double

coeff — Matched filter coefficients
complex-valued P-by-1 column vector

Matched filter coefficients, specified as a complex-valued P-by-1 column vector. P must be less than or
equal to K. K is the number of fast-time or range sample.

Dependencies

To enable this input argument, set the value of RangeMethod to 'Matched filter'.
Data Types: double
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Output Arguments
resp — Range response data cube
complex-valued M-element column vector | complex-valued M-by-L matrix | complex-valued M-by-N
by-L array

Range response data cube, returned as one of the following:

• Complex-valued M-element column vector
• Complex-valued M-by-L matrix
• Complex-valued M-by-N by-L array

The value of M depends on the type of processing

RangeMethod Property DechirpInput Property Value of M
'FFT' false If you set the RangeFFTLength

property to 'Auto', M = K, the
length of the fast-time
dimension of x. Otherwise, M
equals the value of the
RangeFFTLength property.

true M equals the quotient of the
number of rows, K, of the input
signal by the value of the
decimation factor, D, specified
in DecimationFactor.

'Matched filter' n/a M = K, the length of the fast-
time dimension of x.

Data Types: single | double

rnggrid — Range values along range dimension
real-valued M-by-1 column vector

Range values along range dimension, returned as a real-valued M-by-1 column vector. rnggrid
defines the ranges corresponding to the fast-time dimension of the resp output data cube. M is the
length of the fast-time dimension of resp. Range values are monotonically increasing and equally
spaced. Units are in meters.
Example: [0,0.1,0.2,0.3]
Data Types: single | double

Examples

Range Response of Three Targets

Compute the radar range response of three targets by using the phased.RangeResponse System
object™. The transmitter and receiver are collocated isotropic antenna elements forming a
monostatic radar system. The transmitted signal is a linear FM waveform with a pulse repetition
interval of 7.0 μs and a duty cycle of 2%. The operating frequency is 77 GHz and the sample rate is
150 MHz.
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fs = 150e6;
c = physconst('LightSpeed');
fc = 77e9;
pri = 7e-6;
prf = 1/pri;

Set up the scenario parameters. The radar transmitter and receiver are stationary and located at the
origin. The targets are 500, 530, and 750 meters from the radars on the x-axis. The targets move
along the x-axis at speeds of −60, 20, and 40 m/s. All three targets have a nonfluctuating radar cross-
section (RCS) of 10 dB.

Create the target and radar platforms.

Numtgts = 3;
tgtpos = zeros(Numtgts);
tgtpos(1,:) = [500 530 750];
tgtvel = zeros(3,Numtgts);
tgtvel(1,:) = [-60 20 40];
tgtrcs = db2pow(10)*[1 1 1];
tgtmotion = phased.Platform(tgtpos,tgtvel);
target = phased.RadarTarget('PropagationSpeed',c,'OperatingFrequency',fc, ...
    'MeanRCS',tgtrcs);
radarpos = [0;0;0];
radarvel = [0;0;0];
radarmotion = phased.Platform(radarpos,radarvel);

Create the transmitter and receiver antennas.

txantenna = phased.IsotropicAntennaElement;
rxantenna = clone(txantenna);

Set up the transmitter-end signal processing. Create an upsweep linear FM signal with a bandwidth
of half the sample rate. Find the length of the pri in samples and then estimate the rms bandwidth
and range resolution.

bw = fs/2;
waveform = phased.LinearFMWaveform('SampleRate',fs, ...
    'PRF',prf,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',fs/2, ...
    'DurationSpecification','Duty cycle','DutyCycle',0.02);
sig = waveform();
Nr = length(sig);
bwrms = bandwidth(waveform)/sqrt(12);
rngrms = c/bwrms;

Set up the transmitter and radiator System object properties. The peak output power is 10 W and the
transmitter gain is 36 dB.

peakpower = 10;
txgain = 36.0;
transmitter = phased.Transmitter( ...
    'PeakPower',peakpower, ...
    'Gain',txgain, ...
    'InUseOutputPort',true);
radiator = phased.Radiator( ...
    'Sensor',txantenna, ...
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc);
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Create a free-space propagation channel in two-way propagation mode.

channel = phased.FreeSpace( ...
    'SampleRate',fs, ...    
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc, ...
    'TwoWayPropagation',true);

Set up the receiver-end processing. The receiver gain is 42 dB and noise figure is 10.

collector = phased.Collector( ...
    'Sensor',rxantenna, ...
    'PropagationSpeed',c, ...
    'OperatingFrequency',fc);
rxgain = 42.0;
noisefig = 10;
receiver = phased.ReceiverPreamp( ...
    'SampleRate',fs, ...
    'Gain',rxgain, ...
    'NoiseFigure',noisefig);

Loop over 128 pulses to build a data cube. For each step of the loop, move the target and propagate
the signal. Then put the received signal into the data cube. The data cube contains the received
signal per pulse. Ordinarily, a data cube has three dimensions, where last dimension corresponds to
antennas or beams. Because only one sensor is used in this example, the cube has only two
dimensions.

The processing steps are:

1 Move the radar and targets.
2 Transmit a waveform.
3 Propagate the waveform signal to the target.
4 Reflect the signal from the target.
5 Propagate the waveform back to the radar. Two-way propagation mode enables you to combine

the returned propagation with the outbound propagation.
6 Receive the signal at the radar.
7 Load the signal into the data cube.

Np = 128;
cube = zeros(Nr,Np);
for n = 1:Np
    [sensorpos,sensorvel] = radarmotion(pri);
    [tgtpos,tgtvel] = tgtmotion(pri);
    [tgtrng,tgtang] = rangeangle(tgtpos,sensorpos);
    sig = waveform();
    [txsig,txstatus] = transmitter(sig);
    txsig = radiator(txsig,tgtang);
    txsig = channel(txsig,sensorpos,tgtpos,sensorvel,tgtvel);    
    tgtsig = target(txsig);   
    rxcol = collector(tgtsig,tgtang);
    rxsig = receiver(rxcol);
    cube(:,n) = rxsig;
end

Display the image of the data cube containing signals per pulse.
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imagesc([0:(Np-1)]*pri*1e6,[0:(Nr-1)]/fs*1e6,abs(cube))
xlabel('Slow Time {\mu}s')
ylabel('Fast Time {\mu}s')

Create a phased.RangeResponse System object in matched filter mode. Then, display the range
response image for the 128 pulses. The image shows range vertically and pulse number horizontally.

matchingcoeff = getMatchedFilter(waveform);
ndop = 128;
rangeresp = phased.RangeResponse('SampleRate',fs,'PropagationSpeed',c);
[resp,rnggrid] = rangeresp(cube,matchingcoeff);
imagesc([1:Np],rnggrid,abs(resp))
xlabel('Pulse')
ylabel('Range (m)')
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Integrate 20 pulses noncoherently.

intpulse = pulsint(resp(:,1:20),'noncoherent');
plot(rnggrid,abs(intpulse))
xlabel('Range (m)')
title('Noncoherent Integration of 20 Pulses')
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Introduced in R2017a

1 Objects

1-1456



phased.ReceiverPreamp
Package: phased

Receiver preamp

Description
The ReceiverPreamp System object implements a model of a receiver preamplifier. The object
receives incoming signals, multiplies them by the amplifier gain and divides by system losses. Finally,
Gaussian white noise is added to the signal.

To model a receiver preamp:

1 Define and set up your receiver preamp. See “Construction” on page 1-1457.
2 Call step to amplify the input signal according to the properties of phased.ReceiverPreamp.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ReceiverPreamp creates a receiver preamp System object, H.

H = phased.ReceiverPreamp(Name,Value) creates a receiver preamp object, H, with each
specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Gain

Gain of receiver

A scalar containing the gain (in decibels) of the receiver preamp.

Default: 20

LossFactor

Loss factor of receiver

A scalar containing the loss factor (in decibels) of the receiver preamp.

Default: 0

NoiseMethod

Noise specification method
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Specify how to compute noise power using one of 'Noise power' | 'Noise temperature'. If you
set this property to 'Noise temperature', complex baseband noise is added to the input signal
with noise power computed from the ReferenceTemperature, NoiseFigure, and SampleRate
properties. If you set this property to 'Noise power', noise is added to the signal with power
specified in the NoisePower property.

Default: 'Noise temperature'

NoiseFigure

Noise figure of receiver

A scalar containing the noise figure (in decibels) of the receiver preamp. If the receiver has multiple
channels/sensors, the noise figure applies to each channel/sensor. This property is only applicable
when you set the NoiseMethod property to 'Noise temperature'.

Default: 0

ReferenceTemperature

Reference temperature of receiver

A scalar containing the reference temperature of the receiver (in kelvin). If the receiver has multiple
channels/sensors, the reference temperature applies to each channel/sensor. This property is only
applicable when you set the NoiseMethod property to 'Noise temperature'.

Default: 290

SampleRate

Sample rate

Specify the sample rate, in hertz, as a positive scalar. This property is only applicable when you set
the NoiseMethod property to 'Noise temperature'. The SampleRate property also specifies the
noise bandwidth.

Default: 1e6

NoisePower

Noise power

Specify the noise power (in Watts) as a positive scalar. This property is only applicable when you set
the NoiseMethod property to 'Noise power'.

Default: 1.0

NoiseComplexity

Noise complexity

Specify the noise complexity as one of 'Complex' | 'Real'. When you set this property to
'Complex', the noise power is evenly divided between real and imaginary channels. Usually,
complex-valued baseband signals require the addition of complex-valued noise. On occasion, when
the signal is real-valued, you can use this option to specify that the noise is real-valued as well.
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Default: 'Complex'

EnableInputPort

Add input to specify enabling signal

To specify a receiver enabling signal, set this property to true and use the corresponding input
argument when you invoke step. If you do not want to specify a receiver enabling signal, set this
property to false.

Default: false

PhaseNoiseInputPort

Add input to specify phase noise

To specify the phase noise for each incoming sample, set this property to true and use the
corresponding input argument when you invoke step. You can use this information to emulate
coherent-on-receive systems. If you do not want to specify phase noise, set this property to false.

Default: false

SeedSource

Source of seed for random number generator

Specify how the object generates random numbers. Values of this property are:

'Auto' The default MATLAB random number generator produces the
random numbers. Use 'Auto' if you are using this object with
Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator to
produce random numbers. The Seed property of this object
specifies the seed of the random number generator. Use
'Property' if you want repeatable results and are not using this
object with Parallel Computing Toolbox software.

Default: 'Auto'

Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–1. This
property applies when you set the SeedSource property to 'Property'.

Default: 0

Methods

reset Reset random number generator for noise generation
step Receive incoming signal
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Common to All System Objects
release Allow System object property value changes

Examples

Preamplify Signal

This example shows how to use the phased.ReceiverPreamp System object™ to amplify a sine
wave.

Create a phased.ReceiverPreamp System object with a sample rate of 100 Hz. Assume a receiver
noise figure of 60 dB.

fs = 100;
receiver = phased.ReceiverPreamp('NoiseFigure',60, ...
    'SampleRate',fs,'NoiseComplexity','Real');

Create the input signal.

t = linspace(0,1-1/fs,100);
x = 1e-6*sin(2*pi*5*t);

Amplify the signal and compare it with the input signal.

y = receiver(x);
plot(t,x,t,real(y))
xlabel('Time (s)')
ylabel('Amplitude')
legend('Input signal','Amplified signal')
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.Collector | phased.Transmitter

Topics
“Receiver Preamp”

Introduced in R2011a
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reset
System object: phased.ReceiverPreamp
Package: phased

Reset random number generator for noise generation

Syntax
reset(H)

Description
reset(H) resets the states of the ReceiverPreamp object, H. This method resets the random
number generator state if the SeedSource property is set to 'Property'.
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step
System object: phased.ReceiverPreamp
Package: phased

Receive incoming signal

Syntax
Y = step(H,X)
Y = step(H,X,EN_RX)
Y = step(H,X,PHNOISE)
Y = step(H,X,EN_RX,PHNOISE)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) applies the receiver gain and the receiver noise to the input signal, X, and returns
the resulting output signal, Y.

Y = step(H,X,EN_RX) uses input EN_RX as the enabling signal when the EnableInputPort
property is set to true.

Y = step(H,X,PHNOISE) uses input PHNOISE as the phase noise for each sample in X when the
PhaseNoiseInputPort is set to true. The phase noise is the same for all channels in X. The
elements in PHNOISE represent the random phases the transmitter adds to the transmitted pulses.
The receiver preamp object removes these random phases from all received samples returned within
corresponding pulse intervals. Such setup is often referred to as coherent on receive.

Y = step(H,X,EN_RX,PHNOISE) combines all input arguments. This syntax is available when you
configure H so that H.EnableInputPort is true and H.PhaseNoiseInputPort is true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Receiver object.
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X

Input signal

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

EN_RX

Enabling signal, specified as a column vector whose length equals the number of rows in X. The data
type of EN_RN is double or logical. Every element of EN_RX that equals 0 or false indicates that
the receiver is turned off, and no input signal passes through the receiver. Every element of EN_RX
that is nonzero or true indicates that the receiver is turned on, and the input passes through.

PHNOISE

Phase noise for each sample in X, specified as a column vector whose length equals the number of
rows in X. You can obtain PHNOISE as an optional output argument from the step method of
phased.Transmitter.

Output Arguments
Y

Output signal. Y has the same dimensions as X.

Examples

Preamplify Cosine Signal

This example shows how to construct a phased.ReceiverPreamp System object™ with a noise
figure of 5 dB and a bandwidth of 1 MHz. Then use the object to amplify the signal.

Construct the Receiver Preamp system object.

receiver = phased.ReceiverPreamp('NoiseFigure',5,'SampleRate',1e6);

Create the signal.

Fs = 1e3;
t = linspace(0,1,1e3);
x = cos(2*pi*200*t)';

Use the step method to amplify the signal and then plot the first 100 samples.

y = receiver(x);
idx = [1:100];
plot(t(idx),x(idx),t(idx),real(y(idx)))
xlabel('Time (s)')
ylabel('Amplitude')
legend('Original signal','Received signal')
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phased.RectangularWaveform
Package: phased

Rectangular pulse waveform

Description
The RectangularWaveform object creates a rectangular pulse waveform.

To obtain waveform samples:

1 Define and set up your rectangular pulse waveform. See “Construction” on page 1-1466.
2 Call step to generate the rectangular pulse waveform samples according to the properties of

phased.RectangularWaveform. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Construction
H = phased.RectangularWaveform creates a rectangular pulse waveform System object, H. The
object generates samples of a rectangular pulse.

H = phased.RectangularWaveform(Name,Value) creates a rectangular pulse waveform object,
H, with each specified property Name set to the specified Value. You can specify additional name-
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SampleRate

Sample rate

Signal sample rate, specified as a positive scalar. Units are Hertz. The ratio of sample rate to pulse
repetition frequency (PRF) must be a positive integer — each pulse must contain an integer number
of samples.

Default: 1e6

DurationSpecification

Method to set pulse duration

Method to set pulse duration (pulse width), specified as 'Pulse width' or 'Duty cycle'. This
property determines how you set the pulse duration. When you set this property to 'Pulse width',
then you set the pulse duration directly using the PulseWidth property. When you set this property
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to 'Duty cycle', you set the pulse duration from the values of the PRF and DutyCycle properties.
The pulse width is equal to the duty cycle divided by the PRF.

Default: 'Pulse width'

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar. The value must satisfy PulseWidth
<= 1./PRF.

Default: 50e-6

DutyCycle

Waveform duty cycle

Waveform duty cycle, specified as a scalar from 0 through 1, inclusive. This property applies when
you set the DurationSpecification property to 'Duty cycle'. The pulse width is the value of
the DutyCycle property divided by the value of the PRF property.

Default: 0.5

PRF

Pulse repetition frequency

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. ThePRF must satisfy
these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval. For the phase-
coded waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to any element of PRF must be an integer. This condition expresses the
requirement that the number of samples in one pulse repetition interval is an integer.

You can select the value of PRF using property settings alone or using property settings in
conjunction with the prfidx input argument of the step method.

• When PRFSelectionInputPort is false, you set the PRF using properties only. You can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-valued entries.

Then, each call to the step method uses successive elements of this vector for the PRF. If the
last element of the vector is reached, the process continues cyclically with the first element of
the vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by specifying PRF
as a row vector with positive real-valued entries. But this time, when you execute the step
method, select a PRF by passing an argument specifying an index into the PRF vector.

In all cases, the number of output samples is fixed when you set the OutputFormat property to
'Samples'. When you use a varying PRF and set the OutputFormat property to 'Pulses', the
number of samples can vary.
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Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property to false,
the step method uses the values set in the PRF property. When you set this property to true, you
pass an index argument into the step method to select a value from the PRF vector.

Default: false

FrequencyOffsetSource

Source of frequency offset

Source of frequency offset for the waveform, specified as 'Property' or 'Input port'.

• When you set this property to 'Property', the offset is determined by the value of the
FrequencyOffset property.

• When you set this property to 'Input port', the FrequencyOffset is determined by the
freqoffset input argument.

Default: 'Property'

FrequencyOffset

Frequency offset

Frequency offset in Hz, specified as a scalar.

Dependencies

This property applies when you set the FrequencyOffsetSource property to 'Input port'.

Default: 0 Hz

OutputFormat

Output signal format

Specify the format of the output signal as 'Pulses' or 'Samples'. When you set the
OutputFormat property to 'Pulses', the output of the step method takes the form of multiple
pulses specified by the value of the NumPulses property. The number of samples per pulse can vary if
you change the pulse repetition frequency during the simulation.

When you set the OutputFormat property to 'Samples', the output of the step method is in the
form of multiple samples. In this case, the number of output signal samples is the value of the
NumSamples property and is fixed.

Default: 'Pulses'

NumSamples

Number of samples in output
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Specify the number of samples in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

PRFOutputPort

Set this property to true to output the PRF for the current pulse using a step method argument.

Dependencies

This property can be used only when the OutputFormat property is set to 'Pulses'.

Default: false

CoefficientsOutputPort

Enable matched filter coefficients output port

Enable the matched filter coefficients output port, specified as false or true. When you set this
property to false, the object does not provide the matched filter coefficients used during the
simulation as an output. When you set this property to true, the object provides the matched filter
coefficients used during the simulation as an output.

Default: false

Methods
bandwidth Bandwidth of rectangular pulse waveform
getMatchedFilter Matched filter coefficients for waveform
plot Plot rectangular pulse waveform
reset Reset states of rectangular waveform object
step Samples of rectangular pulse waveform

Common to All System Objects
release Allow System object property value changes

Examples

Plot Rectangular Waveform and Spectrum

Create and plot a rectangular pulse waveform object and then plot its spectrum.
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Plot the waveform

Create and plot a pulse waveform. The sample rate is 500 kHz, the pulse width is 0.1 millisecond. The
pulse repetition interval is twice the pulse duration.

fs = 500e3;

Create the rectangular waveform System object™.

sWF = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',1e-4,'PRF',5000.0);

Use the step method to obtain the waveform. Then, plot the waveform.

rectwav = step(sWF);
nsamp = size(rectwav,1);
t = [0:(nsamp-1)]/fs;
plot(t*1000,real(rectwav))
xlabel('Time (millisec)')
ylabel('Amplitude')
grid

Plot the spectrum

Compute the Fourier transform of the complex signal. Then show the spectrum.

nfft = 2^nextpow2(nsamp);
Z = fft(real(rectwav),nfft);
fr = [0:(nfft/2-1)]/nfft*fs;
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plot(fr/1000,abs(Z(1:nfft/2)),'.-')
xlabel('Frequency (kHz)')
ylabel('Amplitude')
grid

Plot the spectrogram

Plot a spectrogram of the function with a window size of 64 samples and 50% overlap. Window the
signal with a Hamming function.

nfft1 = 64;
nov = floor(0.5*nfft1);
spectrogram(rectwav,hamming(nfft1),nov,nfft1,fs,'centered','yaxis')
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This plot shows the constant frequency of the signal.

Apply Frequency Offset to Rectangular Waveform

Apply a frequency offset to a rectangular pulse waveform. Plot the frequency spectrum of the
waveform with and without a frequency offset applied.

Create a rectangular waveform object which is configured to set the frequency offset from an input
when the object is executed.

fs = 500e3;
sRWF = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',1e-4, ...
    'PRF',5000.0,'FrequencyOffsetSource','Input port');

Execute the object two times. First set the frequency offset set to 0 Hz, and then to 2e4 Hz.

rectwav = sRWF(0);
rectwav_foffset = sRWF(2e4);

Plot the frequency spectrum of the complex signals. The frequency offset signal is shifted to the right.

[Pxx,f] = pwelch(rectwav,[],[],[],fs,'centered');
[Pxx_offset,foffset] = pwelch(rectwav_foffset,[],[],[],fs,'centered');
plot(f/1000,Pxx,foffset/1000,Pxx_offset)
ylabel('PSD');
xlabel('Frequency (kHz)');
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legend({'No offset','Offset applied'},'Location','northwest');
grid on;

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The plot method is not supported.
• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.LinearFMWaveform | phased.PhaseCodedWaveform | phased.SteppedFMWaveform

Topics
Waveform Analysis Using the Ambiguity Function
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Introduced in R2011a

1 Objects

1-1474



bandwidth
System object: phased.RectangularWaveform
Package: phased

Bandwidth of rectangular pulse waveform

Syntax
BW = bandwidth(H)

Description
BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for the rectangular pulse
waveform, H. The bandwidth equals the reciprocal of the pulse width.

Input Arguments
H

Rectangular pulse waveform object.

Output Arguments
BW

Bandwidth of the pulses, in hertz.

Examples

Find Bandwidth of Rectangular Pulse

Determine the bandwidth of a rectangular pulse waveform.

waveform = phased.RectangularWaveform;
bw = bandwidth(waveform)

bw = 20000
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getMatchedFilter
System object: phased.RectangularWaveform
Package: phased

Matched filter coefficients for waveform

Syntax
Coeff = getMatchedFilter(H)
Coeff = getMatchedFilter(H,'FrequencyOffset',FOFFSET)

Description
Coeff = getMatchedFilter(H) returns the matched filter coefficients for the rectangular
waveform object H. Coeff is a column vector.

Coeff = getMatchedFilter(H,'FrequencyOffset',FOFFSET) adds a frequency offset when
matched filter coefficients are generated. FOFFSET must be a scalar. This option is available when
you set the FrequencyOffsetSource property to 'Input port' for the input object, H.

Examples

Matched Filter Coefficients for Rectangular Pulse

Get the matched filter coefficients for a rectangular pulse waveform.

waveform = phased.RectangularWaveform('PulseWidth',1e-5,...
    'OutputFormat','Pulses','NumPulses',1);
coeff = getMatchedFilter(waveform)

coeff = 10×1

     1
     1
     1
     1
     1
     1
     1
     1
     1
     1
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plot
System object: phased.RectangularWaveform
Package: phased

Plot rectangular pulse waveform

Syntax
plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot( ___ )

Description
plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one or more
Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker options as
are available in the MATLAB plot function.

h = plot( ___ ) returns the line handle in the figure.

Input Arguments
Hwav

Waveform object. This variable must be a scalar that represents a single waveform object.

LineSpec

Character vector to specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec applies to
both the real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PlotType

Specifies whether the function plots the real part, imaginary part, or both parts of the waveform.
Valid values are 'real', 'imag', and 'complex'.

Default: 'real'
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PulseIdx

Index of the pulse to plot. This value must be a scalar.

Default: 1

FrequencyOffset

Frequency offset

Frequency offset in Hz, specified as a scalar.

Dependencies

This property applies when you set the FrequencyOffsetSource property to 'Input port'.

Default: 0 Hz

Output Arguments
h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a column vector.
The first and second elements of this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples

Plot Rectangular Waveform

Create and plot a 100 μs rectangular pulse waveform.

waveform = phased.RectangularWaveform('PulseWidth',100e-6);
plot(waveform);
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reset
System object: phased.RectangularWaveform
Package: phased

Reset states of rectangular waveform object

Syntax
reset(H)

Description
reset(H) resets the states of the RectangularWaveform object, H. Afterward, if the PRF property
is a vector, the next call to step uses the first PRF value in the vector.
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step
System object: phased.RectangularWaveform
Package: phased

Samples of rectangular pulse waveform

Syntax
Y = step(sRFM)
Y = step(sRFM,prfidx)
Y = step(sRFM,freqoffset)
[Y,PRF] = step( ___ )
[Y,COEFF] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Y = step(sRFM) returns samples of a rectangular pulse in the column vector Y.

Y = step(sRFM,prfidx), uses the prfidx index to select the PRF from the predefined vector of
values specified by the PRF property. This syntax applies when you set the
PRFSelectionInputPort property to true.

Y = step(sRFM,freqoffset), uses the freqoffset to generate the waveform with an offset as
specified at step time. Use this syntax for cases where the transmit pulse frequency needs to be
dynamically updated. This syntax applies when you set the FrequencyOffsetSource property to
'Input port'.

[Y,PRF] = step( ___ ) also returns the current pulse repetition frequency, PRF. To enable this
syntax, set the PRFOutputPort property to true and set the OutputFormat property to 'Pulses'.

[Y,COEFF] = step( ___ ) returns the matched filter coefficients, COEFF, for the current pulse. To
enable this syntax, set CoefficientsOutputPort to true. COEFF is returned as either an NZ-by-1
vector or an NZ-by-M matrix.

• An NZ-by-1 vector is returned when:

• The object has OutputFormat set to 'Pulses' and NumPulses is equal to 1. NZ is the pulse
width.

• The object is configured to generate constant pulse width waveforms
(DurationSpecification is set to 'Pulse width' or 'Duty cycle' and PRF has one
unique value); and either OutputFormat is set to 'Pulses' and NumPulses is greater than
1, or OutputFormat is set to 'Samples'. For this case, NZ is the pulse width.
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• An NZ-by-M matrix is returned when the object generates varying pulse widths
(DurationSpecification is set to 'Duty cycle' and PRF has more than one unique value);
and either OutputFormat set to 'Pulses' and NumPulses is greater than 1, or OutputFormat
is set to 'Samples'. For this case, NZ is the pulse width, and M is the number of sub-pulses,
NumSteps.

You can combine optional input and output arguments when their enabling properties are set.
Optional inputs and outputs must be listed in the same order as the order of the enabling properties.
For example, [Y,PRF,COEFF] = step(sRFM,prfidx,freqoffset).

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Create Rectangular Waveform Pulse

Construct a 10 microseconds rectangular pulse with a pulse repetition interval of 100 microseconds.

Pulsewidth = 10e-6;
PRI = 100e-6;
sRFM = phased.RectangularWaveform('PulseWidth',Pulsewidth,...
    'OutputFormat','Pulses','NumPulses',1,...
    'SampleRate',1e6,'PRF',1/PRI);
wav = step(sRFM);
plot(wav)
xlabel('Time (\mu sec)')
ylabel('Amplitude')
grid
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Create Rectangular Pulses with Variable PRF

Construct rectangular waveforms with two pulses each. Set the sample rate to 1 MHz, a pulse width
of 50 microseconds, and a duty cycle of 20%. Vary the pulse repetition frequency.

Set the sample rate and PRF. The ratio of sample rate to PRF must be an integer.

fs = 1e6;
PRF = [10000,25000];
waveform = phased.RectangularWaveform('OutputFormat','Pulses','SampleRate',fs,...
    'DurationSpecification','Duty Cycle','DutyCycle',.2,...
    'PRF',PRF,'NumPulses',2,'PRFSelectionInputPort',true);

Obtain and plot the rectangular waveforms. For the first call to the step method, set the PRF to
10kHz using the PRF index. For the next call, set the PRF to 25 kHz. For the final call, set the PRF to
10kHz.

wav = [];
wav1 = waveform(1);
wav = [wav; wav1];
wav1 = waveform(2);
wav = [wav; wav1];
wav1 = waveform(1);
wav = [wav; wav1];
nsamps = size(wav,1);
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t = [0:(nsamps-1)]/waveform.SampleRate;
plot(t*1e6,real(wav))
xlabel('Time (\mu sec)')
ylabel('Amplitude')
grid

Generate Matched Filter Coefficients of Rectangular Pulse Waveform

Generate output samples and matched filter coefficients of a rectangular pulse waveform.

waveform = phased.RectangularWaveform('CoefficientsOutputPort',true, ...
    'PRF',[1e4 2e4],'DurationSpecification','Duty cycle','DutyCycle',0.5, ...
    'OutputFormat','Pulses','NumPulses',2,'PRFSelectionInputPort',true); 
[wav,coeff] = waveform(1);

Create a matched filter that applies the coefficients as an input argument. Use the coeficients when
applying the matched filter to the waveform. Plot the waveform and matched filter outputs.

mf = phased.MatchedFilter('CoefficientsSource','Input port');
mfOut = mf(wav,coeff(:,1));
subplot(211),plot(real(wav));
xlabel('Samples'),ylabel('Amplitude'),title('Waveform Output');
subplot(212),plot(abs(mfOut));
xlabel('Samples'),ylabel('Amplitude'),title('Matched Filter Output');
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phased.ReplicatedSubarray
Package: phased

Phased array formed by replicated subarrays

Description
The ReplicatedSubarray object represents a phased array that contains copies of a subarray
created by replicating a single specified array.

To obtain the response of the subarrays:

1 Define and set up your phased array containing replicated subarrays. See “Construction” on page
1-1486.

2 Call step to compute the response of the subarrays according to the properties of
phased.ReplicatedSubarray. The behavior of step is specific to each object in the toolbox.

You can also use a ReplicatedSubarray object as the value of the SensorArray or Sensor
property of objects that perform beamforming, steering, and other operations.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ReplicatedSubarray creates a replicated subarray System object, H. This object
represents an array that contains copies of a subarray.

H = phased.ReplicatedSubarray(Name,Value) creates a replicated subarray object, H, with
each specified property Name set to the specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Subarray

Subarray to replicate

Specify the subarray you use to form the array. The subarray must be a phased.ULA, phased.URA,
or phased.ConformalArray object.

Default: phased.ULA with default property values

Layout

Layout of subarrays

Specify the layout of the replicated subarrays as 'Rectangular' or 'Custom'.
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Default: 'Rectangular'

GridSize

Size of rectangular grid

Specify the size of the rectangular grid as a single positive integer or 1-by-2 positive integer row
vector. This property applies only when you set the Layout property to 'Rectangular'.

If GridSize is a scalar, the array has the same number of subarrays in each row and column.

If GridSize is a 1-by-2 vector, the vector has the form [NumberOfRows, NumberOfColumns]. The
first entry is the number of subarrays along each column, while the second entry is the number of
subarrays in each row. A row is along the local y-axis, and a column is along the local z-axis. This
figure shows how a 3-by-2 URA subarray is replicated using a GridSize value of [1,2].

Default: [1 2]

GridSpacing

Spacing of rectangular grid

Specify the rectangular grid spacing of subarrays as a positive real-valued scalar, a 1-by-2 row vector,
or 'Auto'. This property applies only when you set the Layout property to 'Rectangular'. Grid
spacing units are expressed in meters.

If GridSpacing is a scalar, the spacing along the row and the spacing along the column is the same.

If GridSpacing is a length-2 row vector, it has the form [SpacingBetweenRows,
SpacingBetweenColumn]. The first entry specifies the spacing between rows along a column. The
second entry specifies the spacing between columns along a row.

If GridSpacing is 'Auto', the replication preserves the element spacing in both row and column.
This option is available only if you use a phased.ULA or phased.URA object as the subarray.

Default: 'Auto'

SubarrayPosition

Subarray positions in custom grid
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Specify the positions of the subarrays in the custom grid. This property value is a 3-by-N matrix,
where N indicates the number of subarrays in the array. Each column of the matrix represents the
position of a single subarray in the array’s local coordinate system, in meters, using the form [x; y; z].

This property applies when you set the Layout property to 'Custom'.

Default: [0 0; -0.5 0.5; 0 0]

SubarrayNormal

Subarray normal directions in custom grid

Specify the normal directions of the subarrays in the array. This property value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth; elevation]. Each angle is in degrees
and is defined in the local coordinate system.

You can use the SubarrayPosition and SubarrayNormal properties to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

This property applies when you set the Layout property to 'Custom'.

Default: [0 0; 0 0]

SubarraySteering

Subarray steering method

Specify the method of subarray steering as either 'None' | 'Phase' | 'Time' | 'Custom'.

• When you set this property to 'Phase', a phase shifter is used to steer the subarray. Use the
STEERANG argument of the step method to define the steering direction.

• When you set this property to 'Time', subarrays are steered using time delays. Use the
STEERANG argument of the step method to define the steering direction.

• When you set this property to 'Custom', subarrays are steered by setting independent weights
for all elements in each subarray. Use the WS argument of the step method to define the weights
for all subarrays.

Default: 'None'

PhaseShifterFrequency

Subarray phase shifter frequency

Specify the operating frequency of phase shifters that perform subarray steering. The property value
is a positive scalar in hertz. This property applies when you set the SubarraySteering property to
'Phase'.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

1 Objects

1-1488



The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Default: 0

Methods
Specific to phased.ReplicatedSubarray Object
beamwidth Compute and display beamwidth for a subarray
collectPla
neWave

Simulate received plane waves

directivit
y

Directivity of replicated subarray

getElement
Position

Positions of array elements

getNumElem
ents

Number of elements in array

getNumSuba
rrays

Number of subarrays in array

getSubarra
yPosition

Positions of subarrays in array

isPolariza
tionCapabl
e

Polarization capability

pattern Plot replicated subarray directivity and patterns
patternAzi
muth

Plot replicated subarray directivity or pattern versus azimuth

patternEle
vation

Plot replicated subarray directivity or pattern versus elevation

plotRespon
se

Plot response pattern of array

step Output responses of subarrays
viewArray View array geometry

Common to All System Objects
release Allow System object property value changes

Examples

Azimuth Response of Array with Subarrays

Plot the azimuth response of a 4-element ULA composed of two 2-element ULAs. By default, the
antenna elements are isotropic.
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sArray = phased.ULA('NumElements',2,'ElementSpacing',0.5);
sRSA = phased.ReplicatedSubarray('Subarray',sArray,...
   'Layout','Rectangular','GridSize',[1 2],...
   'GridSpacing','Auto');

Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the wave
propagation speed is the speed of light.

fc = 1.0e9;
pattern(sRSA,fc,[-180:180],0,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'Type','powerdb',...
    'Normalize',true,...
    'CoordinateSystem','polar')

Response of Subarrays with Polarized Antenna Elements

Create a 4-element ULA from two 2-element ULA subarrays consisting of short-dipole antenna
elements. Then, calculate the response at boresight. Because the array elements support polarization,
the response consists of horizontal and vertical components.

Create the arrays from subarrays.

sSD = phased.ShortDipoleAntennaElement;
sULA = phased.ULA('Element',sSD,...
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    'NumElements',2,...
    'ElementSpacing',0.5);
sRSA = phased.ReplicatedSubarray('Subarray',sULA,...
    'Layout','Rectangular',...
    'GridSize',[1 2],...
    'GridSpacing','Auto');

Show the vertical polarization response for the subarrays.

fc = 1.0e9;
ang = [0;0];
resp = step(sRSA,fc,ang,physconst('LightSpeed'));
disp(resp.V)

   -2.4495
   -2.4495

Independently Steered Replicated Subarrays

Create a array consisting of three copies of a 4-element ULA having elements spaced 1/2 wavelength
apart. The array operates at 300 MHz.

c = physconst('LightSpeed'); 
fc = 300e6;
lambda = c/fc;
subarray = phased.ULA(4,0.5*lambda);

Steer all subarrays by a common phase shift to 10 degrees azimuth.

array = phased.ReplicatedSubarray('Subarray',subarray,'GridSize',[1 3], ... 
    'SubarraySteering','Phase','PhaseShifterFrequency',fc); 
steer_ang = [10;0]; 
sv_array = phased.SteeringVector('SensorArray',array,... 
    'PropagationSpeed',c); 
wts_array = sv_array(fc,steer_ang);
pattern(array,fc,-90:90,0,'CoordinateSystem','Rectangular',... 
    'Type','powerdb','PropagationSpeed',c,'Weights',wts_array,... 
    'SteerAngle',steer_ang);
legend('phase-shifted subarrays')
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Compute independent subarray weights from subarray steering vectors. The weights point to 5, 15,
and 30 degrees azimuth. Set the SubarraySteering property to 'Custom' .

steer_ang_subarrays = [5 15 30;0 0 0];
sv_subarray = phased.SteeringVector('SensorArray',subarray,... 
    'PropagationSpeed',c);
wc = sv_subarray(fc,steer_ang_subarrays); 
array.SubarraySteering = 'Custom';
pattern(array,fc,-90:90,0,'CoordinateSystem','Rectangular',... 
    'Type','powerdb','PropagationSpeed',c,'Weights',wts_array,... 
    'ElementWeight',conj(wc)); 
legend('independent subarrays') 
hold off

1 Objects

1-1492



References

[1] Mailloux, Robert J. Electronically Scanned Arrays. San Rafael, CA: Morgan & Claypool Publishers,
2007.

[2] Mailloux, Robert J. Phased Array Antenna Handbook, 2nd Ed. Norwood, MA: Artech House, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, plotResponse, and viewArray methods are
not supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Objects
phased.ConformalArray | phased.PartitionedArray | phased.UCA | phased.ULA |
phased.URA
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Apps
Sensor Array Analyzer

Topics
Subarrays in Phased Array Antennas
Phased Array Gallery
“Subarrays Within Arrays”

Introduced in R2012a
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directivity
System object: phased.ReplicatedSubarray
Package: phased

Directivity of replicated subarray

Syntax
D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)

Description
D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-1498 of a replicated
array of antenna or microphone element, H, at frequencies specified by FREQ and in angles of
direction specified by ANGLE.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

D = directivity(H,FREQ,ANGLE,Name,Value) returns the directivity with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
H — Replicated subarray
System object

Replicated subarray, specified as a phased.ReplicatedSubarray System object.
Example: H = phased.ReplicatedSubarray;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double
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ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Subarray weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-M complex-valued matrix. The dimension N is the number of
subarrays in the array. The dimension L is the number of frequencies specified by the FREQ argument.

Weights dimension FREQ dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
‘Weights’ for the
corresponding frequency in the
FREQ argument.

Example: 'Weights',ones(N,M)
Data Types: double
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SteerAngle — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of 'SteerAngle' and a
scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180° and 180°, inclusive. The elevation angle must be between –90° and 90°,
inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the elevation angle is
assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object is set to
'Phase' or 'Time'.
Example: 'SteerAngle',[20;30]
Data Types: double

ElementWeights — Weights applied to elements within subarray
1 (default) | complex-valued NSE-by-N matrix

Subarray element weights, specified as complex-valued NSE-by-N matrix. Weights are applied to the
individual elements within a subarray. All subarrays have the same dimensions and sizes. NSE is the
number of elements in each subarray and N is the number of subarrays. Each column of the matrix
specifies the weights for the corresponding subarray.

Dependencies

To enable this name-value pair, set the SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Replicated Subarray

Compute the directivity of an array built up from ULA subarrays. Determine the directivity of the
replicated subarray when the array is steered to towards 30 degrees azimuth.

Set the signal propagation speed to the speed of light. Set the signal frequency to 300 MHz.

 directivity
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c = physconst('LightSpeed');
fc = 3e8;
lambda = c/fc;

Create a 4-element ULA of isotropic antenna elements spaced 0.4-wavelength apart.

myArray = phased.ULA;
myArray.NumElements = 4;
myArray.ElementSpacing = 0.4*lambda;

Construct a 2-by-1 replicated subarray.

myRepArray = phased.ReplicatedSubarray;
myRepArray.Subarray = myArray;
myRepArray.Layout = 'Rectangular';
myRepArray.GridSize = [2 1];
myRepArray.GridSpacing = 'Auto';
myRepArray.SubarraySteering = 'Time';

Steer the array to 30 degrees azimuth and zero degrees elevation.

ang = [30;0];
mySV = phased.SteeringVector;
mySV.SensorArray = myRepArray;
mySV.PropagationSpeed = c;

Find the directivity at 30 degrees azimuth.

d = directivity(myRepArray,fc,ang,...
    'PropagationSpeed',c,...
    'Weights',step(mySV,fc,ang),...
    'SteerAngle',ang)

d = 7.4776

More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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See Also
pattern | patternAzimuth | patternElevation
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collectPlaneWave
System object: phased.ReplicatedSubarray
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H, when the
input signals indicated by X arrive at the array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal carrier
frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal propagation speed in
C.

Input Arguments
H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an individual
incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the corresponding signal in
X. Each column of ANG is in the form [azimuth; elevation]. The azimuth angle must be between
–180° and 180°, inclusive. The elevation angle must be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this case, the
corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8
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C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments
Y

Received signals. Y is an N-column matrix, where N is the number of subarrays in the array H. Each
column of Y is the received signal at the corresponding subarray, with all incoming signals combined.

Examples

Plane Waves Received at Array of Subarrays

Simulate the received signal at a 16-element ULA composed of four 4-element ULAs.

array = phased.ULA('NumElements',4);
subarrays = phased.ReplicatedSubarray('Subarray',array,'GridSize',[4 1]);

Simulate two signals received from 10° azimuth and 30° azimuth. Both signals have an elevation
angle of 0°. Assume the propagation speed is the speed of light and the carrier frequency of the
signal is 100 MHz.

y = collectPlaneWave(subarrays,randn(4,2),[10 30],100.0e6,...
    physconst('LightSpeed'));

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the delay caused by
the direction of arrival. This method does not account for the response of individual elements in the
array and only models the array factor among subarrays. Therefore, the result does not depend on
whether the subarray is steered.

See Also
phitheta2azel | uv2azel

 collectPlaneWave

1-1501



getElementPosition
System object: phased.ReplicatedSubarray
Package: phased

Positions of array elements

Syntax
POS = getElementPosition(H)

Description
POS = getElementPosition(H) returns the element positions in the array H.

Input Arguments
H

Array object consisting of replicated subarrays.

Output Arguments
POS

Element positions in array. POS is a 3-by-N matrix, where N is the number of elements in H. Each
column of POS defines the position of an element in the local coordinate system, in meters, using the
form [x; y; z].

Examples

Positions of Elements in Array with Replicated Subarrays

Create an array with two copies of a 3-element ULA, and obtain the positions of the elements.

subarrays = phased.ReplicatedSubarray('Subarray',...
    phased.ULA('NumElements',3),'GridSize',[1 2]);
pos = getElementPosition(subarrays)

pos = 3×6

         0         0         0         0         0         0
   -1.2500   -0.7500   -0.2500    0.2500    0.7500    1.2500
         0         0         0         0         0         0

See Also
getSubarrayPosition
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getNumElements
System object: phased.ReplicatedSubarray
Package: phased

Number of elements in array

Syntax
N = getNumElements(H)

Description
N = getNumElements(H) returns the number of elements in the array object H. This number
includes the elements in all subarrays of the array.

Input Arguments
H

Array object consisting of replicated subarrays.

Examples

Number of Elements in Array with Replicated Subarrays

Create an array with two copies of a 3-element ULA, and obtain the total number of elements.

subarray = phased.ReplicatedSubarray('Subarray',...
    phased.ULA('NumElements',3),'GridSize',[1 2]);
N = getNumElements(subarray)

N = 6

See Also
getNumSubarrays
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getNumSubarrays
System object: phased.ReplicatedSubarray
Package: phased

Number of subarrays in array

Syntax
N = getNumSubarrays(H)

Description
N = getNumSubarrays(H) returns the number of subarrays in the array object H.

Input Arguments
H

Array object consisting of replicated subarrays.

Examples

Number of Subarrays in Array

Create an array by tiling copies of a ULA in a 2-by-5 grid. Then, obtain the number of subarrays.

subarrays = phased.ReplicatedSubarray('Subarray',...
    phased.ULA('NumElements',3),'GridSize',[2 5]);
N = getNumSubarrays(subarrays)

N = 10

See Also
getNumElements
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getSubarrayPosition
System object: phased.ReplicatedSubarray
Package: phased

Positions of subarrays in array

Syntax
POS = getSubarrayPosition(H)

Description
POS = getSubarrayPosition(H) returns the subarray positions in the array H.

Input Arguments
H

Partitioned array object.

Output Arguments
POS

Subarrays positions in array. POS is a 3-by-N matrix, where N is the number of subarrays in H. Each
column of POS defines the position of a subarray in the local coordinate system, in meters, using the
form [x; y; z].

Examples

Replicated Subarray Positions

Create an array with two copies of a 3-element ULA, and obtain the positions of the subarrays.

subarray = phased.ReplicatedSubarray('Subarray',...
    phased.ULA('NumElements',3),'GridSize',[1 2]);
pos = getSubarrayPosition(subarray)

pos = 3×2

         0         0
   -0.7500    0.7500
         0         0

See Also
getElementPosition
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isPolarizationCapable
System object: phased.ReplicatedSubarray
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the array
supports polarization. An array supports polarization if all of its constituent sensor elements support
polarization.

Input Arguments
h — Replicated subarray

Replicated subarray specified as a phased.ReplicatedSubarray System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if the array supports polarization or
false if it does not.

Examples

Replicated Array of Short Dipoles Supports Polarization

Verify that a replicated subarray of short-dipole antenna elements supports polarization.

antenna = phased.ShortDipoleAntennaElement('FrequencyRange',[1e9 10e9]);
array = phased.URA([3,2],'Element',antenna);
reparray = phased.ReplicatedSubarray('Subarray',array, ...
    'Layout','Rectangular','GridSize',[1,2],'GridSpacing','Auto');
isPolarizationCapable(reparray)

ans = logical
   1
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pattern
System object: phased.ReplicatedSubarray
Package: phased

Plot replicated subarray directivity and patterns

Syntax
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array specified in
sArray. The operating frequency is specified in FREQ.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the array pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-1514 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sArray — Replicated subarray
System object

Replicated subarray, specified as a phased.ReplicatedSubarray System object.
Example: sArray= phased.ReplicatedSubarray;
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FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
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'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component
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Example: 'V'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Subarray weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-M complex-valued matrix. The dimension N is the number of
subarrays in the array. The dimension L is the number of frequencies specified by the FREQ argument.

Weights dimension FREQ dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
‘Weights’ for the
corresponding frequency in the
FREQ argument.

Example: 'Weights',ones(N,M)
Data Types: double

SteerAngle — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of 'SteerAngle' and a
scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180° and 180°, inclusive. The elevation angle must be between –90° and 90°,
inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the elevation angle is
assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object is set to
'Phase' or 'Time'.
Example: 'SteerAngle',[20;30]
Data Types: double

ElementWeights — Weights applied to elements within subarray
1 (default) | complex-valued NSE-by-N matrix
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Subarray element weights, specified as complex-valued NSE-by-N matrix. Weights are applied to the
individual elements within a subarray. All subarrays have the same dimensions and sizes. NSE is the
number of elements in each subarray and N is the number of subarrays. Each column of the matrix
specifies the weights for the corresponding subarray.
Dependencies

To enable this name-value pair, set the SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

Output Arguments
PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT correspond to the
dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Azimuth Response of Array with Subarrays

Plot the azimuth response of a 4-element ULA composed of two 2-element ULAs. By default, the
antenna elements are isotropic.

sArray = phased.ULA('NumElements',2,'ElementSpacing',0.5);
sRSA = phased.ReplicatedSubarray('Subarray',sArray,...
   'Layout','Rectangular','GridSize',[1 2],...
   'GridSpacing','Auto');

Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the wave
propagation speed is the speed of light.

fc = 1.0e9;
pattern(sRSA,fc,[-180:180],0,...
    'PropagationSpeed',physconst('LightSpeed'),...
    'Type','powerdb',...
    'Normalize',true,...
    'CoordinateSystem','polar')
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Directivity of Array with Subarrays

Create a 2-by-2-element URA of isotropic antenna elements, and arrange four copies to form a 16-
element URA. Plot the 3-D directivity pattern.

Create the array

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[fmin,fmax],...
    'BackBaffled',false);
sURA = phased.URA('Element',sIso,...
    'Size',[2 2],...
    'ElementSpacing',lam/2);
sRS = phased.ReplicatedSubarray('Subarray',sURA,...
    'Layout','Rectangular','GridSize',[2 2],...
    'GridSpacing','Auto');

Plot 3-D directivity pattern

fc = 1e9;
wts = [0.862,1.23,1.23,0.862]';
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pattern(sRS,fc,[-180:180],[-90:90],...
    'PropagationSpeed',physconst('LightSpeed'),....
    'Type','directivity',...
    'Weights',wts);

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.ReplicatedSubarray
Package: phased

Plot replicated subarray directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus azimuth (in dBi) for
the array sArray at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternAzimuth(sArray,FREQ,EL), in addition, plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When EL is a vector,
multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the array pattern. PAT is a matrix whose entries represent
the pattern at corresponding sampling points specified by the 'Azimuth' parameter and the EL
input argument.

Input Arguments
sArray — Replicated subarray
System object

Replicated subarray, specified as a phased.ReplicatedSubarray System object.
Example: sArray= phased.ReplicatedSubarray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Subarray weights
M-by-1 complex-valued column vector
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Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Subarray weights are applied to the subarrays of the array to produce
array steering, tapering, or both. The dimension M is the number of subarrays in the array.
Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

SteerAngle — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of 'SteerAngle' and a
scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180° and 180°, inclusive. The elevation angle must be between –90° and 90°,
inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the elevation angle is
assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object is set to
'Phase' or 'Time'.
Example: 'SteerAngle',[20;30]
Data Types: double

ElementWeights — Weights applied to elements within subarray
1 (default) | complex-valued NSE-by-N matrix

Subarray element weights, specified as complex-valued NSE-by-N matrix. Weights are applied to the
individual elements within a subarray. All subarrays have the same dimensions and sizes. NSE is the
number of elements in each subarray and N is the number of subarrays. Each column of the matrix
specifies the weights for the corresponding subarray.
Dependencies

To enable this name-value pair, set the SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix
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Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension N is the
number of elevation angles, as determined by the EL input argument.

Examples

Azimuth Pattern of Array with Subarrays

Create a 2-element ULA of isotropic antenna elements, and arrange three copies to form a 6-element
ULA. Plot the directivity azimuth pattern within a restricted range of azimuth angles from -30 to 30
degrees in 0.1 degree increments. Plot directivity for 0 degrees and 45 degrees elevation.

Create the array

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[fmin,fmax],...
    'BackBaffled',false);
sULA = phased.ULA('Element',sIso,...
    'NumElements',2,'ElementSpacing',0.5);
sRS = phased.ReplicatedSubarray('Subarray',sULA,...
    'Layout','Rectangular','GridSize',[1 3],...
    'GridSpacing','Auto');

Plot azimuth directivity pattern

fc = 1e9;
wts = [0.862,1.23,0.862]';
patternAzimuth(sRS,fc,[0,45],'PropagationSpeed',physconst('LightSpeed'),...
    'Azimuth',[-30:0.1:30],...
    'Type','directivity',...
    'Weights',wts);
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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patternElevation
System object: phased.ReplicatedSubarray
Package: phased

Plot replicated subarray directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus elevation (in dBi)
for the array sArray at zero degrees azimuth angle. When AZ is a vector, multiple overlaid plots are
created. The argument FREQ specifies the operating frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the array pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sArray — Replicated subarray
System object

Replicated subarray, specified as a phased.ReplicatedSubarray System object.
Example: sArray= phased.ReplicatedSubarray;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Subarray weights
M-by-1 complex-valued column vector
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Subarray weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Subarray weights are applied to the subarrays of the array to produce
array steering, tapering, or both. The dimension M is the number of subarrays in the array.
Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

SteerAngle — Subarray steering angle
[0;0] (default) | scalar | 2-element column vector

Subarray steering angle, specified as the comma-separated pair consisting of 'SteerAngle' and a
scalar or a 2-by-1 column vector.

If 'SteerAngle' is a 2-by-1 column vector, it has the form [azimuth; elevation]. The azimuth
angle must be between –180° and 180°, inclusive. The elevation angle must be between –90° and 90°,
inclusive.

If 'SteerAngle' is a scalar, it specifies the azimuth angle only. In this case, the elevation angle is
assumed to be 0.

This option applies only when the 'SubarraySteering' property of the System object is set to
'Phase' or 'Time'.
Example: 'SteerAngle',[20;30]
Data Types: double

ElementWeights — Weights applied to elements within subarray
1 (default) | complex-valued NSE-by-N matrix

Subarray element weights, specified as complex-valued NSE-by-N matrix. Weights are applied to the
individual elements within a subarray. All subarrays have the same dimensions and sizes. NSE is the
number of elements in each subarray and N is the number of subarrays. Each column of the matrix
specifies the weights for the corresponding subarray.
Dependencies

To enable this name-value pair, set the SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix
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Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of elevation angles determined by the 'Elevation' name-value pair argument. The dimension N is
the number of azimuth angles determined by the AZ argument.

Examples

Elevation Pattern of Array with Subarrays

Create a 2-by-2-element URA of isotropic antenna elements, and arrange four copies to form a 16-
element URA. Plot the elevation directivity pattern within a restricted range of elevation angles from
-45 to 45 degrees in 0.1 degree increments. Plot directivity for 0 degrees and 15 degrees azimuth.

Create the array

fmin = 1e9;
fmax = 6e9;
c = physconst('LightSpeed');
lam = c/fmax;
sIso = phased.IsotropicAntennaElement(...
    'FrequencyRange',[fmin,fmax],...
    'BackBaffled',false);
sURA = phased.URA('Element',sIso,...
    'Size',[2 2],...
    'ElementSpacing',lam/2);
sRS = phased.ReplicatedSubarray('Subarray',sURA,...
    'Layout','Rectangular','GridSize',[2 2],...
    'GridSpacing','Auto');

Plot elevation directivity pattern

fc = 1e9;
wts = [0.862,1.23,1.23,0.862]';
patternElevation(sRS,fc,[0,15],...
    'PropagationSpeed',physconst('LightSpeed'),...
    'Elevation',[-45:0.1:45],...
    'Type','directivity',...
    'Weights',wts);
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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plotResponse
System object: phased.ReplicatedSubarray
Package: phased

Plot response pattern of array

Syntax
plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ. The propagation speed is specified
in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Array object.

FREQ

Operating frequency, in hertz. Typical values are within the range specified by a property of
H.Subarray.Element. That property is named FrequencyRange or FrequencyVector, depending
on the type of element in the array. The element has zero response at frequencies outside that range.
If FREQ is a nonscalar row vector, the plot shows multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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CutAngle

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If
RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, then FREQ must be a
vector with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the array response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where:

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This parameter is not
applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.
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• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

SteerAng

Subarray steering angle. SteerAng can be either a 2-element column vector or a scalar.

If SteerAng is a 2-element column vector, it has the form [azimuth; elevation]. The azimuth angle
must be between –180 and 180 degrees, inclusive. The elevation angle must be between –90 and 90
degrees, inclusive.

If SteerAng is a scalar, it specifies the azimuth angle. In this case, the elevation angle is assumed to
be 0.

This option is applicable only if the SubarraySteering property of H is 'Phase' or 'Time'.

Default: [0;0]

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.

Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

Weights

Weight values applied to the array, specified as a length-N column vector or N-by-M matrix. The
dimension N is the number of subarrays in the array. The interpretation of M depends upon whether
the input argument FREQ is a scalar or row vector.

Weights Dimension FREQ Dimension Purpose
N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for the

same single frequency or all M
frequencies.

N-by-M matrix

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.
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AzimuthAngles

Azimuth angles for plotting subarray response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting subarray response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When you set the RespCut parameter to '3D', you
can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting subarray response, specified as a row vector. The UGrid parameter
sets the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting subarray response, specified as a row vector. The VGrid parameter
sets the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Azimuth Response and Directivity of ULA with Subarrays

Plot the azimuth response of a 4-element ULA composed of two 2-element ULAs.

Create a 2-element ULA, and arrange two copies to form a 4-element ULA.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...
    'Layout','Rectangular','GridSize',[1 2],...
    'GridSpacing','Auto');
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Plot the azimuth response of the array. Assume the operating frequency is 1 GHz and the wave
propagation speed is 3e8 m/s.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar');

Plot the azimuth directivity of the array.

plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar','Unit','dbi');
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Display Azimuth Response of Array with Subarrays Between -30 and 30 Degrees

Create a 2-element ULA, and arrange two copies to form a 4-element ULA. Using the
AzimuthAngles parameter, plot the response within a restricted range of azimuth angles from -30 to
30 degrees in 0.1 degree increments.

h = phased.ULA('NumElements',2,'ElementSpacing',0.5);
ha = phased.ReplicatedSubarray('Subarray',h,...
    'Layout','Rectangular','GridSize',[1 2],...
    'GridSpacing','Auto');
plotResponse(ha,1e9,3e8,'RespCut','Az','Format','Polar',...
    'AzimuthAngles',[-30:0.1:30],'Unit','mag');
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Apply Two Sets of Weights at a Single Frequency

Construct an array of replicated subarrays. Start with a 2-element uniform line array (ULA), and
duplicate it 5 times to create a 10-element ULA. Apply both uniform weights and tapered weights.
Then, use plotResponse to show that the tapered set of weights reduces the adjacent sidelobes
while broadening the main lobe.

h = phased.ULA('NumElements',2,'ElementSpacing',0.2);
ha = phased.ReplicatedSubarray('Subarray',h,...
    'Layout','Rectangular','GridSize',[1 5],...
    'GridSpacing',0.4);
c = physconst('LightSpeed');
fc = 1e9;
wts1 = [0.2,0.2,0.2,0.2,0.2]';
wts2 = [0.1,0.23333,.33333,0.23333,0.1]';
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar',...
    'Weights',[wts1,wts2]);
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See Also
azel2uv | uv2azel
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step
System object: phased.ReplicatedSubarray
Package: phased

Output responses of subarrays

Syntax
RESP = step(H,FREQ,ANG,V)
RESP = step(H,FREQ,ANG,V,STEERANGLE)
RESP = step(H,FREQ,ANG,V,WS)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG,V) returns the responses, RESP, of the subarrays in the array, at
operating frequencies specified in FREQ and directions specified in ANG. V is the propagation speed.
The elements within each subarray are connected to the subarray phase center using an equal-path
feed.

RESP = step(H,FREQ,ANG,V,STEERANGLE) uses STEERANGLE as the subarray’s steering
direction. This syntax is available when you set the SubarraySteering property to either 'Phase'
or 'Time'.

RESP = step(H,FREQ,ANG,V,WS) uses WS as the subarray element weights. This syntax is
available when you set the SubarraySteering property to 'Custom'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Phased array formed by replicated subarrays.

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of H.Subarray.Element. That property is named
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FrequencyRange or FrequencyVector, depending on the type of element in the array. The element
has zero response at frequencies outside that range.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.

V

Propagation speed in meters per second. This value must be a scalar.

STEERANGLE

Subarray steering direction. STEERANGLE can be either a 2-element column vector or a scalar.

If this argument is a 2-element column vector, it has the form [azimuth; elevation]. The azimuth angle
must be between –180° and 180°, inclusive. The elevation angle must be between –90° and 90°,
inclusive.

If STEERANGLE is a scalar, it specifies the direction’s azimuth angle. In this case, the elevation angle
is assumed to be 0°.
Dependencies

To enable this argument, set the SubarraySteering to 'Phase' or 'Time'.

WS

Subarray element weights

Subarray element weights, specified as complex-valued NSE-by-N matrix. Weights are applied to the
individual elements within a subarray. All subarrays have the same dimensions and sizes. NSE is the
number of elements in each subarray and N is the number of subarrays. Each column of the matrix
specifies the weights for the corresponding subarray.
Dependencies

To enable this argument, set the SubarraySteering to 'Custom'.

Output Arguments
RESP

Voltage responses of the subarrays of the phased array. The output depends on whether the array
supports polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP, has the
dimensions N-by-M-by-L. The first dimension, N , represents the number of subarrays in the
phased array, the second dimension, M, represents the number of angles specified in ANG, while L
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represents the number of frequencies specified in FREQ. Each column of RESP contains the
responses of the subarrays for the corresponding direction specified in ANG. Each of the L pages
of RESP contains the responses of the subarrays for the corresponding frequency specified in
FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a MATLAB
struct containing two fields, RESP.H and RESP.V, each having dimensions N-by-M-by-L. The
field, RESP.H, represents the array’s horizontal polarization response, while RESP.V represents
the array’s vertical polarization response. The first dimension, N , represents the number of
subarrays in the phased array, the second dimension, M, represents the number of angles
specified in ANG, while L represents the number of frequencies specified in FREQ. Each of the M
columns contains the responses of the subarrays for the corresponding direction specified in ANG.
Each of the L pages contains the responses of the subarrays for the corresponding frequency
specified in FREQ.

Examples

Subarray Response

Calculate the response at boresight for two 2-element ULA arrays that form subarrays of a 4-element
ULA array of short-dipole antenna elements.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a two-element ULA of short-dipole antenna elements. Then, arrange two copies to form a 4-
element ULA.

antenna = phased.ShortDipoleAntennaElement;
array = phased.ULA('Element',antenna,'NumElements',2,'ElementSpacing',0.5);
replicatedarray = phased.ReplicatedSubarray('Subarray',array,...
    'Layout','Rectangular','GridSize',[1 2],...
    'GridSpacing','Auto');

Find the response of each subarray at boresight. Assume the operating frequency is 1 GHz and the
wave propagation speed is the speed of light.

c = physconst('LightSpeed');
resp = replicatedarray(1.0e9,[0;0],c)

resp = struct with fields:
    H: [2x1 double]
    V: [2x1 double]

Independently Steered Replicated Subarrays

Create a array consisting of three copies of a 4-element ULA having elements spaced 1/2 wavelength
apart. The array operates at 300 MHz.

c = physconst('LightSpeed'); 
fc = 300e6;
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lambda = c/fc;
subarray = phased.ULA(4,0.5*lambda);

Steer all subarrays by a common phase shift to 10 degrees azimuth.

array = phased.ReplicatedSubarray('Subarray',subarray,'GridSize',[1 3], ... 
    'SubarraySteering','Phase','PhaseShifterFrequency',fc); 
steer_ang = [10;0]; 
sv_array = phased.SteeringVector('SensorArray',array,... 
    'PropagationSpeed',c); 
wts_array = sv_array(fc,steer_ang);
pattern(array,fc,-90:90,0,'CoordinateSystem','Rectangular',... 
    'Type','powerdb','PropagationSpeed',c,'Weights',wts_array,... 
    'SteerAngle',steer_ang);
legend('phase-shifted subarrays')

Compute independent subarray weights from subarray steering vectors. The weights point to 5, 15,
and 30 degrees azimuth. Set the SubarraySteering property to 'Custom' .

steer_ang_subarrays = [5 15 30;0 0 0];
sv_subarray = phased.SteeringVector('SensorArray',subarray,... 
    'PropagationSpeed',c);
wc = sv_subarray(fc,steer_ang_subarrays); 
array.SubarraySteering = 'Custom';
pattern(array,fc,-90:90,0,'CoordinateSystem','Rectangular',... 
    'Type','powerdb','PropagationSpeed',c,'Weights',wts_array,... 
    'ElementWeight',conj(wc)); 
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legend('independent subarrays') 
hold off

See Also
phitheta2azel | uv2azel
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viewArray
System object: phased.ReplicatedSubarray
Package: phased

View array geometry

Syntax
viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray( ___ )

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options specified by
one or more Name,Value pair arguments.

hPlot = viewArray( ___ ) returns the handles of the array elements in the figure window. All
input arguments described for the previous syntaxes also apply here.

Input Arguments
H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each number in the vector must be an
integer between 1 and the number of elements. You can also specify the value as 'All' to show
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

Set this value to true to show the normal directions of all elements of the array. Set this value to
false to plot the elements without showing normal directions.

Default: false
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ShowTaper

Set this value to true to specify whether to change the element color brightness in proportion to the
element taper magnitude. When this value is set to false, all elements are drawn with the same
color.

Default: false

ShowSubarray

Vector specifying the indices of subarrays to highlight in the figure. Each number in the vector must
be an integer between 1 and the number of subarrays. You can also specify the value as 'All' to
highlight all subarrays of the array or 'None' to suppress subarray highlighting. Highlighting uses
different colors for different subarrays.

Default: 'All'

Title

Character vector specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handles of array elements in figure window.

Examples

Array of Replicated Hexagonal Arrays on a Sphere

This example shows how to construct a full array by replicating subarrays.

Create a hexagonal array to use as a subarray.

Nmin = 9;
Nmax = 17;
dy = 0.5;
dz = 0.5*sin(pi/3);
rowlengths = [Nmin:Nmax Nmax-1:-1:Nmin];
numels_hex = sum(rowlengths);
stopvals = cumsum(rowlengths);
startvals = stopvals-rowlengths+1;
pos = zeros(3,numels_hex);
rowidx = 0;
for m = Nmin-Nmax:Nmax-Nmin
    rowidx = rowidx+1;
    idx = startvals(rowidx):stopvals(rowidx);
    pos(2,idx) = (-(rowlengths(rowidx)-1)/2:...
        (rowlengths(rowidx)-1)/2) * dy;
    pos(3,idx) = m*dz;
end
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hexa = phased.ConformalArray('ElementPosition',pos,...
    'ElementNormal',zeros(2,numels_hex));

Arrange copies of the hexagonal array on a sphere.

radius = 9;
az = [-180 -180 -180 -120 -120 -60 -60   0  0  60 60 120 120 180];
el = [-90   -30   30  -30   30 -30  30 -30 30 -30 30 -30  30  90];
numsubarrays = size(az,2);
[x,y,z] = sph2cart(deg2rad(az),deg2rad(el),...
    radius*ones(1,numsubarrays));
ha = phased.ReplicatedSubarray('Subarray',hexa,...
    'Layout','Custom',...
    'SubarrayPosition',[x; y; z], ...
    'SubarrayNormal',[az; el]);

Display the geometry of the array, highlighting selected subarrays with different colors.

viewArray(ha,'ShowSubarray',3:2:13,...
    'Title','Hexagonal Subarrays on a Sphere');
view(0,90)

See Also
phased.ArrayResponse
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Topics
Phased Array Gallery
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phased.RootMUSICEstimator
Package: phased

Root MUSIC direction of arrival (DOA) estimator for ULA and UCA

Description
The RootMUSICEstimator object implements the root multiple signal classification (root-MUSIC)
direction of arrival estimator for uniform linear arrays (ULA) and uniform circular arrays (UCA).
When a uniform circular array is used, the algorithm transforms the input to a ULA-like structure
using the phase mode excitation technique [2].

To estimate the direction of arrival (DOA):

1 Define and set up your DOA estimator. See “Construction” on page 1-1547.
2 Call step to estimate the DOA according to the properties of phased.RootMUSICEstimator.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.RootMUSICEstimator creates a root MUSIC DOA estimator System object, H. The
object estimates the signal's direction of arrival using the root MUSIC algorithm with a uniform linear
array (ULA).

H = phased.RootMUSICEstimator(Name,Value) creates object, H, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Sensor array System object

Sensor array specified as a System object. The sensor array must be a phased.ULA object or a
phased.UCA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.
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Default: Speed of light

OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

ForwardBackwardAveraging

Perform forward-backward averaging

Set this property to true to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with conjugate symmetric array manifold.

Default: false

SpatialSmoothing

Spatial smoothing

The averaging number used by spatial smoothing to estimate the covariance matrix, specified as a
strictly positive integer. Each additional smoothing value handles one additional coherent source, but
reduces the effective number of elements by one. The maximum value of this property is M-2. For a
ULA, M is the number of sensors. For a UCA, M is the size of the internal ULA-like array structure
defined by the phase mode excitation technique. The default value of zero indicates that no spatial
smoothing is employed. You can specify this property as single or double precision.

Default: 0

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto' or 'Property'. If you set this property
to 'Auto', the number of signals is estimated by the method specified by the NumSignalsMethod
property.

When spatial smoothing is employed on a UCA, you cannot set the NumSignalsSource property
to'Auto' to estimate the number of signals. You can use the functions aictest or mdltest
independently to determine the number of signals.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of 'AIC' or 'MDL'. 'AIC' uses the
Akaike Information Criterion and 'MDL' uses Minimum Description Length Criterion. This property
applies when you set the NumSignalsSource property to 'Auto'.

Default: 'AIC'
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NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you set the
NumSignalsSource property to 'Property'. The number of signals must be smaller than the
number of elements in the array specified in the SensorArray property. You can specify this
property as single or double precision.

Default: 1

Methods

step Perform DOA estimation

Common to All System Objects
release Allow System object property value changes

Examples

Root-MUSIC Estimation of DOA for ULA

Estimate the DOA's of two signals received by a standard 10-element uniform linear array (ULA)
having an element spacing of 1 meter. The antenna operating frequency is 150 MHz. The actual
direction of the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.

fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
sULA = phased.ULA('NumElements',10,...
    'ElementSpacing',1);
sULA.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(sULA,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
sDOA = phased.RootMUSICEstimator('SensorArray',sULA,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property',...
    'NumSignals',2);
doas = step(sDOA,x + noise);
az = broadside2az(sort(doas),[20 60])

az = 1×2

   10.0001   45.0107
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Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

[2] Mathews, C.P., Zoltowski, M.D., "Eigenstructure techniques for 2-D angle estimation with uniform
circular arrays." IEEE Transactions on Signal Processing, vol. 42, No. 9, pp. 2395-2407, Sept.
1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
broadside2az | phased.RootWSFEstimator | rootmusicdoa | sensorcov | spsmooth

Introduced in R2011a
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step
System object: phased.RootMUSICEstimator
Package: phased

Perform DOA estimation

Syntax
ANG = step(H,X)
ANG = step(H,X,ElAng)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

ANG = step(H,X) estimates the direction of arrivals (DOA’s) from a signal X using the DOA
estimator H. X is a matrix whose columns correspond to the signal channels. ANG is a row vector of
the estimated broadside angles (in degrees). You can specify the argument X as single or double
precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

ANG = step(H,X,ElAng) specifies, in addition, the assumed elevation angles of the signals. This
syntax is only applicable when the SensorArray property of the object specifies a uniform circular
array (UCA). ElAng is a scalar between -90° and 90° and is applied to all signals. The elevation
angles for all signals must be the same as required by the phase mode excitation algorithm. You can
specify the argument ElAng as single or double precision.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Root-MUSIC Estimation of DOA for ULA

Estimate the DOA's of two signals received by a standard 10-element uniform linear array (ULA)
having an element spacing of 1 meter. The antenna operating frequency is 150 MHz. The actual
direction of the first signal is 10 degrees in azimuth and 20 degrees in elevation. The direction of the
second signal is 45 degrees in azimuth and 60 degrees in elevation.
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fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
sULA = phased.ULA('NumElements',10,...
    'ElementSpacing',1);
sULA.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(sULA,[x1 x2],[10 20;45 60]',fc);
rng default;
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
sDOA = phased.RootMUSICEstimator('SensorArray',sULA,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property',...
    'NumSignals',2);
doas = step(sDOA,x + noise);
az = broadside2az(sort(doas),[20 60])

az = 1×2

   10.0001   45.0107

Root-MUSIC Estimation of DOA for UCA

Using the root-MUSIC algorithm, estimate the azimuth angle of arrival of two signals received by a
15-element UCA having a 1.5 meter radius. The antenna operating frequency is 150 MHz. The actual
direction of arrival of the first signal is 10 degrees in azimuth and 4 degrees in elevation. The
direction of arrival of the second signal is 45 degrees in azimuth and -2 degrees in elevation. In
estimating the directions of arrival, assume the signals arrive from 0 degrees elevation.

Set the frequencies of the signals to 500 and 600 Hz. Set the sample rate to 8 kHz and the operating
frequency to 150 MHz. Then, create the baseband signals, the UCA array and the plane wave signals.

fs = 8000;
fc = 150e6;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*500);
x2 = cos(2*pi*t*600);
sUCA = phased.UCA('NumElements',15,...
    'Radius',1.5);
x = collectPlaneWave(sUCA,[x1 x2],[10 4; 45 -2]',fc);

Add random complex gaussian white noise to the signals.

rs = RandStream('mt19937ar','Seed',0);
noise = 0.1/sqrt(2)*(randn(rs,size(x))+1i*randn(rs,size(x)));

Create the phased.RootMUSICEstimator System object

sDOA = phased.RootMUSICEstimator('SensorArray',sUCA,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property',...
    'NumSignals',2);

Solve for the azimuth angles for zero degrees elevation.
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elang = 0;
doas = step(sDOA, x + noise, elang);
az = sort(doas)

az = 1×2

    9.9815   44.9986
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phased.RootWSFEstimator
Package: phased

Root WSF direction of arrival (DOA) estimator for ULA

Description
The RootWSFEstimator object implements a root weighted subspace fitting direction of arrival
algorithm.

To estimate the direction of arrival (DOA):

1 Define and set up your root WSF DOA estimator. See “Construction” on page 1-1554.
2 Call step to estimate the DOA according to the properties of phased.RootWSFEstimator. The

behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.RootWSFEstimator creates a root WSF DOA estimator System object, H. The object
estimates the signal's direction of arrival using the root weighted subspace fitting (WSF) algorithm
with a uniform linear array (ULA).

H = phased.RootWSFEstimator(Name,Value) creates object, H, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

NumSignalsSource

Source of number of signals

Specify the source of the number of signals as one of 'Auto' or 'Property'. If you set this property
to 'Auto', the number of signals is estimated by the method specified by the NumSignalsMethod
property.

Default: 'Auto'

NumSignalsMethod

Method to estimate number of signals

Specify the method to estimate the number of signals as one of 'AIC' or 'MDL'. 'AIC' uses the
Akaike Information Criterion and 'MDL' uses the Minimum Description Length Criterion. This
property applies when you set the NumSignalsSource property to 'Auto'.

Default: 'AIC'

NumSignals

Number of signals

Specify the number of signals as a positive integer scalar. This property applies when you set the
NumSignalsSource property to 'Property'. You can specify this property as single or double
precision.

Default: 1

Method

Iterative method

Specify the iterative method as one of 'IMODE' or 'IQML'.

Default: 'IMODE'

MaximumIterationCount

Maximum number of iterations

Specify the maximum number of iterations as a positive integer scalar or 'Inf'. This property is
tunable. You can specify this property as single or double precision.

Default: 'Inf'
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Methods

step Perform DOA estimation

Common to All System Objects
release Allow System object property value changes

Examples

Estimate DOA of Two Signals Arriving at ULA

Estimate the DOAs of two signals received by a 10-element ULA with a 1 m element spacing. The
antenna operating frequency is 150 MHz. The actual direction of the first signal is 10° in azimuth and
20° in elevation. The direction of the second signal is 45° in azimuth and 60° degrees in elevation.

fs = 8000;
t = (0:1/fs:1).';
x1 = cos(2*pi*t*300);
x2 = cos(2*pi*t*400);
array = phased.ULA('NumElements',10,'ElementSpacing',1);
array.Element.FrequencyRange = [100e6 300e6];
fc = 150e6;
x = collectPlaneWave(array,[x1 x2],[10 20;45 60]',fc);
noise = 0.1/sqrt(2)*(randn(size(x))+1i*randn(size(x)));
estimator = phased.RootWSFEstimator('SensorArray',array,...
    'OperatingFrequency',fc,...
    'NumSignalsSource','Property','NumSignals',2);
doas = estimator(x + noise);
az = broadside2az(sort(doas),[20 60])

az = 1×2

   10.0001   45.0107

Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
broadside2az | phased.RootMUSICEstimator

Introduced in R2011a
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step
System object: phased.RootWSFEstimator
Package: phased

Perform DOA estimation

Syntax
ANG = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

ANG = step(H,X) estimates the DOAs from X using the DOA estimator H. X is a matrix whose
columns correspond to channels. ANG is a row vector of the estimated broadside angles (in degrees).
You can specify the argument X as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Estimate DOA of Two Signals Using WSF

First, estimate the DOAs of two signals received by a standard 10-element ULA with element spacing
of 1 meter. The antenna operating frequency is 150 MHz. The actual direction of the first signal is 10°
in azimuth and 20° in elevation. The direction of the second signal is 45° in azimuth and −5° in
elevation.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create the signals with added noise. Then, create the ULA System object™.

Construct WSF estimator System object.
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Estimate the DOAs.

doas =

   10.0002   20.7934

 step
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phased.ScenarioViewer
Package: phased

Display motion of radars and targets

Description
The phased.ScenarioViewer System object creates a 3-D viewer to display the motion of radars
and targets that you model in your radar simulation. You can display current positions and velocities,
object tracks, position and speed annotations, radar beam directions, and other object parameters.
You can change radar features such as beam range and beam width during the simulation. You can
use the phased.Platform System object to model moving objects or you can supply your own
dynamic models.

This figure shows a four-object scenario consisting of a ground radar, two airplanes, and a ground
vehicle. You can view the code that generated this figure in the “Visualize Multiplatform Scenario” on
page 1-1569 example.

To create a scenario viewer:

1 Define and set up the phased.ScenarioViewer System object. See “Construction” on page 1-
1561. You can set System object properties at construction time or leave them to their default
values. Some properties that you set at construction time can be changed later. These properties
are tunable.
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2 Call the step method to update radar and target displayed positions according to the properties
of the phased.ScenarioViewer System object. You can change tunable properties at any time.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
sIS = phased.ScenarioViewer creates a scenario viewer System object, sIS having default
property values.

sIS = phased.ScenarioViewer(Name,Value) returns a scenario viewer System object, sIS,
with any specified property Name set to a specified Value. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Properties
Name — Window caption name
'Scenario Viewer' (default) | character vector

Window caption name, specified as a character vector. The Name property and the Title property
are different.
Example: 'Multitarget Viewer'
Data Types: char

ReferenceRadar — Reference radar index
1 (default) | positive integer

Reference radar index, specified as a positive integer. This property selects one of the radars as the
reference radar. Its value must be less than or equal to the number of radars that you specify in the
radar_pos argument of the step method. This property is tunable. Target range, radial speed,
azimuth, and elevation are defined with respect to this radar.
Example: 2
Data Types: double

ShowBeam — Show radar beams
'ReferenceRadar' (default) | 'None' | 'All'

Enable the display of radar beams, specified as 'ReferenceRadar', 'None', or 'All'. This option
determines which radar beams to show.

Option Beams to show
'ReferenceRadar' Show the beam of the radar specified in the

ReferenceRadar property.
'None' Do not show any radar beams.
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Option Beams to show
'All' Show the beams for all radars.

This property is tunable.
Example: 'All'
Data Types: char

BeamWidth — Vertical and horizontal radar beam widths
15 (default) | positive, real-valued scalar | positive, real-valued 2-element column vector | positive,
real-valued N-element row vector | positive, real-valued 2-by-N matrix

Vertical and horizontal radar beam widths, specified as a positive real-valued scalar, a 2-element
column vector, an N-element row vector, or a 2-by-N matrix. N is the number of radars. All scalar,
vector, and matrix entries are positive, real-valued numbers between 0–360°. Units are in degrees.

Value Specification Interpretation
Scalar The horizontal and vertical radar beam widths

are equal and identical for all radars.
2-element column vector The first row specifies the horizontal beam width.

The second row specifies the vertical beam width.
These values are identical for all radars.

N-element row vector Each element applies to one radar. Vertical and
horizontal beam widths for each radar are equal.

2-by-N matrix Each column applies to one radar. The first row
specifies the horizontal beam width and the
second row specifies the vertical beam width for
each radar.

When CameraPerspective is set to 'Radar', the System object uses this property to calculate the
value of CameraViewAngle. This property is tunable.
Example: [20 10; 18 9]
Data Types: double

BeamRange — Radar beam range
1000 (default) | positive scalar | real-valued N- element row vector of positive values

Radar beam range, specified as a positive scalar or an N-element row vector, where N is the number
of radars. Units are in meters. When specified as a scalar, all radars have the same beam range.
When specified as a vector, each element corresponds to one radar. This property is tunable.
Example: [1000 1500 850]
Data Types: double

BeamSteering — Beam steering direction
[0;0] (default) | positive real-valued 2-element column vector | positive real-valued N-element row
vector

Beam steering directions of radars, specified as a real-valued 2-element column vector of positive
values or 2-by-N real-valued matrix of positive values. N is the number of radars. Beam steering
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angles are relative to the local coordinate axes of each radar. Units are in degrees. Each column takes
the form [azimuthangle;elevationangle]. When only one column is specified, the beam
steering directions of all radars are the same. Azimuth angles are from –180° to 180°, and the
elevation angles are from –90° to 90°. This property is tunable.
Example: [20 60 35; 5 0 10]
Data Types: double

VelocityInputPort — Enable velocity input
true (default) | false

Enable the velocity input arguments, radar_velocity and tgt_velocity, of the step method,
specified as true or false. Setting this property to true enables the input arguments. When this
property is false, velocity vectors are estimated from the position change between consecutive
updates divided by the update interval. The update interval is the inverse of the UpdateRate value.
Example: false
Data Types: logical

OrientationInputPort — Enable orientation input
false (default) | true

Enable the input of local coordinate system orientation axes, radar_laxes and tgt_laxes, to the
step method, specified as false or true. Setting this property to true enables the input
arguments. When this property is false, the orientation axes are aligned with the global coordinate
axes.
Example: true
Data Types: logical

UpdateRate — Update rate of scenario viewer
1 (default) | positive scalar

Update rate of scenario viewer, specified as a positive scalar. Units are in hertz.
Example: 2.5
Data Types: double

Title — Display title
'' (default) | character vector

Display title, specified as a character vector. The Title property and the Name property are different.
The display title appears within the figure at the top. The name appears at the top of the figure
window. This property is tunable.
Example: 'Radar and Target Display'
Data Types: char

PlatformNames — Names of radars and targets
'Auto' (default) | 1-by-(N+M) cell array of character vectors

Names assigned to radars and targets, specified as a 1-by-(N+M) cell array of character vectors. N is
the number of radars and M is the number of targets. Order the cell entries by radar names, followed
by target names. Names appear in the legend and annotations. When you set PlatformNames to
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'Auto', names are created sequentially starting from 'Radar 1' for radars and 'Target 1' for
targets.
Example: {'Stationary Radar','Mobile Radar','Airplane'}
Data Types: cell

TrailLength — Length of visible tracks
500 (default) | positive integer | (N+M)-length vector of positive integers

Length of the visibility of object tracks, specified as a positive integer or (N+M)-length vector of
positive integers. N is the number of radars and M is the number of targets. When TrailLength is a
scalar, all tracks have the same length. When TrailLength is a vector, each element of the vector
specifies the length of the corresponding radar or target trajectory. Order the entries by radars,
followed by targets. Each call to the step method generates a new visible point. This property is
tunable.
Example: [100,150,100]
Data Types: double

CameraPerspective — Camera perspective
'Auto' (default) | 'Custom' | 'Radar'

Camera perspective, specified as 'Auto', 'Custom', or 'Radar'. When you set this property to
'Auto', the System object estimates appropriate values for the camera position, orientation, and
view angle to show all tracks. When you set this property to 'Custom', you can set the camera
position, orientation, and angles using camera properties or the camera toolbar. When you set this
property to 'Radar', the System object determines the camera position, orientation, and angles from
the radar position and the radar beam steering direction. This property is tunable.
Example: 'Radar'
Data Types: char

CameraPosition — Camera position
[x,y,z] vector of real-values

Camera position, specified as an [x,y,z] vector of real values. Units are in meters. This property
applies when you set CameraPerspective to 'Custom'. When you do not specify this property, the
System object chooses values based on your display configuration. This property is tunable.
Example: [100,50,40]
Data Types: double

CameraOrientation — Camera orientation
[pan,tilt,roll] vector of positive, real values

Camera orientation, specified as a [pan,tilt,roll] vector of positive, real values. Units are in
degrees. Pan and roll angles take values from –180° to 180°. The tilt angle takes values from –90° to
90°. Camera rotations are performed in the order: pan, tilt, and roll. This property applies when you
set CameraPerspective to 'Custom'. When you do not specify this property, the System object
chooses values based on your display configuration. This property is tunable.
Example: [180,45,30]
Data Types: double
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CameraViewAngle — Camera view angle
real-valued scalar from 0° to 360°

Camera view angle, specified as a real-valued scalar. Units are in degrees. View angle values are in
the range 0° to 360°. This property applies when you set CameraPerspective to 'Custom'. When
you do not specify this property, the System object chooses values based on your display
configuration. This property is tunable.
Example: 75
Data Types: double

ShowLegend — Show viewer legend
false (default) | true

Option to show the viewer legend, specified as false or true. This property is tunable.
Example: true
Data Types: logical

ShowGround — Show ground plane of scenario
true (default) | false

Option to show the ground plane of the viewer scenario, specified as true or false. This property is
tunable.
Example: false
Data Types: logical

ShowName — Option to annotate radar and target tracks with names
true (default) | false

Annotate radar and target tracks with names, specified as true or false. You can define custom
platform names using PlatformNames. This property is tunable.
Example: false
Data Types: logical

ShowPosition — Annotate radar and target tracks with positions
false (default) | true

Option to annotate radar and target tracks with positions, specified as false or true. This property
is tunable.
Example: true
Data Types: logical

ShowRange — Annotate radar and target tracks with ranges
false (default) | true

Option to annotate radar and target tracks with the range from the reference radar, specified as
false or true. This property is tunable.
Example: true
Data Types: logical
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ShowAltitude — Annotate radar and target tracks with altitude
false (default) | true

Option to annotate radar and target tracks with altitude, specified as false or true. This property is
tunable.
Example: true
Data Types: logical

ShowSpeed — Annotate radar and target tracks with speed
false (default) | true

Option to annotate radar and target tracks with speed, specified as false or true. This property is
tunable.
Example: true
Data Types: logical

ShowRadialSpeed — Annotate radar and target tracks with radial speed
false (default) | true

Option to annotate radar and target tracks with radial speed, specified as false or true. Radial
speed is relative to the reference radar. This property is tunable.
Example: true
Data Types: logical

ShowAzEl — Annotate radar and target tracks with azimuth and elevation
false (default) | true

Option to annotate radar and target tracks with azimuth and elevation angles relative to the
reference radar, specified as false or true. This property is tunable.
Example: true
Data Types: logical

Position — Viewer window size and position
[left bottom width height] vector of positive, real values

Scenario viewer window size and position, specified as a [left bottom width height] vector of
positive, real values. Units are in pixels.

• left sets the position of the left edge of the window.
• bottom sets the position of the bottom edge of the window.
• width sets the width of the window.
• height sets the height of the window.

When you do not specify this property, the window is positioned at the center of the screen, with
width and height taking the values 410 and 300 pixels, respectively. This property is tunable.
Example: [100,200,800,500]
Data Types: double
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ReducePlotRate — Enable reduced plot rate
true (default) | false

Option to reduce the plot rate to improve performance, specified as true or false. Set this property
to true to update the viewer at a reduced rate. Set this property to false to update the viewer with
each call to the step method. This mode adversely affects viewer performance. This property is
tunable.
Example: false
Data Types: logical

Methods

hide Hide scenario viewer window
reset Reset state of the System object
show Show scenario viewer window
step Update scenario viewer display

Common to All System Objects
release Allow System object property value changes

Examples

View Tracks of Stationary Radar and One Target

Visualize the tracks of a radar and a single airplane target. The radar is stationary and the airplane is
moving in a straight line. Maintain the radar beam pointing at the airplane.

Create the radar and airplane platform System objects™. Set the update rate to 0.1 s.

updateRate = 0.1;
radarPlatform = phased.Platform(...
    'InitialPosition',[0;0;10], ...
    'Velocity',[0;0;0]);
airplanePlatforms = phased.Platform(...
    'InitialPosition',[5000.0;3500.0;6000.0],...
    'Velocity',[-300;0;0]);

Create the phased.ScenarioViewer System object. Show the radar beam and annotate the tracks
with position, speed, and altitude.

sSV = phased.ScenarioViewer('BeamRange',5000.0,'UpdateRate',updateRate,...
    'PlatformNames',{'Ground Radar','Airplane'},'ShowPosition',true,...
    'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true);

Run the scenario. At each step, compute the angle to the target. Use that angle to steer the radar
beam toward the target.

for i = 1:100
    [radar_pos,radar_vel] = step(radarPlatform,updateRate);
    [tgt_pos,tgt_vel] = step(airplanePlatforms,updateRate);
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    [rng,ang] = rangeangle(tgt_pos,radar_pos);
    sSV.BeamSteering = ang;
    step(sSV,radar_pos,radar_vel,tgt_pos,tgt_vel);
    pause(0.1);
end

View Tracks of Airborne Radar and Ground Target

Visualize the tracks of an airborne radar and a ground vehicle target. The airborne radar is carried by
a drone flying at an altitude of 5 km.

Create the drone radar and ground vehicle using phased.Platform System objects™. Set the
update rate to 0.1 s.

updateRate = 0.1;
drone = phased.Platform(...
    'InitialPosition',[100;1000;5000], ...
    'Velocity',[400;0;0]);
vehicle = phased.Platform('MotionModel','Acceleration',...
    'InitialPosition',[5000.0;3500.0;0.0],...
    'InitialVelocity',[40;5;0],'Acceleration',[0.1;0.1;0]);
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Create the phased.ScenarioViewer System object. Show the radar beam and annotate the tracks
with position, speed, and altitude.

viewer = phased.ScenarioViewer('BeamRange',8000.0,'BeamWidth',2,'UpdateRate',updateRate,...
    'PlatformNames',{'Drone Radar','Vehicle'},'ShowPosition',true,...
    'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'Title','Vehicle Tracking Radar');

Run the scenario. At each step, compute the angle to the target. Use that angle to steer the radar
beam toward the target.

for i = 1:100
    [radar_pos,radar_vel] = step(drone,updateRate);
    [tgt_pos,tgt_vel] = step(vehicle,updateRate);
    [rng,ang] = rangeangle(tgt_pos,radar_pos);
    viewer.BeamSteering = ang;
    viewer(radar_pos,radar_vel,tgt_pos,tgt_vel)
    pause(.1)
end
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Visualize Multiplatform Scenario

This example shows how to create and display a multiplatform scenario containing a ground-based
stationary radar, a turning airplane, a constant-velocity airplane, and a moving ground vehicle. The
turning airplane follows a parabolic flight path while descending at a rate of 20 m/s.

Specify the scenario refresh rate at 0.5 Hz. For 150 steps, the time duration of the scenario is 300 s.

updateRate = 0.5;
N = 150;

Set up the turning airplane using the Acceleration model of the phased.Platform System
object™. Specify the initial position of the airplane by range and azimuth from the ground-based
radar and its elevation. The airplane is 10 km from the radar at 60° azimuth and has an altitude of 6
km. The airplane is accelerating at 10 m/s² in the negative x-direction.

airplane1range = 10.0e3;
airplane1Azimuth = 60.0;
airplane1alt = 6.0e3;
airplane1Pos0 = [cosd(airplane1Azimuth)*airplane1range;...
    sind(airplane1Azimuth)*airplane1range;airplane1alt];
airplane1Vel0 = [400.0;-100.0;-20];
airplane1Accel = [-10.0;0.0;0.0];
airplane1platform = phased.Platform('MotionModel','Acceleration',...
    'AccelerationSource','Input port','InitialPosition',airplane1Pos0,...
    'InitialVelocity',airplane1Vel0,'OrientationAxesOutputPort',true,...
    'InitialOrientationAxes',eye(3));

Set up the stationary ground radar at the origin of the global coordinate system. To simulate a
rotating radar, change the ground radar beam steering angle in the processing loop.

groundRadarPos = [0,0,0]';
groundRadarVel = [0,0,0]';
groundradarplatform = phased.Platform('MotionModel','Velocity',...
    'InitialPosition',groundRadarPos,'Velocity',groundRadarVel,...
    'InitialOrientationAxes',eye(3));

Set up the ground vehicle to move at a constant velocity.

groundVehiclePos = [5e3,2e3,0]';
groundVehicleVel = [50,50,0]';
groundvehicleplatform = phased.Platform('MotionModel','Velocity',...
    'InitialPosition',groundVehiclePos,'Velocity',groundVehicleVel,...
    'InitialOrientationAxes',eye(3));

Set up the second airplane to also move at constant velocity.

airplane2Pos = [8.5e3,1e3,6000]';
airplane2Vel = [-300,100,20]';
airplane2platform = phased.Platform('MotionModel','Velocity',...
    'InitialPosition',airplane2Pos,'Velocity',airplane2Vel,...
    'InitialOrientationAxes',eye(3));

Set up the scenario viewer. Specify the radar as having a beam range of 8 km, a vertical beam width
of 30°, and a horizontal beam width of 2°. Annotate the tracks with position, speed, altitude, and
range.

BeamSteering = [0;50];
viewer = phased.ScenarioViewer('BeamRange',8.0e3,'BeamWidth',[2;30],'UpdateRate',updateRate,...
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    'PlatformNames',{'Ground Radar','Turning Airplane','Vehicle','Airplane 2'},'ShowPosition',true,...
    'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'ShowRange',true,...
    'Title','Multiplatform Scenario','BeamSteering',BeamSteering);

Step through the display processing loop, updating radar and target positions. Rotate the ground-
based radar steering angle by four degrees at each step.

for n = 1:N
    [groundRadarPos,groundRadarVel] = groundradarplatform(updateRate);
    [airplane1Pos,airplane1Vel,airplane1Axes] = airplane1platform(updateRate,airplane1Accel);
    [vehiclePos,vehicleVel] = groundvehicleplatform(updateRate);
    [airplane2Pos,airplane2Vel] = airplane2platform(updateRate);
    viewer(groundRadarPos,groundRadarVel,[airplane1Pos,vehiclePos,airplane2Pos],...
        [airplane1Vel,vehicleVel,airplane2Vel]);
    BeamSteering = viewer.BeamSteering(1);
    BeamSteering = mod(BeamSteering + 4,360.0);
    if BeamSteering > 180.0
        BeamSteering = BeamSteering - 360.0;
    end
    viewer.BeamSteering(1) = BeamSteering;
    pause(0.2);
end
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See Also
phased.Platform | rangeangle

Topics
“Visualizing Radar and Target Trajectories in System Simulation”

Introduced in R2016a
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hide
System object: phased.ScenarioViewer
Package: phased

Hide scenario viewer window

Syntax
hide(sSV)

Description
hide(sSV) hides the display window of the phased.ScenarioViewer System object, sSV.

Input Arguments
sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Introduced in R2016a

 hide

1-1573



reset
System object: phased.ScenarioViewer
Package: phased

Reset state of the System object

Syntax
reset(sSV)

Description
reset(sSV) resets the internal state of the phased.ScenarioViewer System object, sSV, to its
initial value.

Input Arguments
sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Introduced in R2016a
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show
System object: phased.ScenarioViewer
Package: phased

Show scenario viewer window

Syntax
show(sSV)

Description
show(sSV) shows the display window of the phased.ScenarioViewer System object, sSV.

Input Arguments
sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.
Example: phased.ScenarioViewer

Introduced in R2016a
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step
System object: phased.ScenarioViewer
Package: phased

Update scenario viewer display

Syntax
step(sSV,radar_pos,tgt_pos)
step(sSV,radar_pos,tgt_pos,radar_velocity,tgt_velocity)
step(sSV,radar_pos,radar_laxes,tgt_pos,tgt_laxes)
step(sSV,radar_pos,radar_velocity,radar_laxes,tgt_pos,tgt_velocity,tgt_laxes)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

step(sSV,radar_pos,tgt_pos) updates the scenario viewer display with new radar positions,
radar_pos, and target positions, tgt_pos. This syntax applies when VelocityInputPort and
OrientationInputPort are set to false.

step(sSV,radar_pos,tgt_pos,radar_velocity,tgt_velocity) also specifies the radar
velocity, radar_velocity, and target velocity, tgt_velocity. This syntax applies when
VelocityInputPort is set to true and OrientationInputPort is set to false.

step(sSV,radar_pos,radar_laxes,tgt_pos,tgt_laxes) also specifies the radar orientation
axes, radar_laxes, and the target orientation axes, tgt_laxes. This syntax applies when
VelocityInputPort is set to false and OrientationInputPort is set to true.

step(sSV,radar_pos,radar_velocity,radar_laxes,tgt_pos,tgt_velocity,tgt_laxes)
also specifies velocity and orientation axes when VelocityInputPort and
OrientationInputPort are set to true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
sSV — Scenario viewer
phased.ScenarioViewer System object

Scenario viewer, specified as a phased.ScenarioViewer System object.

1 Objects

1-1576



Example: phased.ScenarioViewer

radar_pos — Radar positions
real-valued 3-by-N matrix

Radar positions, specified as a real-valued 3-by-N matrix. N is the number of radar tracks and must
be equal to or greater than one. Each column has the form [x;y;z]. Position units are in meters.
Example: [100,250,75;0,20,49;300,5,120]
Data Types: double

tgt_pos — Target positions
real-valued 3-by-M matrix

Target positions, specified as a real-valued 3-by-N matrix. M is the number of target tracks and must
be equal to or greater than one. Each column has the form [x;y;z]. Position units are in meters.
Example: [200,40;10,40;305,15]
Data Types: double

radar_velocity — Radar velocities
real-valued 3-by-N matrix

Radar velocities, specified as a real-valued 3-by-N matrix. N is the number of radar tracks and must
be equal to or greater than one. Each column has the form [vx;vy;vz]. The dimensions of
radar_velocity must match the dimensions of radar_pos. Velocity units are in meters per
second.
Example: [100,10,0;4,0,7;100,500,0]
Data Types: double

tgt_velocity — Target velocities
real-valued 3-by-M matrix

Target velocities, specified as a real-valued 3-by-M matrix. M is the number of target tracks and must
be equal to or greater than one. Each column has the form [vx;vy;vz]. The dimensions of
tgt_velocity must match the dimensions of target_position. Velocity units are in meters per
second.
Example: [100,10,0;4,0,7;100,500,0]
Data Types: double

radar_laxes — Radar local coordinate axes
real-valued 3-by-3-by-N array

Local coordinate axes of radar, specified as a real-valued 3-by-3-by-N array. N is the number of radar
tracks. Each page (third index) represents a 3-by-3 orthogonal matrix that specifies the local
coordinate axes of one radar. The columns are the unit vectors that form the x, y, and z axes of the
local coordinate system. Array units are dimensionless.
Example: [100,10,0;4,0,7;100,500,0]
Data Types: double

tgt_laxes — Target local coordinate axes
real-valued 3-by-3-by-M array
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Local coordinate axes of target, specified as a real-valued 3-by-3-by-M array. M is the number of
target tracks. Each page (third index) represents a 3-by-3 orthogonal matrix that specifies the local
coordinate axes of one radar. The columns are the unit vectors that form the x, y, and z axes of the
local coordinate system. Array units are dimensionless.
Example: [100,10,0;4,0,7;100,500,0]
Data Types: double

Examples

View Tracks of Stationary Radar and One Target

Visualize the tracks of a radar and a single airplane target. The radar is stationary and the airplane is
moving in a straight line. Maintain the radar beam pointing at the airplane.

Create the radar and airplane platform System objects™. Set the update rate to 0.1 s.

updateRate = 0.1;
radarPlatform = phased.Platform(...
    'InitialPosition',[0;0;10], ...
    'Velocity',[0;0;0]);
airplanePlatforms = phased.Platform(...
    'InitialPosition',[5000.0;3500.0;6000.0],...
    'Velocity',[-300;0;0]);

Create the phased.ScenarioViewer System object. Show the radar beam and annotate the tracks
with position, speed, and altitude.

sSV = phased.ScenarioViewer('BeamRange',5000.0,'UpdateRate',updateRate,...
    'PlatformNames',{'Ground Radar','Airplane'},'ShowPosition',true,...
    'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true);

Run the scenario. At each step, compute the angle to the target. Use that angle to steer the radar
beam toward the target.

for i = 1:100
    [radar_pos,radar_vel] = step(radarPlatform,updateRate);
    [tgt_pos,tgt_vel] = step(airplanePlatforms,updateRate);
    [rng,ang] = rangeangle(tgt_pos,radar_pos);
    sSV.BeamSteering = ang;
    step(sSV,radar_pos,radar_vel,tgt_pos,tgt_vel);
    pause(0.1);
end
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View Tracks of Airborne Radar and Ground Target

Visualize the tracks of an airborne radar and a ground vehicle target. The airborne radar is carried by
a drone flying at an altitude of 5 km.

Create the drone radar and ground vehicle using phased.Platform System objects™. Set the
update rate to 0.1 s.

updateRate = 0.1;
drone = phased.Platform(...
    'InitialPosition',[100;1000;5000], ...
    'Velocity',[400;0;0]);
vehicle = phased.Platform('MotionModel','Acceleration',...
    'InitialPosition',[5000.0;3500.0;0.0],...
    'InitialVelocity',[40;5;0],'Acceleration',[0.1;0.1;0]);

Create the phased.ScenarioViewer System object. Show the radar beam and annotate the tracks
with position, speed, and altitude.
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viewer = phased.ScenarioViewer('BeamRange',8000.0,'BeamWidth',2,'UpdateRate',updateRate,...
    'PlatformNames',{'Drone Radar','Vehicle'},'ShowPosition',true,...
    'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'Title','Vehicle Tracking Radar');

Run the scenario. At each step, compute the angle to the target. Use that angle to steer the radar
beam toward the target.

for i = 1:100
    [radar_pos,radar_vel] = step(drone,updateRate);
    [tgt_pos,tgt_vel] = step(vehicle,updateRate);
    [rng,ang] = rangeangle(tgt_pos,radar_pos);
    viewer.BeamSteering = ang;
    viewer(radar_pos,radar_vel,tgt_pos,tgt_vel)
    pause(.1)
end

Visualize Multiplatform Scenario

This example shows how to create and display a multiplatform scenario containing a ground-based
stationary radar, a turning airplane, a constant-velocity airplane, and a moving ground vehicle. The
turning airplane follows a parabolic flight path while descending at a rate of 20 m/s.
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Specify the scenario refresh rate at 0.5 Hz. For 150 steps, the time duration of the scenario is 300 s.

updateRate = 0.5;
N = 150;

Set up the turning airplane using the Acceleration model of the phased.Platform System
object™. Specify the initial position of the airplane by range and azimuth from the ground-based
radar and its elevation. The airplane is 10 km from the radar at 60° azimuth and has an altitude of 6
km. The airplane is accelerating at 10 m/s² in the negative x-direction.

airplane1range = 10.0e3;
airplane1Azimuth = 60.0;
airplane1alt = 6.0e3;
airplane1Pos0 = [cosd(airplane1Azimuth)*airplane1range;...
    sind(airplane1Azimuth)*airplane1range;airplane1alt];
airplane1Vel0 = [400.0;-100.0;-20];
airplane1Accel = [-10.0;0.0;0.0];
airplane1platform = phased.Platform('MotionModel','Acceleration',...
    'AccelerationSource','Input port','InitialPosition',airplane1Pos0,...
    'InitialVelocity',airplane1Vel0,'OrientationAxesOutputPort',true,...
    'InitialOrientationAxes',eye(3));

Set up the stationary ground radar at the origin of the global coordinate system. To simulate a
rotating radar, change the ground radar beam steering angle in the processing loop.

groundRadarPos = [0,0,0]';
groundRadarVel = [0,0,0]';
groundradarplatform = phased.Platform('MotionModel','Velocity',...
    'InitialPosition',groundRadarPos,'Velocity',groundRadarVel,...
    'InitialOrientationAxes',eye(3));

Set up the ground vehicle to move at a constant velocity.

groundVehiclePos = [5e3,2e3,0]';
groundVehicleVel = [50,50,0]';
groundvehicleplatform = phased.Platform('MotionModel','Velocity',...
    'InitialPosition',groundVehiclePos,'Velocity',groundVehicleVel,...
    'InitialOrientationAxes',eye(3));

Set up the second airplane to also move at constant velocity.

airplane2Pos = [8.5e3,1e3,6000]';
airplane2Vel = [-300,100,20]';
airplane2platform = phased.Platform('MotionModel','Velocity',...
    'InitialPosition',airplane2Pos,'Velocity',airplane2Vel,...
    'InitialOrientationAxes',eye(3));

Set up the scenario viewer. Specify the radar as having a beam range of 8 km, a vertical beam width
of 30°, and a horizontal beam width of 2°. Annotate the tracks with position, speed, altitude, and
range.

BeamSteering = [0;50];
viewer = phased.ScenarioViewer('BeamRange',8.0e3,'BeamWidth',[2;30],'UpdateRate',updateRate,...
    'PlatformNames',{'Ground Radar','Turning Airplane','Vehicle','Airplane 2'},'ShowPosition',true,...
    'ShowSpeed',true,'ShowAltitude',true,'ShowLegend',true,'ShowRange',true,...
    'Title','Multiplatform Scenario','BeamSteering',BeamSteering);

Step through the display processing loop, updating radar and target positions. Rotate the ground-
based radar steering angle by four degrees at each step.
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for n = 1:N
    [groundRadarPos,groundRadarVel] = groundradarplatform(updateRate);
    [airplane1Pos,airplane1Vel,airplane1Axes] = airplane1platform(updateRate,airplane1Accel);
    [vehiclePos,vehicleVel] = groundvehicleplatform(updateRate);
    [airplane2Pos,airplane2Vel] = airplane2platform(updateRate);
    viewer(groundRadarPos,groundRadarVel,[airplane1Pos,vehiclePos,airplane2Pos],...
        [airplane1Vel,vehicleVel,airplane2Vel]);
    BeamSteering = viewer.BeamSteering(1);
    BeamSteering = mod(BeamSteering + 4,360.0);
    if BeamSteering > 180.0
        BeamSteering = BeamSteering - 360.0;
    end
    viewer.BeamSteering(1) = BeamSteering;
    pause(0.2);
end

Introduced in R2016a
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phased.STAPSMIBeamformer
Package: phased

Sample matrix inversion (SMI) beamformer

Description
The SMIBeamformer object implements a sample matrix inversion space-time adaptive beamformer.
The beamformer works on the space-time covariance matrix.

To compute the space-time beamformed signal:

1 Define and set up your SMI beamformer. See “Construction” on page 1-1583.
2 Call step to execute the SMI beamformer algorithm according to the properties of

phased.STAPSMIBeamformer. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.STAPSMIBeamformer creates a sample matrix inversion (SMI) beamformer System
object, H. The object performs the SMI space-time adaptive processing (STAP) on the input data.

H = phased.STAPSMIBeamformer(Name,Value) creates an SMI object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Sensor array

Sensor array specified as an array System object belonging to the phased package. A sensor array
can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

PRFSource

Source of pulse repetition frequency

Source of the PRF values for the STAP processor, specified as 'Property' or 'Input port'. When
you set this property to 'Property', the PRF is determined by the value of the PRF property. When
you set this property to 'Input port', the PRF is determined by an input argument to the step
method at execution time.

Default: 'Property'

PRF

Pulse repetition frequency

Pulse repetition frequency (PRF) of the received signal, specified as a positive scalar. Units are in
Hertz. This property can be specified as single or double precision.
Dependencies

To enable this property, set the PRFSource property to 'Property'.

Default: 1

DirectionSource

Source of targeting direction

Specify whether the targeting direction for the STAP processor comes from the Direction property
of this object or from an input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the targeting
direction.

'Input port' An input argument in each invocation of step specifies the
targeting direction.

Default: 'Property'

Direction

Targeting direction

Specify the targeting direction of the SMI processor as a column vector of length 2. The direction is
specified in the format of [AzimuthAngle; ElevationAngle] (in degrees). Azimuth angle should
be between –180 and 180. Elevation angle should be between –90 and 90. This property applies when
you set the DirectionSource property to 'Property'. You can specify this property as single or
double precision.
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Default: [0; 0]

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed. You can specify this property as single or double precision.

Default: 0

DopplerSource

Source of targeting Doppler

Specify whether the targeting Doppler for the STAP processor comes from the Doppler property of
this object or from an input argument in step. Values of this property are:

'Property' The Doppler property of this object specifies the Doppler.
'Input port' An input argument in each invocation of step specifies the Doppler.

Default: 'Property'

Doppler

Targeting Doppler frequency

Specify the targeting Doppler of the STAP processor as a scalar. This property applies when you set
the DopplerSource property to 'Property'. You can specify this property as single or double
precision.

Default: 0

NumGuardCells

Number of guarding cells

Specify the number of guard cells used in the training as an even integer. This property specifies the
total number of cells on both sides of the cell under test. You can specify this property as single or
double precision.

Default: 2, indicating that there is one guard cell at both the front and back of the cell under test

NumTrainingCells

Number of training cells

Specify the number of training cells used in the training as an even integer. Whenever possible, the
training cells are equally divided before and after the cell under test. You can specify this property as
single or double precision.

Default: 2, indicating that there is one training cell at both the front and back of the cell under test
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WeightsOutputPort

Output processing weights

To obtain the weights used in the STAP processor, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the weights, set
this property to false.

Default: false

Methods
step Perform SMI STAP processing on input data

Common to All System Objects
release Allow System object property value changes

Examples

Process Data Cube Using SMI

Process a data cube using an SMI beamformer. The weights are calculated for the 71st cell of a
collected data cube pointing in the azimuth and elevation direction (45°,-35°) and with a Doppler of
12.980 kHz.

Load the cube data and create the SMI beamformer.

load STAPExampleData;
beamformer = phased.STAPSMIBeamformer('SensorArray',STAPEx_HArray, ...
    'PRF',STAPEx_PRF,'PropagationSpeed',STAPEx_PropagationSpeed, ...
    'OperatingFrequency',STAPEx_OperatingFrequency, ...
    'NumTrainingCells',100,'WeightsOutputPort',true, ...
    'DirectionSource','Input port','DopplerSource','Input port');
[y,w] = beamformer(STAPEx_ReceivePulse,71,[45;-35],12.980e3);

Plot the angle-doppler response.

response = phased.AngleDopplerResponse( ...
    'SensorArray',beamformer.SensorArray, ...
    'OperatingFrequency',beamformer.OperatingFrequency, ...
    'PRF',beamformer.PRF,'PropagationSpeed',beamformer.PropagationSpeed);
plotResponse(response,w)

1 Objects

1-1586



Algorithms
Weight Computation

The optimum beamformer weights are

w = kR−1v

where:

• k is a scalar
• R represents the space-time covariance matrix
• v indicates the space-time steering vector

Because the space-time covariance matrix is unknown, you must estimate that matrix from the data.
The sample matrix inversion (SMI) algorithm estimates the covariance matrix by designating a
number of range gates to be training cells. Because you use the training cells to estimate the
interference covariance, these cells should not contain target returns. To prevent target returns from
contaminating the estimate of the interference covariance, you can specify insertion of a number of
guard cells before and after the designated target cell.

To use the general algorithm for estimating the space-time covariance matrix:
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1 Assume you have a M-by-N-by-K matrix. M represents the number of slow-time samples, and N is
the number of array sensors. K is the number of training cells (range gates for training). Also
assume that the number of training cells is an even integer and that you can designate K/2
training cells before and after the target range gate excluding the guard cells. Reshape the M-by-
N-by-K matrix into a MN-by-K matrix by letting X denote the MN-by-K matrix.

2 Estimate the space-time covariance matrix as

1
K XXH

3 Invert the space-time covariance matrix estimate.
4 Obtain the beamforming weights by multiplying the sample space-time covariance matrix inverse

by the space-time steering vector.

Single Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Guerci, J. R. Space-Time Adaptive Processing for Radar. Boston: Artech House, 2003.

[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,” Technical Report
1015, MIT Lincoln Laboratory, December, 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See Also
phased.ADPCACanceller | phased.AngleDopplerResponse | phased.DPCACanceller |
phitheta2azel | uv2azel

Introduced in R2011a
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step
System object: phased.STAPSMIBeamformer
Package: phased

Perform SMI STAP processing on input data

Syntax
Y = step(H,X,CUTIDX)
Y = step(H,X,CUTIDX,PRF)
Y = step(H,X,CUTIDX,ANG)
Y = step(H,X,CUTIDX,DOP)
[Y,W] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X,CUTIDX) applies SMI processing to the input data, X. X must be a 3-dimensional M-
by-N-by-P numeric array whose dimensions are (range, channels, pulses). The processing weights are
calculated according to the range cell specified by CUTIDX. The targeting direction and the targeting
Doppler are specified by Direction and Doppler properties, respectively. Y is a column vector of
length M. This syntax is available when the DirectionSource property is 'Property' and the
DopplerSource property is 'Property'.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Y = step(H,X,CUTIDX,PRF) uses PRF as the pulse repetition frequency. This syntax is available
when the PRFSource property is 'Input port'.

Y = step(H,X,CUTIDX,ANG) uses ANG as the targeting direction. This syntax is available when the
DirectionSource property is 'Input port'. ANG must be a 2-by-1 vector in the form of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth angle must be between –180 and
180. The elevation angle must be between –90 and 90.

Y = step(H,X,CUTIDX,DOP) uses DOP as the targeting Doppler frequency (in hertz). This syntax is
available when the DopplerSource property is 'Input port'. DOP must be a scalar.

You can combine optional input arguments when their enabling properties are set: Y =
step(H,X,CUTIDX,ANG,DOP)

[Y,W] = step( ___ ) returns the additional output, W, as the processing weights. This syntax is
available when the WeightsOutputPort property is true. W is a column vector of length N*P.
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Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Process Data Cube Using SMI

Process a data cube using an SMI beamformer. The weights are calculated for the 71st cell of a
collected data cube pointing in the azimuth and elevation direction (45°,-35°) and with a Doppler of
12.980 kHz.

Load the cube data and create the SMI beamformer.

load STAPExampleData;
beamformer = phased.STAPSMIBeamformer('SensorArray',STAPEx_HArray, ...
    'PRF',STAPEx_PRF,'PropagationSpeed',STAPEx_PropagationSpeed, ...
    'OperatingFrequency',STAPEx_OperatingFrequency, ...
    'NumTrainingCells',100,'WeightsOutputPort',true, ...
    'DirectionSource','Input port','DopplerSource','Input port');
[y,w] = beamformer(STAPEx_ReceivePulse,71,[45;-35],12.980e3);

Plot the angle-doppler response.

response = phased.AngleDopplerResponse( ...
    'SensorArray',beamformer.SensorArray, ...
    'OperatingFrequency',beamformer.OperatingFrequency, ...
    'PRF',beamformer.PRF,'PropagationSpeed',beamformer.PropagationSpeed);
plotResponse(response,w)
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See Also
phitheta2azel | uv2azel
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phased.ShortDipoleAntennaElement
Package: phased

Short-dipole antenna element

Description
The phased.ShortDipoleAntennaElement object models a short-dipole antenna element. A short-
dipole antenna is a center-fed wire whose length is much shorter than one wavelength. This antenna
object only supports polarized fields.

To compute the response of the antenna element for specified directions:

1 Create the phased.ShortDipoleAntennaElement object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
antenna = phased.ShortDipoleAntennaElement
antenna = phased.ShortDipoleAntennaElement(Name,Value)
RESP = antenna(H,FREQ,ANG)

Description

antenna = phased.ShortDipoleAntennaElement creates the system object, h, to model a short-
dipole antenna element.

antenna = phased.ShortDipoleAntennaElement(Name,Value) creates the system object,
antenna, with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

FrequencyRange — Antenna operating frequency range
[0 1e20] (default) | real-valued 1-by-2 row vector

1 Objects

1-1592



Antenna operating frequency range specified as a 1-by-2 row vector in the form of [LowerBound
HigherBound]. This vector defines the frequency range over which the antenna has a response. The
antenna element has zero response outside this specified frequency range.
Data Types: double

AxisDirection — Dipole axis direction
'Z' (default) | 'Y' | 'Z' | 'Custom'

Dipole axis direction, specified as one of 'X', 'Y', 'Z', or 'Custom'. The dipole axis defines the
direction of the dipole current with respect to the local coordinate system. 'X' specifies a dipole
along the x-axis, 'Y' specifies a dipole along the y-axis, and 'Z' specifies a dipole along the z-axis.
An x-axis or y-axis direction is equivalent to a horizontal dipole and a z-axis direction is equivalent to
a vertical dipole. When you set the AxisDirection property to 'Custom', you can specify the
dipole axis using the CustomAxisDirection property.
Data Types: char

CustomAxisDirection — Custom dipole axis direction
[0;0;1] (default) | real-valued 3-element column vector

Custom axis direction of the dipole antenna, specified as a real-valued 3-element column vector. Each
entry in the vector represents the component of the dipole axis along the x, y, and z axes in the local
coordinate system.
Dependencies

To enable this property, set the AxisDirection property to 'Custom'.
Data Types: double

Usage

Syntax
RESP = antenna(H,FREQ,ANG)

Description

RESP = antenna(H,FREQ,ANG) returns the antenna’s voltage response, RESP, at the operating
frequencies specified in FREQ and in the directions specified in ANG. For the short-dipole antenna
element object, RESP is a MATLAB struct containing two fields, RESP.H and RESP.V, representing
the horizontal and vertical polarization components of the antenna's response. Each field is an M-by-L
matrix containing the antenna response at the M angles specified in ANG and at the L frequencies
specified in FREQ.

Input Arguments

FREQ — Operating frequency of antenna element
nonnegative scalar | nonnegative, real-valued, 1-by-L row vector

Operating frequency of antenna element, specified as a nonnegative scalar or nonnegative, real-
valued, 1-by-L row vector. Frequency units are in Hz.

FREQ must lie within the range of values specified by the FrequencyRange or the
FrequencyVector property of the element. Otherwise, the element produces no response and the
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response is returned as –Inf. Most elements objects use the FrequencyRange property except for
phased.CustomAntennaElement, which uses the FrequencyVector property.
Example: [1e8 2e6]
Data Types: double

ANG — Azimuth and elevation angles of response directions
real-valued, 1-by-M row vector | real-valued, 2-by-M matrix

Azimuth and elevation angles of response directions, specified as a real-valued, 1-by-M row vector or
a real-valued, 2-by-M matrix, where M is the number of angular directions. Angle units are in
degrees. The azimuth angle must lie in the range –180° to 180°, inclusive. The elevation angle must
lie in the range –90° to 90°, inclusive.

• If ANG is a 1-by-M vector, each element specifies the azimuth angle of the direction. In this case,
the corresponding elevation angle is assumed to be zero.

• If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation].

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy-plane. This angle is positive when measured towards
the z-axis. See the definition of “Azimuth and Elevation Angles”.
Example: [110 125; 15 10]
Data Types: double

Output Arguments

RESP — Antenna voltage response
struct

Voltage response of antenna element returned as a MATLAB struct with fields RESP.H and RESP.V.
Both RESP.H and RESP.V contain responses for the horizontal and vertical polarization components
of the antenna radiation pattern. Both RESP.H and RESP.V are M-by-L matrices. In these matrices, M
represents the number of angles specified in ANG, and L represents the number of frequencies
specified in FREQ.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Specific to Antenna and Transducer Element System Objects
beamwidth Compute and display beamwidth of sensor element pattern
directivity Directivity of antenna or transducer element
isPolarizationCapable Antenna element polarization capability
pattern Plot antenna or transducer element directivity and patterns
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patternAzimuth Plot antenna or transducer element directivity and pattern versus azimuth
patternElevation Plot antenna or transducer element directivity and pattern versus elevation

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Response of Short-Dipole Antenna

Find the response of a short-dipole antenna element at boresight, (0°,0°), and off boresight, (30°,0°).
The antenna operates at 256 MHz.

antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100 900]*1e6,'AxisDirection','Y');
ang = [0 30;0 0];
fc = 250e6;
resp = antenna(fc,ang)

resp = struct with fields:
    H: [2x1 double]
    V: [2x1 double]

Horizontal response.

disp(resp.H)

   -1.2247
   -1.0607

Vertical response.

disp(resp.V)

     0
     0

Short-Dipole Antenna Aligned Along the Y-Axis

Specify a short-dipole antenna with the dipole oriented along the y-axis and operating at 250 MHz.
Then, plot the 3-D responses for both the horizontal and vertical polarizations.

antenna = phased.ShortDipoleAntennaElement( ...
    'FrequencyRange',[100e6,600e6],'AxisDirection','Y');
fc = 250.0e6;

Plot the horizontal polarization response.
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pattern(antenna,fc,-180:180,[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb','Polarization','H');

Plot the vertical polarization response.

pattern(antenna,fc,-180:180,[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb','Polarization','V');
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Plot the combined response.

pattern(antenna,fc,-180:180,[-90:90],'CoordinateSystem','polar',...
    'Type','powerdb','Polarization','C');
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Short-Dipole Antenna Aligned Along Arbitrary Axis

Specify a short-dipole antenna with the dipole oriented along a custom axis and operating at 250
MHz. Then, plot the 3-D responses for both the horizontal and vertical polarizations.

Create the short-dipole antenna element System object™. An easy way to create a custom axis is to
rotate a unit vector using rotation functions.

v = rotx(30)*rotz(45)*[0;0;1];
antenna = phased.ShortDipoleAntennaElement( ...
    'FrequencyRange',[100e6,600e6],'AxisDirection','Custom', ...
    'CustomAxisDirection',v);

Plot the horizontal polarization response.

fc = 250.0e6;
pattern(antenna,fc,-180:180,[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb','Polarization','H');
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Plot the vertical polarization response.

pattern(antenna,fc,-180:180,[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb','Polarization','V');

 phased.ShortDipoleAntennaElement

1-1599



Plot the combined response.

pattern(antenna,fc,-180:180,[-90:90],'CoordinateSystem','polar', ...
    'Type','powerdb','Polarization','C');
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Algorithms
The total response of a short-dipole antenna element is a combination of its frequency response and
spatial response. This System object calculates both responses using nearest neighbor interpolation
and then multiplies the responses to form the total response.

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, and plotResponse methods are not
supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement | phased.CustomAntennaElement |
phased.IsotropicAntennaElement | phased.ULA | phased.URA | phitheta2azel |
phitheta2azelpat | uv2azel | uv2azelpat

Introduced in R2013a
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directivity
System object: phased.ShortDipoleAntennaElement
Package: phased

Directivity of short-dipole antenna element

Syntax
D = directivity(H,FREQ,ANGLE)

Description
D = directivity(H,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-1605 of a short-dipole
antenna element, H, at frequencies specified by FREQ and in direction angles specified by ANGLE.

Input Arguments
H — Short-dipole antenna element
System object

Short-dipole antenna element specified as a phased.ShortDipoleAntennaElement System object.
Example: H = phased.ShortDipoleAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.
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If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Short-Dipole Antenna Element

Compute the directivity of a z-directed short-dipole antenna element as a function of elevation.

Create the crossed-dipole antenna element system object.

myAnt = phased.ShortDipoleAntennaElement;
myAnt.AxisDirection = 'Z';
myAnt.FrequencyRange = [0,10e9];

Select the desired angles of interest to be at constant azimuth angle at zero degrees. Set the
elevation angles to center around boresight (zero degrees azimuth and zero degrees elevation). Set
the frequency to 1 GHz.

elev = [-30:30];
azm = zeros(size(elev));
ang = [azm;elev];
freq = 1e9;

Plot the directivity along the constant azimuth cut.

d = directivity(myAnt,freq,ang);
plot(elev,d)
xlabel('Elevation (deg)');
ylabel('Directivity (dBi)');
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More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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isPolarizationCapable
System object: phased.ShortDipoleAntennaElement
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the
phased.ShortDipoleAntennaElement antenna element supports polarization or not. An antenna
element supports polarization if it can create or respond to polarized fields. The
phased.ShortDipoleAntennaElement object always supports polarization.

Input Arguments
h — Short-dipole antenna element

Short-dipole antenna element specified as a phased.ShortDipoleAntennaElement System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability returned as a Boolean value true if the antenna element supports polarization
or false if it does not. Because the short-dipole antenna element supports polarization, the returned
value is always true.

Examples

Short-Dipole Antenna Supports Polarization

Show that a phased.ShortDipoleAntennaElement antenna supports polarization.

antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],...
    'AxisDirection','Z');
isPolarizationCapable(antenna)

ans = logical
   1

The returned value of 1 shows that this antenna supports polarization.
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pattern
System object: phased.ShortDipoleAntennaElement
Package: phased

Plot short-dipole antenna element directivity and patterns

Syntax
pattern(sElem,FREQ)
pattern(sElem,FREQ,AZ)
pattern(sElem,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sElem,FREQ) plots the 3-D array directivity pattern (in dBi) for the element specified in
sElem. The operating frequency is specified in FREQ.

pattern(sElem,FREQ,AZ) plots the element directivity pattern at the specified azimuth angle.

pattern(sElem,FREQ,AZ,EL) plots the element directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the element pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the element pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-1614 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sElem — Short-dipole antenna element
System object

Short-dipole antenna element, specified as a phased.ShortDipoleAntennaElement System
object.
Example: sElem = phased.ShortDipoleAntennaElement;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

 pattern
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Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
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must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component

Example: 'V'
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Data Types: char

Output Arguments
PAT — Element pattern
N-by-M real-valued matrix

Element pattern, returned as an N-by-M real-valued matrix. The pattern is a function of azimuth and
elevation. The rows of PAT correspond to the azimuth angles in the vector specified by EL_ANG. The
columns correspond to the elevation angles in the vector specified by AZ_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Pattern of Short-Dipole Antenna Oriented Along the Z-Axis

Specify a short-dipole antenna element with its dipole axis pointing along the z-axis. To do so, set the
'AxisDirection' value to 'Z'.

sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100 900]*1e6,'AxisDirection','Z');

Plot the antenna's vertical polarization power pattern at 200 MHz as a 3-D polar plot.

fc = 200e6;
pattern(sSD,fc,[-180:180],[-90:90],...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'Polarization','V')
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As the above figure shows, the antenna pattern is that of a vertically-oriented dipole and has its
maximum at the equator and nulls at the poles.

Short-Dipole Antenna Element Pattern Over Selected Range

Specify a short-dipole antenna element with its dipole axis pointing along the z-axis. Then, plot the
magnitude pattern over a selected range of angles. The antenna operating frequency spans the range
100 to 900 MHz.

To construct a z-directed short-dipole antenna, set the 'AxisDirection' value to 'Z'.

sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100 900]*1e6,...
    'AxisDirection','Z');

Plot the antenna's vertical polarization response at 200 MHz as an elevation cut at zero degrees
azimuth angle. Restrict the plot from -60 to 60 degrees elevation in 0.1 degree increments.

fc = 200e6;
pattern(sSD,fc,0,[-60:0.1:60],...
    'CoordinateSystem','polar',...
    'Type','efield',...
    'Polarization','V')
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Short-Dipole Antenna Element Directivity

Specify a short-dipole antenna element with its dipole axis pointing along the y-axis. Then, plot the
directivity. The antenna operating frequency spans the range 100 to 900 MHz.

Construct a y-directed short-dipole antenna by setting the 'AxisDirection' value to 'Y'.

sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100 900]*1e6,...
    'AxisDirection','Y');

Plot the antenna's directivity at 500 MHz as an elevation cut at zero degrees azimuth angle.

fc = 500e6;
pattern(sSD,fc,0,[-90:90],...
    'CoordinateSystem','rectangular',...
    'Type','directivity')
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.ShortDipoleAntennaElement
Package: phased

Plot short-dipole antenna element directivity or pattern versus azimuth

Syntax
patternAzimuth(sElem,FREQ)
patternAzimuth(sElem,FREQ,EL)
patternAzimuth(sElem,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sElem,FREQ) plots the 2-D element directivity pattern versus azimuth (in dBi)
for the element sElem at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

patternAzimuth(sElem,FREQ,EL), in addition, plots the 2-D element directivity pattern versus
azimuth (in dBi) at the elevation angle specified by EL. When EL is a vector, multiple overlaid plots
are created.

patternAzimuth(sElem,FREQ,EL,Name,Value) plots the element pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Azimuth' parameter and
the EL input argument.

Input Arguments
sElem — Short-dipole antenna element
System object

Short-dipole antenna element, specified as a phased.ShortDipoleAntennaElement System
object.
Example: sElem = phased.ShortDipoleAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension
N is the number of elevation angles, as determined by the EL input argument.

Examples

Azimuth Directivity of Short-Dipole Antenna Element at Two Elevations

Specify a short-dipole antenna element having a direction along the y-axis. Then, plot an azimuth cut
of the directivity at 0 and 30 degrees elevation. Assume the operating frequency is 500 MHz.

Create the antenna element.

fc = 500e6;
sSD = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6,...
    'AxisDirection','y');
patternAzimuth(sSD,fc,[0 30])

Plot a reduced range of azimuth angles using the Azimuth parameter. Notice the change in scale.

patternAzimuth(sSD,fc,[0 30],'Azimuth',[-20:20])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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Introduced in R2015a
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patternElevation
System object: phased.ShortDipoleAntennaElement
Package: phased

Plot short-dipole antenna element directivity or pattern versus elevation

Syntax
patternElevation(sElem,FREQ)
patternElevation(sElem,FREQ,AZ)
patternElevation(sElem,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sElem,FREQ) plots the 2-D element directivity pattern versus elevation (in
dBi) for the element sElem at zero degrees azimuth angle. The argument FREQ specifies the
operating frequency.

patternElevation(sElem,FREQ,AZ), in addition, plots the 2-D element directivity pattern versus
elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid plots
are created.

patternElevation(sElem,FREQ,AZ,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sElem — Short-dipole antenna element
System object

Short-dipole antenna element, specified as a phased.ShortDipoleAntennaElement System
object.
Example: sElem = phased.ShortDipoleAntennaElement;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.
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• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of elevation angles determined by the 'Elevation' name-value pair argument. The
dimension N is the number of azimuth angles determined by the AZ argument.

Examples

Plot Elevation Pattern of Crossed-Dipole Antenna Element

Plot the elevation directivity pattern of a crossed-dipole antenna at two different azimuths: 45∘ and
55∘. Assume the operating frequency is 500 MHz.

fc = 500e6;
sCD = phased.CrossedDipoleAntennaElement('FrequencyRange',[100,900]*1e6);
patternElevation(sCD,fc,[45 55])

Plot a reduced range of elevation angles using the Elevation parameter. Notice the change in scale.

patternElevation(sCD,fc,[45 55],'Elevation',-20:20)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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plotResponse
System object: phased.ShortDipoleAntennaElement
Package: phased

Plot response pattern of antenna

Syntax
plotResponse(H,FREQ)
plotResponse(H,FREQ,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ) plots the element response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ.

plotResponse(H,FREQ,Name,Value) plots the element response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Element System object

FREQ

Operating frequency in Hertz specified as a scalar or 1–by-K row vector. FREQ must lie within the
range specified by the FrequencyVector property of H. If you set the 'RespCut' property of H to
'3D', FREQ must be a scalar. When FREQ is a row vector, plotResponse draws multiple frequency
responses on the same axes.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CutAngle

Cut angle specified as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If
RespCut is 'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be
between –180 and 180.

Default: 0
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Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the antenna response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For antennas that do not support polarization, the only allowed value is 'None'. This parameter is
not applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.

• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.
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Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

AzimuthAngles

Azimuth angles for plotting element response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting element response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When you set the RespCut parameter to '3D', you
can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting element response, specified as a row vector. The UGrid parameter
sets the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting element response, specified as a row vector. The VGrid parameter
sets the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set the VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples
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Response of Short-Dipole Antenna Oriented Along the Z-Axis

Specify a short-dipole antenna element with its dipole axis pointing along the z-axis. To do so, set the
'AxisDirection' value to 'Z'.

sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100 900]*1e6,'AxisDirection','Z');

Plot the antenna's vertical polarization response at 200 MHz as a 3-D polar plot.

fc = 200e6;
plotResponse(sSD,fc,'Format','Polar',...
    'RespCut','3D','Polarization','V');

As the above figure shows, the antenna pattern is that of a vertically-oriented dipole and has its
maximum at the equator and nulls at the poles.

Plot Short-Dipole Antenna Element Response Over Selected Range

This example shows how to construct a short-dipole antenna element with its dipole axis pointing
along the z-axis and how to plot the response over a selected range of angles. The antenna operating
frequency spans the range 100 to 900 MHz.

To construct a z-directed short-dipole antenna, set the 'AxisDirection' value to 'Z'.
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sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100 900]*1e6,'AxisDirection','Z');

Plot the antenna's vertical polarization response at 200 MHz as an elevation cut at a fixed azimuth
angle. Use the 'ElevationAngles' property to restrict the plot from -60 to 60 degrees elevation in 0.1
degree increments.

plotResponse(sSD,200e6,'Format','Polar',...
    'RespCut','El','Polarization','V',...
    'ElevationAngles',[-60:0.1:60],'Unit','mag');

Plot Short-Dipole Antenna Element Directivity

This example shows how to construct a short-dipole antenna element with its dipole axis pointing
along the y-axis and how to plot the directivity. The antenna operating frequency spans the range 100
to 900 MHz.

To construct a y-directed short-dipole antenna, set the 'AxisDirection' value to 'Y'.

sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100 900]*1e6,'AxisDirection','Y');

Plot the antenna's directivity at 500 MHz as an elevation cut at a fixed azimuth angle.
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plotResponse(sSD,500e6,'Format','Line',...
    'RespCut','El','Unit','dbi');

See Also
azel2uv | uv2azel
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step
System object: phased.ShortDipoleAntennaElement
Package: phased

Output response of antenna element

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the antenna’s voltage response, RESP, at the operating
frequencies specified in FREQ and in the directions specified in ANG. For the short-dipole antenna
element object, RESP is a MATLAB struct containing two fields, RESP.H and RESP.V, representing
the horizontal and vertical polarization components of the antenna's response. Each field is an M-by-L
matrix containing the antenna response at the M angles specified in ANG and at the L frequencies
specified in FREQ.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Antenna element object.

FREQ

Operating frequencies of antenna in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.
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If ANG is a row vector of length M, each element specifies a direction’s azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.

Output Arguments
RESP

Voltage response of antenna element returned as a MATLAB struct with fields RESP.H and RESP.V.
Both RESP.H and RESP.V contain responses for the horizontal and vertical polarization components
of the antenna radiation pattern. Both RESP.H and RESP.V are M-by-L matrices. In these matrices, M
represents the number of angles specified in ANG, and L represents the number of frequencies
specified in FREQ.

Examples

Response of Short-Dipole Antenna

Find the response of a short-dipole antenna element at boresight, (0°,0°), and off boresight, (30°,0°).
The antenna operates at 256 MHz.

antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100 900]*1e6,'AxisDirection','Y');
ang = [0 30;0 0];
fc = 250e6;
resp = antenna(fc,ang)

resp = struct with fields:
    H: [2x1 double]
    V: [2x1 double]

Horizontal response.

disp(resp.H)

   -1.2247
   -1.0607

Vertical response.

disp(resp.V)

     0
     0

Algorithms
The total response of a short-dipole antenna element is a combination of its frequency response and
spatial response. This System object calculates both responses using nearest neighbor interpolation
and then multiplies the responses to form the total response.
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See Also
phitheta2azel | uv2azel
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phased.ScatteringMIMOChannel
Package: phased

Scattering MIMO channel

Description
The phased.ScatteringMIMOChannel System object models a multipath propagation channel in
which radiated signals from a transmitting array are reflected from multiple scatterers back toward a
receiving array. In this channel, propagation paths are line of sight from point to point. The object
models range-dependent time delay, gain, Doppler shift, phase change, and atmospheric loss due to
gases, rain, fog, and clouds.

The attenuation models for atmospheric gases and rain are valid for electromagnetic signals in the
frequency range from 1 through 1000 GHz. The attenuation model for fog and clouds is valid from 10
through 1000 GHz. Outside of these frequency ranges, the object uses the nearest valid value.

To compute the multipath propagation for specified source and receiver points:

1 Define and set up your scattering MIMO channel using the “Construction” on page 1-1637
procedure. You can set the System object properties during construction or leave them at their
default values.

2 Call the step method to compute the propagated signals using the properties of the
phased.ScatteringMIMOChannel System object. You can change tunable properties before or
after any call to the step method.

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, y = step(obj,x) and y =
obj(x) perform equivalent operations.

Construction
channel = phased.ScatteringMIMOChannel creates a scattering MIMO propagation channel
System object, channel.

channel = phased.ScatteringMIMOChannel(Name,Value) creates a System object, channel,
with each specified property Name set to the specified Value. You can specify additional name and
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
TransmitArray — Transmitting array
phased.ULA (default) | Phased Array System Toolbox antenna array System object

Transmitting array, specified as a Phased Array System Toolbox antenna array System object. The
default value for this property is a phased.ULA array with its default property values.
Example: phased.URA

 phased.ScatteringMIMOChannel

1-1637



ReceiveArray — Receiving array
phased.ULA (default) | Phased Array System Toolbox antenna array System object

Receiving array, specified as a Phased Array System Toolbox antenna array System object. The
default value for this property is a phased.ULA array with its default property values.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

CarrierFrequency — Signal carrier frequency
300e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in Hz.
Example: 100e6
Data Types: double

Polarization — Polarization configuration
'None' (default) | 'Combined' | 'Dual'

Polarization configuration, specified as 'None', 'Combined', or 'Dual'. When you set this property
to 'None', the output field is considered a scalar field. When you set this property to 'Combined',
the radiated fields are polarized and are interpreted as a single signal in the sensor's inherent
polarization. When you set this property to 'Dual', the H and V polarization components of the
radiated field are independent signals.
Example: 'Dual'
Data Types: char

SpecifyAtmosphere — Enable atmospheric attenuation model
false (default) | true

Option to enable the atmospheric attenuation model, specified as a false or true. Set this property
to true to add signal attenuation caused by atmospheric gases, rain, fog, or clouds. Set this property
to false to ignore atmospheric effects in propagation.

Setting SpecifyAtmosphere to true, enables the Temperature, DryAirPressure,
WaterVapourDensity, LiquidWaterDensity, and RainRate properties.
Data Types: logical

Temperature — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: 20.0
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Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

DryAirPressure — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar

Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this property corresponds to one standard atmosphere.
Example: 101.0e3
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

WaterVapourDensity — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.
Example: 7.4
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

LiquidWaterDensity — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.
Example: 0.1
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

RainRate — Rainfall rate
0.0 (default) | nonnegative scalar

Rainfall rate, specified as a nonnegative scalar. Units are in mm/hr.
Example: 10.0
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

SampleRate — Sample rate of signal
1e6 (default) | positive scalar
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Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: double

SimulateDirectPath — Enable propagation along direct path
false (default) | true

Option to enable signal propagation along the direct path, specified as false or true. The direct
path is a line-of-sight path from the transmitting array to the receiving array with no scattering.
Data Types: logical

ChannelResponseOutputPort — Enable output of channel response
false (default) | true

Option to enable output of channel response, specified as false or true. Set this property to trueto
output the channel response and time delay by using the chmatrix and tau output arguments of the
step method.
Data Types: logical

MaximumDelaySource — Source of maximum delay
'Auto' (default) | 'Property'

Source of the maximum delay value, specified as 'Auto' or 'Property'. When you set this property
to 'Auto', the channel automatically allocates enough memory to simulate the propagation delay.
When you set this property to 'Property', you can specify the maximum delay by using the
MaximumDelay property. Signals arriving after the maximum delay are ignored.

MaximumDelay — Maximum signal delay
10e-6 (default) | positive scalar

Maximum signal delay, specified as a positive scalar. Delays greater than this value are ignored. Units
are in seconds.

Dependencies

To enable this property, set the MaximumDelaySource property to 'Property'.
Data Types: double

TransmitArrayMotionSource — Source of transmitting array motion parameters
'Property' (default) | 'Input port'

Source of the transmitting array motion parameters, specified as 'Property' or 'Input port'.

• When you set this property to 'Property', the transmitting array is stationary. Then, you can
specify the location and orientation of the array using the TransmitArrayPosition and
TransmitArrayOrientationAxes properties.

• When you set this property to 'Input port', specify the transmitting array location, velocity,
and orientation by using the txpos, txvel, and txaxes input arguments of the step method.

Data Types: char
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TransmitArrayPosition — Position of transmitting array phase center
[0;0;0] (default) | real-valued three-element vector

Position of the transmitting array phase center, specified as a real-valued three-element vector in
Cartesian form, [x;y;z], with respect to the global coordinate system. Units are in meters.
Example: [1000;-200;55]

Dependencies

To enable this property, set the TransmitArrayMotionSource property to 'Property'.
Data Types: double

TransmitArrayOrientationAxes — Orientation of transmitting array
eye(3,3) (default) | real-valued 3-by-3 orthonormal matrix

Orientation of transmitting array, specified as a real-valued 3-by-3 orthonormal matrix. The matrix
specifies the three axes, (x,y,z), that define the local coordinate system of the array with respect to
the global coordinate system. Matrix columns correspond to the axes of the local array coordinate
system.
Example: rotz(45)

Dependencies

To enable this property, set the TransmitArrayMotionSource property to 'Property'.
Data Types: double

ReceiveArrayMotionSource — Source of receiving array motion parameters
'Property' (default) | 'Input port'

Source of the receiving array motion parameters, specified as 'Property' or 'Input port'.

• When you set this property to 'Property', the receiving array is stationary. Then, you can
specify the location and orientation of the array by using the ReceiveArrayPosition and
ReceiveArrayOrientationAxes properties.

• When you set this property to 'Input port', you can specify the receiving array location,
velocity, and orientation by using the rxpos, rxvel, and rxaxes input arguments of the step
method.

Data Types: char

ReceiveArrayPosition — Position of receiving array
[0;0;0] (default) | real-valued three-element vector

Position of the receiving array phase center, specified as a real-valued three-element vector in
Cartesian form,[x;y;z], with respect to the global coordinate system. Units are in meters.
Example: [1000;-200;55]

Dependencies

To enable this property, set the ReceiveArrayMotionSource property to 'Property'.
Data Types: double
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ReceiveArrayOrientationAxes — Orientation of receiving array
eye(3,3) (default) | real-valued 3-by-3 orthonormal matrix

Orientation of receiving array, specified as a real-valued 3-by-3 orthonormal matrix. The matrix
specifies the three axes, (x,y,z), that define the local coordinate system of the array with respect to
the global coordinate system. Matrix columns correspond to the axes of the local array coordinate
system.
Example: roty(60)
Dependencies

To enable this property, set the ReceiveArrayMotionSource property to 'Property'.
Data Types: double

ScattererSpecificationSource — Source of scatterer parameters
'Auto' (default) | 'Property' | 'Input port'

Source of scatterer parameters, specified as 'Auto', 'Property', 'Input port'.

• When you set this property to 'Auto', all scatterer positions and coefficients are randomly
generated. Scatterer velocities are zero. The generated positions are contained within the region
defined by the ScattererPositionBoundary. To set the number of scatterers, use the
NumScatterers property.

• When you set this property to 'Property', you can set the scatterer positions by using the
ScattererPosition property and the scattering coefficients by using the
ScattererCoefficient property. All scatterer velocities are zero.

• When you set this property to 'Input port', you can specify the scatterer positions, velocities,
and scattering coefficients using the scatpos, scatvel, and scatcoef input arguments of the
step method.

Example: 'Input port'
Data Types: char

NumScatterers — Number of scatterers
1 (default) | nonnegative integer

Number of scatterers, specified as a nonnegative integer.
Example: 9
Dependencies

To enable this property, set the ScattererSpecificationSource property to 'Auto'.
Data Types: double

ScattererPositionBoundary — Boundary of scatterer positions
[0,1000] (default) | 1-by-2 real-valued vector | 3-by-2 real-valued matrix

Boundary of the scatterer positions, specified as a 1-by-2 real-valued row vector or a 3-by-2 real-
valued matrix. The vector specifies the minimum and maximum, [minbdry maxbdry], for all three
dimensions. The matrix specifies boundaries in all three dimensions in the form [x_minbdry
x_maxbdry;y_minbdry y_maxbdry; z_minbdry z_maxbdry].
Example: [-1000 500;-100 100;-200 0]
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Dependencies

To enable this property, set the ScattererSpecificationSource property to 'Auto'.
Data Types: double

ScattererPosition — Positions of scatterers
[0;0;0] (default) | real-valued 3-by-K matrix

Positions of the scatterers, specified as real-valued 3-by-K matrix. K is the number of scatterers. Each
column represents a different scatterer and has the Cartesian form [x;y;z] with respect to the
global coordinate system. Units are in meters.
Example: [1050 -100;-300 55;0 -75]
Dependencies

To enable this property, set the ScattererSpecificationSource property to 'Property'.
Data Types: double

ScattererCoefficient — Scattering coefficients
1 (default) | complex-valued 1-by-K vector

Scattering coefficients, specified as a complex-valued 1-by-K vector. K is the number of scatterers.
Units are dimensionless.
Example: 2+1i
Dependencies

To enable this property, set the ScattererSpecificationSource property to 'Property'.
Data Types: double

ScatteringMatrix — Scattering matrices
[1 0;0 1] | complex–valued 2-by-2-by-Ns array

Scattering matrices of the scatterers, specified as a complex–valued 2-by-2-by-Ns array where Ns is
the number of scatterers. Each page of this array represents the scattering matrix of a scatterer.
Each scattering matrix has the form [s_hh s_hv;s_vh s_vv]. For example, the component s_hv
specifies the complex scattering response when the input signal is vertically polarized and the
reflected signal is horizontally polarized. The other components are defined similarly. Units are in
square meters.
Dependencies

To enable this property, set the ScatteringMatrixSource property to 'Property' and the
Polarization property to 'Combined' or 'Dual'.
Data Types: double

ScattererOrientationAxes — Orientation of scatterers
[1 0 0;0 1 0;0 0 1] (default) | real–valued 3-by-3-by-Ns array

Orientation of the scatterers, specified as a real–valued 3-by-3-by-Ns array where Ns is the number of
scatterers. Each page of this array is an orthonormal matrix. Matrix columns represent the axis of the
local coordinates (x,y,z) of the scatterer with respect to the global coordinate system.
Example: roty(45)
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Dependencies

To enable this property, set the ScatteringMatrixSource property to 'Property' and the
Polarization property to 'Combined' or 'Dual'.
Data Types: double

SeedSource — Source of random number generator seed
'Auto' (default) | 'Property'

Source of random number generator seed, specified as 'Auto' or 'Property'.

• When you set this property to 'Auto', random numbers are generated using the default MATLAB
random number generator.

• When you set this property to 'Property', the object uses a private random number generator
with the seed specified by the value of the Seed property.

To use this object with Parallel Computing Toolbox software, set this property to 'Auto'.

Dependencies

To enable this property, set the ScattererSpecificationSource property to 'Auto'.

Seed — Random number generator seed
0 (default) | nonnegative integer

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 5005

Dependencies

To enable this property, set the ScattererSpecificationSource property to 'Auto' and the
SeedSource property to 'Property'.
Data Types: double

Methods
reset Reset state of the System object
step Propagate signals in scattering MIMO channel

Common to All System Objects
release Allow System object property value changes

Examples

Propagate Signals in MIMO Channel

Create a 30 GHz MIMO channel with random scatterers. The scenario contains a stationary 21-
element transmitting ULA array and a stationary 15-element receiving ULA array. The transmitting
antennas have cosine responses and the receiving antennas are isotropic. Element spacing for both
arrays is less than one-half wavelength. The channel has 50 randomly generated static scatterers
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within a specified bounding box. The transmit array is located at [0;20;50] meters and the receive
array is located at [200;10;10] meters. Compute the propagated signal through this channel. The
sample rate for the signal is 10 MHz.

fc = 30e9;
c = physconst('LightSpeed');
lambda = c/fc;
fs = 10e6;
txarray = phased.ULA('Element',phased.CosineAntennaElement,...
    'NumElements',21,'ElementSpacing',0.45*lambda);
rxarray = phased.ULA('Element',phased.IsotropicAntennaElement,...
    'NumElements',15,'ElementSpacing',0.45*lambda);

channel = phased.ScatteringMIMOChannel('TransmitArray',txarray,...
    'ReceiveArray',rxarray,'PropagationSpeed',c,'CarrierFrequency',fc,...
    'SampleRate',fs,'TransmitArrayPosition',[0;20;50],...
    'ReceiveArrayPosition',[200;10;10],'NumScatterers',50,...
    'ScattererPositionBoundary',[10 180; -30 30; -30 30]);

Create a random data signal of ones and zeros for each transmitter.

x = randi(2,[100 21]) - 1;

Compute the received signals after propagating through the channel.

y = channel(x);

Propagate Signals in MIMO Channel from Moving Transmitter

Create a MIMO channel containing 3 fixed scatterers. The scenario contains a 21-element
transmitting ULA array operating at 72 GHz, and a 15-element receiving ULA array. The transmitting
elements have cosine response shapes and the receiving antennas are isotropic. Only the transmitting
antenna is moving. Element spacing for both arrays is less than one-half wavelength. The
transmitting array starts at (0,20,50) meters and moves towards the receiver at 2 m/s. The receiving
array is located at (200,10,10) meters. Compute the propagated signal through this channel. The
sample rate for the signal is 10 MHz.

fc = 72e9;
c = physconst('LightSpeed');
lambda = c/fc;
fs = 10e6;
txplatform = phased.Platform('MotionModel','Velocity','InitialPosition', ...
    [0;20;50],'Velocity',[2;0;0]);
txarray = phased.ULA('Element',phased.CosineAntennaElement, ...
    'NumElements',21,'ElementSpacing',0.45*lambda);
rxarray = phased.ULA('Element',phased.IsotropicAntennaElement, ...
    'NumElements',15,'ElementSpacing',0.45*lambda);
channel = phased.ScatteringMIMOChannel('TransmitArray',txarray, ...
    'ReceiveArray',rxarray,'PropagationSpeed',c,'CarrierFrequency',fc,...
    'SampleRate',fs,'TransmitArrayMotionSource','Input port', ...
    'ReceiveArrayMotionSource','Property','ReceiveArrayPosition',[200;10;10],...
    'ReceiveArrayOrientationAxes',rotz(180),...
    'ScattererSpecificationSource','Property','ScattererPosition', ...
    [75 100 120; -10 20 12; 5 -5 8],'ScattererCoefficient',[1i,2+3i,-1+1i]);
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Move the platforms for two time steps at one second intervals. For each time instance:

• Create a random data signal of ones and zeros for each transmitter element.
• Move the transmitter and receiver. The orientations are fixed.
• Propagate the signals from transmitters to scatterers to receiver.

for k =1:2
    x = randi(2,[100 21]) - 1;
    [txpos,txvel] = txplatform(1);
    txaxes = eye(3);
    y = channel(x,txpos,txvel,txaxes);
end

Propagate Signals Through MIMO Channel to Moving Receiver

Create a MIMO channel containing 3 fixed scatterers. The scenario contains a 21-element
transmitting ULA array and a 15-element receiving ULA array. Both arrays operating at 72 GHz. The
transmitting elements have cosine response shapes and the receiving antennas are isotropic. Only the
receiving antenna is moving. Element spacing for both arrays is less than one-half wavelength. The
transmitting array is located at (0,20,50) meters. The receiving array starts at (200,10,10) meters and
moves toward the transmitter at 2 m/s. Compute the propagated signal through this channel. The
sample rate for the signal is 10 MHz.

fc = 72e9;
c = physconst('LightSpeed');
lambda = c/fc;
fs = 10e6;
rxplatform = phased.Platform('MotionModel','Velocity','InitialPosition',...
    [200;10;10],'Velocity',[-2;0;0]);
txarray = phased.ULA('Element',phased.CosineAntennaElement, ...
    'NumElements',21,'ElementSpacing',0.45*lambda);
rxarray = phased.ULA('Element',phased.IsotropicAntennaElement, ...
    'NumElements',15,'ElementSpacing',0.45*lambda);
channel = phased.ScatteringMIMOChannel('TransmitArray',txarray, ...
    'ReceiveArray',rxarray,'PropagationSpeed',c,'CarrierFrequency',fc, ...
    'SampleRate',fs,'TransmitArrayMotionSource','Property',...
    'TransmitArrayPosition',[0;20;50],'TransmitArrayOrientationAxes',eye(3,3), ...
    'ReceiveArrayMotionSource','Input port','ScattererSpecificationSource', ...
    'Property','ScattererPosition',[75 100 120; -10 20 12; 5 -5 8], ...
    'ScattererCoefficient',[1i,2+3i,-1+1i],'SpecifyAtmosphere',false);

Move the platforms for two time steps at one-second intervals. For each time instance:

• Create a random data signal of ones and zeros for each transmitter element.
• Move the transmitter and receiver. Fix the array orientations.
• Propagate the signals from transmitters to scatterers to receiver.

for k =1:2
    x = randi(2,[100 21]) - 1;
    [rxpos,rxvel] = rxplatform(1);
    rxaxes = rotz(45);
    y = channel(x,rxpos,rxvel,rxaxes);
end
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Propagate Polarized Signals in MIMO Channel

Create a MIMO channel at 30 GHz with an 16-element transmit array and a 64-element receive array.
Assume the elements are short-dipole antennas and the arrays are uniform linear arrays. The
transmit array is located at [0;0;50] meters.

The receive array has an initial position at [200;0;0] meters and is moving at a speed of [10;0;0]
meters/second. There are 200 static scatterers randomly located on the xy plane within a square
centered at [200;0;0] and with a side length of 100 meters.

Use the channel to compute the propagated polarized signal. Assume the sample rate for the signal is
10 MHz and the frame length is 1000 samples. Collect 5 frames of received signal.

fc = 30e9;
c = 3e8;
lambda = c/fc;
fs = 10e6;
txarray = phased.ULA('Element',phased.ShortDipoleAntennaElement,...
    'NumElements',16,'ElementSpacing',lambda/2);
rxarray = phased.ULA('Element',phased.ShortDipoleAntennaElement,...
    'NumElements',64,'ElementSpacing',lambda/2);

Ns = 200;
scatpos = [100*rand(1,Ns) + 150; 100*rand(1,Ns) + 150; zeros(1,Ns)];
temp = randn(1,Ns) + 1i*randn(1,Ns);
scatcoef = repmat(eye(2),1,1,Ns).*permute(temp,[1 3 2]);
scatax = repmat(eye(3),1,1,Ns);

Nframesamp = 1000;
Tframe = Nframesamp/fs;
rxmobile = phased.Platform('InitialPosition',[200;0;0],...
    'Velocity',[10;0;0],'OrientationAxesOutputPort',true);

chan = phased.ScatteringMIMOChannel(...
    'TransmitArray',txarray,...
    'ReceiveArray',rxarray,...
    'PropagationSpeed',c,...
    'CarrierFrequency',fc,...
    'SampleRate',fs,...
    'Polarization','Dual',...
    'TransmitArrayPosition',[0;0;50],...
    'ReceiveArrayMotionSource','Input port',...
    'ScattererSpecificationSource','Property',...
    'ScattererPosition',scatpos,...
    'ScatteringMatrix',scatcoef,...
    'ScattererOrientationAxes',scatax);

xh = randi(2,[Nframesamp 16])-1;
xv = randi(2,[Nframesamp 16])-1;

for m = 1:5
    [rxpos,rxvel,rxax] = rxmobile(Tframe);
    [yh,yv] = chan(xh,xv,rxpos,rxvel,rxax);
end

 phased.ScatteringMIMOChannel

1-1647



More About
Attenuation and Loss Factors

Attenuation or path loss in the scattering MIMO channel consists of four components. L = LfspLgLcLr,
where:

• Lfsp is the free-space path attenuation.
• Lg is the atmospheric path attenuation.
• Lc is the fog and cloud path attenuation.
• Lr is the rain path attenuation.

Each component is in magnitude units, not in dB.

Free-Space Time Delay and Loss

When the origin and destination are stationary relative to each other, you can write the output signal
of a free-space channel as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal delay and Lfsp is the free-space
path loss. The delay τ is given by R/c, where R is the propagation distance and c is the propagation
speed. The free-space path loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or array. In the
near field, the free-space path loss formula is not valid and can result in a loss smaller than one,
equivalent to a signal gain. Therefore, the loss is set to unity for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a Doppler
frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
The quantity v is the relative speed of the destination with respect to the origin.

For more details on free space channel propagation, see [8]

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:
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N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

For a complete description of this model, see [4].

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).
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To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

For a complete description of this model, see [5]

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,

where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
diagbfweights | fogpl | fspl | gaspl | rainpl | rangeangle | scatteringchanmtx |
waterfill

Objects
phased.BackscatterRadarTarget | phased.FreeSpace | phased.LOSChannel |
phased.RadarTarget | phased.TwoRayChannel

Introduced in R2017a
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reset
System object: phased.ScatteringMIMOChannel
Package: phased

Reset state of the System object

Syntax
reset(channel)

Description
reset(channel) resets the internal state of the phased.ScatteringMIMOChannel System object,
channel.

Input Arguments
channel — Spatial MIMO channel
phased.ScatteringMIMOChannel System object

Scattering MIMO channel, specified as a phased.ScatteringMIMOChannel System object.

Introduced in R2017a
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step
System object: phased.ScatteringMIMOChannel
Package: phased

Propagate signals in scattering MIMO channel

Syntax
Y = step(channel,X)
[YH,YV] = step(channel,[XH,XV])
[ ___ ] = step( ___ ,txpos,txvel,txaxes)
[ ___ ] = step( ___ ,rxpos,rxvel,rxaxes)
[ ___ ] = step( ___ ,scatpos,scatvel,scatcoef)
[ ___ ] = step( ___ ,scatpos,scatvel,scatmat,scataxes)
[ ___ ,CR,TAU] = step(channel, ___ )
[ ___ ,CR_HH,CR_HV,CR_VH,CR_V,TAU] = step(channel, ___ )
[Y,CR,TAU] = step(channel,X,txpos,txvel,txaxesrxpos,rxvel,rxaxes,scatpos,
scatvel,scatcoef)

Description

Note Instead of using the step method to perform the operation defined by the System object, you
can call the object with arguments, as if it were a function. For example, Y = step(obj,X) and Y =
obj(X) perform equivalent operations.

Y = step(channel,X) uses the scattering MIMO channel, channel, to propagate a signal, X, from
a transmitting array towards multiple scatterers, and returns the scattered signals, Y, to a receiving
array.

To enable this syntax, set the TransmitArrayMotionSource, ReceiveArrayMotionSource, and
ScattererSpecificationSource properties to 'Property'.

[YH,YV] = step(channel,[XH,XV])propagates the polarized signals, XH and XV, through the H-
port and V-port of the transmit array. The object returns the received signals, YH and YV to the H-port
and V-port of the receive array.

To enable this syntax, set the Polarization property to 'Dual'.

[ ___ ] = step( ___ ,txpos,txvel,txaxes) also specifies the transmitting array position,
velocity, and axes orientation.

To enable this syntax, set the ReceiveArrayMotionSource and
ScattererSpecificationSource properties to 'Property' and set
TransmitArrayMotionSource to 'Input port'.

[ ___ ] = step( ___ ,rxpos,rxvel,rxaxes) specifies the receiving array position, velocity, and
axes orientation.
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To enable this syntax, set the TransmitArrayMotionSource and
ScattererSpecificationSource properties to 'Property' and set
ReceiveArrayMotionSource to 'Input port'.

[ ___ ] = step( ___ ,scatpos,scatvel,scatcoef) specifies the scatterer positions and
velocities, and the scattering coefficients.

To enable this syntax, set the TransmitArrayMotionSource and ReceiveArrayMotionSource
properties to 'Property', set ScattererSpecificationSource to 'Input port', and set the
Polarization property to 'None'.

[ ___ ] = step( ___ ,scatpos,scatvel,scatmat,scataxes) specifies the scatterer positions,
scatpos, and velocities, scatvel, the scattering matrix, scatmat, and the scatterer orientation
axes, scataxes.

To enable this syntax, set the TransmitArrayMotionSource and ReceiveArrayMotionSource
properties to 'Property', set ScattererSpecificationSource to 'Input port', and set the
Polarization property to 'Combined' or 'Dual'.

[ ___ ,CR,TAU] = step(channel, ___ ) also returns the channel response matrix, CR, and the
channel path delays, TAU, using any of the previous input argument combinations.

To enable this syntax, set the ChannelResponseOutputPort property to true and set the
Polarization property to 'None' or 'Combined'.

[ ___ ,CR_HH,CR_HV,CR_VH,CR_V,TAU] = step(channel, ___ ) also returns the channel
response matrices, CR_HH, CR_HV, CR_VH, and CR_V, using any of the previous input argument
combinations.

To enable this syntax, set the ChannelResponseOutputPort property to true and set the
Polarization property to 'Dual'.

You can combine optional input arguments when their enabling properties are set. For example, [Y,
CR,TAU] = step(channel,X,txpos,txvel,txaxesrxpos,rxvel,rxaxes,scatpos,
scatvel,scatcoef).

Note The object performs an initialization the first time the step method is executed. This
initialization locks nontunable properties and input specifications, such as dimensions, complexity,
and data type of the input data. If you change a nontunable property or an input specification, the
System object issues an error. To change nontunable properties or inputs, you must first call the
release method to unlock the object.

Input Arguments
channel — Scattering MIMO channel
phased.ScatteringMIMOChannel System object

Scattering MIMO channel, specified as a phased.ScatteringMIMOChannel System object.
Example: phased.ScatteringMIMOChannel

X — Transmitted narrowband signal
M-by-Nt complex-valued matrix
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Transmitted narrowband signal, specified as an M-by-Nt complex-valued matrix. The quantity M is the
number of samples in the signal, and Nt is the number of transmitting array elements. Each column
represents the signal transmitted by the corresponding array element.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1,1;j,1;0.5,0]
Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined'.
Data Types: double
Complex Number Support: Yes

XH — Transmitted narrowband H-polarization signal
M-by-Nt complex-valued matrix

Transmitted narrowband H-polarization signal, specified as an M-by-Nt complex-valued matrix. The
quantity M is the number of samples in the signal, and Nt is the number of transmitting array
elements. Each column represents the signal transmitted by the corresponding array element.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1,1;j,1;0.5,0]
Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

XV — Transmitted narrowband V-polarization signal
M-by-Nt complex-valued matrix

Transmitted narrowband V-polarization signal, specified as an M-by-Nt complex-valued matrix. The
quantity M is the number of samples in the signal, and Nt is the number of transmitting array
elements. Each column represents the signal transmitted by the corresponding array element.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1,1;j,1;0.5,0]
Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

txpos — Position of transmitting antenna array
real-valued three-element column vector
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Position of transmitting antenna array, specified as real-valued three-element column vector taking
the form [x;y;z]. The vector elements correspond to the x, y, and z positions of the array. Units are
in meters.
Example: [1000;100;500]

Dependencies

To enable this argument, set the TransmitArrayMotionSource property to 'Input port'.
Data Types: double

txvel — Velocity of transmitting antenna array
real-valued three-element column vector

Velocity of transmitting antenna array, specified as a real-valued three-element column vector taking
the form [vx;vy;vz]. The vector elements correspond to the x, y, and z velocities of the array. Units
are in meters per second.
Example: [10;0;5]

Dependencies

To enable this argument, set the TransmitArrayMotionSource property to 'Input port'.
Data Types: double

txaxes — Axes orientation of transmitting antenna array
real-valued 3-by-3 real orthonormal matrix

Axes orientation of transmitting antenna array, specified as a real-valued 3-by-3 real orthonormal
matrix. The matrix defines the orientation of the array local coordinate system with respect to the
global coordinates. Matrix columns correspond to the directions of the x, y, and z axes of the local
coordinate system. Units are dimensionless.
Example: rotx(35)

Dependencies

To enable this argument, set the TransmitArrayMotionSource property to 'Input port'.
Data Types: double

rxpos — Position of receiving antenna array
real-valued three-element column vector

Position of receiving antenna array, specified as a real-valued three-element column vector taking the
form [x;y;z]. The vector elements correspond to the x, y, and z positions of the array. Units are in
meters.
Example: [1000;100;500]

Dependencies

To enable this argument, set the ReceiveArrayMotionSource property to 'Input port'.
Data Types: double

rxvel — Velocity of receiving antenna array
real-valued three-element column vector
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Velocity of receiving antenna array, specified as a real-valued three-element column vector taking the
form [vx;vy;vz]. The vector elements correspond to the x, y, and z velocities of the array. Units are
in meters per second.
Example: [10;0;5]

Dependencies

To enable this argument, set the ReceiveArrayMotionSource property to 'Input port'.
Data Types: double

rxaxes — Axes orientation of receiving antenna array
real-valued 3-by-3 real orthonormal matrix

Axes orientation of receiving antenna array, specified as a real-valued 3-by-3 real orthonormal matrix.
The matrix defines the orientation of the array local coordinate system with respect to the global
coordinates. Matrix columns correspond to the directions of the x, y, and z axes of the local
coordinate system. Units are dimensionless.
Example: rotx(35)

Dependencies

To enable this argument, set the ReceiveArrayMotionSource property to 'Input port'.
Data Types: double

scatpos — Positions of scatterers
real-valued 3-by-Ns matrix

Positions of scatterers, specified as a real-valued 3-by-Ns matrix. The matrix contains the (x,y,z)
positions of scatterers. Each column of the matrix specifies a different scatterer and takes the form
[x;y;z]. Units are in meters.
Example: [1000;100;500]

Dependencies

To enable this argument, set the ScattererSpecificationSource property to 'Input port'.
Data Types: double

scatvel — Velocities of scatterers
real-valued 3-by-Ns matrix

Velocities of scatterers, specified as a real-valued 3-by-Ns matrix. The matrix contains the (vx,vy,vz)
positions of scatterers. Each column of the matrix specifies a different scatterer and takes the form
[vx;vy;vz] Units are in meters per second.
Example: [1000;100;500]

Dependencies

To enable this argument, set the ScattererSpecificationSource property to 'Input port'.
Data Types: double

scatcoef — Scattering coefficients
complex-valued 1-by-Nsrow vector
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Scattering coefficients, specified as a complex-valued 1-by-Nsrow vector. Each vector element
specifies the scattering coefficient of the corresponding scatterer. Units are dimensionless.
Example: [5+3*1i;4+1i;2]
Dependencies

To enable this argument, set the ScattererSpecificationSource property to 'Input port'
and the Polarization property to 'None'.
Data Types: double

scatmat — Scattering matrices
[1 0;0 1] | complex–valued 2-by-2-by-Ns array

Scattering matrices of the scatterers, specified as a complex–valued 2-by-2-by-Ns array where Ns is
the number of scatterers. Each page of this array represents the scattering matrix of a scatterer.
Each scattering matrix has the form [s_hh s_hv;s_vh s_vv]. For example, the component s_hv
specifies the complex scattering response when the input signal is vertically polarized and the
reflected signal is horizontally polarized. The other components are defined similarly. Units are in
square meters.
Dependencies

To enable this property, set the ScattererSpecificationSource property to 'Input port' and
the Polarization property to 'Combined' or 'Dual'.
Data Types: double

scataxes — Scatterer orientation axes
real-valued 3-by-3-by-Ns array

Scatterer orientation axes, specified as a real-valued 3-by-3-by-Ns array where Ns is the number of
scatterers. Each page of this array represents the orientation axes matrix of a scatterer. The columns
of the matrix represent the x- ,y-, and z-axes of the scatterer. Units are dimensionless.
Dependencies

To enable this property, set the ScattererSpecificationSource property to 'Input port' and
the Polarization property to 'Combined' or 'Dual'.
Data Types: double

Output Arguments
Y — Received narrowband signal
complex-valued M-by-Nr matrix

Received narrowband signal, returned as an M-by-Nr complex-valued matrix. M is the number of
samples in the signal, and Nr is the number of receiving array elements. Each column represents the
signal received by the corresponding array element.
Example: [1,1;j,1;0.5,0]
Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined'.
Data Types: double
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Complex Number Support: Yes

YH — Received narrowband H-polarization signal
complex-valued M-by-Nr matrix

Received narrowband H-polarization signal, returned as a complex-valued M-by-Nr matrix. M is the
number of samples in the signal, and Nr is the number of receiving array elements. Each column
represents the signal received by the corresponding array element.
Example: [1,1;j,1;0.5,0]

Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

YV — Received narrowband V-polarization signal
complex-valued M-by-Nr matrix

Received narrowband V-polarization signal, returned as a complex-valued M-by-Nr matrix. M is the
number of samples in the signal, and Nr is the number of receiving array elements. Each column
represents the signal received by the corresponding array element.
Example: [1,1;j,1;0.5,0]

Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

CR — Channel response
complex-valued Nt-by-Nr-by-Nc array

Channel response, returned as an Nt-by-Nr-by-Nc complex-valued array.

• Nt is the number of transmitting array elements.
• Nr is the number of receiving array elements.
• • When you specify SimulateDirectPath as false, Nc = Ns, the number of scatterers.

• When you specify SimulateDirectPath as true, Nc = Ns + 1 to account for the direct path.

Each page of the array corresponds to the channel response matrix for a specific scatterer.

Dependencies

To enable this argument, set the ChannelResponseOutputPort property to true and the
Polarization property to 'None' or 'Combined'.
Data Types: double
Complex Number Support: Yes

CR_HH — Channel response for H-input to H-output
complex-valued Nt-by-Nr-by-Nc array
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Channel response from H-polarization input to H-polarization output returned as a complex-valued
Nt-by-Nr-by-Nc array.

• Nt is the number of transmitting array elements.
• Nr is the number of receiving array elements.
• • When you specify SimulateDirectPath as false, Nc = Ns, the number of scatterers.

• When you specify SimulateDirectPath as true, Nc = Ns + 1 to account for the direct path.

Each page of the array corresponds to the channel response matrix for a specific scatterer.

Dependencies

To enable this argument, set the ChannelResponseOutputPort property to true and the
Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

CR_HV — Channel response for H-input to V-output
complex-valued Nt-by-Nr-by-Nc array

Channel response from H-polarization input to V-polarization output returned as a complex-valued Nt-
by-Nr-by-Nc array.

• Nt is the number of transmitting array elements.
• Nr is the number of receiving array elements.
• • When you specify SimulateDirectPath as false, Nc = Ns, the number of scatterers.

• When you specify SimulateDirectPath as true, Nc = Ns + 1 to account for the direct path.

Each page of the array corresponds to the channel response matrix for a specific scatterer.

Dependencies

To enable this argument, set the ChannelResponseOutputPort property to true and the
Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

CR_VH — Channel response for V-input to H-output
complex-valued Nt-by-Nr-by-Nc array

Channel response from V-polarization input to H-polarization output returned as a complex-valued Nt-
by-Nr-by-Nc array.

• Nt is the number of transmitting array elements.
• Nr is the number of receiving array elements.
• • When you specify SimulateDirectPath as false, Nc = Ns, the number of scatterers.

• When you specify SimulateDirectPath as true, Nc = Ns + 1 to account for the direct path.

Each page of the array corresponds to the channel response matrix for a specific scatterer.
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Dependencies

To enable this argument, set the ChannelResponseOutputPort property to true and the
Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

CR_VV — Channel response for V-input to V-output
complex-valued Nt-by-Nr-by-Nc array

Channel response from V-polarization input to V-polarization output returned as a complex-valued Nt-
by-Nr-by-Nc array.

• Nt is the number of transmitting array elements.
• Nr is the number of receiving array elements.
• • When you specify SimulateDirectPath as false, Nc = Ns, the number of scatterers.

• When you specify SimulateDirectPath as true, Nc = Ns + 1 to account for the direct path.

Each page of the array corresponds to the channel response matrix for a specific scatterer.

Dependencies

To enable this argument, set the ChannelResponseOutputPort property to true and the
Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

TAU — Path delays
1-by-Ns real-valued vector

Path delays, returned as a 1-by-NC real-valued vector. Each element corresponds to the path time
delay from the transmitting array phase center to a scatterer and then to the receiving array phase
center.

• When you specify SimulateDirectPath as false, Nc = Ns, the number of scatterers.
• When you specify SimulateDirectPath as true, Nc = Ns + 1 to account for the direct path.

Dependencies

To enable this argument, set the ChannelResponseOutputPort property to true.
Data Types: double

Examples

Propagate Signals in MIMO Channel

Create a 30 GHz MIMO channel with random scatterers. The scenario contains a stationary 21-
element transmitting ULA array and a stationary 15-element receiving ULA array. The transmitting
antennas have cosine responses and the receiving antennas are isotropic. Element spacing for both
arrays is less than one-half wavelength. The channel has 50 randomly generated static scatterers
within a specified bounding box. The transmit array is located at [0;20;50] meters and the receive
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array is located at [200;10;10] meters. Compute the propagated signal through this channel. The
sample rate for the signal is 10 MHz.

fc = 30e9;
c = physconst('LightSpeed');
lambda = c/fc;
fs = 10e6;
txarray = phased.ULA('Element',phased.CosineAntennaElement,...
    'NumElements',21,'ElementSpacing',0.45*lambda);
rxarray = phased.ULA('Element',phased.IsotropicAntennaElement,...
    'NumElements',15,'ElementSpacing',0.45*lambda);

channel = phased.ScatteringMIMOChannel('TransmitArray',txarray,...
    'ReceiveArray',rxarray,'PropagationSpeed',c,'CarrierFrequency',fc,...
    'SampleRate',fs,'TransmitArrayPosition',[0;20;50],...
    'ReceiveArrayPosition',[200;10;10],'NumScatterers',50,...
    'ScattererPositionBoundary',[10 180; -30 30; -30 30]);

Create a random data signal of ones and zeros for each transmitter.

x = randi(2,[100 21]) - 1;

Compute the received signals after propagating through the channel.

y = channel(x);

Propagate Signals in MIMO Channel from Moving Transmitter

Create a MIMO channel containing 3 fixed scatterers. The scenario contains a 21-element
transmitting ULA array operating at 72 GHz, and a 15-element receiving ULA array. The transmitting
elements have cosine response shapes and the receiving antennas are isotropic. Only the transmitting
antenna is moving. Element spacing for both arrays is less than one-half wavelength. The
transmitting array starts at (0,20,50) meters and moves towards the receiver at 2 m/s. The receiving
array is located at (200,10,10) meters. Compute the propagated signal through this channel. The
sample rate for the signal is 10 MHz.

fc = 72e9;
c = physconst('LightSpeed');
lambda = c/fc;
fs = 10e6;
txplatform = phased.Platform('MotionModel','Velocity','InitialPosition', ...
    [0;20;50],'Velocity',[2;0;0]);
txarray = phased.ULA('Element',phased.CosineAntennaElement, ...
    'NumElements',21,'ElementSpacing',0.45*lambda);
rxarray = phased.ULA('Element',phased.IsotropicAntennaElement, ...
    'NumElements',15,'ElementSpacing',0.45*lambda);
channel = phased.ScatteringMIMOChannel('TransmitArray',txarray, ...
    'ReceiveArray',rxarray,'PropagationSpeed',c,'CarrierFrequency',fc,...
    'SampleRate',fs,'TransmitArrayMotionSource','Input port', ...
    'ReceiveArrayMotionSource','Property','ReceiveArrayPosition',[200;10;10],...
    'ReceiveArrayOrientationAxes',rotz(180),...
    'ScattererSpecificationSource','Property','ScattererPosition', ...
    [75 100 120; -10 20 12; 5 -5 8],'ScattererCoefficient',[1i,2+3i,-1+1i]);

Move the platforms for two time steps at one second intervals. For each time instance:
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• Create a random data signal of ones and zeros for each transmitter element.
• Move the transmitter and receiver. The orientations are fixed.
• Propagate the signals from transmitters to scatterers to receiver.

for k =1:2
    x = randi(2,[100 21]) - 1;
    [txpos,txvel] = txplatform(1);
    txaxes = eye(3);
    y = channel(x,txpos,txvel,txaxes);
end

Propagate Signals Through MIMO Channel to Moving Receiver

Create a MIMO channel containing 3 fixed scatterers. The scenario contains a 21-element
transmitting ULA array and a 15-element receiving ULA array. Both arrays operating at 72 GHz. The
transmitting elements have cosine response shapes and the receiving antennas are isotropic. Only the
receiving antenna is moving. Element spacing for both arrays is less than one-half wavelength. The
transmitting array is located at (0,20,50) meters. The receiving array starts at (200,10,10) meters and
moves toward the transmitter at 2 m/s. Compute the propagated signal through this channel. The
sample rate for the signal is 10 MHz.

fc = 72e9;
c = physconst('LightSpeed');
lambda = c/fc;
fs = 10e6;
rxplatform = phased.Platform('MotionModel','Velocity','InitialPosition',...
    [200;10;10],'Velocity',[-2;0;0]);
txarray = phased.ULA('Element',phased.CosineAntennaElement, ...
    'NumElements',21,'ElementSpacing',0.45*lambda);
rxarray = phased.ULA('Element',phased.IsotropicAntennaElement, ...
    'NumElements',15,'ElementSpacing',0.45*lambda);
channel = phased.ScatteringMIMOChannel('TransmitArray',txarray, ...
    'ReceiveArray',rxarray,'PropagationSpeed',c,'CarrierFrequency',fc, ...
    'SampleRate',fs,'TransmitArrayMotionSource','Property',...
    'TransmitArrayPosition',[0;20;50],'TransmitArrayOrientationAxes',eye(3,3), ...
    'ReceiveArrayMotionSource','Input port','ScattererSpecificationSource', ...
    'Property','ScattererPosition',[75 100 120; -10 20 12; 5 -5 8], ...
    'ScattererCoefficient',[1i,2+3i,-1+1i],'SpecifyAtmosphere',false);

Move the platforms for two time steps at one-second intervals. For each time instance:

• Create a random data signal of ones and zeros for each transmitter element.
• Move the transmitter and receiver. Fix the array orientations.
• Propagate the signals from transmitters to scatterers to receiver.

for k =1:2
    x = randi(2,[100 21]) - 1;
    [rxpos,rxvel] = rxplatform(1);
    rxaxes = rotz(45);
    y = channel(x,rxpos,rxvel,rxaxes);
end
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Compute Propagated Signals Through MIMO Channel with Moving Scatterers

Create a MIMO channel containing 3 moving scatterers. The scenario contains a 21-element
transmitting ULA array and a 15-element receiving ULA array. Both arrays operate at 72 GHz. The
transmitting elements have cosine responses and the receiving antennas are isotropic. Element
spacing for both arrays is less than one-half wavelength. The transmitting array is located at
(0,20,50) meters. The receiving array is located at (200,10,10) meters. Compute the propagated
signal through this channel. The sample rate for the signal is 10 MHz. Obtain the channel response
matrix and time delays.

fc = 30e9;
c = physconst('LightSpeed');
lambda = c/fc;
fs = 10e6;
txarray = phased.ULA('Element',phased.CosineAntennaElement, ...
    'NumElements',21,'ElementSpacing',0.45*lambda);
rxarray = phased.ULA('Element',phased.IsotropicAntennaElement, ...
    'NumElements',15,'ElementSpacing',0.45*lambda);
channel = phased.ScatteringMIMOChannel('TransmitArray',txarray, ...
    'ReceiveArray',rxarray,'PropagationSpeed',c,'CarrierFrequency',fc, ...
    'SampleRate',fs,'TransmitArrayPosition',[0;20;50], ...
    'ReceiveArrayPosition',[200;10;10],'ScattererSpecificationSource','Input port', ...
    'ChannelResponseOutputPort',true);

Create a random data signal of ones and zeros for each transmitter.

x = randi(2,[100 21]) - 1;

Compute the received signals after propagating through the channel. Also return the channel matrix
and delays.

scatpos = [75 100 120; -10 20 12; 5 -5 8];
scatvel = [0 0.5 0; -0.1 1.2 0.04; .05 -0.45 0.8];
scatcoef = [1i,2+3i,-1+1i];
[y,chmat,delays] = channel(x,scatpos,scatvel,scatcoef);

Display the dimensions of the channel matrix.

size(chmat)

ans = 1×3

    21    15     3

Display the time delays in microseconds.

delays*1e6

ans = 1×3

    0.7310    0.7196    0.6919

1 Objects

1-1664



Propagate Polarized Signals in MIMO Channel

Create a MIMO channel at 30 GHz with an 16-element transmit array and a 64-element receive array.
Assume the elements are short-dipole antennas and the arrays are uniform linear arrays. The
transmit array is located at [0;0;50] meters.

The receive array has an initial position at [200;0;0] meters and is moving at a speed of [10;0;0]
meters/second. There are 200 static scatterers randomly located on the xy plane within a square
centered at [200;0;0] and with a side length of 100 meters.

Use the channel to compute the propagated polarized signal. Assume the sample rate for the signal is
10 MHz and the frame length is 1000 samples. Collect 5 frames of received signal.

fc = 30e9;
c = 3e8;
lambda = c/fc;
fs = 10e6;
txarray = phased.ULA('Element',phased.ShortDipoleAntennaElement,...
    'NumElements',16,'ElementSpacing',lambda/2);
rxarray = phased.ULA('Element',phased.ShortDipoleAntennaElement,...
    'NumElements',64,'ElementSpacing',lambda/2);

Ns = 200;
scatpos = [100*rand(1,Ns) + 150; 100*rand(1,Ns) + 150; zeros(1,Ns)];
temp = randn(1,Ns) + 1i*randn(1,Ns);
scatcoef = repmat(eye(2),1,1,Ns).*permute(temp,[1 3 2]);
scatax = repmat(eye(3),1,1,Ns);

Nframesamp = 1000;
Tframe = Nframesamp/fs;
rxmobile = phased.Platform('InitialPosition',[200;0;0],...
    'Velocity',[10;0;0],'OrientationAxesOutputPort',true);

chan = phased.ScatteringMIMOChannel(...
    'TransmitArray',txarray,...
    'ReceiveArray',rxarray,...
    'PropagationSpeed',c,...
    'CarrierFrequency',fc,...
    'SampleRate',fs,...
    'Polarization','Dual',...
    'TransmitArrayPosition',[0;0;50],...
    'ReceiveArrayMotionSource','Input port',...
    'ScattererSpecificationSource','Property',...
    'ScattererPosition',scatpos,...
    'ScatteringMatrix',scatcoef,...
    'ScattererOrientationAxes',scatax);

xh = randi(2,[Nframesamp 16])-1;
xv = randi(2,[Nframesamp 16])-1;

for m = 1:5
    [rxpos,rxvel,rxax] = rxmobile(Tframe);
    [yh,yv] = chan(xh,xv,rxpos,rxvel,rxax);
end
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Introduced in R2017a
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phased.SteeringVector
Package: phased

Sensor array steering vector

Description
The SteeringVector System object creates steering vectors for a sensor array for multiple
directions and frequencies.

To compute the steering vector for an array for specified directions and frequency

1 Create the phased.SteeringVector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
steervec = phased.SteeringVector
steervec = phased.SteeringVector(Name,Value)

Description

steervec = phased.SteeringVector creates a steering vector System object, steervec, with
default property values.

steervec = phased.SteeringVector(Name,Value) creates a steering vector with each
property Name set to a specified Value. You can specify additional name-value pair arguments in any
order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: steervec =
phased.SteeringVector('SensorArray',phased.URA,'PropagationSpeed',physconst('
LightSpeed')) creates a steering vector object for a uniform rectangular array (URA) with default
URA property values and sets the propagation speed to the speed of light.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

 phased.SteeringVector
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SensorArray — Sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox array

Sensor array, specified as an array System object belonging to Phased Array System Toolbox. The
sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

IncludeElementResponse — Include individual element responses in the steering vector
false (default) | true

Option to include the individual element responses in the steering vector, specified as false or true.
If this property is set to true, the steering vector includes individual array element responses. If this
property is set to false, the steering vector is computed assuming that the elements are isotropic,
regardless of how the elements are specified. Set this property to true to model polarized signals.

When the array specified in the SensorArray property contains subarrays, the steering vector applies
to the subarrays. If SensorArray does not contain subarrays, the steering vector is applied to the
array elements.
Data Types: logical

NumPhaseShifterBits — Number of phase shifter quantization bits
0 (default) | nonnegative integer

Number of phase shifter quantization bits, specified as a nonnegative integer. This number of bits is
used to quantize the phase shift component of the beamformer or steering vector weights. A value of
zero indicates that no quantization is performed.
Data Types: double

EnablePolarization — Enable polarized fields
false (default) | true

Option to enable polarized fields, specified as false or true. Set this property to true to enable
polarization. Set this property to false to ignore polarization. Enabling polarization requires that the
sensor array specified in the SensorArray property can simulate polarization.

If you set this property to false for an array that actually supports polarization, then all polarization
information is discarded. A combined pattern from the H and V polarization components is used at
each element to compute the steering vector.
Data Types: logical
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Usage

Syntax
SV = steervec(FREQ,ANG)
SV = steervec(FREQ,ANG,STEERANG)
SV = steervec(FREQ,ANG,STEERANG,WS)

Description

SV = steervec(FREQ,ANG) returns the steering vector, SV, pointing in the directions specified by
ANG and for the operating frequencies specified in FREQ. The meaning of SV depends on the
IncludeElementResponse property, as follows:

• If IncludeElementResponse is true, the components of SV include individual element responses.
• If IncludeElementResponse is false, the computation assumes that the elements are isotropic

and SV does not include the individual element responses. If the array contains subarrays, SV is
the array factor among the subarrays. The phase center of each subarray is at its geometric
center. If SensorArray does not contain subarrays, SV is the array factor among the elements.

SV = steervec(FREQ,ANG,STEERANG) also specifies the subarray steering angle, STEERANG. To
use this syntax, set the SensorArray property to an array type that contains subarrays and set the
IncludeElementResponse to true. Arrays that contain subarrays are the
phased.PartitionedArray and the phased.ReplicatedSubarray. In this case, set the
SubarraySteering property of these arrays to either 'Phase' or 'Time'.

SV = steervec(FREQ,ANG,STEERANG,WS) also specifies WS as weights applied to each element
within each subarray. To use this syntax, set the SensorArray property to an array that supports
subarrays and set the SubarraySteering property of the array to 'Custom'.

Input Arguments

ANG — Steering vector direction
[0;0] (default) | real-valued length-M vector | real-valued 2-by-M matrix

Steering vector directions, specified as a real-valued, length-M vector, or a real-valued 2-by-M matrix.
M is the number of steering directions. When ANG is a 2-by-M matrix, each column of the matrix
specifies the direction in space in the form [azimuth; elevation]. The azimuth angle must be
between –180° and 180°, and the elevation angle must be between –90° and 90°. When ANG is a
length-M vector, its values correspond to the azimuth angles of the steering vector direction with
elevation angles set to zero. Angle units are in degrees.
Example: [50.0,17.0,-24.5;0.4,4.0,23.9]
Data Types: single | double

FREQ — Operating frequencies
1-by-L vector of positive values

Operating frequencies, specified as a 1-by-L vector of positive values. Units are in Hz.
Example: [4100.0,4200.0]
Data Types: single | double
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STEERANG — Subarray steering direction
scalar | real-valued 2-by-1 vector

Subarray steering direction, specified as a scalar or a real-valued 2-by-1 vector. When STEERANG is a
2-by-1 vector, it specifies the subarray steering direction in the form [azimuth;elevation]. The
azimuth angle must be between –180° and 180°, and the elevation angle must be between –90° and
90°. When STEERANG is a scalar, its value corresponds to the azimuth angle of the subarray steering
direction with elevation angles set to zero. Angle units are in degrees.
Example: [50.0;10.0]
Data Types: single | double

WS — Subarray element weights
complex-valued NSE-by-N matrix | 1-by-N cell array

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.

Subarray element weights
Sensor Array Subarray weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray Subarrays may not have the same dimensions and
sizes. In this case, you can specify subarray
weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and set the
SubarraySteering property of the array to 'Custom'.
Data Types: single | double
Complex Number Support: Yes

Output Arguments

SV — Steering vector
complex-valued N-by-M-by-L array | structures

1 Objects

1-1670



Steering vector, returned as a complex-valued N-by-M-by-L array or a structure containing arrays.

The form of the steering vector depends upon whether the EnablePolarization property is set to true
or false.

• If EnablePolarization is set to false, the steering vector, SV, is an N-by-M-by-L array. The length
of the first dimension, N, is the number of elements of the phased array. If SensorArray contains
subarrays, N is the number of subarrays. The length of the second dimension, M, corresponding to
the number of steering directions specified in the ANG argument. The length of the third
dimension, L, is the number of frequencies specified in the FREQ argument.

• If EnablePolarization is set to true, SV is a MATLAB struct containing two fields, SV.H and
SV.V. These two fields represent the horizontal (H) and vertical (V) polarization components of
the steering vector. Each field is an N-by-M-by-L array. The length of the first dimension, N, is the
number of elements of the phased array. If SensorArray contains subarrays, N is the number of
subarrays. The length of the second dimension, M, corresponds to the number of steering
directions specified in the ANG argument. The length of the third dimension, L, is the number of
frequencies specified in the FREQ argument.

Simulating polarization also requires that the sensor array specified in the SensorArray property
can simulate polarization, and that the IncludeElementResponse property is set to true.

Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Steering Vector for Uniform Linear Array

Calculate and display the steering vector for a 4-element uniform linear array in the direction of 30
degrees azimuth and 20 degrees elevation. Assume the array's operating frequency is 300 MHz.

array = phased.ULA('NumElements',4);
steervec = phased.SteeringVector('SensorArray',array);
fc = 3e8;
ang = [30; 20];
sv = steervec(fc,ang)

sv = 4×1 complex

  -0.6011 - 0.7992i
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   0.7394 - 0.6732i
   0.7394 + 0.6732i
  -0.6011 + 0.7992i

Beam Pattern With and Without Steering

Calculate the steering vector for a 4-element uniform linear array (ULA) in the direction of 30
degrees azimuth and 20 degrees elevation. Assume the array operating frequency is 300 MHz.

fc = 300e6;
c = physconst('LightSpeed');
array = phased.ULA('NumElements',4);
steervec = phased.SteeringVector('SensorArray',array);
sv = steervec(fc,[30;20]);

Plot the beam patterns for the uniform linear array when no steering vector is applied (steered
broadside) and when a steering vector is applied.

subplot(211)
pattern(array,fc,-180:180,0,'CoordinateSystem','rectangular', ...
    'PropagationSpeed',c,'Type','powerdb')
title('Without steering')
subplot(212)
pattern(array,fc,-180:180,0,'CoordinateSystem','rectangular', ...
    'PropagationSpeed',c,'Type','powerdb','Weights',sv)
title('With steering')
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Steering Vector for Uniform Linear Array

Calculate the steering vector for a uniform linear array in the direction of 30° azimuth and 20°
elevation. Assume the array’ operates at 300 MHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

array = phased.ULA('NumElements',2);
steeringvector = phased.SteeringVector('SensorArray',array);
fc = 300.0e6;
ang = [30;20];
sv = steeringvector(fc,ang);

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ArrayGain | phased.ArrayResponse | phased.ElementDelay | phitheta2azel |
uv2azel

Introduced in R2011a

1 Objects

1-1674



step
System object: phased.SteeringVector
Package: phased

Calculate steering vector

Syntax
SV = step(H,FREQ,ANG)
SV = step(H,FREQ,ANG,STEERANGLE)
SV = step(H,FREQ,ANG,WS)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

SV = step(H,FREQ,ANG) returns the steering vector SV of the array for the directions specified in
ANG. The operating frequencies are specified in FREQ. The meaning of SV depends on the
IncludeElementResponse property of H, as follows:

• If IncludeElementResponse is true, SV includes the individual element responses.
• If IncludeElementResponse is false, the computation assumes the elements are isotropic and

SV does not include the individual element responses. Furthermore, if the SensorArray property
of H contains subarrays, SV is the array factor among the subarrays and the phase center of each
subarray is at its geometric center. If SensorArray does not contain subarrays, SV is the array
factor among the elements.

SV = step(H,FREQ,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle. This
syntax is available when you configure H so that H.Sensor is an array that contains subarrays,
H.Sensor.SubarraySteering is either 'Phase' or 'Time', and H.IncludeElementResponse is
true.

SV = step(H,FREQ,ANG,WS) uses WS as weights applied to each element within each subarray. To
use this syntax, set the SensorArray property to an array that supports subarrays and set the
SubarraySteering property of the array to 'Custom', and H.IncludeElementResponse is
true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
H

Steering vector object.

FREQ

Operating frequencies in hertz. FREQ is a row vector of length L.

ANG

Directions in degrees. ANG can be either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in space in the form
[azimuth; elevation]. The azimuth angle must be between –180 degrees and 180 degrees, and
the elevation angle must be between –90 degrees and 90 degrees.

If ANG is a row vector of length M, each element specifies the direction azimuth angle. In this case,
the corresponding elevation angle is assumed to be 0.

STEERANGLE

Subarray steering angle in degrees. STEERANGLE can be a length-2 column vector or a scalar.

If STEERANGLE is a length-2 vector, it has the form [azimuth; elevation]. The azimuth angle must be
between –180 degrees and 180 degrees, and the elevation angle must be between –90 degrees and 90
degrees.

If STEERANGLE is a scalar, it represents the azimuth angle. In this case, the elevation angle is
assumed to be 0.

WS

Subarray element weights

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.
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Subarray Element Weights

Sensor Array Subarray Weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray Subarrays cannot have the same dimensions and
sizes. In this case, you can specify subarray
weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the SensorArray property to an array that contains subarrays and set
the SubarraySteering property of the array to 'Custom', and H.IncludeElementResponse is
true.

Output Arguments
SV

Steering vector. The form of the steering vector depends upon whether the EnablePolarization
property is set to true or false.

• If EnablePolarization is set to false, the steering vector, SV, has the dimensions N-by-M-by-
L. The first dimension, N, is the number of elements of the phased array. If H.SensorArray
contains subarrays, N is the number of subarrays. Each column of SV contains the steering vector
of the array for the corresponding direction specified in ANG. Each of the L pages of SV contains
the steering vectors of the array for the corresponding frequency specified in FREQ.

If you set the H.IncludeElementResponse property to true, the steering vector includes the
individual element responses. If you set the H.IncludeElementResponse property to false,
the elements are assumed to be isotropic. Then, the steering vector does not include individual
element responses.

• If EnablePolarization is set to true, SV is a MATLAB struct containing two fields, SV.H and
SV.V. These fields represent the steering vector horizontal and vertical polarization components.
Each field has the dimensions N-by-M-by-L. The first dimension, N, is the number of elements of
the phased array. If H.SensorArray contains subarrays, N is the number of subarrays. Each
column of SV contains the steering vector of the array for the corresponding direction specified in
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ANG. Each of the L pages of SV contains the steering vectors of the array for the corresponding
frequency specified in FREQ.

If you set EnablePolarization to false for an array that supports polarization, then all
polarization information is discarded. The combined pattern from both H and V polarizations is
used at each element to compute the steering vector.

Simulating polarization also requires that the sensor array specified in the SensorArray property
can simulate polarization, and the IncludeElementResponse property is set to true.

Examples

Steering Vector for Uniform Linear Array

Calculate the steering vector for a uniform linear array in the direction of 30° azimuth and 20°
elevation. Assume the array’ operates at 300 MHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

array = phased.ULA('NumElements',2);
steeringvector = phased.SteeringVector('SensorArray',array);
fc = 300.0e6;
ang = [30;20];
sv = steeringvector(fc,ang);

See Also
phitheta2azel | uv2azel
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phased.SteppedFMWaveform
Package: phased

Stepped FM pulse waveform

Description
The SteppedFMWaveform object creates a stepped FM pulse waveform.

To obtain waveform samples:

1 Define and set up your stepped FM pulse waveform. See “Construction” on page 1-1679.
2 Call step to generate the stepped FM pulse waveform samples according to the properties of

phased.SteppedFMWaveform. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Construction
sSFM = phased.SteppedFMWaveform creates a stepped FM pulse waveform System object, sSFM.
The object generates samples of a linearly stepped FM pulse waveform.

sSFM = phased.SteppedFMWaveform(Name,Value) creates a stepped FM pulse waveform
object, sSFM, with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SampleRate

Sample rate

Signal sample rate, specified as a positive scalar. Units are Hertz. The ratio of sample rate to pulse
repetition frequency (PRF) must be a positive integer — each pulse must contain an integer number
of samples.

Default: 1e6

DurationSpecification

Method to set pulse duration

Method to set pulse duration (pulse width), specified as 'Pulse width' or 'Duty cycle'. This
property determines how you set the pulse duration. When you set this property to 'Pulse width',
then you set the pulse duration directly using the PulseWidth property. When you set this property
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to 'Duty cycle', you set the pulse duration from the values of the PRF and DutyCycle properties.
The pulse width is equal to the duty cycle divided by the PRF.

Default: 'Pulse width'

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar. The value must satisfy PulseWidth
<= 1./PRF.

Default: 50e-6

DutyCycle

Waveform duty cycle

Waveform duty cycle, specified as a scalar from 0 through 1, inclusive. This property applies when
you set the DurationSpecification property to 'Duty cycle'. The pulse width is the value of
the DutyCycle property divided by the value of the PRF property.

Default: 0.5

PRF

Pulse repetition frequency

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. ThePRF must satisfy
these restrictions:

• The product of PRF and PulseWidth must be less than or equal to one. This condition expresses
the requirement that the pulse width is less than one pulse repetition interval. For the phase-
coded waveform, the pulse width is the product of the chip width and number of chips.

• The ratio of sample rate to any element of PRF must be an integer. This condition expresses the
requirement that the number of samples in one pulse repetition interval is an integer.

You can select the value of PRF using property settings alone or using property settings in
conjunction with the prfidx input argument of the step method.

• When PRFSelectionInputPort is false, you set the PRF using properties only. You can

• implement a constant PRF by specifying PRF as a positive real-valued scalar.
• implement a staggered PRF by specifying PRF as a row vector with positive real-valued entries.

Then, each call to the step method uses successive elements of this vector for the PRF. If the
last element of the vector is reached, the process continues cyclically with the first element of
the vector.

• When PRFSelectionInputPort is true, you can implement a selectable PRF by specifying PRF
as a row vector with positive real-valued entries. But this time, when you execute the step
method, select a PRF by passing an argument specifying an index into the PRF vector.

In all cases, the number of output samples is fixed when you set the OutputFormat property to
'Samples'. When you use a varying PRF and set the OutputFormat property to 'Pulses', the
number of samples can vary.
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Default: 10e3

PRFSelectionInputPort

Enable PRF selection input

Enable the PRF selection input, specified as true or false. When you set this property to false,
the step method uses the values set in the PRF property. When you set this property to true, you
pass an index argument into the step method to select a value from the PRF vector.

Default: false

FrequencyStep

Linear frequency step size

Specify the linear frequency step size (in hertz) as a positive scalar. The default value of this property
corresponds to 20 kHz.

Default: 20e3

NumSteps

Specify the number of frequency steps as a positive integer. When NumSteps is 1, the stepped FM
waveform reduces to a rectangular waveform.

Default: 5

FrequencyOffsetSource

Source of frequency offset

Source of frequency offset for the waveform, specified as 'Property' or 'Input port'.

• When you set this property to 'Property', the offset is determined by the value of the
FrequencyOffset property.

• When you set this property to 'Input port', the FrequencyOffset is determined by the
freqoffset input argument.

Default: 'Property'

FrequencyOffset

Frequency offset

Frequency offset in Hz, specified as a scalar.

Dependencies

This property applies when you set the FrequencyOffsetSource property to 'Input port'.

Default: 0 Hz

OutputFormat

Output signal format

 phased.SteppedFMWaveform

1-1681



Specify the format of the output signal as 'Pulses' or 'Samples'. When you set the
OutputFormat property to 'Pulses', the output of the step method takes the form of multiple
pulses specified by the value of the NumPulses property. The number of samples per pulse can vary if
you change the pulse repetition frequency during the simulation.

When you set the OutputFormat property to 'Samples', the output of the step method is in the
form of multiple samples. In this case, the number of output signal samples is the value of the
NumSamples property and is fixed.

Default: 'Pulses'

NumSamples

Number of samples in output

Specify the number of samples in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Samples'.

Default: 100

NumPulses

Number of pulses in output

Specify the number of pulses in the output of the step method as a positive integer. This property
applies only when you set the OutputFormat property to 'Pulses'.

Default: 1

PRFOutputPort

Set this property to true to output the PRF for the current pulse using a step method argument.

Dependencies

This property can be used only when the OutputFormat property is set to 'Pulses'.

Default: false

CoefficientsOutputPort

Enable matched filter coefficients output port

Enable the matched filter coefficients output port, specified as false or true. When you set this
property to false, the object does not provide the matched filter coefficients used during the
simulation as an output. When you set this property to true, the object provides the matched filter
coefficients used during the simulation as an output.

Default: false

1 Objects

1-1682



Methods
bandwidth Bandwidth of stepped FM pulse waveform
getMatchedFilter Matched filter coefficients for waveform
plot Plot stepped FM pulse waveform
reset Reset state of stepped FM pulse waveform object
step Samples of stepped FM pulse waveform

Common to All System Objects
release Allow System object property value changes

Examples

Plot Stepped-FM Waveform and Spectrum

Create a stepped frequency pulse waveform object. Assume the default value, 1 MHz, for the sample
rate. Then, plot the waveform.

Create the SteppedFMWaveform System object™ with 20 kHz frequency step size.

sSFM = phased.SteppedFMWaveform('NumSteps',3,'FrequencyStep',20e3);
fs = sSFM.SampleRate;

Plot the third pulse of the wave using the phased.SteppedFMWaveform.plot method. Pass in the
pulse number using the 'PulseIdx' name-value pair.

plot(sSFM,'PulseIdx',3);
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Alternatively, call the step method three times to obtain three pulses. Collect the three pulses in a
single time series. Then plot the waveform using the plot function. You can see the full duty cycles of
the pulses.

wavfull = [];
wav = step(sSFM);
wavfull = [wavfull;wav];
wav = step(sSFM);
wavfull = [wavfull;wav];
wav = step(sSFM);
wavfull = [wavfull;wav];
nsamps = size(wavfull,1);
t = [0:(nsamps-1)]/fs*1e6;
plot(t,real(wavfull))
xlabel('Time (\mu sec)')
ylabel('Amplitude')
grid
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Plot the spectrum using the spectrogram function. Assume an fft of 64 samples and a 50% overlap.
Window the signal with a hamming function.

nfft1 = 64;
nov = floor(0.5*nfft1);
spectrogram(wavfull,hamming(nfft1),nov,nfft1,fs,'centered','yaxis')
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Apply Frequency Offset to Stepped FM Waveform

Apply a frequency offset to a stepped FM (SFM) pulse waveform. Plot the frequency spectrum of the
waveform with and without a frequency offset applied.

Create a SFM waveform object which is configured to set the frequency offset from an input when the
object is executed.

fs = 1e6;
sSFM = phased.SteppedFMWaveform('SampleRate',fs,'NumSteps',2, ...
    'FrequencyStep',20e3,'NumPulses',2,'FrequencyOffsetSource','Input port');

Execute the object two times. First set the frequency offset set to 0 Hz, and then to 2e4 Hz.

sfmwav = sSFM(0);
sfmwav_foffset = sSFM(2e4);

Plot the frequency spectrum of the complex signals. The frequency offset signal is shifted to the right.

[Pxx,f] = pwelch(sfmwav,[],[],[],fs,'centered');
[Pxx_offset,foffset] = pwelch(sfmwav_foffset,[],[],[],fs,'centered');
plot(f/1000,Pxx,foffset/1000,Pxx_offset)
ylabel('PSD');
xlabel('Frequency (kHz)');
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legend({'No offset','Offset applied'},'Location','northwest');
grid on;

More About
Stepped FM Waveform

In a stepped FM waveform, a group of pulses together sweep a certain bandwidth. Each pulse in this
group occupies a given center frequency and these center frequencies are uniformly located within
the total bandwidth.

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• The plot method is not supported.
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• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.LinearFMWaveform | phased.PhaseCodedWaveform | phased.RectangularWaveform

Topics
“Waveform Analysis Using the Ambiguity Function”

Introduced in R2011a
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bandwidth
System object: phased.SteppedFMWaveform
Package: phased

Bandwidth of stepped FM pulse waveform

Syntax
BW = bandwidth(H)

Description
BW = bandwidth(H) returns the bandwidth (in hertz) of the pulses for the stepped FM pulse
waveform H. If there are N frequency steps, the bandwidth equals N times the value of the
FrequencyStep property. If there is no frequency stepping, the bandwidth equals the reciprocal of
the pulse width.

Input Arguments
H

Stepped FM pulse waveform object.

Output Arguments
BW

Bandwidth of the pulses, in hertz.

Examples

Bandwidth of Stepped FM Waveform.

Determine the bandwidth of a stepped FM waveform.

waveform = phased.SteppedFMWaveform;
bw = bandwidth(waveform)

bw = 100000
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getMatchedFilter
System object: phased.SteppedFMWaveform
Package: phased

Matched filter coefficients for waveform

Syntax
Coeff = getMatchedFilter(H)
Coeff = getMatchedFilter(H,'FrequencyOffset',FOFFSET)

Description
Coeff = getMatchedFilter(H) returns the matched filter coefficients for the stepped FM
waveform object H. Coeff is a matrix whose columns correspond to the different frequency pulses in
the stepped FM waveform.

Coeff = getMatchedFilter(H,'FrequencyOffset',FOFFSET) adds a frequency offset when
matched filter coefficients are generated. FOFFSET must be a scalar. This option is available when
you set the FrequencyOffsetSource property to 'Input port' for the input object, H.

Examples

Matched Filter Coefficients for Stepped FM Pulse

Get the matched filter coefficients for a stepped FM pulse waveform.

waveform = phased.SteppedFMWaveform(...
    'NumSteps',3,'FrequencyStep',2e4,...
    'OutputFormat','Pulses','NumPulses',3);
coeff = getMatchedFilter(waveform);

Show the first four coefficients for each step.

coeff(1:4,:)

ans = 4×3 complex

   1.0000 + 0.0000i   0.9921 + 0.1253i   0.9686 + 0.2487i
   1.0000 + 0.0000i   0.9686 + 0.2487i   0.8763 + 0.4818i
   1.0000 + 0.0000i   0.9298 + 0.3681i   0.7290 + 0.6845i
   1.0000 + 0.0000i   0.8763 + 0.4818i   0.5358 + 0.8443i
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plot
System object: phased.SteppedFMWaveform
Package: phased

Plot stepped FM pulse waveform

Syntax
plot(Hwav)
plot(Hwav,Name,Value)
plot(Hwav,Name,Value,LineSpec)
h = plot( ___ )

Description
plot(Hwav) plots the real part of the waveform specified by Hwav.

plot(Hwav,Name,Value) plots the waveform with additional options specified by one or more
Name,Value pair arguments.

plot(Hwav,Name,Value,LineSpec) specifies the same line color, line style, or marker options as
are available in the MATLAB plot function.

h = plot( ___ ) returns the line handle in the figure.

Input Arguments
Hwav

Waveform object. This variable must be a scalar that represents a single waveform object.

LineSpec

Character vector to specifies the same line color, style, or marker options as are available in the
MATLAB plot function. If you specify a PlotType value of 'complex', then LineSpec applies to
both the real and imaginary subplots.

Default: 'b'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PlotType

Specifies whether the function plots the real part, imaginary part, or both parts of the waveform.
Valid values are 'real', 'imag', and 'complex'.

Default: 'real'
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PulseIdx

Index of the pulse to plot. This value must be a scalar.

Default: 1

FrequencyOffset

Frequency offset

Frequency offset in Hz, specified as a scalar.

Dependencies

This property applies when you set the FrequencyOffsetSource property to 'Input port'.

Default: 0 Hz

Output Arguments
h

Handle to the line or lines in the figure. For a PlotType value of 'complex', h is a column vector.
The first and second elements of this vector are the handles to the lines in the real and imaginary
subplots, respectively.

Examples

Plot Stepped FM Waveform

Create and plot a stepped frequency pulse waveform.

 waveform = phased.SteppedFMWaveform('NumSteps',3);
 plot(waveform);
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reset
System object: phased.SteppedFMWaveform
Package: phased

Reset state of stepped FM pulse waveform object

Syntax
reset(H)

Description
reset(H) resets the states of the SteppedFMWaveform object, H. Afterward, if the PRF property is a
vector, the next call to step uses the first PRF value in the vector.
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step
System object: phased.SteppedFMWaveform
Package: phased

Samples of stepped FM pulse waveform

Syntax
Y = step(sSFM)
Y = step(sSFM,prfidx)
Y = step(sRFM,freqoffset)
[Y,PRF] = step( ___ )
[Y,COEFF] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations. When the only argument to the step
method is the System object itself, replace y = step(obj) by y = obj().

Y = step(sSFM) returns samples of the stepped FM pulses in a column vector, Y. The output, Y,
results from increasing the frequency of the preceding output by an amount specified by the
FrequencyStep property. If the total frequency increase is larger than the value specified by the
SweepBandwidth property, the samples of a rectangular pulse are returned.

Y = step(sSFM,prfidx), uses the prfidx index to select the PRF from the predefined vector of
values specified by in the PRF property. This syntax applies when you set the
PRFSelectionInputPort property to true.

Y = step(sRFM,freqoffset), uses the freqoffset to generate the waveform with an offset as
specified at step time. Use this syntax for cases where the transmit pulse frequency needs to be
dynamically updated. This syntax applies when you set the FrequencyOffsetSource property to
'Input port'.

[Y,PRF] = step( ___ ) also returns the current pulse repetition frequency, PRF. To enable this
syntax, set the PRFOutputPort property to true and set the OutputFormat property to 'Pulses'.

[Y,COEFF] = step( ___ ) returns the matched filter coefficients, COEFF, for the current pulse. To
enable this syntax, set CoefficientsOutputPort to true. COEFF is returned as either an NZ-by-1
vector or an NZ-by-M matrix.

• An NZ-by-1 vector is returned when the object has OutputFormat set to 'Pulses' and
NumPulses is equal to 1. NZ is the pulse width.

• An NZ-by-M matrix is returned when either OutputFormat set to 'Pulses' and NumPulses is
greater than 1, or OutputFormat is set to 'Samples'.
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• When the object generates a constant pulse width waveform (DurationSpecification set to
'Pulse width' or 'Duty cycle' and PRF has one unique value), NZ is the pulse width and
M is the number of sub-pulses, NumSteps.

• When the object generates a varying pulse width waveform (DurationSpecification is set
to 'Duty cycle' and PRF has more than one unique value), NZ is the maximum of the pulse
width and M is the product of NumSteps and the number of unique PRFs.

You can combine optional input and output arguments when their enabling properties are set.
Optional inputs and outputs must be listed in the same order as the order of the enabling properties.
For example, [Y,PRF,COEFF] = step(sRFM,prfidx,freqoffset).

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Create Stepped Frequency Pulse Waveform

Create a stepped frequency pulse waveform object with a frequency step of 40 kHz and four
frequency steps.

waveform = phased.SteppedFMWaveform(...
    'NumSteps',4,'FrequencyStep',40e3,...
    'OutputFormat','Pulses','NumPulses',1);
fs = waveform.SampleRate;

Use the waveform method to obtain the pulses.

First, generate pulse 1.

pulse1 = waveform();

Then, generate pulse 2, incremented by the frequency step 40 kHz

pulse2 = waveform();

Next, generate pulse 3, incremented by the frequency step 40 kHz

pulse3 = waveform();

Finally, generate pulse 4, incremented by the frequency step 40 kHz

pulse4 = waveform();
nsamps = size(pulse4,1);
t = [0:(nsamps-1)]/fs*1e6;
plot(t,real(pulse4))
xlabel('Time (\mu sec)')
ylabel('Amplitude')
grid
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Generate Matched Filter Coefficients of Stepped FM Pulse Waveform

Generate output samples and matched filter coefficients of a stepped FM pulse waveform.

waveform = phased.SteppedFMWaveform('NumSteps',2,'NumPulses',1,...
    'CoefficientsOutputPort',true,'PRF',[1e4 1e4 2e4 2e4],...
    'DurationSpecification','Duty cycle','DutyCycle',0.5);
[wav1,coeff1] = waveform(); 
[wav2,coeff2] = waveform();
wav = [wav1 ; wav2];

Create a matched filter that applies the coefficients as an input argument. Use the coeficients when
applying the matched filter to the waveform. Plot the waveform and matched filter outputs.

mf = phased.MatchedFilter('CoefficientsSource','Input port');
mfOut1 = mf(wav1,coeff1);
mfOut2 = mf(wav2,coeff2);
subplot(211),plot(real(wav));
xlabel('Samples'),ylabel('Amplitude'),title('Waveform Output');
subplot(212),plot(abs(mfOut1+mfOut2));
xlabel('Samples'),ylabel('Amplitude'),title('Matched Filter Output');
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More About
Stepped FM Waveform

In a stepped FM waveform, a group of pulses together sweep a certain bandwidth. Each pulse in this
group occupies a given center frequency and these center frequencies are uniformly located within
the total bandwidth.
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phased.StretchProcessor
Package: phased

Stretch processor for linear FM waveform

Description
The StretchProcessor object performs stretch processing on data from a linear FM waveform.

To perform stretch processing:

1 Define and set up your stretch processor. See “Construction” on page 1-1699.
2 Call step to perform stretch processing on input data according to the properties of

phased.StretchProcessor. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.StretchProcessor creates a stretch processor System object, H. The object performs
stretch processing on data from a linear FM waveform.

H = phased.StretchProcessor(Name,Value) creates a stretch processor object, H, with
additional options specified by one or more Name,Value pair arguments. Name is a property name on
page 1-1699, and Value is the corresponding value. Name must appear inside single quotes (''). You
can specify several name-value pair arguments in any order as Name1,Value1,…,NameN,ValueN.

Properties
SampleRate

Sample rate

Signal sample rate, specified as a positive scalar. Units are Hertz. The ratio of sample rate to pulse
repetition frequency (PRF) must be a positive integer — each pulse must contain an integer number
of samples. This property can be specified as single or double precision.

Default: 1e6

PulseWidth

Pulse width

Specify the length of each pulse (in seconds) as a positive scalar. The value must satisfy PulseWidth
<= 1./PRF. This property can be specified as single or double precision.

Default: 50e-6
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PRFSource

Source of pulse repetition values

Source of the PRF values for the stretch processor, specified as 'Property', 'Auto', or 'Input
port'. When you set this property to 'Property', the PRF is determined by the value of the PRF
property. When you set this property to 'Input port', the PRF is determined by an input argument
to the step method at execution time. When you set this property to 'Auto', the PRF is computed
from the number of rows in the input signal.

Default: 'Property'

PRF

Pulse repetition frequency

Pulse repetition frequency (PRF) of the received signal, specified as a positive scalar. Units are in
Hertz. This property can be specified as single or double precision.

Dependencies

To enable this property, set the PRFSource property to 'Property'.

Default: 1

SweepSlope

FM sweep slope

Specify the slope of the linear FM sweeping, in hertz per second, as a scalar.

Default: 2e9

SweepInterval

Location of FM sweep interval

Specify the linear FM sweeping interval using the value 'Positive' or 'Symmetric'. If
SweepInterval is 'Positive', the waveform sweeps in the interval between 0 and B, where B is
the sweep bandwidth. If SweepInterval is 'Symmetric', the waveform sweeps in the interval
between –B/2 and B/2. This property can be specified as single or double precision.

Default: 'Positive'

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light

ReferenceRange

Reference range of stretch processing
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Specify the center of ranges of interest, in meters, as a positive scalar. The reference range must be
within the unambiguous range of one pulse. This property can be specified as single or double
precision. This property is tunable.

Default: 5000

RangeSpan

Span of ranges of interest

Specify the length of the interval for ranges of interest, in meters, as a positive scalar. The range span
is centered at the range value specified in the ReferenceRange property. This property can be
specified as single or double precision.

Default: 500

Methods
step Perform stretch processing for linear FM waveform

Common to All System Objects
release Allow System object property value changes

Examples

Detect a Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Simulate the signal.

waveform = phased.LinearFMWaveform;
x = waveform();
c = physconst('LightSpeed');
rng = 4950.0;
num_samples = round(rng/(c/(2*waveform.SampleRate)));
x = circshift(x,num_samples);

Perform stretch processing.

stretchproc = getStretchProcessor(waveform,5000,200,c);
y = stretchproc(x);

Plot the spectrum of the resulting signal.

[Pxx,F] = periodogram(y,[],2048,stretchproc.SampleRate,'centered');
plot(F/1000,10*log10(Pxx))
grid
xlabel('Frequency (kHz)')
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ylabel('Power/Frequency (dB/Hz)')
title('Periodogram Power Spectrum Density Estimate')

Detect the range.

[~,rngidx] = findpeaks(pow2db(Pxx/max(Pxx)),'MinPeakHeight',-5);
rngfreq = F(rngidx);
rng = stretchfreq2rng(rngfreq,stretchproc.SweepSlope,stretchproc.ReferenceRange,c)

rng = 4.9634e+03

Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
phased.LinearFMWaveform | phased.MatchedFilter | stretchfreq2rng

Topics
Range Estimation Using Stretch Processing
“Stretch Processing”

Introduced in R2012a
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step
System object: phased.StretchProcessor
Package: phased

Perform stretch processing for linear FM waveform

Syntax
Y = step(H,X)
Y = step(H,X,PRF)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) applies stretch processing along the first dimension of X. Each column of X
represents one receiving pulse.

Y = step(H,X,PRF) uses PRF as the pulse repetition frequency. This syntax is available when the
PRFSource property is 'Input port'.

Input Arguments
H

Stretch processor object.

X

Input signal matrix. Each column represents one received pulse.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

PRF

Pulse repetition frequency specified as a positive scalar. To enable this argument, set the PRFSource
property to 'Input port'. Units are in Hertz.

Output Arguments
Y

Result of stretch processing. The dimensions of Y match the dimensions of X.
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Examples

Detect a Target Using Stretch Processing

Use stretch processing to locate a target at a range of 4950 m.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Simulate the signal.

waveform = phased.LinearFMWaveform;
x = waveform();
c = physconst('LightSpeed');
rng = 4950.0;
num_samples = round(rng/(c/(2*waveform.SampleRate)));
x = circshift(x,num_samples);

Perform stretch processing.

stretchproc = getStretchProcessor(waveform,5000,200,c);
y = stretchproc(x);

Plot the spectrum of the resulting signal.

[Pxx,F] = periodogram(y,[],2048,stretchproc.SampleRate,'centered');
plot(F/1000,10*log10(Pxx))
grid
xlabel('Frequency (kHz)')
ylabel('Power/Frequency (dB/Hz)')
title('Periodogram Power Spectrum Density Estimate')
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Detect the range.

[~,rngidx] = findpeaks(pow2db(Pxx/max(Pxx)),'MinPeakHeight',-5);
rngfreq = F(rngidx);
rng = stretchfreq2rng(rngfreq,stretchproc.SweepSlope,stretchproc.ReferenceRange,c)

rng = 4.9634e+03

See Also
stretchfreq2rng

Topics
Range Estimation Using Stretch Processing
“Stretch Processing”
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phased.SubbandMVDRBeamformer
Package: phased

Wideband minimum-variance distortionless-response beamformer

Description
The phased.SubbandMVDRBeamformer System object implements a wideband minimum variance
distortionless response beamformer (MVDR) based on the subband processing technique. This type of
beamformer is also called a Capon beamformer.

To beamform signals arriving at an array:

1 Create the phased.SubbandMVDRBeamformer object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
beamformer = phased.SubbandMVDRBeamformer
beamformer = phased.SubbandMVDRBeamformer(Name,Value)

Description

beamformer = phased.SubbandMVDRBeamformer creates a subband MVDR beamformer System
object, beamformer. The object performs subband MVDR beamforming on the received signal.

beamformer = phased.SubbandMVDRBeamformer(Name,Value) creates a subband MVDR
beamformer System object, beamformer, with each specified property Name set to the specified
Value. You can specify additional name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.
Example: beamformer =
phased.SubbandMVDRBeamformer('SensorArray',phased.URA('Size',[5
5]),'OperatingFrequency',500e6) sets the sensor array to a 5-by-5 uniform rectangular array
(URA) with all other default URA property values. The beamformer has an operating frequency of 500
MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.
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For more information on changing property values, see System Design in MATLAB Using System
Objects.

SensorArray — Sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox array

Sensor array, specified as an array System object belonging to Phased Array System Toolbox. The
sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. Units are in meters per second.
The default propagation speed is the value returned by physconst('LightSpeed').
Example: 3e8
Data Types: single | double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: single | double

SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: single | double

NumSubbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128
Data Types: double

DirectionSource — Source of beamforming direction
'Property' (default) | 'Input port'

Source of beamforming direction, specified as 'Property' or 'Input port'. Specify whether the
beamforming direction comes from the Direction property of this object or from the input
argument, ANG. Values of this property are:

'Property' Specify the beamforming direction using the Direction
property.
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'Input port' Specify the beamforming direction using the input argument,
ANG.

Data Types: char

Direction — Beamforming directions
[0;0] (default) | real-valued 2-by-1 vector | real-valued 2-by-L matrix

Beamforming directions, specified as a real-valued 2-by-1 vector or a real-valued 2-by-L matrix. For a
matrix, each column specifies a different beamforming direction. Each column has the form
[AzimuthAngle;ElevationAngle]. Azimuth angles must lie between –180° and 180° and
elevation angles must lie between –90° and 90°. All angles are defined with respect to the local
coordinate system of the array. Units are in degrees.
Example: [40;30]

Dependencies

To enable this property, set the DirectionSource property to 'Property'.
Data Types: single | double

DiagonalLoadingFactor — Diagonal loading factor
0 (default) | nonnegative scalar

Diagonal loading factor, specified as a nonnegative scalar. Diagonal loading is a technique used to
achieve robust beamforming performance, especially when the sample size is small. A small sample
size can lead to an inaccurate estimate of the covariance matrix. Diagonal loading also provides
robustness due to steering vector errors. The diagonal loading technique adds a positive scalar
multiple of the identity matrix to the sample covariance matrix.

Tunable: Yes
Data Types: single | double

TrainingInputPort — Enable training data input
false (default) | true

Enable training data input, specified as false or true. When you set this property to true, use the
training data input argument, XT, when running the object. Set this property to false to use the
input data, X, as the training data.
Data Types: logical

WeightsOutputPort — Enable beamforming weights output
false (default) | true

Enable the output of beamforming weights, specified as false or true. To obtain the beamforming
weights, set this property to true and use the corresponding output argument, W. If you do not want
to obtain the weights, set this property to false.
Data Types: logical

SubbandsOutputPort — Option to enable output of subband center frequencies
false (default) | true
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Option to enable output of subband center frequencies, specified as either true or false. To obtain
the subband center frequencies, set this property to true and use the corresponding output
argument FREQS when calling the object.
Data Types: logical

Usage

Syntax
Y = beamformer(X)
Y = beamformer(X,XT)
Y = beamformer(X,ANG)
[Y,W] = beamformer( ___ )
[Y,FREQS] = beamformer( ___ )
[Y,W,FREQS] = beamformer(X,XT,ANG)

Description

Y = beamformer(X) performs wideband MVDR beamforming on the input, X, and returns the
beamformed output in Y. This syntax uses X for training samples to calculate the beamforming
weights. Use the Direction property to specify the beamforming direction.

Y = beamformer(X,XT) uses XT for training samples to calculate the beamforming weights.

Y = beamformer(X,ANG) uses ANG as the beamforming direction. This syntax applies when you set
the DirectionSource property to 'Input port'.

[Y,W] = beamformer( ___ ) returns the beamforming weights, W. This syntax applies when you set
the WeightsOutputPort property to true.

[Y,FREQS] = beamformer( ___ ) returns the center frequencies of the subbands, FREQS. This
syntax applies when you set the SubbandsOutputPort property to true.

You can combine optional input arguments when you set their enabling properties. Optional input
arguments must be listed in the same order as their enabling properties. For example, [Y,W,FREQS]
= beamformer(X,XT,ANG) is valid when you specify TrainingInputPort as true and set
DirectionSource to 'Input port'.

Input Arguments

X — Wideband input signal
M-by-N complex-valued matrix

Wideband input signal, specified as an M-by-N matrix, where N is the number of array elements. M is
the number of samples in the data. If the sensor array consists of subarrays, N is then the number of
subarrays.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

1 Objects

1-1710



If you set the TrainingInputPort to false, then the object uses X as training data. In this case, the
dimension M must be greater than N×NB. where NB is the number of subbands specified in the
NumSubbands.

If you set TrainingInputPort to true, use the XT argument to supply training data. In this case, the
dimension M can be any positive integer.
Example: [1,1;j,1;0.5,0]
Data Types: single | double
Complex Number Support: Yes

XT — Wideband training samples
P-by-N complex-valued matrix

Wideband training samples, specified as a P-by-N matrix where N is the number of elements. If the
sensor array consists of subarrays, then N represents the number of subarrays.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

This argument applies when you set TrainingInputPort to true. The dimension P is the number of
samples in the training data. P must be larger than N×NB, where NB is the number of subbands
specified in the NumSubbands property.
Example: FT = [1,1;j,1;0.5,0]
Data Types: single | double
Complex Number Support: Yes

ANG — Beamforming direction
2-by-L real-valued matrix

Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. This argument applies only when you set the DirectionSource property to
'Input port'. Each column takes the form of [AzimuthAngle;ElevationAngle]. Angle units
are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must lie
between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.
Example: [40 30;0 10]
Data Types: single | double

Output Arguments

Y — Beamformed output
M-by-L complex-valued matrix

Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of beamforming directions specified in the ANG argument.

W — Beamforming weights
N-by-K-by-L complex-valued matrix

Beamforming weights, returned as an N-by-K-by-L complex-valued matrix. The quantity N is the
number of sensor elements or subarrays and K is the number of subbands specified by the
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NumSubbands property. The quantity L is the number of beamforming directions. Each column of W
contains the narrowband beamforming weights used in the corresponding subband for the
corresponding directions.

Dependencies

To return this output, set the WeightsOutputPort property to true.
Data Types: single | double

FREQS — Center frequencies of subbands
K-by-1 real-valued column vector

Center frequencies of subbands, returned as a K-by-1 real-valued column vector. The quantity K is the
number of subbands specified by the NumSubbands property.

Dependencies

To return this output, set the SubbandsOutputPort property to true.
Data Types: single | double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Subband MVDR Beamforming of ULA

Apply subband MVDR beamforming to an underwater acoustic 11-element ULA. The incident angle of
the signal is 10∘ azimuth and 30∘ elevation. The signal is an FM chirp having a bandwidth of 1 kHz.
The speed of sound is 1500 m/s.

Simulate signal

array = phased.ULA('NumElements',11,'ElementSpacing',0.3);
fs = 2e3;
carrierFreq = 2000;
t = (0:1/fs:2)';
sig = chirp(t,0,2,fs/2);
c = 1500;
collector = phased.WidebandCollector('Sensor',array,'PropagationSpeed',c,...
    'SampleRate',fs,'ModulatedInput',true,...
    'CarrierFrequency',carrierFreq);
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incidentAngle = [10;0];
sig1 = collector(sig,incidentAngle);
noise = 0.3*(randn(size(sig1)) + 1j*randn(size(sig1)));
rx = sig1 + noise;

Apply MVDR beamforming

beamformer = phased.SubbandMVDRBeamformer('SensorArray',array,...
    'Direction',incidentAngle,'OperatingFrequency',carrierFreq,...
    'PropagationSpeed',c,'SampleRate',fs,'TrainingInputPort',true, ...
    'SubbandsOutputPort',true,'WeightsOutputPort',true);
[y,w,subbandfreq] = beamformer(rx, noise);

Plot the signal that is input to the middle sensor (channel 6) vs the beamformer output.

plot(t(1:300),real(rx(1:300,6)),'r:',t(1:300),real(y(1:300)))
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed');

Plot array response

Plot the response pattern for five bands

pattern(array,subbandfreq(1:5).',-180:180,0,...
    'PropagationSpeed',c,'Weights',w(:,1:5));
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Subband MVDR Beamforming of Array with Interference

Apply subband MVDR beamforming to an underwater acoustic 11-element ULA. Beamform the
arriving signals to optimize the gain of a linear FM chirp signal arriving from 0 degrees azimuth and
0 degrees elevation. The signal has a bandwidth of 2.0 kHz. In addition, there unit amplitude 2.250
kHz interfering sine wave arriving from 28 degrees azimuth and 0 degrees elevation. Show how the
MVDR beamformer nulls the interfering signal. Display the array pattern for several frequencies in
the neighborhood of 2.250 kHz. The speed of sound is 1500 meters/sec.

Simulate Arriving Signal and Noise

array = phased.ULA('NumElements',11,'ElementSpacing',0.3);
fs = 2000;
carrierFreq = 2000;
t = (0:1/fs:2)';
sig = chirp(t,0,2,fs/2);
c = 1500;
collector = phased.WidebandCollector('Sensor',array,'PropagationSpeed',c,...
    'SampleRate',fs,'ModulatedInput',true,...
    'CarrierFrequency',carrierFreq);
incidentAngle = [0;0];
sig1 = collector(sig,incidentAngle);
noise = 0.3*(randn(size(sig1)) + 1j*randn(size(sig1)));
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Simulate Interfering Signal

Combine both the desired and interfering signals.

fint = 250;
sigint = sin(2*pi*fint*t);
interfangle = [28;0];
sigint1 = collector(sigint,interfangle);
rx = sig1 + sigint1 + noise;

Apply MVDR beamforming

Use the combined noise and interfering signal as training data.

beamformer = phased.SubbandMVDRBeamformer('SensorArray',array,...
    'Direction',incidentAngle,'OperatingFrequency',carrierFreq,...
    'PropagationSpeed',c,'SampleRate',fs,'TrainingInputPort',true,...
    'NumSubbands',64,...
    'SubbandsOutputPort',true,'WeightsOutputPort',true);
[y,w,subbandfreq] = beamformer(rx,sigint1 + noise);
tidx = [1:300];
plot(t(tidx),real(rx(tidx,6)),'r:',t(tidx),real(y(tidx)))
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')
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Plot Array Response Showing Beampattern Null

Plot the response pattern for five bands near 2.250 kHz.

fdx = [5,7,9,11,13];
pattern(array,subbandfreq(fdx).',-50:50,0,...
    'PropagationSpeed',c,'Weights',w(:,fdx),...
    'CoordinateSystem','rectangular');

The beamformer places a null at 28 degrees for the subband containing 2.250 kHz.

More About
Diagonal Loading

Diagonal loading is a technique to improve beamformer robustness when stability issues arise from
steering vector errors or finite sample size effects. This technique adds a positive real-valued multiple
of the identity matrix to the correlation matrix of the received array data vector. You can apply
diagonal loading using the DiagonalLoadingFactor property.

Algorithms
Date Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double

1 Objects

1-1716



precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies narrowband
processing to the signal in each subband. The signals for all subbands are summed to form the output
signal.

When using wideband frequency System objects or blocks, you specify the number of subbands, NB,
in which to decompose the wideband signal. Subband center frequencies and widths are
automatically computed from the total bandwidth and number of subbands. The total frequency band
is centered on the carrier or operating frequency, fc. The overall bandwidth is given by the sample
rate, fs. Frequency subband widths are Δf = f s/NB. The center frequencies of the subbands are

fm =
fc−

fs
2 + m− 1 Δf ,   NB even

fc−
NB− 1 fs

2NB
+ m− 1 Δf ,   NB odd

,   m = 1, …, NB

Some System objects let you obtain the subband center frequencies as output when you run the
object. The returned subband frequencies are ordered consistently with the ordering of the discrete
Fourier transform. Frequencies above the carrier appear first, followed by frequencies below the
carrier.

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder)
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
phased.FrostBeamformer | phased.LCMVBeamformer | phased.MVDRBeamformer |
phased.PhaseShiftBeamformer | phased.SubbandPhaseShiftBeamformer |
phased.WidebandCollector

Introduced in R2015b
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reset
System object: phased.SubbandMVDRBeamformer
Package: phased

Reset states of System object

Syntax
reset(sMVDR)

Description
reset(sMVDR) resets the internal state of the phased.SubbandMVDRBeamformer object, sWBFS. If
the SeedSource property applies and has the value 'Property', then this method resets the state
of the random number generator.

Input Arguments
sMVDR — Subband MVDR beamformer
System object

Subband MVDR beamformer, specified as a System object.
Example: phased.SubbandMVDRBeamformer

Introduced in R2015b
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step
System object: phased.SubbandMVDRBeamformer
Package: phased

Wideband MVDR beamforming

Syntax
Y = step(sMVDR,X)
Y = step(sMVDR,X,XT)
Y = step(sMVDR,X,ang)
[Y,Wts] = step(sMVDR, ___ )
[Y,Freq] = step(sMVDR, ___ )
[Y,Wts,Freq] = step(sMVDR,X,XT,ang)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(sMVDR,X) performs wideband MVDR beamforming on the input, X, and returns the
beamformed output in Y. This syntax uses X for training samples to calculate the beamforming
weights. Use the Direction property to specify the beamforming direction.

Y = step(sMVDR,X,XT) uses XT as the training samples to calculate the beamforming weights.
This syntax applies only when you set the TrainingInputPort property to true. Use the
Direction property to specify the beamforming direction.

Y = step(sMVDR,X,ang) uses ang as the beamforming direction. This syntax applies only when
you set the DirectionSource property to 'Input port'.

[Y,Wts] = step(sMVDR, ___ ) returns the beamforming weights, Wts, when you set the
WeightsOutputPort property to true.

[Y,Freq] = step(sMVDR, ___ ) returns the center frequencies of the subbands, Freq, when you
set the SubbandsOutputPort property to true. Freq is a length-K column vector where, K is the
number of subbands specified in the NumSubbands property.

You can combine optional input arguments when you set their enabling properties. Optional input
arguments must be listed in the same order as their enabling properties. For example,
[Y,Wts,Freq] = step(sMVDR,X,XT,ang) is valid when you specify TrainingInputPort to
true and specify DirectionSource to 'Input port'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
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issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
sMVDR — Subband MVDR beamformer
System object

Subband MVDR beamformer, specified as a System object.
Example: phased.SubbandMVDRBeamformer

X — Wideband input field
M-by-N complex-valued matrix

Wideband input field, specified as an M-by-N matrix, where N is the number of array elements. If the
sensor array consists of subarrays, N is then the number of subarrays. M is the number of samples in
the data.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

If you set the TrainingInputPort to false, then step uses X as training data. In this case, the
dimension M must be greater than N×NB. where NB is the number of subbands specified in the
NumSubbands property.

If you set TrainingInputPort to true, use the XT argument to supply training data. In this case,
the dimension M can be any positive integer.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

XT — Wideband training samples
P-by-N complex-valued matrix

Wideband training samples, specified as a P-by-N matrix where N is the number of elements. If the
sensor array consists of subarrays, then N represents the number of subarrays.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

This argument applies when you set TrainingInputPort to true. The dimension P is the number
of samples in the training data. P must be larger than N×NB, where NB is the number of subbands
specified in the NumSubbands property.
Example: FT = [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

ang — Beamforming direction
2-by-L real-valued matrix
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Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. This argument applies only when you set the DirectionSource property to
'Input port'. Each column takes the form of [AzimuthAngle;ElevationAngle]. Angle units
are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must lie
between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.
Example: F = [40 30; 0 10]
Data Types: double

Output Arguments
Y — Beamformed output
M-by-L complex-valued matrix

Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of beamforming directions specified in the ang argument.

Wts — Beamforming weights
N-by-K-by-L complex-valued matrix

Beamforming weights, returned as an N-by-K-by-L complex-valued matrix. The quantity N is the
number of sensor elements or subarrays and K is the number of subbands specified by the
NumSubbands property. The quantity L is the number of beamforming directions. Each column of Wts
contains the narrowband beamforming weights used in the corresponding subband for the
corresponding directions. This output applies only when you set the WeightsOutputPort property
to true.

Freq — Center frequencies of subbands
K-by-1 real-valued column vector

Center frequencies of subbands, returned as a K-by-1 real-valued column vector. The quantity K is the
number of subbands specified by the NumSubbands property. To return this output, set the
SubbandsOutputPort property to true.

Examples

Subband MVDR Beamforming of ULA

Apply subband MVDR beamforming to an underwater acoustic 11-element ULA. The incident angle of
the signal is 10∘ azimuth and 30∘ elevation. The signal is an FM chirp having a bandwidth of 1 kHz.
The speed of sound is 1500 m/s.

Simulate signal

array = phased.ULA('NumElements',11,'ElementSpacing',0.3);
fs = 2e3;
carrierFreq = 2000;
t = (0:1/fs:2)';
sig = chirp(t,0,2,fs/2);
c = 1500;
collector = phased.WidebandCollector('Sensor',array,'PropagationSpeed',c,...
    'SampleRate',fs,'ModulatedInput',true,...
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    'CarrierFrequency',carrierFreq);
incidentAngle = [10;0];
sig1 = collector(sig,incidentAngle);
noise = 0.3*(randn(size(sig1)) + 1j*randn(size(sig1)));
rx = sig1 + noise;

Apply MVDR beamforming

beamformer = phased.SubbandMVDRBeamformer('SensorArray',array,...
    'Direction',incidentAngle,'OperatingFrequency',carrierFreq,...
    'PropagationSpeed',c,'SampleRate',fs,'TrainingInputPort',true, ...
    'SubbandsOutputPort',true,'WeightsOutputPort',true);
[y,w,subbandfreq] = beamformer(rx, noise);

Plot the signal that is input to the middle sensor (channel 6) vs the beamformer output.

plot(t(1:300),real(rx(1:300,6)),'r:',t(1:300),real(y(1:300)))
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed');

Plot array response

Plot the response pattern for five bands

pattern(array,subbandfreq(1:5).',-180:180,0,...
    'PropagationSpeed',c,'Weights',w(:,1:5));

1 Objects

1-1722



Subband MVDR Beamforming of Array with Interference

Apply subband MVDR beamforming to an underwater acoustic 11-element ULA. Beamform the
arriving signals to optimize the gain of a linear FM chirp signal arriving from 0 degrees azimuth and
0 degrees elevation. The signal has a bandwidth of 2.0 kHz. In addition, there unit amplitude 2.250
kHz interfering sine wave arriving from 28 degrees azimuth and 0 degrees elevation. Show how the
MVDR beamformer nulls the interfering signal. Display the array pattern for several frequencies in
the neighborhood of 2.250 kHz. The speed of sound is 1500 meters/sec.

Simulate Arriving Signal and Noise

array = phased.ULA('NumElements',11,'ElementSpacing',0.3);
fs = 2000;
carrierFreq = 2000;
t = (0:1/fs:2)';
sig = chirp(t,0,2,fs/2);
c = 1500;
collector = phased.WidebandCollector('Sensor',array,'PropagationSpeed',c,...
    'SampleRate',fs,'ModulatedInput',true,...
    'CarrierFrequency',carrierFreq);
incidentAngle = [0;0];
sig1 = collector(sig,incidentAngle);
noise = 0.3*(randn(size(sig1)) + 1j*randn(size(sig1)));
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Simulate Interfering Signal

Combine both the desired and interfering signals.

fint = 250;
sigint = sin(2*pi*fint*t);
interfangle = [28;0];
sigint1 = collector(sigint,interfangle);
rx = sig1 + sigint1 + noise;

Apply MVDR beamforming

Use the combined noise and interfering signal as training data.

beamformer = phased.SubbandMVDRBeamformer('SensorArray',array,...
    'Direction',incidentAngle,'OperatingFrequency',carrierFreq,...
    'PropagationSpeed',c,'SampleRate',fs,'TrainingInputPort',true,...
    'NumSubbands',64,...
    'SubbandsOutputPort',true,'WeightsOutputPort',true);
[y,w,subbandfreq] = beamformer(rx,sigint1 + noise);
tidx = [1:300];
plot(t(tidx),real(rx(tidx,6)),'r:',t(tidx),real(y(tidx)))
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')
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Plot Array Response Showing Beampattern Null

Plot the response pattern for five bands near 2.250 kHz.

fdx = [5,7,9,11,13];
pattern(array,subbandfreq(fdx).',-50:50,0,...
    'PropagationSpeed',c,'Weights',w(:,fdx),...
    'CoordinateSystem','rectangular');

The beamformer places a null at 28 degrees for the subband containing 2.250 kHz.

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill

[3] Saakian, A. Radio Wave Propagation Fundamentals. Norwood, MA: Artech House, 2011.

[4] Balanis, C. Advanced Engineering Electromagnetics. New York: Wiley & Sons, 1989.

[5] Rappaport, T. Wireless Communications: Principles and Practice, 2nd Ed New York: Prentice Hall,
2002.
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phased.SubbandPhaseShiftBeamformer
Package: phased

Subband phase shift beamformer

Description
The SubbandPhaseShiftBeamformer object implements a subband phase shift beamformer.

To compute the beamformed signal:

1 Define and set up your subband phase shift beamformer. See “Construction” on page 1-1726.
2 Call step to perform the beamforming operation according to the properties of

phased.SubbandPhaseShiftBeamformer. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.SubbandPhaseShiftBeamformer creates a subband phase shift beamformer System
object, H. The object performs subband phase shift beamforming on the received signal.

H = phased.SubbandPhaseShiftBeamformer(Name,Value) creates a subband phase shift
beamformer object, H, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Sensor array

Sensor array specified as an array System object belonging to the phased package. A sensor array
can contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the beamformer in hertz as a scalar. The default value of this
property corresponds to 300 MHz. This property can be specified as single or double precision.

Default: 3e8

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar. This property can be specified as single
or double precision.

Default: 1e6

NumSubbands

Number of subbands

Specify the number of subbands used in the subband processing as a positive integer. This property
can be specified as single or double precision.

Default: 64

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction for the beamformer comes from the Direction property
of this object or from an input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
beamforming direction.

'Input port' An input argument in each invocation of step specifies the
beamforming direction.

Default: 'Property'

Direction

Beamforming directions

Specify the beamforming directions of the beamformer as a two-row matrix. Each column of the
matrix has the form [AzimuthAngle; ElevationAngle] (in degrees). Each azimuth angle must be
between –180 and 180 degrees, and each elevation angle must be between –90 and 90 degrees. This
property applies when you set the DirectionSource property to 'Property'. This property can be
specified as single or double precision.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights
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To obtain the weights used in the beamformer, set this property to true and use the corresponding
output argument when invoking step. If you do not want to obtain the weights, set this property to
false.

Default: false

SubbandsOutputPort

Output subband center frequencies

To obtain the center frequencies of each subband, set this property to true and use the
corresponding output argument when invoking step. If you do not want to obtain the center
frequencies, set this property to false.

Default: false

Methods
step Beamforming using subband phase shifting

Common to All System Objects
release Allow System object property value changes

Examples

Subband Phase-Shift Beamformer for Underwater ULA

Apply subband phase-shift beamforming to an 11-element underwater ULA. The incident angle of a
wideband signal is 10° in azimuth and 30° in elevation. The carrier frequency is 2 kHz.

Create the ULA.

antenna = phased.ULA('NumElements',11,'ElementSpacing',0.3);
antenna.Element.FrequencyRange = [20 20000];

Create a chirp signal with noise.

fs = 1e3;
carrierFreq = 2e3;
t = (0:1/fs:2)';
x = chirp(t,0,2,fs);
c = 1500;
collector = phased.WidebandCollector('Sensor',antenna, ...
    'PropagationSpeed',c,'SampleRate',fs,...
    'ModulatedInput',true,'CarrierFrequency',carrierFreq);
incidentAngle = [10;30];
x = collector(x,incidentAngle);
noise = 0.3*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

Beamform in the direction of the incident angle.

beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',antenna, ...
    'Direction',incidentAngle,'OperatingFrequency',carrierFreq, ...
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    'PropagationSpeed',c,'SampleRate',fs,'SubbandsOutputPort',true, ...
    'WeightsOutputPort',true);
[y,w,subbandfreq] = beamformer(rx);

Plot the real part of the original and beamformed signals.

plot(t(1:300),real(rx(1:300,6)),'r:',t(1:300),real(y(1:300)))
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')

Plot the response pattern for five frequency bands.

pattern(antenna,subbandfreq(1:5).',[-180:180],0,'PropagationSpeed',c, ...
    'CoordinateSystem','rectangular','Weights',w(:,1:5))
legend('location','SouthEast')
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Algorithms
Beamforming Algorithm

The subband phase shift beamformer separates the signal into several subbands and applies
narrowband phase shift beamforming to the signal in each subband. The beamformed signals in all
the subbands are regrouped to form the output signal.

For further details, see [1].

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

See Also
phased.Collector | phased.PhaseShiftBeamformer | phased.TimeDelayBeamformer |
phased.WidebandCollector | phitheta2azel | uv2azel

Topics
“Wideband Beamforming”

Introduced in R2011a
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step
System object: phased.SubbandPhaseShiftBeamformer
Package: phased

Beamforming using subband phase shifting

Syntax
Y = step(H,X)
Y = step(H,X,ANG)
[Y,W] = step( ___ )
[Y,FREQ] = step( ___ )
[Y,W,FREQ] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) performs subband phase shift beamforming on the input, X, and returns the
beamformed output in Y.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This syntax is available when you set
the DirectionSource property to 'Input port'.

[Y,W] = step( ___ ) returns the beamforming weights, W. This syntax is available when you set the
WeightsOutputPort property to true.

[Y,FREQ] = step( ___ ) returns the center frequencies of subbands, FREQ. This syntax is available
when you set the SubbandsOutputPort property to true.

[Y,W,FREQ] = step( ___ ) returns beamforming weights and center frequencies of subbands. This
syntax is available when you set the WeightsOutputPort property to true and set the
SubbandsOutputPort property to true.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Beamformer object.
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X

Input signal, specified as an M-by-N matrix. If the sensor array contains subarrays, N is the number
of subarrays; otherwise, N is the number of elements. This argument can be specified as single or
double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

ANG

Beamforming directions, specified as a two-row matrix. Each column has the form [AzimuthAngle;
ElevationAngle], in degrees. Each azimuth angle must be between –180 and 180 degrees, and each
elevation angle must be between –90 and 90 degrees. This argument can be specified as single or
double precision.

Output Arguments
Y

Beamformed output. Y is an M-by-L matrix, where M is the number of rows of X and L is the number
of beamforming directions. This argument can be returned as single or double precision.

W

Beamforming weights. W has dimensions N-by-K-by-L. K is the number of subbands in the
NumSubbands property. L is the number of beamforming directions. If the sensor array contains
subarrays, N is the number of subarrays; otherwise, N is the number of elements. Each column of W
specifies the narrowband beamforming weights used in the corresponding subband for the
corresponding direction. This argument can be returned as single or double precision.

FREQ

Center frequencies of subbands. FREQ is a column vector of length K, where K is the number of
subbands in the NumSubbands property. This argument can be returned as single or double
precision.

Examples

Subband Phase-Shift Beamformer for Underwater ULA

Apply subband phase-shift beamforming to an 11-element underwater ULA. The incident angle of a
wideband signal is 10° in azimuth and 30° in elevation. The carrier frequency is 2 kHz.

Create the ULA.

antenna = phased.ULA('NumElements',11,'ElementSpacing',0.3);
antenna.Element.FrequencyRange = [20 20000];

Create a chirp signal with noise.

fs = 1e3;
carrierFreq = 2e3;
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t = (0:1/fs:2)';
x = chirp(t,0,2,fs);
c = 1500;
collector = phased.WidebandCollector('Sensor',antenna, ...
    'PropagationSpeed',c,'SampleRate',fs,...
    'ModulatedInput',true,'CarrierFrequency',carrierFreq);
incidentAngle = [10;30];
x = collector(x,incidentAngle);
noise = 0.3*(randn(size(x)) + 1j*randn(size(x)));
rx = x + noise;

Beamform in the direction of the incident angle.

beamformer = phased.SubbandPhaseShiftBeamformer('SensorArray',antenna, ...
    'Direction',incidentAngle,'OperatingFrequency',carrierFreq, ...
    'PropagationSpeed',c,'SampleRate',fs,'SubbandsOutputPort',true, ...
    'WeightsOutputPort',true);
[y,w,subbandfreq] = beamformer(rx);

Plot the real part of the original and beamformed signals.

plot(t(1:300),real(rx(1:300,6)),'r:',t(1:300),real(y(1:300)))
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')

Plot the response pattern for five frequency bands.
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pattern(antenna,subbandfreq(1:5).',[-180:180],0,'PropagationSpeed',c, ...
    'CoordinateSystem','rectangular','Weights',w(:,1:5))
legend('location','SouthEast')

Algorithms
The subband phase shift beamformer separates the signal into several subbands and applies
narrowband phase shift beamforming to the signal in each subband. The beamformed signals in all
the subbands are regrouped to form the output signal.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel
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phased.SumDifferenceMonopulseTracker
Package: phased

Sum and difference monopulse for ULA

Description
The SumDifferenceMonopulseTracker object implements a sum and difference monopulse
algorithm on a uniform linear array.

To estimate the direction of arrival (DOA):

1 Define and set up your sum and difference monopulse DOA estimator. See “Construction” on
page 1-1736.

2 Call step to estimate the DOA according to the properties of
phased.SumDifferenceMonopulseTracker. The behavior of step is specific to each object in
the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.SumDifferenceMonopulseTracker creates a tracker System object, H. The object
uses sum and difference monopulse algorithms on a uniform linear array (ULA).

H = phased.SumDifferenceMonopulseTracker(Name,Value) creates a ULA monopulse
tracker object, H, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.ULA object.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed. You can specify this property as single or double precision.

Default: 0

Methods

step Perform monopulse tracking using ULA

Common to All System Objects
release Allow System object property value changes

Examples

Find Target Direction Using Monopulse Tracker

Determine the direction of a target at a 60.1° broadside angle to a ULA starting with an approximate
direction of 60°

array = phased.ULA('NumElements',4);
steervec = phased.SteeringVector('SensorArray',array);
tracker = phased.SumDifferenceMonopulseTracker('SensorArray',array);
x = steervec(tracker.OperatingFrequency,60.1).';
est_dir = tracker(x,60)

est_dir = 60.1000

Algorithms
Monopulse Algorithm

The sum-and-difference monopulse algorithm is used to the estimate the arrival direction of a
narrowband signal impinging upon a uniform linear array (ULA). First, compute the conventional
response of an array steered to an arrival direction φ0. For a ULA, the arrival direction is specified by
the broadside angle. To specify that the maximum response axis (MRA) point towards the φ0
direction, set the weights to be
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ws = 1, eikdsinϕ0, eik2dsinϕ0, …, eik(N − 1)dsinϕ0

where d is the element spacing and k = 2π/λ is the wavenumber. An incoming plane wave, coming
from any arbitrary direction φ, is represented by

v = 1, eikdsinϕ, eik2dsinϕ, …, eik(N − 1)dsinϕ

The conventional response of this array to any incoming plane wave is given by ws
Hv φ  and is shown

in the polar plot below as the Sum Pattern. The array is designed to steer towards φ0 = 30°.

The second pattern, called the Difference Pattern, is obtained by using phased-reversed weights. The
weights are determined by phase-reversing the latter half of the conventional steering vector. For an
array with an even number of elements, the phase-reversed weights are

wd = − i 1, eikdsinϕ0, eik2dsinϕ0, …, eikN/2dsinϕ0, − eik(N/2 + 1)dsinϕ0, …, − eik(N − 1)dsinϕ0

(For an array with an odd number of elements, the middle weight is set to zero). The multiplicative
factor –i is used for convenience. The response of the difference array to the incoming vector is

wd
Hv φ

This figure shows the sum and difference beam patterns of a four-element uniform linear array (ULA)
steered 30° from broadside. The array elements are spaced at one-half wavelength. The sum pattern
shows that the array has its maximum response at 30° and the difference pattern has a null at 30°.
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The monopulse response curve is obtained by dividing the difference pattern by the sum pattern and
taking the real part.

R(φ) = Re
wd

Hv(φ)
ws

Hv(φ)

To use the monopulse response curve to obtain the arrival angle, φ, of a narrowband signal, x,
compute

z = Re
wd

Hx
ws

Hx

and invert the response curve, φ = R-1(z), to obtain φ.

The response curve is not generally single valued and can only be inverted when arrival angles lie
within the main lobe where it is single valued This figure shows the monopulse response curve within
the main lobe of the four-element ULA array.

There are two desirable properties of the monopulse response curve. The first is that it have a steep
slope. A steep slope insures robustness against noise. The second property is that the mainlobe be as
wide as possible. A steep slope is ensure by a larger array but leads to a smaller mainlobe. You will
need to trade off one property with the other.

For further details, see [1].
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Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D. Thesis. Georgia Institute of
Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.BeamscanEstimator | phased.SumDifferenceMonopulseTracker2D

Topics
“Target Tracking Using Sum-Difference Monopulse Radar”

Introduced in R2011a
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step
System object: phased.SumDifferenceMonopulseTracker
Package: phased

Perform monopulse tracking using ULA

Syntax
ESTANG = step(H,X,STANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

ESTANG = step(H,X,STANG) estimates the incoming direction ESTANG of the input signal, X, based
on an initial guess of the direction.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Tracker object of type phased.SumDifferenceMonopulseTracker.

X

Input signal, specified as a row vector whose number of columns corresponds to number of channels.
You can specify this argument as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

STANG

Initial guess of the direction, specified as a scalar that represents the broadside angle in degrees. A
typical initial guess is the current steering angle. The value of STANG is between –90 and 90. The
angle is defined in the array's local coordinate system. For details regarding the local coordinate
system of the ULA, type phased.ULA.coordinateSystemInfo. You can specify this argument as
single or double precision.
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Output Arguments
ESTANG

Estimate of incoming direction, returned as a scalar that represents the broadside angle in degrees.
The value is between –90 and 90. The angle is defined in the array's local coordinate system.

Examples

Find Target Direction Using Monopulse Tracker

Determine the direction of a target at a 60.1° broadside angle to a ULA starting with an approximate
direction of 60°

array = phased.ULA('NumElements',4);
steervec = phased.SteeringVector('SensorArray',array);
tracker = phased.SumDifferenceMonopulseTracker('SensorArray',array);
x = steervec(tracker.OperatingFrequency,60.1).';
est_dir = tracker(x,60)

est_dir = 60.1000

Algorithms
The sum-and-difference monopulse algorithm is used to the estimate the arrival direction of a
narrowband signal impinging upon a uniform linear array (ULA). First, compute the conventional
response of an array steered to an arrival direction φ0. For a ULA, the arrival direction is specified by
the broadside angle. To specify that the maximum response axis (MRA) point towards the φ0
direction, set the weights to be

ws = 1, eikdsinϕ0, eik2dsinϕ0, …, eik(N − 1)dsinϕ0

where d is the element spacing and k = 2π/λ is the wavenumber. An incoming plane wave, coming
from any arbitrary direction φ, is represented by

v = 1, eikdsinϕ, eik2dsinϕ, …, eik(N − 1)dsinϕ

The conventional response of this array to any incoming plane wave is given by ws
Hv φ  and is shown

in the polar plot below as the Sum Pattern. The array is designed to steer towards φ0 = 30°.

The second pattern, called the Difference Pattern, is obtained by using phased-reversed weights. The
weights are determined by phase-reversing the latter half of the conventional steering vector. For an
array with an even number of elements, the phase-reversed weights are

wd = − i 1, eikdsinϕ0, eik2dsinϕ0, …, eikN/2dsinϕ0, − eik(N/2 + 1)dsinϕ0, …, − eik(N − 1)dsinϕ0

(For an array with an odd number of elements, the middle weight is set to zero). The multiplicative
factor –i is used for convenience. The response of the difference array to the incoming vector is

wd
Hv φ
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This figure shows the sum and difference beam patterns of a four-element uniform linear array (ULA)
steered 30° from broadside. The array elements are spaced at one-half wavelength. The sum pattern
shows that the array has its maximum response at 30° and the difference pattern has a null at 30°.

The monopulse response curve is obtained by dividing the difference pattern by the sum pattern and
taking the real part.

R(φ) = Re
wd

Hv(φ)
ws

Hv(φ)

To use the monopulse response curve to obtain the arrival angle, φ, of a narrowband signal, x,
compute

z = Re
wd

Hx
ws

Hx

and invert the response curve, φ = R-1(z), to obtain φ.

The response curve is not generally single valued and can only be inverted when arrival angles lie
within the main lobe where it is single valued This figure shows the monopulse response curve within
the main lobe of the four-element ULA array.
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There are two desirable properties of the monopulse response curve. The first is that it have a steep
slope. A steep slope insures robustness against noise. The second property is that the mainlobe be as
wide as possible. A steep slope is ensure by a larger array but leads to a smaller mainlobe. You will
need to trade off one property with the other.

For further details, see [1].

References

[1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D. Thesis. Georgia Institute of
Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House, 1980.
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phased.SumDifferenceMonopulseTracker2D
Package: phased

Sum and difference monopulse for URA

Description
The SumDifferenceMonopulseTracker2D object implements a sum and difference monopulse
algorithm for a uniform rectangular array.

To estimate the direction of arrival (DOA):

1 Define and set up your sum and difference monopulse DOA estimator. See “Construction” on
page 1-1745.

2 Call step to estimate the DOA according to the properties of
phased.SumDifferenceMonopulseTracker2D. The behavior of step is specific to each object
in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.SumDifferenceMonopulseTracker2D creates a tracker System object, H. The object
uses sum and difference monopulse algorithms on a uniform rectangular array (URA).

H = phased.SumDifferenceMonopulseTracker2D(Name,Value) creates a URA monopulse
tracker object, H, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be a phased.URA object.

Default: phased.URA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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OperatingFrequency

System operating frequency

Specify the operating frequency of the system in hertz as a positive scalar. The default value
corresponds to 300 MHz. You can specify this property as single or double precision.

Default: 3e8

NumPhaseShifterBits

Number of phase shifter quantization bits

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed. You can specify this property as single or double precision.

Default: 0

Methods
step Perform monopulse tracking using URA

Common to All System Objects
release Allow System object property value changes

Examples

Find Target Direction Using Sum-Difference 2D Monopulse Tracker

Using a URA, determine the direction of a target at approximately 60° azimuth and 20° elevation.

array = phased.URA('Size',4);
steeringvec = phased.SteeringVector('SensorArray',array);
tracker = phased.SumDifferenceMonopulseTracker2D('SensorArray',array);
x = steeringvec(tracker.OperatingFrequency,[60.1; 19.5]).';
est_dir = tracker(x,[60; 20])

est_dir = 2×1

   60.1000
   19.5000

Algorithms
Monopulse Algorithm

The sum-and-difference monopulse algorithm is used to the estimate the arrival direction of a
narrowband signal impinging upon a uniform linear array (ULA). First, compute the conventional
response of an array steered to an arrival direction φ0. For a ULA, the arrival direction is specified by
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the broadside angle. To specify that the maximum response axis (MRA) point towards the φ0
direction, set the weights to be

ws = 1, eikdsinϕ0, eik2dsinϕ0, …, eik(N − 1)dsinϕ0

where d is the element spacing and k = 2π/λ is the wavenumber. An incoming plane wave, coming
from any arbitrary direction φ, is represented by

v = 1, eikdsinϕ, eik2dsinϕ, …, eik(N − 1)dsinϕ

The conventional response of this array to any incoming plane wave is given by ws
Hv φ  and is shown

in the polar plot below as the Sum Pattern. The array is designed to steer towards φ0 = 30°.

The second pattern, called the Difference Pattern, is obtained by using phased-reversed weights. The
weights are determined by phase-reversing the latter half of the conventional steering vector. For an
array with an even number of elements, the phase-reversed weights are

wd = − i 1, eikdsinϕ0, eik2dsinϕ0, …, eikN/2dsinϕ0, − eik(N/2 + 1)dsinϕ0, …, − eik(N − 1)dsinϕ0

(For an array with an odd number of elements, the middle weight is set to zero). The multiplicative
factor –i is used for convenience. The response of the difference array to the incoming vector is

wd
Hv φ

This figure shows the sum and difference beam patterns of a four-element uniform linear array (ULA)
steered 30° from broadside. The array elements are spaced at one-half wavelength. The sum pattern
shows that the array has its maximum response at 30° and the difference pattern has a null at 30°.
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The monopulse response curve is obtained by dividing the difference pattern by the sum pattern and
taking the real part.

R(φ) = Re
wd

Hv(φ)
ws

Hv(φ)

To use the monopulse response curve to obtain the arrival angle, φ, of a narrowband signal, x,
compute

z = Re
wd

Hx
ws

Hx

and invert the response curve, φ = R-1(z), to obtain φ.

The response curve is not generally single valued and can only be inverted when arrival angles lie
within the main lobe where it is single valued This figure shows the monopulse response curve within
the main lobe of the four-element ULA array.
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There are two desirable properties of the monopulse response curve. The first is that it have a steep
slope. A steep slope insures robustness against noise. The second property is that the mainlobe be as
wide as possible. A steep slope is ensure by a larger array but leads to a smaller mainlobe. You will
need to trade off one property with the other.

For further details, see [1].

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References
[1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D. Thesis. Georgia Institute of

Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.BeamscanEstimator | phased.SumDifferenceMonopulseTracker

Introduced in R2011a
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step
System object: phased.SumDifferenceMonopulseTracker2D
Package: phased

Perform monopulse tracking using URA

Syntax
ESTANG = step(H,X,STANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

ESTANG = step(H,X,STANG) estimates the incoming direction ESTANG of the input signal, X, based
on an initial guess of the direction.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Tracker object of type phased.SumDifferenceMonopulseTracker2D.

X

Input signal, specified as a row vector whose number of columns corresponds to number of channels.
You can specify this argument as single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

STANG

Initial guess of the direction, specified as a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle] in degrees. A typical initial guess is the current steering angle. Azimuth angles
must be between –180 and 180. Elevation angles must be between –90 and 90. Angles are measured
in the local coordinate system of the array. For details regarding the local coordinate system of the
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URA, type phased.URA.coordinateSystemInfo. You can specify this argument as single or
double precision.

Output Arguments
ESTANG

Estimate of incoming direction, returned as a 2-by-1 vector in the form [AzimuthAngle;
ElevationAngle] in degrees. Azimuth angles are between –180 and 180. Elevation angles are
between –90 and 90. Angles are measured in the local coordinate system of the array.

Examples

Find Target Direction Using Sum-Difference 2D Monopulse Tracker

Using a URA, determine the direction of a target at approximately 60° azimuth and 20° elevation.

array = phased.URA('Size',4);
steeringvec = phased.SteeringVector('SensorArray',array);
tracker = phased.SumDifferenceMonopulseTracker2D('SensorArray',array);
x = steeringvec(tracker.OperatingFrequency,[60.1; 19.5]).';
est_dir = tracker(x,[60; 20])

est_dir = 2×1

   60.1000
   19.5000

Algorithms
The sum-and-difference monopulse algorithm is used to the estimate the arrival direction of a
narrowband signal impinging upon a uniform linear array (ULA). First, compute the conventional
response of an array steered to an arrival direction φ0. For a ULA, the arrival direction is specified by
the broadside angle. To specify that the maximum response axis (MRA) point towards the φ0
direction, set the weights to be

ws = 1, eikdsinϕ0, eik2dsinϕ0, …, eik(N − 1)dsinϕ0

where d is the element spacing and k = 2π/λ is the wavenumber. An incoming plane wave, coming
from any arbitrary direction φ, is represented by

v = 1, eikdsinϕ, eik2dsinϕ, …, eik(N − 1)dsinϕ

The conventional response of this array to any incoming plane wave is given by ws
Hv φ  and is shown

in the polar plot below as the Sum Pattern. The array is designed to steer towards φ0 = 30°.

The second pattern, called the Difference Pattern, is obtained by using phased-reversed weights. The
weights are determined by phase-reversing the latter half of the conventional steering vector. For an
array with an even number of elements, the phase-reversed weights are
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wd = − i 1, eikdsinϕ0, eik2dsinϕ0, …, eikN/2dsinϕ0, − eik(N/2 + 1)dsinϕ0, …, − eik(N − 1)dsinϕ0

(For an array with an odd number of elements, the middle weight is set to zero). The multiplicative
factor –i is used for convenience. The response of the difference array to the incoming vector is

wd
Hv φ

This figure shows the sum and difference beam patterns of a four-element uniform linear array (ULA)
steered 30° from broadside. The array elements are spaced at one-half wavelength. The sum pattern
shows that the array has its maximum response at 30° and the difference pattern has a null at 30°.

The monopulse response curve is obtained by dividing the difference pattern by the sum pattern and
taking the real part.

R(φ) = Re
wd

Hv(φ)
ws

Hv(φ)

To use the monopulse response curve to obtain the arrival angle, φ, of a narrowband signal, x,
compute

z = Re
wd

Hx
ws

Hx

and invert the response curve, φ = R-1(z), to obtain φ.
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The response curve is not generally single valued and can only be inverted when arrival angles lie
within the main lobe where it is single valued This figure shows the monopulse response curve within
the main lobe of the four-element ULA array.

There are two desirable properties of the monopulse response curve. The first is that it have a steep
slope. A steep slope insures robustness against noise. The second property is that the mainlobe be as
wide as possible. A steep slope is ensure by a larger array but leads to a smaller mainlobe. You will
need to trade off one property with the other.

For further details, see [1].

References

[1] Seliktar, Y. Space-Time Adaptive Monopulse Processing. Ph.D. Thesis. Georgia Institute of
Technology, Atlanta, 1998.

[2] Rhodes, D. Introduction to Monopulse. Dedham, MA: Artech House, 1980.

See Also
azel2phitheta | azel2uv | phitheta2azel | uv2azel
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phased.TimeDelayBeamformer
Package: phased

Time delay beamformer

Description
The TimeDelayBeamformer object implements a time delay beamformer.

To compute the beamformed signal:

1 Define and set up your time delay beamformer. See “Construction” on page 1-1755.
2 Call step to perform the beamforming operation according to the properties of

phased.TimeDelayBeamformer. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.TimeDelayBeamformer creates a time delay beamformer System object, H. The object
performs delay and sum beamforming on the received signal using time delays.

H = phased.TimeDelayBeamformer(Name,Value) creates a time delay beamformer object, H,
with each specified property Name set to the specified Value. You can specify additional name-value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be an array object in the phased
package. The array cannot contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.

Default: Speed of light
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SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar. This property can be specified as single
or double precision.

Default: 1e6

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction comes from the Direction property of this object or
from an input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
beamforming direction.

'Input port' An input argument in each invocation of step specifies the
beamforming direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column vector of length 2. The direction is
specified in the format of [AzimuthAngle; ElevationAngle] (in degrees). The azimuth angle is
between –180 and 180. The elevation angle is between –90 and 90. This property applies when you
set the DirectionSource property to 'Property'. This property can be specified as single or
double precision.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to true and use the corresponding
output argument when invoking step. If you do not want to obtain the weights, set this property to
false.

Default: false

Methods

step Perform time delay beamforming

Common to All System Objects
release Allow System object property value changes
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Examples

Time-Delay Beamformer Applied to ULA

Apply a time-delay beamformer to an 11-element uniform linear acoustic array. The arrival angle of
the signal is -50 degrees in azimuth and 30 degrees in elevation. The arriving signal is a 0.3 second
segment of a linear FM chirp having a 500 Hz bandwidth. Assume the speed of sound in air is 340.0
m/s.

Simulate the arriving signal at the wideband collector.

microphone = phased.CustomMicrophoneElement('FrequencyVector',[20,20000],'FrequencyResponse',[1,1]);
array = phased.ULA('Element',microphone,'NumElements',11,'ElementSpacing',0.04);
fs = 8000;
t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340;
collector = phased.WidebandCollector('Sensor',array,...
    'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50;30];
x = collector(x.',incidentAngle);

Add white gaussian random noise to the signal.

sigma = 0.2;
noise = sigma*randn(size(x));
rx = x + noise;

Beamform the incident signals using a time-delay beamformer.

beamformer = phased.TimeDelayBeamformer('SensorArray',array,...
    'SampleRate',fs,'PropagationSpeed',c,...
    'Direction',incidentAngle);
y = beamformer(rx);

Plot the beamformed signal against the incident signal at the middle sensor of the array.

plot(t,rx(:,6),'r:',t,y)
xlabel('Time (sec)')
ylabel('Amplitude')
legend('Original','Beamformed')
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Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Requires dynamic memory allocation. See “Limitations for System Objects that Require Dynamic
Memory Allocation”.
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• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
phased.FrostBeamformer | phased.PhaseShiftBeamformer |
phased.SubbandPhaseShiftBeamformer | phased.TimeDelayLCMVBeamformer |
phitheta2azel | uv2azel

Topics
“Wideband Beamforming”

Introduced in R2011a
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step
System object: phased.TimeDelayBeamformer
Package: phased

Perform time delay beamforming

Syntax
Y = step(H,X)
Y = step(H,X,ANG)
[Y,W] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) performs time delay beamforming on the input, X, and returns the beamformed
output in Y. X is an M-by-N matrix where N is the number of elements of the sensor array. Y is a
column vector of length M.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Y = step(H,X,ANG) uses ANG as the beamforming direction. This syntax is available when you set
the DirectionSource property to'Input port'. ANG is a column vector of length 2 in the form of
[AzimuthAngle; ElevationAngle] (in degrees). The azimuth angle must be between –180 and
180 degrees, and the elevation angle must be between –90 and 90 degrees.

[Y,W] = step( ___ ) returns additional output, W, as the beamforming weights. This syntax is
available when you set the WeightsOutputPort property to true. W is a column vector of length N.
For a time delay beamformer, the weights are constant because the beamformer simply adds all the
channels together and scales the result to preserve the signal power.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

All input and output arguments can be single or double precision.

Examples
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Time-Delay Beamformer Applied to ULA

Apply a time-delay beamformer to an 11-element uniform linear acoustic array. The arrival angle of
the signal is -50 degrees in azimuth and 30 degrees in elevation. The arriving signal is a 0.3 second
segment of a linear FM chirp having a 500 Hz bandwidth. Assume the speed of sound in air is 340.0
m/s.

Simulate the arriving signal at the wideband collector.

microphone = phased.CustomMicrophoneElement('FrequencyVector',[20,20000],'FrequencyResponse',[1,1]);
array = phased.ULA('Element',microphone,'NumElements',11,'ElementSpacing',0.04);
fs = 8000;
t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340;
collector = phased.WidebandCollector('Sensor',array,...
    'PropagationSpeed',c,'SampleRate',fs,'ModulatedInput',false);
incidentAngle = [-50;30];
x = collector(x.',incidentAngle);

Add white gaussian random noise to the signal.

sigma = 0.2;
noise = sigma*randn(size(x));
rx = x + noise;

Beamform the incident signals using a time-delay beamformer.

beamformer = phased.TimeDelayBeamformer('SensorArray',array,...
    'SampleRate',fs,'PropagationSpeed',c,...
    'Direction',incidentAngle);
y = beamformer(rx);

Plot the beamformed signal against the incident signal at the middle sensor of the array.

plot(t,rx(:,6),'r:',t,y)
xlabel('Time (sec)')
ylabel('Amplitude')
legend('Original','Beamformed')
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See Also
phitheta2azel | uv2azel
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phased.TimeDelayLCMVBeamformer
Package: phased

Time delay LCMV beamformer

Description
The TimeDelayLCMVBeamformer object implements a time-delay linear constraint minimum
variance beamformer.

To compute the beamformed signal:

1 Define and set up your time-delay LCMV beamformer. See “Construction” on page 1-1763.
2 Call step to perform the beamforming operation according to the properties of

phased.TimeDelayLCMVBeamformer. The behavior of step is specific to each object in the
toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.TimeDelayLCMVBeamformer creates a time-delay linear constraint minimum variance
(LCMV) beamformer System object, H. The object performs time delay LCMV beamforming on the
received signal.

H = phased.TimeDelayLCMVBeamformer(Name,Value) creates a time-delay LCMV beamformer
object, H, with each specified property Name set to the specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
SensorArray

Handle to sensor array

Specify the sensor array as a handle. The sensor array must be an array object in the phased
package. The array cannot contain subarrays.

Default: phased.ULA with default property values

PropagationSpeed

Signal propagation speed

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can specify
this property as single or double precision.
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Default: Speed of light

SampleRate

Signal sampling rate

Specify the signal sampling rate (in hertz) as a positive scalar. This property can be specified as single
or double precision.

Default: 1e6

FilterLength

FIR filter length

Specify the length of the FIR filter behind each sensor element in the array as a positive integer. This
property can be specified as single or double precision.

Default: 2

Constraint

Constraint matrix

Specify the constraint matrix used for time-delay LCMV beamformer as an M-by-K matrix. Each
column of the matrix is a constraint and M is the number of degrees of freedom of the beamformer.
For a time-delay LCMV beamformer, the number of degrees of freedom is the product of the number
of elements of the array and the filter length specified by the value of the FilterLength property.
This property can be specified as single or double precision.

Default: [1;1]

DesiredResponse

Desired response vector

Specify the desired response used for time-delay LCMV beamformer as a column vector of length K,
where K is the number of constraints in the Constraint property. Each element in the vector defines
the desired response of the constraint specified in the corresponding column of the Constraint
property. This property can be specified as single or double precision.

Default: 1, which is equivalent to a distortionless response

DiagonalLoadingFactor

Diagonal loading factor

Specify the diagonal loading factor as a positive scalar. Diagonal loading is a technique used to
achieve robust beamforming performance, especially when the sample support is small. This property
is tunable. This property can be specified as single or double precision.

Default: 0

TrainingInputPort

Add input to specify training data
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To specify additional training data, set this property to true and use the corresponding input
argument when you invoke step. To use the input signal as the training data, set this property to
false.

Default: false

DirectionSource

Source of beamforming direction

Specify whether the beamforming direction comes from the Direction property of this object or
from an input argument in step. Values of this property are:

'Property' The Direction property of this object specifies the
beamforming direction.

'Input port' An input argument in each invocation of step specifies the
beamforming direction.

Default: 'Property'

Direction

Beamforming direction

Specify the beamforming direction of the beamformer as a column vector of length 2. The direction is
specified in the format of [AzimuthAngle; ElevationAngle] (in degrees). The azimuth angle is
between –180° and 180°. The elevation angle is between –90° and 90°. This property applies when
you set the DirectionSource property to 'Property'. This property can be specified as single or
double precision.

Default: [0; 0]

WeightsOutputPort

Output beamforming weights

To obtain the weights used in the beamformer, set this property to true and use the corresponding
output argument when invoking step. If you do not want to obtain the weights, set this property to
false.

Default: false

Methods

step Perform time-delay LCMV beamforming

Common to All System Objects
release Allow System object property value changes

Examples
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Time-Delay LCMV Beamformer

Apply a time delay LCMV beamformer to an 11-element acoustic ULA array. The elements are
omnidirectional microphones. The incident angle of the signal is -50 degrees in azimuth and 30
degrees in elevation. The incident signal is an FM chirp with 500 Hz bandwidth. The propagation
speed is a typical speed of sound in air, 340 m/s.

Simulate the signal and add noise.

nElem = 11;
microphone = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20000]);
array = phased.ULA('Element',microphone,'NumElements',nElem,'ElementSpacing',0.04);
fs = 8000;
t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340;
collector = phased.WidebandCollector('Sensor',array,...
    'PropagationSpeed',c,'SampleRate',fs,...
    'ModulatedInput',false);
incidentAngle = [-50;30];
x = collector(x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x + noise;

Create and apply the time-delay LCMV beamformer. Specify a filterlength of 5.

filterLength = 5;
constraintMatrix = kron(eye(filterLength),ones(nElem,1));
desiredResponseVector = eye(filterLength,1);
beamformer = phased.TimeDelayLCMVBeamformer('SensorArray',array,...
    'PropagationSpeed',c,'SampleRate',fs,'FilterLength',filterLength,...
    'Direction',incidentAngle,'Constraint',constraintMatrix,...
    'DesiredResponse',desiredResponseVector);
y = beamformer(rx);

Compare the beamformer output to the input to the middle sensor.

plot(t,rx(:,6),'r:',t,y)
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')
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Algorithms
Beamforming Algorithms

The beamforming algorithm is the time-domain counterpart of the narrowband linear constraint
minimum variance (LCMV) beamformer. The algorithm does the following:

1 Steers the array to the beamforming direction.
2 Applies an FIR filter to the output of each sensor to achieve the specified constraints. The filter is

specific to each sensor.

Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References
[1] Frost, O. “An Algorithm For Linearly Constrained Adaptive Array Processing”, Proceedings of the

IEEE. Vol. 60, Number 8, August, 1972, pp. 926–935.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Requires dynamic memory allocation. See “Limitations for System Objects that Require Dynamic
Memory Allocation”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
phased.FrostBeamformer | phased.PhaseShiftBeamformer |
phased.SubbandPhaseShiftBeamformer | phased.TimeDelayBeamformer | phitheta2azel |
uv2azel

Topics
“Wideband Beamforming”

Introduced in R2011a
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step
System object: phased.TimeDelayLCMVBeamformer
Package: phased

Perform time-delay LCMV beamforming

Syntax
Y = step(H,X)
Y = step(H,X,XT)
Y = step(H,X,ANG)
[Y,W] = step( ___ )

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) performs time-delay LCMV beamforming on the input, X, and returns the
beamformed output in Y. X is an M-by-N matrix where N is the number of elements of the sensor
array. M must be larger than the FIR filter length specified in the FilterLength property. Y is a
column vector of length M.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Y = step(H,X,XT) uses XT as the training samples to calculate the beamforming weights when you
set the TrainingInputPort property to true. XT is an M-by-N matrix where N is the number of
elements of the sensor array. M must be larger than the FIR filter length specified in the
FilterLength property.

Y = step(H,X,ANG) uses ANG as the beamforming direction, when you set the DirectionSource
property to 'Input port'. ANG is a column vector of length 2 in the form of [AzimuthAngle;
ElevationAngle] (in degrees). The azimuth angle must be between –180° and 180°, and the
elevation angle must be between –90° and 90°.

You can combine optional input arguments when their enabling properties are set: Y =
step(H,X,XT,ANG)

[Y,W] = step( ___ ) returns additional output, W, as the beamforming weights when you set the
WeightsOutputPort property to true. W is a column vector of length L, where L is the number of
degrees of freedom of the beamformer. For a time-delay LCMV beamformer, the number of degrees of
freedom is given by the product of the number of elements of the array and the filter length specified
by the value of the FilterLength property.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
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the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

All input and output arguments can be single or double precision.

Examples

Time-Delay LCMV Beamformer

Apply a time delay LCMV beamformer to an 11-element acoustic ULA array. The elements are
omnidirectional microphones. The incident angle of the signal is -50 degrees in azimuth and 30
degrees in elevation. The incident signal is an FM chirp with 500 Hz bandwidth. The propagation
speed is a typical speed of sound in air, 340 m/s.

Simulate the signal and add noise.

nElem = 11;
microphone = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20000]);
array = phased.ULA('Element',microphone,'NumElements',nElem,'ElementSpacing',0.04);
fs = 8000;
t = 0:1/fs:0.3;
x = chirp(t,0,1,500);
c = 340;
collector = phased.WidebandCollector('Sensor',array,...
    'PropagationSpeed',c,'SampleRate',fs,...
    'ModulatedInput',false);
incidentAngle = [-50;30];
x = collector(x.',incidentAngle);
noise = 0.2*randn(size(x));
rx = x + noise;

Create and apply the time-delay LCMV beamformer. Specify a filterlength of 5.

filterLength = 5;
constraintMatrix = kron(eye(filterLength),ones(nElem,1));
desiredResponseVector = eye(filterLength,1);
beamformer = phased.TimeDelayLCMVBeamformer('SensorArray',array,...
    'PropagationSpeed',c,'SampleRate',fs,'FilterLength',filterLength,...
    'Direction',incidentAngle,'Constraint',constraintMatrix,...
    'DesiredResponse',desiredResponseVector);
y = beamformer(rx);

Compare the beamformer output to the input to the middle sensor.

plot(t,rx(:,6),'r:',t,y)
xlabel('Time')
ylabel('Amplitude')
legend('Original','Beamformed')
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Algorithms
The beamforming algorithm is the time-domain counterpart of the narrowband linear constraint
minimum variance (LCMV) beamformer. The algorithm does the following:

1 Steers the array to the beamforming direction.
2 Applies an FIR filter to the output of each sensor to achieve the specified constraints. The filter is

specific to each sensor.

See Also
phitheta2azel | uv2azel
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phased.TimeVaryingGain
Package: phased

Time varying gain control

Description
The TimeVaryingGain object applies a time varying gain to input signals. Time varying gain (TVG)
is sometimes called automatic gain control (AGC).

To apply the time varying gain to the signal:

1 Define and set up your time varying gain controller. See “Construction” on page 1-1772.
2 Call step to apply the time varying gain according to the properties of

phased.TimeVaryingGain. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.TimeVaryingGain creates a time varying gain control System object, H. The object
applies a time varying gain to the input signal to compensate for the signal power loss due to the
range.

H = phased.TimeVaryingGain(Name,Value) creates an object, H, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

Properties
RangeLossSource

Source of range losses

Specify the source of range losses as either 'Property' or 'Input port'. When you specify
RangeLossSource as 'Property', the range loss for each sample is set in the RangeLoss
property. When you specify the RangeLossSource as 'Input port', the range losses are specified
using an input argument to the step method.

Default: 'Property'

RangeLoss

Loss at each input sample range

Specify the loss due to range as a vector — elements correspond to the samples in the input signal.
Units are in dB. This property can have single or double precision.
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Default: 0

ReferenceLoss

Loss at reference range

Specify the loss at a given reference range as a scalar. Units are in dB. This property can have single
or double precision.

Default: 0

Methods

step Apply time varying gains to input signal

Common to All System Objects
release Allow System object property value changes

Examples

Apply Time Varying Gain to Adjust for Range Loss

Apply time varying gain to a signal to compensate for signal power loss due to range.

First, create a signal with range loss. Set the reference loss to 16 dB.

rngloss = 10:22;
refloss = 16;
t = (1:length(rngloss))';
x = 1./db2mag(rngloss(:));

Then add gain to compensate for range loss.

gain = phased.TimeVaryingGain('RangeLoss',rngloss,'ReferenceLoss',refloss);
y = gain(x);

Plot the signal with loss and the compensated signal.

tref = find(rngloss==refloss);
stem([t t],[abs(x) abs(y)])
hold on
stem(tref,x(tref),'filled','r')
xlabel('Time (s)'); ylabel('Magnitude (V)')
grid on
legend('Before time varying gain','After time varying gain',...
    'Reference range')
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Algorithms
Data Precision

This System object supports single and double precision for input data, properties, and arguments. If
the input data X is single precision, the output data is single precision. If the input data X is double
precision, the output data is double precision. The precision of the output is independent of the
precision of the properties and other arguments.

References

[1] Edde, B. Radar: Principles, Technology, Applications. Englewood Cliffs, NJ: Prentice Hall, 1993.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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• See “System Objects in MATLAB Code Generation” (MATLAB Coder).
• This System object supports single and double precision for input data, properties, and

arguments. If the input data X is single precision, the output data is single precision. If the input
data X is double precision, the output data is double precision. The precision of the output is
independent of the precision of the properties and other arguments.

See Also
phased.MatchedFilter | pulsint

Introduced in R2011a
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step
System object: phased.TimeVaryingGain
Package: phased

Apply time varying gains to input signal

Syntax
Y = step(H,X)
Y = step(H,X,L)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) applies time varying gains to the input signal matrix X. The process equalizes power
levels across all samples to match a given reference range. The compensated signal is returned in Y.
X can be a column vector, a matrix, or a cube. The gain is applied to each column in X independently.
The number of rows in X cannot exceed the length of the loss vector specified in the RangeLoss
property. Y has the same dimensionality as X. X can be single or double precision.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Y = step(H,X,L) in addition, specifies the range loss, L as a columns vector. Use this argument
only when you set the RangeLossSource property to 'Input port'. The length of L must be equal
to or greater than the number of rows of X. L can be single or double precision.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Examples

Apply Time Varying Gain to Adjust for Range Loss

Apply time varying gain to a signal to compensate for signal power loss due to range.

First, create a signal with range loss. Set the reference loss to 16 dB.

rngloss = 10:22;
refloss = 16;
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t = (1:length(rngloss))';
x = 1./db2mag(rngloss(:));

Then add gain to compensate for range loss.

gain = phased.TimeVaryingGain('RangeLoss',rngloss,'ReferenceLoss',refloss);
y = gain(x);

Plot the signal with loss and the compensated signal.

tref = find(rngloss==refloss);
stem([t t],[abs(x) abs(y)])
hold on
stem(tref,x(tref),'filled','r')
xlabel('Time (s)'); ylabel('Magnitude (V)')
grid on
legend('Before time varying gain','After time varying gain',...
    'Reference range')
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phased.Transmitter
Package: phased

Transmitter

Description
The Transmitter object implements a waveform transmitter.

To compute the transmitted signal:

1 Define and set up your waveform transmitter. See “Construction” on page 1-1778.
2 Call step to compute the transmitted signal according to the properties of

phased.Transmitter. The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.Transmitter creates a transmitter System object, H. This object transmits the input
waveform samples with specified peak power.

H = phased.Transmitter(Name,Value) creates a transmitter object, H, with each specified
property Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).

Properties
PeakPower

Peak power

Specify the transmit peak power (in watts) as a positive scalar.

Default: 5000

Gain

Transmit gain

Specify the transmit gain (in decibels) as a real scalar.

Default: 20

LossFactor

Loss factor
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Specify the transmit loss factor (in decibels) as a nonnegative scalar.

Default: 0

InUseOutputPort

Enable transmitter status output

To obtain the transmitter in-use status for each output sample, set this property to true and use the
corresponding output argument when invoking step. In this case, 1's indicate the transmitter is on,
and 0's indicate the transmitter is off. If you do not want to obtain the transmitter in-use status, set
this property to false.

Default: false

CoherentOnTransmit

Preserve coherence among pulses

Specify whether to preserve coherence among transmitted pulses. When you set this property to
true, the transmitter does not introduce any random phase to the output pulses. When you set this
property to false, the transmitter adds a random phase noise to each transmitted pulse. The random
phase noise is introduced by multiplication of the pulse by ejϕwhere ϕ is a uniform random variable on
the interval [0,2π].

Default: true

PhaseNoiseOutputPort

Enable pulse phase noise output

To obtain the introduced transmitter random phase noise for each output sample, set this property to
true and use the corresponding output argument when invoking step. You can use in the receiver to
simulate coherent on receive systems. If you do not want to obtain the random phase noise, set this
property to false. This property applies when you set the CoherentOnTransmit property to
false.

Default: false

SeedSource

Source of seed for random number generator

'Auto' The default MATLAB random number generator produces the
random numbers. Use 'Auto' if you are using this object with
Parallel Computing Toolbox software.

'Property' The object uses its own private random number generator to
produce random numbers. The Seed property of this object
specifies the seed of the random number generator. Use
'Property' if you want repeatable results and are not using this
object with Parallel Computing Toolbox software.

This property applies when you set the CoherentOnTransmit property to false.

Default: 'Auto'
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Seed

Seed for random number generator

Specify the seed for the random number generator as a scalar integer between 0 and 232–1. This
property applies when you set the CoherentOnTransmit property to false and the SeedSource
property to 'Property'.

Default: 0

Methods

reset Reset states of transmitter object
step Transmit pulses

Common to All System Objects
release Allow System object property value changes

Examples

Transmit LFM Pulse

Transmit a pulse containing a linear FM waveform with a bandwidth of 5 MHz. The sample rate is 10
MHz and the pulse repetition frequency is 10 kHz.

fs = 1e7;
waveform = phased.LinearFMWaveform('SampleRate',fs, ...
    'PulseWidth',1e-5,'SweepBandwidth',5e6);
x = waveform();
transmitter = phased.Transmitter('PeakPower',5e3);
y = transmitter(x);

References

[1] Edde, B. Radar: Principles, Technology, Applications. Englewood Cliffs, NJ: Prentice Hall, 1993.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

[3] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).
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See Also
phased.Radiator | phased.ReceiverPreamp

Introduced in R2011a
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reset
System object: phased.Transmitter
Package: phased

Reset states of transmitter object

Syntax
reset(H)

Description
reset(H) resets the states of the Transmitter object, H. This method resets the random number
generator state if the SeedSource property is applicable and has the value 'Property'.
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step
System object: phased.Transmitter
Package: phased

Transmit pulses

Syntax
Y = step(H,X)
[Y,STATUS] = step(H,X)
[Y,PHNOISE] = step(H,X)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X) returns the transmitted signal Y, based on the input waveform X. Y is the amplified
X where the amplification is based on the characteristics of the transmitter, such as the peak power
and the gain.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

[Y,STATUS] = step(H,X) returns additional output STATUS as the on/off status of the transmitter
when the InUseOutputPort property is true. STATUS is a logical vector where true indicates the
transmitter is on for the corresponding sample time, and false indicates the transmitter is off.

[Y,PHNOISE] = step(H,X) returns the additional output PHNOISE as the random phase noise
added to each transmitted sample when the CoherentOnTransmit property is false and the
PhaseNoiseOutputPort property is true. PHNOISE is a vector which has the same dimension as Y.
Each element in PHNOISE contains the random phase between 0 and 2*pi, added to the
corresponding sample in Y by the transmitter.

You can combine optional output arguments when their enabling properties are set. Optional outputs
must be listed in the same order as the order of the enabling properties. For example:

[Y,STATUS,PHNOISE] = step(H,X)

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Examples

Transmit LFM Pulse

Transmit a pulse containing a linear FM waveform with a bandwidth of 5 MHz. The sample rate is 10
MHz and the pulse repetition frequency is 10 kHz.

fs = 1e7;
waveform = phased.LinearFMWaveform('SampleRate',fs, ...
    'PulseWidth',1e-5,'SweepBandwidth',5e6);
x = waveform();
transmitter = phased.Transmitter('PeakPower',5e3);
y = transmitter(x);
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phased.TwoRayChannel
Package: phased

Two-ray propagation channel

Description
The phased.TwoRayChannel models a narrowband two-ray propagation channel. A two-ray
propagation channel is the simplest type of multipath channel. You can use a two-ray channel to
simulate propagation of signals in a homogeneous, isotropic medium with a single reflecting
boundary. This type of medium has two propagation paths: a line-of-sight (direct) propagation path
from one point to another and a ray path reflected from the boundary. You can use this System object
for short-range radar and mobile communications applications where the signals propagate along
straight paths and the earth is assumed to be flat. You can also use this object for sonar and
microphone applications. For acoustic applications, you can choose the fields to be non-polarized and
adjust the propagation speed to be the speed of sound in air or water. You can use
phased.TwoRayChannel to model propagation from several points simultaneously.

While the System object works for all frequencies, the attenuation models for atmospheric gases and
rain are valid for electromagnetic signals in the frequency range 1–1000 GHz only. The attenuation
model for fog and clouds is valid for 10–1000 GHz. Outside these frequency ranges, the System object
uses the nearest valid value.

The phased.TwoRayChannel System object applies range-dependent time delays to the signals, and
as well as gains or losses, phase shifts, and boundary reflection loss. The System object applies
Doppler shift when either the source or destination is moving.

Signals at the channel output can be kept separate or be combined — controlled by the
CombinedRaysOutput property. In the separate option, both fields arrive at the destination
separately and are not combined. For the combined option, the two signals at the source propagate
separately but are coherently summed at the destination into a single quantity. This option is
convenient when the difference between the sensor or array gains in the directions of the two paths
is not significant and need not be taken into account.

Unlike the phased.FreeSpace System object, the phased.TwoRayChannel System object does not
support two-way propagation.

To compute the propagation delay for specified source and receiver points:

1 Define and set up your two-ray channel using the “Construction” on page 1-1786 procedure that
follows.

2 Call the step method to compute the propagated signal using the properties of the
phased.TwoRayChannel System object.

The behavior of step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.
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Construction
s2Ray = phased.TwoRayChannel creates a two-ray propagation channel System object, s2Ray.

s2Ray = phased.TwoRayChannel(Name,Value) creates a System object, s2Ray, with each
specified property Name set to the specified Value. You can specify additional name and value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

SpecifyAtmosphere — Enable atmospheric attenuation model
false (default) | true

Option to enable the atmospheric attenuation model, specified as a false or true. Set this property
to true to add signal attenuation caused by atmospheric gases, rain, fog, or clouds. Set this property
to false to ignore atmospheric effects in propagation.

Setting SpecifyAtmosphere to true, enables the Temperature, DryAirPressure,
WaterVapourDensity, LiquidWaterDensity, and RainRate properties.
Data Types: logical

Temperature — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: 20.0

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

DryAirPressure — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar
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Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this property corresponds to one standard atmosphere.
Example: 101.0e3

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

WaterVapourDensity — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.
Example: 7.4

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

LiquidWaterDensity — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.
Example: 0.1

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

RainRate — Rainfall rate
0.0 (default) | nonnegative scalar

Rainfall rate, specified as a nonnegative scalar. Units are in mm/hr.
Example: 10.0

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: double

 phased.TwoRayChannel

1-1787



EnablePolarization — Enable polarized fields
false (default) | true

Option to enable polarized fields, specified as false or true. Set this property to true to enable
polarization. Set this property to false to ignore polarization.
Data Types: logical

GroundReflectionCoefficient — Ground reflection coefficient
-1 (default) | complex-valued scalar | complex-valued 1-by-N row vector

Ground reflection coefficient for the field at the reflection point, specified as a complex-valued scalar
or a complex-valued 1-by-N row vector. Each coefficient has an absolute value less than or equal to
one. The quantity N is the number of two-ray channels. Units are dimensionless. Use this property to
model nonpolarized signals. To model polarized signals, use the GroundRelativePermittivity
property.
Example: -0.5
Dependencies

To enable this property, set EnablePolarization to false.
Data Types: double
Complex Number Support: Yes

GroundRelativePermittivity — Ground relative permittivity
15 (default) | positive real-valued scalar | real-valued 1-by-Nrow vector of positive values

Relative permittivity of the ground at the reflection point, specified as a positive real-valued scalar or
a 1-by-N real-valued row vector of positive values. The dimension N is the number of two-ray
channels. Permittivity units are dimensionless. Relative permittivity is defined as the ratio of actual
ground permittivity to the permittivity of free space. This property applies when you set the
EnablePolarization property to true. Use this property to model polarized signals. To model
nonpolarized signals, use the GroundReflectionCoefficient property.
Example: 5
Dependencies

To enable this property, set EnablePolarization to true.
Data Types: double

CombinedRaysOutput — Option to combine two rays at output
true (default) | false

Option to combine the two rays at channel output, specified as true or false. When this property is
true, the object coherently adds the line-of-sight propagated signal and the reflected path signal
when forming the output signal. Use this mode when you do not need to include the directional gain
of an antenna or array in your simulation.
Data Types: logical

MaximumDistanceSource — Source of maximum one-way propagation distance
'Auto' (default) | 'Property'

Source of maximum one-way propagation distance, specified as 'Auto' or 'Property'. The
maximum one-way propagation distance is used to allocate sufficient memory for signal delay
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computation. When you set this property to 'Auto', the System object automatically allocates
memory. When you set this property to 'Property', you specify the maximum one-way propagation
distance using the value of the MaximumDistance property.
Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a positive real-valued scalar. Units are in
meters. Any signal that propagates more than the maximum one-way distance is ignored. The
maximum distance must be greater than or equal to the largest position-to-position distance.
Example: 5000

Dependencies

To enable this property, set the MaximumDistanceSource property to 'Property'.
Data Types: double

MaximumNumInputSamplesSource — Source of maximum number of samples
'Auto' (default) | 'Property'

The source of the maximum number of samples of the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the propagation model automatically allocates
enough memory to buffer the input signal. When you set this property to 'Property', you specify
the maximum number of samples in the input signal using the MaximumNumInputSamples property.
Any input signal longer than that value is truncated.

To use this object with variable-size signals in a MATLAB Function Block in Simulink, set the
MaximumNumInputSamplesSource property to 'Property' and set a value for the
MaximumNumInputSamples property.
Example: 'Property'

Dependencies

To enable this property, set MaximumDistanceSource to 'Property'.
Data Types: char

MaximumNumInputSamples — Maximum number of input signal samples
100 (default) | positive integer

Maximum number of input signal samples, specified as a positive integer. The input signal is the first
argument of the step method, after the System object itself. The size of the input signal is the
number of rows in the input matrix. Any input signal longer than this number is truncated. To process
signals completely, ensure that this property value is greater than any maximum input signal length.

The waveform-generating System objects determine the maximum signal size:

• For any waveform, if the waveform OutputFormat property is set to 'Samples', the maximum
signal length is the value specified in the NumSamples property.

• For pulse waveforms, if the OutputFormat is set to 'Pulses', the signal length is the product of
the smallest pulse repetition frequency, the number of pulses, and the sample rate.
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• For continuous waveforms, if the OutputFormat is set to 'Sweeps', the signal length is the
product of the sweep time, the number of sweeps, and the sample rate.

Example: 2048

Dependencies

To enable this property, set MaximumNumInputSamplesSource to 'Property'.
Data Types: double

Methods

reset Reset states of System object
step Propagate signal from point to point using two-ray channel model

Common to All System Objects
release Allow System object property value changes

Examples

Scalar Field Propagating in Two-Ray Channel

This example illustrates the two-ray propagation of a signal, showing how the signals from the line-of-
sight and reflected path arrive at the receiver at different times.

Create and Plot Propagating Signal

Create a nonpolarized electromagnetic field consisting of two rectangular waveform pulses at a
carrier frequency of 100 MHz. Assume the pulse width is 10 ms and the sampling rate is 1 MHz. The
bandwidth of the pulse is 0.1 MHz. Assume a 50% duty cycle in so that the pulse width is one-half the
pulse repetition interval. Create a two-pulse wave train. Set the GroundReflectionCoefficient
to 0.9 to model strong ground reflectivity. Propagate the field from a stationary source to a stationary
receiver. The vertical separation of the source and receiver is approximately 10 km.

c = physconst('LightSpeed');
fs = 1e6;
pw = 10e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
lambda = c/fc;
waveform = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2);
wav = waveform();
n = size(wav,1);
figure;
plot([0:(n-1)],real(wav),'b.-');
xlabel('Time (samples)')
ylabel('Waveform magnitude')
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Specify the Location of Source and Receiver

Place the source and receiver about 1000 meters apart horizontally and approximately 10 km apart
vertically.

pos1 = [1000;0;10000];
pos2 = [0;100;100];
vel1 = [0;0;0];
vel2 = [0;0;0];

Compute the predicted signal delays in units of samples.

[rng,ang] = rangeangle(pos2,pos1,'two-ray');
delay = rng/c*fs

delay = 1×2

   33.1926   33.8563

Create a Two-Ray Channel System Object™

Create a two-ray propagation channel System object™ and propagate the signal along both the line-
of-sight and reflected ray paths.

channel = phased.TwoRayChannel('SampleRate',fs,...
    'GroundReflectionCoefficient',.9,'OperatingFrequency',fc,...

 phased.TwoRayChannel

1-1791



    'CombinedRaysOutput',false);
prop_signal = channel([wav,wav],pos1,pos2,vel1,vel2);

Plot the Propagated Signals

• Plot the signal propagated along the line-of-sight.
• Then, overlay a plot of the signal propagated along the reflected path.
• Finally, overlay a plot of the coherent sum of the two signals.

n = size(prop_signal,1);
delay = [0:(n-1)];
plot(delay,abs([prop_signal(:,1)]),'g')
hold on
plot(delay,abs([prop_signal(:,2)]),'r')
plot(delay,abs([prop_signal(:,1) + prop_signal(:,2)]),'b')
hold off
legend('Line-of-sight','Reflected','Combined','Location','NorthWest')
xlabel('Delay (samples)')
ylabel('Signal Magnitude')

The plot shows that the delay of the reflected path signal agrees with the predicted delay. The
magnitude of the coherently combined signal is less than either of the propagated signals indicating
that there is some interference between the two signals.
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Polarized Field Propagation in Two-Ray Channel

Create a polarized electromagnetic field consisting of linear FM waveform pulses. Propagate the field
from a stationary source with a crossed-dipole antenna element to a stationary receiver
approximately 10 km away. The transmitting antenna is 100 meters above the ground. The receiving
antenna is 150 m above the ground. The receiving antenna is also a crossed-dipole. Plot the received
signal.

Set Radar Waveform Parameters

Assume the pulse width is 10μs and the sampling rate is 10 MHz. The bandwidth of the pulse is 1
MHz. Assume a 50% duty cycle in which the pulse width is one-half the pulse repetition interval.
Create a two-pulse wave train. Assume a carrier frequency of 100 MHz.

c = physconst('LightSpeed');
fs = 10e6;
pw = 10e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
bw = 1e6;
lambda = c/fc;

Set Up Required System Objects

Use a GroundRelativePermittivity of 10.

waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Up','Envelope','Rectangular','SweepInterval',...
    'Positive');
antenna = phased.CrossedDipoleAntennaElement(...
    'FrequencyRange',[50,200]*1e6);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');
channel = phased.TwoRayChannel('SampleRate',fs,...
    'OperatingFrequency',fc,'CombinedRaysOutput',false,...
    'EnablePolarization',true,'GroundRelativePermittivity',10);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');

Set Up Scene Geometry

Specify transmitter and receiver positions, velocities, and orientations. Place the source and receiver
about 1000 m apart horizontally and approximately 50 m apart vertically.

posTx = [0;100;100];
posRx = [1000;0;150];
velTx = [0;0;0];
velRx = [0;0;0];
laxRx = rotz(180);
laxTx = rotx(1)*eye(3);

Create and Radiate Signals from Transmitter

Compute the transmission angles for the two rays traveling toward the receiver. These angles are
defined with respect to the transmitter local coordinate system. The phased.Radiator System
object™ uses these angles to apply separate antenna gains to the two signals.
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[rng,angsTx] = rangeangle(posRx,posTx,laxTx,'two-ray');
wav = waveform();

Plot the transmitted Waveform

n = size(wav,1);
plot([0:(n-1)]/fs*1000000,real(wav))
xlabel('Time ({\mu}sec)')
ylabel('Waveform')

sig = radiator(wav,angsTx,laxTx);

Propagate signals to receiver via two-ray channel

prop_sig = channel(sig,posTx,posRx,velTx,velRx);

Receive Propagated Signal

Compute the reception angles for the two rays arriving at the receiver. These angles are defined with
respect to the receiver local coordinate system. The phased.Collector System object™ uses these
angles to apply separate antenna gains to the two signals.

[~,angsRx] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine received rays.

y = collector(prop_sig,angsRx,laxRx);
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Plot received waveform

plot([0:(n-1)]/fs*1000000,real(y))
xlabel('Time ({\mu}sec)')
ylabel('Received Waveform')

More About
Two-Ray Propagation Paths

A two-ray propagation channel is the next step up in complexity from a free-space channel and is the
simplest case of a multipath propagation environment. The free-space channel models a straight-line
line-of-sight path from point 1 to point 2. In a two-ray channel, the medium is specified as a
homogeneous, isotropic medium with a reflecting planar boundary. The boundary is always set at z =
0. There are at most two rays propagating from point 1 to point 2. The first ray path propagates along
the same line-of-sight path as in the free-space channel (see the phased.FreeSpace System object).
The line-of-sight path is often called the direct path. The second ray reflects off the boundary before
propagating to point 2. According to the Law of Reflection , the angle of reflection equals the angle of
incidence. In short-range simulations such as cellular communications systems and automotive
radars, you can assume that the reflecting surface, the ground or ocean surface, is flat.

The phased.TwoRayChannel and phased.WidebandTwoRayChannel System objects model
propagation time delay, phase shift, Doppler shift, and loss effects for both paths. For the reflected
path, loss effects include reflection loss at the boundary.
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The figure illustrates two propagation paths. From the source position, ss, and the receiver position,
sr, you can compute the arrival angles of both paths, θ′los and θ′rp. The arrival angles are the elevation
and azimuth angles of the arriving radiation with respect to a local coordinate system. In this case,
the local coordinate system coincides with the global coordinate system. You can also compute the
transmitting angles, θlos and θrp. In the global coordinates, the angle of reflection at the boundary is
the same as the angles θrp and θ′rp. The reflection angle is important to know when you use angle-
dependent reflection-loss data. You can determine the reflection angle by using the rangeangle
function and setting the reference axes to the global coordinate system. The total path length for the
line-of-sight path is shown in the figure by Rlos which is equal to the geometric distance between
source and receiver. The total path length for the reflected path is Rrp= R1 + R2. The quantity L is the
ground range between source and receiver.

You can easily derive exact formulas for path lengths and angles in terms of the ground range and
object heights in the global coordinate system.
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R = x s− x r

Rlos = R = zr − zs
2 + L2

R1 =
zr

zr + zz
zr + zs

2 + L2

R2 =
zs

zs + zr
zr + zs

2 + L2

Rrp = R1 + R2 = zr + zs
2 + L2

tanθlos =
zs− zr

L

tanθrp = −
zs + zr

L
θ′los = − θlos

θ′rp = θrp

Two-Ray Attenuation

Attenuation or path loss in the two-ray channel is the product of five components, L = Ltworay LG Lg Lc
Lr, where

• Ltworay is the two-ray geometric path attenuation
• LG is the ground reflection attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each component is in magnitude units, not in dB.

Ground Reflection and Propagation Loss

Losses occurs when a signal is reflected from a boundary. You can obtain a simple model of ground
reflection loss by representing the electromagnetic field as a scalar field. This approach also works
for acoustic and sonar systems. Let E be a scalar free-space electromagnetic field having amplitude
E0 at a reference distance R0 from a transmitter (for example, one meter). The propagating free-space
field at distance Rlos from the transmitter is

Elos = E0
R0

Rlos
eiω t − Rlos/c

for the line-of-sight path. You can express the ground-reflected E-field as

Erp = LGE0
R0
Rrp

eiω t − Rrp/c

where Rrp is the reflected path distance. The quantity LG represents the loss due to reflection at the
ground plane. To specify LG, use the GroundReflectionCoefficient property. In general, LG
depends on the incidence angle of the field. If you have empirical information about the angular
dependence of LG, you can use rangeangle to compute the incidence angle of the reflected path.
The total field at the destination is the sum of the line-of-sight and reflected-path fields.
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For electromagnetic waves, a more complicated but more realistic model uses a vector representation
of the polarized field. You can decompose the incident electric field into two components. One
component, Ep, is parallel to the plane of incidence. The other component, Es, is perpendicular to the
plane of incidence. The ground reflection coefficients for these components differ and can be written
in terms of the ground permittivity and incidence angle.

Gp =
Z1cosθ1− Z2cosθ2
Z1cosθ1 + Z2cosθ2

=
cosθ1−

Z2
Z1

cosθ2

cosθ1 +
Z2
Z1

cosθ2

Gs =
Z2cosθ1− Z1cosθ2
Z2cosθ1 + Z1cosθ2

=
cosθ2−

Z2
Z1

cosθ1

cosθ2 +
Z2
Z1

cosθ1

Z1 =
μ1
ε1

Z2 =
μ2
ε2

where Z is the impedance of the medium. Because the magnetic permeability of the ground is almost
identical to that of air or free space, the ratio of impedances depends primarily on the ratio of electric
permittivities

Gp =
ρcosθ1− cosθ2
ρcosθ1 + cosθ2

Gs =
ρcosθ2− cosθ1
ρcosθ2 + cosθ1

where the quantity ρ = ε2/ε1 is the ground relative permittivity set by the
GroundRelativePermittivity property. The angle θ1 is the incidence angle and the angle θ2 is
the refraction angle at the boundary. You can determine θ2 using Snell’s law of refraction.

After reflection, the full field is reconstructed from the parallel and perpendicular components. The
total ground plane attenuation, LG, is a combination of Gs and Gp.

When the origin and destination are stationary relative to each other, you can write the output Y of
step as Y(t) = F(t-τ)/L. The quantity τ is the signal delay and L is the free-space path loss. The delay
τ is given by R/c. R is either the line-of-sight propagation path distance or the reflected path distance,
and c is the propagation speed. The path loss

Ltworay = (4πR)2

λ2 ,

where λ is the signal wavelength.

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
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coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.
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Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,

where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
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This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
fogpl | fspl | gaspl | rainpl | rangeangle

Objects
phased.FreeSpace | phased.LOSChannel | phased.RadarTarget |
phased.WidebandFreeSpace | phased.WidebandLOSChannel |
phased.WidebandTwoRayChannel

Introduced in R2015b
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reset
System object: phased.TwoRayChannel
Package: phased

Reset states of System object

Syntax
reset(s2Ray)

Description
reset(s2Ray) resets the internal state of the phased.TwoRayChannel object, S. This method
resets the random number generator state if SeedSource is a property of this System object and has
the value 'Property'.

Input Arguments
s2Ray — Two-ray channel
System object

Two-ray channel, specified as a System object.
Example: phased.TwoRayChannel

Introduced in R2015b
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step
System object: phased.TwoRayChannel
Package: phased

Propagate signal from point to point using two-ray channel model

Syntax
prop_sig = step(channel,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

prop_sig = step(channel,sig,origin_pos,dest_pos,origin_vel,dest_vel) returns the
resulting signal, prop_sig, when a narrowband signal, sig, propagates through a two-ray channel
from the origin_pos position to the dest_pos position. Either the origin_pos or dest_pos
arguments can have multiple points but you cannot specify both as having multiple points. The
velocity of the signal origin is specified in origin_vel and the velocity of the signal destination is
specified in dest_vel. The dimensions of origin_vel and dest_vel must agree with the
dimensions of origin_pos and dest_pos, respectively.

Electromagnetic fields propagated through a two-ray channel can be polarized or nonpolarized. For,
nonpolarized fields, such as an acoustic field, the propagating signal field, sig, is a vector or matrix.
When the fields are polarized, sig is an array of structures. Every structure element represents an
electric field vector in Cartesian form.

In the two-ray environment, there are two signal paths connecting every signal origin and destination
pair. For N signal origins (or N signal destinations), there are 2N number of paths. The signals for
each origin-destination pair do not have to be related. The signals along the two paths for any single
source-destination pair can also differ due to phase or amplitude differences.

You can keep the two signals at the destination separate or combined — controlled by the
CombinedRaysOutput property. Combined means that the signals at the source propagate
separately along the two paths but are coherently summed at the destination into a single quantity. To
use the separate option, set CombinedRaysOutput to false. To use the combined option, set
CombinedRaysOutput to true. This option is convenient when the difference between the sensor or
array gains in the directions of the two paths is not significant and need not be taken into account.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
channel — Two-ray channel
System object

Two-ray channel, specified as a System object.
Example: phased.TwoRayChannel

sig — Narrowband signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields

• Narrowband nonpolarized scalar signal, specified as an

• M-by-N complex-valued matrix. Each column contains a common signal propagated along both
the line-of-sight path and the reflected path. You can use this form when both path signals are
the same.

• M-by-2N complex-valued matrix. Each adjacent pair of columns represents a different channel.
Within each pair, the first column represents the signal propagated along the line-of-sight path
and the second column represents the signal propagated along the reflected path.

• Narrowband polarized signal, specified as a

• 1-by-N struct array containing complex-valued fields. Each struct contains a common
polarized signal propagated along both the line-of-sight path and the reflected path. Each
structure element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z). You can use this form when both path signals are the same.

• 1-by-2N struct array containing complex-valued fields. Each adjacent pair of array columns
represents a different channel. Within each pair, the first column represents the signal along
the line-of-sight path and the second column represents the signal along the reflected path.
Each structure element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z).

For nonpolarized fields, the quantity M is the number of samples of the signal and N is the number of
two-ray channels. Each channel corresponds to a source-destination pair.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

For polarized fields, the struct element contains three M-by-1 complex-valued column vectors,
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a changing
signal length such as a pulse waveform with variable pulse repetition frequency.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

origin_pos — Origin of the signal or signals
3-by-1 real-valued column vector | 3-by-N real-valued matrix
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Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of two-ray channels. If origin_pos is a column vector, it takes
the form [x;y;z]. If origin_pos is a matrix, each column specifies a different signal origin and has
the form [x;y;z]. Position units are meters.

origin_pos and dest_pos cannot both be specified as matrices — at least one must be a 3-by-1
column vector.
Example: [1000;100;500]
Data Types: double

dest_pos — Destination position of the signal or signals
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The quantity N is the number of two-ray channels propagating from or to N signal
origins. If dest_pos is a 3-by-1 column vector, it takes the form [x;y;z]. If dest_pos is a matrix,
each column specifies a different signal destination and takes the form [x;y;z] Position units are in
meters.

You cannot specify origin_pos and dest_pos as matrices. At least one must be a 3-by-1 column
vector.
Example: [0;0;0]
Data Types: double

origin_vel — Velocity of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of origin_vel must match the dimensions of origin_pos. If origin_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If origin_vel is a 3-by-N matrix, each column
specifies a different origin velocity and has the form [Vx;Vy;Vz]. Velocity units are in meters per
second.
Example: [10;0;5]
Data Types: double

dest_vel — Velocity of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3–by-N real-valued
matrix. The dimensions of dest_vel must match the dimensions of dest_pos. If dest_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If dest_vel is a 3-by-N matrix, each column specifies
a different destination velocity and has the form [Vx;Vy;Vz] Velocity units are in meters per second.
Example: [0;0;0]
Data Types: double

Output Arguments
prop_sig — Propagated signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields
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• Narrowband nonpolarized scalar signal, returned as an:

• M-by-N complex-valued matrix. To return this format, set the CombinedRaysOutput property
to true. Each matrix column contains the coherently combined signals from the line-of-sight
path and the reflected path.

• M-by-2N complex-valued matrix. To return this format set the CombinedRaysOutput property
to false. Alternate columns of the matrix contain the signals from the line-of-sight path and
the reflected path.

• Narrowband polarized scalar signal, returned as:

• 1-by-N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to true. Each column of the array contains the coherently
combined signals from the line-of-sight path and the reflected path. Each structure element
contains the electromagnetic field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

• 1-by-2N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to false. Alternate columns contains the signals from the
line-of-sight path and the reflected path. Each structure element contains the electromagnetic
field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

The output prop_sig contains signal samples arriving at the signal destination within the current
input time frame. Whenever it takes longer than the current time frame for the signal to propagate
from the origin to the destination, the output may not contain all contributions from the input of the
current time frame. The remaining output will appear in the next call to step.

Examples

Compare Two-Ray with Free Space Propagation

Propagate a signal in a two-ray channel environment from a radar at (0,0,10) meters to a target at
(300,200,30) meters. Assume that the radar and target are stationary and that the transmitting
antenna has a cosine pattern. Compare the combined signals from the two paths with the single
signal resulting from free space propagation. Set the CombinedRaysOutput to true to produce a
combined propagated signal.

Create a Rectangular Waveform

Set the sample rate to 2 MHz.

fs = 2e6;
waveform = phased.RectangularWaveform('SampleRate',fs);
wavfrm = waveform();

Create the Transmitting Antenna and Radiator

Set up a phased.Radiator System object™ to transmit from a cosine antenna

antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);

Specify Transmitter and Target Coordinates

posTx = [0;0;10];
posTgt = [300;200;30];
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velTx = [0;0;0];
velTgt = [0;0;0];

Free Space Propagation

Compute the transmitting direction toward the target for the free-space model. Then, radiate the
signal.

[~,angFS] = rangeangle(posTgt,posTx); 
wavTx = radiator(wavfrm,angFS);

Propagate the signal to the target.

fschannel = phased.FreeSpace('SampleRate',waveform.SampleRate);
yfs = fschannel(wavTx,posTx,posTgt,velTx,velTgt);
release(radiator);

Two-Ray Propagation

Compute the two transmit angles toward the target for line-of-sight (LOS) path and reflected paths.
Compute the transmitting directions toward the target for the two rays. Then, radiate the signals.

[~,angTwoRay] = rangeangle(posTgt,posTx,'two-ray');
wavTwoRay = radiator(wavfrm,angTwoRay);

Propagate the signals to the target.

tworaychannel = phased.TwoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',true);
y2ray = tworaychannel(wavTwoRay,posTx,posTgt,velTx,velTgt);

Plot the Propagated Signals

Plot the combined signal against the free-space signal

plot(abs([y2ray yfs]))
legend('Two-ray','Free space')
xlabel('Samples')
ylabel('Signal Magnitude')
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Polarized Field Propagation in Two-Ray Channel

Create a polarized electromagnetic field consisting of linear FM waveform pulses. Propagate the field
from a stationary source with a crossed-dipole antenna element to a stationary receiver
approximately 10 km away. The transmitting antenna is 100 meters above the ground. The receiving
antenna is 150 m above the ground. The receiving antenna is also a crossed-dipole. Plot the received
signal.

Set Radar Waveform Parameters

Assume the pulse width is 10μs and the sampling rate is 10 MHz. The bandwidth of the pulse is 1
MHz. Assume a 50% duty cycle in which the pulse width is one-half the pulse repetition interval.
Create a two-pulse wave train. Assume a carrier frequency of 100 MHz.

c = physconst('LightSpeed');
fs = 10e6;
pw = 10e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
bw = 1e6;
lambda = c/fc;

Set Up Required System Objects

Use a GroundRelativePermittivity of 10.
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waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Up','Envelope','Rectangular','SweepInterval',...
    'Positive');
antenna = phased.CrossedDipoleAntennaElement(...
    'FrequencyRange',[50,200]*1e6);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');
channel = phased.TwoRayChannel('SampleRate',fs,...
    'OperatingFrequency',fc,'CombinedRaysOutput',false,...
    'EnablePolarization',true,'GroundRelativePermittivity',10);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');

Set Up Scene Geometry

Specify transmitter and receiver positions, velocities, and orientations. Place the source and receiver
about 1000 m apart horizontally and approximately 50 m apart vertically.

posTx = [0;100;100];
posRx = [1000;0;150];
velTx = [0;0;0];
velRx = [0;0;0];
laxRx = rotz(180);
laxTx = rotx(1)*eye(3);

Create and Radiate Signals from Transmitter

Compute the transmission angles for the two rays traveling toward the receiver. These angles are
defined with respect to the transmitter local coordinate system. The phased.Radiator System
object™ uses these angles to apply separate antenna gains to the two signals.

[rng,angsTx] = rangeangle(posRx,posTx,laxTx,'two-ray');
wav = waveform();

Plot the transmitted Waveform

n = size(wav,1);
plot([0:(n-1)]/fs*1000000,real(wav))
xlabel('Time ({\mu}sec)')
ylabel('Waveform')
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sig = radiator(wav,angsTx,laxTx);

Propagate signals to receiver via two-ray channel

prop_sig = channel(sig,posTx,posRx,velTx,velRx);

Receive Propagated Signal

Compute the reception angles for the two rays arriving at the receiver. These angles are defined with
respect to the receiver local coordinate system. The phased.Collector System object™ uses these
angles to apply separate antenna gains to the two signals.

[~,angsRx] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine received rays.

y = collector(prop_sig,angsRx,laxRx);

Plot received waveform

plot([0:(n-1)]/fs*1000000,real(y))
xlabel('Time ({\mu}sec)')
ylabel('Received Waveform')
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Two-Ray Propagation of LFM Waveform

Propagate a linear FM signal in a two-ray channel. The signal propagates from a transmitter located
at (1000,10,10) meters in the global coordinate system to a receiver at (10000,200,30) meters.
Assume that the transmitter and the receiver are stationary and that they both have cosine antenna
patterns. Plot the received signal.

Set up the radar scenario. First, create the required System objects.

waveform = phased.LinearFMWaveform('SampleRate',1000000,...
    'OutputFormat','Pulses','NumPulses',2);
fs = waveform.SampleRate;
antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);
collector = phased.Collector('Sensor',antenna);
channel = phased.TwoRayChannel('SampleRate',fs,...
    'CombinedRaysOutput',false,'GroundReflectionCoefficient',0.95);

Set up the scene geometry. Specify transmitter and receiver positions and velocities. The transmitter
and receiver are stationary.

posTx = [1000;10;10];
posRx = [10000;200;30];
velTx = [0;0;0];
velRx = [0;0;0];
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Specify the transmitting and receiving radar antenna orientations with respect to the global
coordinates. The transmitting antenna points along the +x direction and the receiving antenna points
near but not directly in the -x direction.

laxTx = eye(3);
laxRx = rotx(5)*rotz(170);

Compute the transmission angles which are the angles that the two rays traveling toward the
receiver leave the transmitter. The phased.Radiator System object™ uses these angles to apply
separate antenna gains to the two signals. Because the antenna gains depend on path direction, you
must transmit and receive the two rays separately.

[~,angTx] = rangeangle(posRx,posTx,laxTx,'two-ray');

Create and radiate signals from transmitter along the transmission directions.

wavfrm = waveform();
wavtrans = radiator(wavfrm,angTx);

Propagate signals to receiver via two-ray channel.

wavrcv = channel(wavtrans,posTx,posRx,velTx,velRx);

Collect signals at the receiver. Compute the angle at which the two rays traveling from the
transmitter arrive at the receiver. The phased.Collector System object™ uses these angles to
apply separate antenna gains to the two signals.

[~,angRcv] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine the two received rays.

yR = collector(wavrcv,angRcv);

Plot the received signals.

dt = 1/fs;
n = size(yR,1);
plot([0:(n-1)]*dt*1000000,real(yR))
xlabel('Time ({\mu}sec)')
ylabel('Signal Magnitude')
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Two-Ray Propagation of LFM Waveform with Atmospheric Losses

Propagate a linear FM signal in a two-ray channel. Assume there is signal loss caused by atmospheric
gases and rain. The signal propagates from a transmitter located at (0,0,0) meters in the global
coordinate system to a receiver at (10000,200,30) meters. Assume that the transmitter and the
receiver are stationary and that they both have cosine antenna patterns. Plot the received signal. Set
the dry air pressure to 102.0 Pa and the rain rate to 5 mm/hr.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set Up Radar Scenario

Create the required System objects.

waveform = phased.LinearFMWaveform('SampleRate',1000000,...
    'OutputFormat','Pulses','NumPulses',2);
antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);
collector = phased.Collector('Sensor',antenna);
tworaychannel = phased.TwoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',false,'GroundReflectionCoefficient',0.95,...
    'SpecifyAtmosphere',true,'Temperature',20,...
    'DryAirPressure',102.5,'RainRate',5.0);
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Set up the scene geometry. Specify transmitter and receiver positions and velocities. The transmitter
and receiver are stationary.

posTx = [0;0;0];
posRx = [10000;200;30];
velTx = [0;0;0];
velRx = [0;0;0];

Specify the transmitting and receiving radar antenna orientations with respect to the global
coordinates. The transmitting antenna points along the +x-direction and the receiving antenna points
close to the -x-direction.

laxTx = eye(3);
laxRx = rotx(5)*rotz(170);

Compute the transmission angles which are the angles that the two rays traveling toward the
receiver leave the transmitter. The phased.Radiator System object™ uses these angles to apply
separate antenna gains to the two signals. Because the antenna gains depend on path direction, you
must transmit and receive the two rays separately.

[~,angTx] = rangeangle(posRx,posTx,laxTx,'two-ray');

Create and Radiate Signals from Transmitter

Radiate the signals along the transmission directions.

wavfrm = waveform();
wavtrans = radiator(wavfrm,angTx);

Propagate signals to receiver via two-ray channel.

wavrcv = tworaychannel(wavtrans,posTx,posRx,velTx,velRx);

Collect Signal at Receiver

Compute the angle at which the two rays traveling from the transmitter arrive at the receiver. The
phased.Collector System object™ uses these angles to apply separate antenna gains to the two
signals.

[~,angRcv] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine the two received rays.

yR = collector(wavrcv,angRcv);

Plot Received Signal

dt = 1/waveform.SampleRate;
n = size(yR,1);
plot([0:(n-1)]*dt*1000000,real(yR))
xlabel('Time ({\mu}sec)')
ylabel('Signal Magnitude')
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phased.UCA
Package: phased

Uniform circular array

Description
The phased.UCA System object creates a uniform circular array (UCA). A UCA is formed from
identical sensor elements equally spaced around a circle.

To compute the response for the array for specified directions:

1 Define and set up your uniform circular array. See “Construction” on page 1-1816.
2 Call step to compute the response according to the properties of phased.UCA. The behavior of

step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
sUCA = phased.UCA creates a uniform circular array (UCA) System object, sUCA, consisting of five
identical isotropic antenna elements,phased.IsotropicAntennaElement. The elements are
equally spaced around a circle of radius 0.5 meters.

sUCA = phased.UCA(Name,Value) creates a System object, sUCA, with each specified property
Name set to the specified Value. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN).

sUCA = phased.UCA(N,R) creates a UCA System object, sUCA, with the NumElements property
set to N and the Radius property set to R. This syntax creates a UCA consisting of isotropic antenna
elements, phased.IsotropicAntennaElement.

sUCA = phased.UCA(N,R,Name,Value) creates a UCA System object, sUCA, with the
NumElements property set to N, the Radius property set to R, and other specified property Names
set to the specified Values.

Properties
Element — Sensor array element
phased.IsotropicAntennaElement (default) | Phased Array System Toolbox antenna element | Phased
Array System Toolbox microphone element

Sensor array element, specified as a Phased Array System Toolbox antenna or microphone element
System object. You can specify antenna elements which do or do not support polarization.
Example: phased.ShortDipoleAntennaElement()
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NumElements — Number of array elements
5 (default) | integer greater than one

Number of array elements, specified as an integer greater than one.
Example: 3

Radius — Array radius
0.5 (default) | positive scalar

Array radius, specified as a positive scalar in meters.
Example: 2.5

ArrayNormal — Array normal direction
'z' (default) | 'x' | 'y'

Array normal direction, specified as one of 'x', 'y', or 'z'. UCA elements lie in a plane orthogonal
to the array normal direction. Element boresight vectors lie in the same plane and point radially
outward from the origin.

ArrayNormal Property Value Element Positions and Boresight Directions
'x' Array elements lie on the yz-plane. All element

boresight vectors lie in the yz-plane and point
outward from the array center.

'y' Array elements lie on the zx-plane. All element
boresight vectors lie in the zx-plane and point
outward from the array center.

'z' Array elements lie on the xy-plane. All element
boresight vectors lie in the xy-plane and point
outward from the array center.

Example: 'y'

Taper — Element tapering
1 (default) | complex-valued scalar | complex-valued 1-by-N row vector | complex-valued N-by-1
column vector

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector, or N-by-1
column vector. The quantity N represents the number of elements of the array. Tapers, also known as
weights, are applied to each sensor element in the sensor array and modify both the amplitude and
phase of the received data. If 'Taper' is a scalar, the same taper value is applied to all element. If
'Taper' is a vector, each taper value is applied to the corresponding sensor element.
Example: [1 2 3 2 1]

Methods
Specific to phased.URA Object
beamwidth Compute and display beamwidth of an array
collectPla
neWave

Simulate received plane waves
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Specific to phased.URA Object
directivit
y

Directivity of uniform circular array

getElement
Normal

Normal vectors for array elements

getElement
Position

Positions of array elements

getElement
Spacing

Spacing between array elements

getNumElem
ents

Number of elements in array

getTaper Array element tapers
isPolariza
tionCapabl
e

Polarization capability

pattern Plot UCA array pattern
patternAzi
muth

Plot UCA array directivity or pattern versus azimuth

patternEle
vation

Plot UCA array directivity or pattern versus elevation

step Output responses of array elements
viewArray View array geometry

Common to All System Objects
release Allow System object property value changes

Examples

Pattern of 11-Element UCA Antenna Array

Create an 11-element uniform circular array (UCA) having a 1.5 m radius and operating at 500 MHz.
The array consist of short-dipole antenna elements. First, display the vertical component of the
response at 45 degrees azimuth and 0 degrees elevation. Then plot the azimuth and elevation
directivities.

antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[50e6,1000e6],...
    'AxisDirection','Z');
array = phased.UCA('NumElements',11,'Radius',1.5,'Element',antenna);
fc = 500e6;
ang = [45;0];
resp = array(fc,ang);
disp(resp.V)

   -1.2247
   -1.2247
   -1.2247
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   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247

Display the azimuth directivity pattern at 500 MHz for azimuth angles between -180 and 180
degrees.

c = physconst('LightSpeed');
pattern(array,fc,[-180:180],0,'Type','directivity','PropagationSpeed',c)

Display the elevation directivity pattern at 500 MHz for elevation angles between -90 and 90 degrees.

pattern(array,fc,[0],[-90:90],'Type','directivity','PropagationSpeed',c)
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Algorithms
A UCA is formed from N identical sensor elements equally spaced around a circle of radius R. The
circle lies in the xy-plane of the local coordinate system whose origin lies at the center of the circle.
The positions of the elements are defined with respect to the local array coordinate system. The
circular array lies in the xy-plane of the coordinate system. The normal to the UCA plane lies along
the positive z-axis. The elements are oriented so that their main response directions (normals) point
radially outward in the xy-plane.
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If the number of elements of the array is odd, the middle element lies on the x-axis. If the number of
elements is even, the midpoint between the two middle elements lies on the x-axis. For an array of N
elements, the azimuth angle of the position of the nth element is given by

φn = (− (N − 1)/2 + n− 1) ⋅ 360/N    n = 1, …, N

The azimuth angle is defined as the angle, in the xy-plane, from the x-axis toward the y-axis. The
elevation angle is defined as the angle from the xy-plane toward the z-axis. The angular distance
between any two adjacent elements is 360/N degrees. Azimuth angle values are in degrees. Elevation
angles for all array elements are zero.

References
[1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002, pp. 274–304.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, plotResponse, and viewArray methods are
not supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement | phased.CustomAntennaElement |
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phased.CustomMicrophoneElement | phased.IsotropicAntennaElement |
phased.OmnidirectionalMicrophoneElement | phased.ShortDipoleAntennaElement |
phased.ULA | phased.URA

Topics
“Phased Array Gallery”

Introduced in R2015a
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directivity
System object: phased.UCA
Package: phased

Directivity of uniform circular array

Syntax
D = directivity(sArray,FREQ,ANGLE)
D = directivity(sArray,FREQ,ANGLE,Name,Value)

Description
D = directivity(sArray,FREQ,ANGLE) returns the “Directivity (dBi)” on page 1-1826 of a
uniform circular array (UCA) of antenna or microphone elements, sArray, at frequencies specified
by FREQ and in angles of direction specified by ANGLE.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

D = directivity(sArray,FREQ,ANGLE,Name,Value) returns the directivity with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
sArray — Uniform circular array
System object

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double
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ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
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In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of UCA

Compute the directivity of two uniform circular arrays (UCA) at zero degrees azimuth and elevation.
The first array consists of isotropic antenna elements. The second array consists of cosine antenna
elements. In addition, compute the directivity of the cosine element array steered to a 45 degrees
elevation.

Array of isotropic antenna elements

First, create a 10-element UCA with a radius of one-half meter consisting of isotropic antenna
elements. Set the signal frequency to 300 MHz.

c = physconst('LightSpeed');
fc = 300e6;
sIso = phased.IsotropicAntennaElement;
sArray = phased.UCA('Element',sIso,'NumElements',10,'Radius',0.5);
ang = [0;0];
d = directivity(sArray,fc,ang,'PropagationSpeed',c)

d = -1.1423

Array of cosine antenna elements

Next, create a 10-element UCA of cosine antenna elements also with a 0.5 meter radius.

sCos = phased.CosineAntennaElement('CosinePower',[3,3]);
sArray1 = phased.UCA('Element',sCos,'NumElements',10,'Radius',0.5);
ang = [0;0];
d = directivity(sArray1,fc,ang,'PropagationSpeed',c)

d = 3.2550

The directivity is increased due to the added directivity of the cosine antenna elements
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Steered array of cosine antenna elements

Finally, steer the cosine antenna array toward 45 degrees elevation, and then examine the directivity
at 45 degrees.

ang = [0;45];
lambda = c/fc;
w = steervec(getElementPosition(sArray1)/lambda,ang);
d = directivity(sArray1,fc,ang,'PropagationSpeed',c,...
    'Weights',w)

d = -3.1410

The directivity is decreased because of the combined reduction of directivity of the elements and the
array.

More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation

Introduced in R2015a
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collectPlaneWave
System object: phased.UCA
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H, when the
input signals indicated by X arrive at the array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal carrier
frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal propagation speed in
C.

Input Arguments
H — Uniform circular array
System object

Uniform circular array specified as a phased.UCA System object.
Example: H = phased.UCA();

X — Incoming signals
M-column matrix

Incoming signals, specified as an M-column matrix. Each column of X represents an individual
incoming signal.
Example: [1,5;2,10;3,10]
Data Types: double
Complex Number Support: Yes

ANG — Arrival directions of incoming signals
1-by-M real-valued vector | 2-by-M real-valued matrix

Arrival directions of incoming signals, specified as a 1-by-M vector or a 2-by-M matrix, where M is the
number of incoming signals. Each column specifies the direction of arrival of the corresponding
signal in X. If ANG is a 2-by-M matrix, each column specifies the direction in azimuth and elevation of
the incoming signal [az;el]. Angular units are in degrees. The azimuth angle must lie between –
180° and 180° and the elevation angle must lie between –90° and 90°.
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If ANG is a 1-by-M vector, then each entry represents a set of azimuth angles, with the elevation
angles assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the arrival direction vector
onto the xy plane. When measured from the x-axis toward the y-axis, the azimuth angle is positive.

The elevation angle is the angle between the arrival direction vector and the xy-plane. When
measured toward the z axis, the elevation angle is positive.
Example: [20,30;15,25]
Data Types: double

FREQ — Signal carrier frequency
3e8 (default) | positive scalar

Signal carrier frequency, specified as a positive scalar in hertz.
Data Types: double

C — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Example: physconst('LightSpeed')
Data Types: double

Output Arguments
Y — Received signals
N-column complex-valued row vector

Received signals, returned as an N-column complex-valued row vector. The quantity N is the number
of elements in the array. Each column of Y contains the combined received signals at the
corresponding array element.

Examples

Simulate Received Signal at 5-element UCA

Create a random signal arriving at a 5-element UCA from 10 degrees azimuth and 30 degrees
azimuth. Both signals have an elevation angle of 0 degrees. Assume the propagation speed is the
speed of light and the carrier frequency of the signal is 100 MHz. The signals are two random noise
signals of three samples each.

sUCA = phased.UCA('NumElements',5,'Radius',2.0);
y = collectPlaneWave(sUCA,randn(3,2),[10 30],100e6,...
    physconst('LightSpeed'));
disp(y)

  Columns 1 through 4

  -0.8817 + 1.0528i   1.0037 - 0.3636i  -1.0579 - 0.8531i  -1.0698 + 0.5187i
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  -1.6512 + 1.3471i   1.7358 + 0.7662i  -1.2932 - 1.6792i  -1.0279 + 1.6997i
   2.5071 - 2.4424i  -2.7270 - 0.2435i   2.4009 + 2.4977i   2.1808 - 2.1178i

  Column 5

  -0.6388 - 0.9769i
  -1.8283 - 0.7336i
   2.3743 + 1.8105i

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the delay caused by
the direction of arrival. The method does not account for the response of individual elements in the
array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel

Introduced in R2015a
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getElementNormal
System object: phased.UCA
Package: phased

Normal vectors for array elements

Syntax
normvec = getElementNormal(sArray)
normvec = getElementNormal(sArray,elemidx)

Description
normvec = getElementNormal(sArray) returns the element normals of the phased.UCA System
object, sArray. normv is a 2-by-N matrix, where N is the number of elements in sArray. Each
column of normv specifies the normal direction of the corresponding element in the local coordinate
system in the form [azimuth;elevation]. Units are degrees. For details regarding the local
coordinate system of a UCA, type

phased.UCA.coordinateSystemInfo;

at the command line.

normvec = getElementNormal(sArray,elemidx) returns only the normals of the elements that
are specified in the element index vector elemidx.

Input Arguments
sArray — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: phased.UCA

elemidx — Element index vector
all elements (default) | vector of positive integers

Element index vector, specified as a vector of positive integers each of which takes a value from 1 to
N. The dimension N is the number of elements of the array.
Example: [1,2,3]

Output Arguments
normvec — Normal vector
2-by-M real-valued matrix

Normal vector of array elements, returned as a 2-by-M real matrix. Each column of normvec specifies
the normal direction of the corresponding element in the local coordinate system in the form
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[azimuth;elevation]. Units are degrees. If the input argument elemidx is not specified, M is the
number of elements of the array, N. If elemidx is specified, M is the dimension of elemidx.

Examples

UCA Element Normal Vectors

Construct three different 7-element UCA with a radius of 0.5 meters, and obtain the normal vectors of
the middle three elements. Choose the array normal vectors to point along the x-, y-, and z-axes.

First, choose the array normal along the x-axis.

sUCA1 = phased.UCA('NumElements',7,'Radius',0.5,'ArrayNormal','x');
pos = getElementPosition(sUCA1,[3,4,5])

pos = 3×3

         0         0         0
    0.3117    0.5000    0.3117
   -0.3909         0    0.3909

normvec = getElementNormal(sUCA1,[3,4,5])

normvec = 2×3

   90.0000   90.0000   90.0000
  -51.4286         0   51.4286

These outputs show that the array elements lie in the yz-plane. The normal vectors of the array
elements also lie in the yz-plane and point outward like spokes on a wheel.

Next, choose the array normal along the y-axis.

sUCA2 = phased.UCA('NumElements',7,'Radius',0.5,'ArrayNormal','y');
pos = getElementPosition(sUCA2,[3,4,5])

pos = 3×3

    0.3117    0.5000    0.3117
         0         0         0
   -0.3909         0    0.3909

normvec = getElementNormal(sUCA2,[3,4,5])

normvec = 2×3

         0         0         0
  -51.4286         0   51.4286

These outputs show that the array elements lie in the zx-plane. The normal vectors of the array
elements also lie in the zx-plane and also point outward.

Finally, set the array normal along the z-axis. This is the default value of array normal.
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sUCA3 = phased.UCA('NumElements',7,'Radius',0.5,'ArrayNormal','z');
pos = getElementPosition(sUCA3,[3,4,5])

pos = 3×3

    0.3117    0.5000    0.3117
   -0.3909         0    0.3909
         0         0         0

normvec = getElementNormal(sUCA3,[3,4,5])

normvec = 2×3

  -51.4286         0   51.4286
         0         0         0

These outputs show that the array elements lie in the xy-plane. The normal vectors of the array
elements also lie in the xy-plane and also point outward.

Introduced in R2015a
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getElementPosition
System object: phased.UCA
Package: phased

Positions of array elements

Syntax
pos = getElementPosition(sUCA)
pos = getElementPosition(sUCA,elemidx)

Description
pos = getElementPosition(sUCA) returns the element positions of the phased.UCA System
object, sUCA. pos is a 3-by-N matrix, where N is the number of elements in sUCA. Each column of
pos defines the position of an element in the local coordinate system, in meters, using the form
[x;y;z]. The origin of the local coordinate system is the center of the circular array.

pos = getElementPosition(sUCA,elemidx) returns only the positions of the elements that are
specified in the element index vector elemidx.

Input Arguments
sUCA — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: phased.UCA

elemidx — Element index vector
all elements (default) | vector of positive integers

Element index vector, specified as a vector of positive integers each of which takes a value from 1 to
N. The quantity N is the number of elements of the array.
Example: [1,2,3]

Output Arguments
pos — Positions of array elements
3-by-M real matrix

Positions of array elements, returned as a 3-by-M real matrix. If the input argument elemidx is not
specified, M is the number of elements of the array, N. If elemidx is specified, M is the dimension of
elemidx.

Examples

 getElementPosition

1-1833



Positions of UCA Elements

Construct a 7-element UCA with a radius of 0.5 meters, and obtain the positions of the middle three
elements.

sArray = phased.UCA('NumElements',7,'Radius',0.5);
pos = getElementPosition(sArray,[3,4,5])

pos = 3×3

    0.3117    0.5000    0.3117
   -0.3909         0    0.3909
         0         0         0

The output verifies that the position of the middle element of an array with an odd number of
elements lies on the x-axis.

Introduced in R2015a
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getElementSpacing
System object: phased.UCA
Package: phased

Spacing between array elements

Syntax
dist = getElementSpacing(sArray)
dist = getElementSpacing(sArray,disttype)

Description
dist = getElementSpacing(sArray) returns the arc length between adjacent elements of the
phased.UCA System object, sArray.

dist = getElementSpacing(sArray,disttype) returns either the arc length or chord length
between adjacent elements depending on the specification of disttype.

Input Arguments
sArray — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: phased.UCA()

disttype — Distance type
'arc' (default) | 'chord'

Distance type to define path between adjacent array elements, specified as a either 'arc' or
'chord'. If disttype is specified as 'arc', the returned distance is the arc length between
adjacent elements. If disttype is specified as 'chord', the returned distance is the chord length
between adjacent elements.
Example: 'chord'

Output Arguments
spacing — Spacing between elements
scalar

Spacing between elements, returned as a scalar. A uniform circular array has a unique distance
between all pairs of adjacent elements. The distance depends only upon the radius of the array, R,
and the angle between two adjacent elements, Δφ . The angle between two adjacent elements is
computed from the number of elements, Δφ = 2π/N. If disttype is specified as 'arc', the method
returns

RΔφ.
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If disttype is specified as 'chord', the method returns

2Rsin(Δφ/2).

The chord distance is always less than the arc distance.

Examples

Spacing Between UCA Elements

Construct a 10-element UCA with a radius of 1.5 meters, and obtain the arc distance between any
two adjacent elements. Then, obtain the chord distance.

sArray = phased.UCA('NumElements',10,'Radius',1.5);
dist = getElementSpacing(sArray,'arc')

dist = 0.9425

dist = getElementSpacing(sArray,'chord')

dist = 0.9271

Introduced in R2015a
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getNumElements
System object: phased.UCA
Package: phased

Number of elements in array

Syntax

N = getNumElements(H)

Description

N = getNumElements(H) returns the number of elements, N, in the UCA object H.

Input Arguments
H — Uniform circular array
phased.UCA System object

Uniform circular array, specified as a phased.UCA System object.
Example: H = phased.UCA();

Output Arguments
N — Number of elements
positive integer

Number of elements of array, returned as a positive integer.

Examples

Number of Elements of UCA

Create a UCA with the default number of elements. Verify that there are five elements.

sArray = phased.UCA();
N = getNumElements(sArray)

N = 5

Introduced in R2015a
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getTaper
System object: phased.UCA
Package: phased

Array element tapers

Syntax

WTS = getTaper(H)

Description

WTS = getTaper(H) returns the tapers, WTS, applied to each element of the phased uniform
circular array (UCA), H. Tapers are often referred to as weights.

Input Arguments
H — Uniform circular array
System object

Uniform circular array, specified as a phased.ULA System object.
Example: H = phased.UCA();

Output Arguments
WTS — Array element tapers
N-by-1 complex-valued vector

Array element tapers, returned as an N-by-1 complex-valued vector, where N is the number of
elements in the array.

Examples

Show UCA Element Tapers

Construct a 7-element UCA array of isotropic antenna elements with a Taylor window taper. Design
the array to have a radius of 0.5 meters. Then, draw the array showing the element taper shading.

Nelem = 7;
R = 0.5;
taper = taylorwin(Nelem);
sArray = phased.UCA(Nelem,R,'Taper',taper.');
w = getTaper(sArray)

w = 7×1
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    0.4520
    0.9009
    1.3680
    1.5581
    1.3680
    0.9009
    0.4520

viewArray(sArray,'ShowTaper',true);

Both the output and figure above shows that the taper magnitudes are largest near the middle
element.

Introduced in R2015a

 getTaper

1-1839



isPolarizationCapable
System object: phased.UCA
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(H)

Description
flag = isPolarizationCapable(H) returns a Boolean value, flag, indicating whether the array
supports polarization. An array supports polarization when all of its constituent sensor elements
support polarization.

Input Arguments
H — Uniform line array
System object

Uniform line array specified as a phased.UCA System object.

Output Arguments
flag — Polarization-capability flag
boolean

Polarization-capability flag returned as a boolean value true when the array supports polarization or
false when it does not.

Examples

Show UCA is Polarization Capable

Determine whether a UCA array of 7 short-dipole antenna elements supports polarization. The array
radius is one-half meter.

antenna = phased.ShortDipoleAntennaElement('FrequencyRange',[1e9 10e9]);
array = phased.UCA('NumElements',7,'Radius',0.5,'Element',antenna);
isPolarizationCapable(array)

ans = logical
   1

The returned value 1 from isPolarizationCapable shows that a UCA of short-dipole antenna
elements supports polarization.
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pattern
System object: phased.UCA
Package: phased

Plot UCA array pattern

Syntax
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array specified in
sArray. The operating frequency is specified in FREQ.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the array pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Input Arguments
sArray — Uniform circular array
System object

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.
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• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
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Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component

Example: 'V'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar
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Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT correspond to the
dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.
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EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Pattern of 11-Element UCA Antenna Array

Create an 11-element uniform circular array (UCA) having a 1.5 m radius and operating at 500 MHz.
The array consist of short-dipole antenna elements. First, display the vertical component of the
response at 45 degrees azimuth and 0 degrees elevation. Then plot the azimuth and elevation
directivities.

antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[50e6,1000e6],...
    'AxisDirection','Z');
array = phased.UCA('NumElements',11,'Radius',1.5,'Element',antenna);
fc = 500e6;
ang = [45;0];
resp = array(fc,ang);
disp(resp.V)

   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247

Display the azimuth directivity pattern at 500 MHz for azimuth angles between -180 and 180
degrees.

c = physconst('LightSpeed');
pattern(array,fc,[-180:180],0,'Type','directivity','PropagationSpeed',c)
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Display the elevation directivity pattern at 500 MHz for elevation angles between -90 and 90 degrees.

pattern(array,fc,[0],[-90:90],'Type','directivity','PropagationSpeed',c)
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Pattern of 10-Element UCA Antenna Array in UV Space

Create a 10-element UCA antenna array consisting of cosine antenna elements. Display the 3-D
power pattern in UV space.

sCos = phased.CosineAntennaElement('FrequencyRange',[100e6 1e9],...
    'CosinePower',[2.5,2.5]);
sUCA = phased.UCA('NumElements',10,...
    'Radius',1.5,...
    'Element',sCos);
c = physconst('LightSpeed');
fc = 500e6;
pattern(sUCA,fc,[-1:.01:1],[-1:.01:1],...
    'CoordinateSystem','uv',...
    'Type','powerdb',...
    'PropagationSpeed',c)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
patternAzimuth | patternElevation
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patternAzimuth
System object: phased.UCA
Package: phased

Plot UCA array directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus azimuth (in dBi) for
the array sArray at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternAzimuth(sArray,FREQ,EL), in addition, plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When EL is a vector,
multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the array pattern. PAT is a matrix whose entries represent
the pattern at corresponding sampling points specified by the 'Azimuth' parameter and the EL
input argument.

Input Arguments
sArray — Uniform circular array
System object

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension N is the
number of elevation angles, as determined by the EL input argument.

Examples

Plot Azimuth Pattern of UCA

Create a 6-element UCA of short-dipole antenna elements. Design the array to have a radius of 0.5
meters. Plot an azimuth cut of directivity at 0 and 10 degrees elevation. Assume the operating
frequency is 500 MHz.

fc = 500e6;
sCDant = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6);
sUCA = phased.UCA('NumElements',6,'Radius',0.5,'Element',sCDant);
patternAzimuth(sUCA,fc,[0 30])
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You can plot a smaller range of azimuth angles by setting the Azimuth property.

patternAzimuth(sUCA,fc,[0 30],'Azimuth',[-90:90])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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patternElevation
System object: phased.UCA
Package: phased

Plot UCA array directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus elevation (in dBi)
for the array sArray at zero degrees azimuth angle. When AZ is a vector, multiple overlaid plots are
created. The argument FREQ specifies the operating frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the array pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sArray — Uniform circular array
System object

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of elevation angles determined by the 'Elevation' name-value pair argument. The dimension N is
the number of azimuth angles determined by the AZ argument.

Examples

Plot Elevation Pattern of UCA

Create a 6-element UCA of short-dipole antenna elements. Design the array to have a radius of 0.5
meters. Plot an elevation cut of directivity at 0 and 90 degrees azimuth. Assume the operating
frequency is 500 MHz.

fc = 500e6;
sCDant = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6);
sUCA = phased.UCA('NumElements',6,'Radius',0.5,'Element',sCDant);
patternElevation(sUCA,fc,[0 90])
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You can plot a smaller range of elevation angles by setting the Elevation property.

patternElevation(sUCA,fc,[0 45],'Elevation',[0:90])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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step
System object: phased.UCA
Package: phased

Output responses of array elements

Syntax
RESP = step(sArray,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(sArray,FREQ,ANG) returns the responses, RESP, of the array elements, at operating
frequencies specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
sArray — Uniform circular array
System object

Uniform circular array, specified as a phased.UCA System object.
Example: sArray= phased.UCA;

FREQ — Operating frequency
positive scalar | 1-by-L real-valued row vector

Operating frequency of array specified, specified as a positive scalar or 1-by-L real-valued row vector.
Frequency units are in hertz.

• For antenna or microphone elements, FREQ must lie within the range of values specified by the
FrequencyRange or FrequencyVector property of the element. Otherwise, the element
produces no response and the array response is returned as zero. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as zero.
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Example: [1e8 2e8]
Data Types: double

ANG — Response directions
1-by-M real-valued row vector | 2-by-M real-valued matrix

Response directions, specified as either a 2-by-M real-valued matrix or a real-valued row vector of
length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must lie between –180° and 180°, inclusive. The elevation angle
must lie between –90° and 90°, inclusive. Angle units are in degrees.

If ANG is a row vector of length M, each element specifies the azimuth angle of the direction. In this
case, the corresponding elevation angle is assumed to be 0°.
Example: [20;15]
Data Types: double

Output Arguments
RESP — Voltage responses of phased array
complex-valued N-by-M-by-L matrix | complex-valued structure

Voltage responses of a phased array, specified as a complex-valued matrix or a struct with complex-
valued fields. The output depends on whether the array supports polarization or not.

• If the array elements do not support polarization, the voltage response, RESP, has the dimensions
N-by-M-by-L.

• N (rows) is the number of elements in the array
• M (columns) is the number of angles specified in ANG
• L (pages) is the number of frequencies specified in FREQ

For each array element, the columns of RESP contain the array element responses for the
corresponding direction specified in ANG. Each of the L pages of RESP contains the array element
responses for the corresponding frequency specified in FREQ.

• If the array supports polarization, RESP is a MATLAB struct containing two fields, RESP.H and
RESP.V. The field, RESP.H, represents the array’s horizontal polarization response, while RESP.V
represents the array’s vertical polarization response. Each field has the dimensions N-by-M-by-L.

• N (rows) is the number of elements in the array
• M (columns) is the number of angles specified in ANG
• L (pages) is the number of frequencies specified in FREQ

For each array element, the columns of RESP.H or RESP.V contain the array element responses
for the corresponding direction specified in ANG. Each of the L pages of RESP.H or RESP.V
contains the array element responses for the corresponding frequency specified in FREQ.

Examples
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Response of UCA Array

Create a 5-element uniform circular array (UCA) of cosine antenna elements having a 0.5 meter
radius. Find the element responses at the 0 degrees azimuth and elevation at a 300 MHz operating
frequency.

c = physconst('LightSpeed');
fc = 300e6;
sCos = phased.CosineAntennaElement('CosinePower',[1,1]);
sArray = phased.UCA('Element',sCos,'NumElements',5,'Radius',0.5);
ang = [0;0];
resp = step(sArray,fc,ang)

resp = 5×1

         0
    0.3090
    1.0000
    0.3090
         0

Introduced in R2015a
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viewArray
System object: phased.UCA
Package: phased

View array geometry

Syntax
viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray( ___ )

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options specified by
one or more Name,Value pair arguments.

hPlot = viewArray( ___ ) returns the handle of the array elements in the figure window. All input
arguments described for the previous syntaxes also apply here.

Input Arguments
H — Uniform circular array
System object

Uniform circular array specified as a phased.UCA System object.
Example: phased.UCA()

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowIndex — Element indices to show
'None' (default) | vector of positive integers | 'All'

Element indices to show in the figure, specified as the comma-separated pair consisting of
'ShowIndex' and a vector of positive integers. Each number in the vector must be an integer
between 1 and the number of elements. To show all of indices of the array, specify 'All'. To
suppress all indices, specify 'None'.
Example: [1,2,3]
Data Types: double

ShowNormals — Option to show normal vectors
false (default) | true
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Option to show normal directions, specified as the comma-separated pair consisting of
'ShowNormals' and a Boolean value.

• true — show the normal directions of all elements in the array
• false — plot the elements without showing normal directions

Example: false
Data Types: logical

ShowTaper — Option to show taper magnitude
false (default) | true

Option to show taper magnitude, specified as the comma-separated pair consisting of 'ShowTaper'
and a Boolean value.

• true — change the element color brightness in proportion to the element taper magnitude
• false — plot all elements using the same color

Example: true
Data Types: logical

Title — Plot title
'Array Geometry' (default) | character vector

Plot title, specified as a character vector.
Example: 'My array plot'

Output Arguments
hPlot — Handle of array elements
scalar

Handle of array elements in the figure window, specified as a scalar.

Examples

View UCA Array

Construct an 7-element UCA of isotropic antenna elements with a Taylor window taper. Design the
array to have a radius of 0.5 meters. Then, draw the array showing the element normals, element
indices, and element taper shading.

Nelem = 7;
R = 0.5;
taper = taylorwin(Nelem);
sArray = phased.UCA(Nelem,R,'Taper',taper.');
w = getTaper(sArray);
viewArray(sArray,'ShowNormals',true,'ShowIndex','All','ShowTaper',true);
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See Also
phased.ArrayResponse

Topics
Phased Array Gallery

Introduced in R2015a
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phased.ULA
Package: phased

Uniform linear array

Description
The phased.ULA System object creates a uniform linear array (ULA).

To compute the response for each element in the array for specified directions:

1 Define and set up your uniform linear array. See “Construction” on page 1-1869.
2 Call step to compute the response according to the properties of phased.ULA. The behavior of

step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.ULA creates a uniform linear array (ULA) System object, H. The object models a ULA
formed with identical sensor elements. The origin of the local coordinate system is the phase center
of the array. The positive x-axis is the direction normal to the array, and the elements of the array are
located along the y-axis.

H = phased.ULA(Name,Value) creates object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.ULA(N,D,Name,Value) creates a ULA object, H, with the NumElements property set
to N, the ElementSpacing property set to D, and other specified property Names set to the specified
Values. N and D are value-only arguments. When specifying a value-only argument, specify all
preceding value-only arguments. You can specify name-value pair arguments in any order.

Properties
Element

Element of array

Specify the element of the sensor array as a handle. The element must be an element object in the
phased package.

Default: Isotropic antenna element with default array properties

NumElements

Number of elements
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An integer containing the number of elements in the array.

Default: 2

ElementSpacing

Element spacing

A scalar containing the spacing (in meters) between two adjacent elements in the array.

Default: 0.5

ArrayAxis

Array axis

Array axis, specified as one of 'x', 'y', or 'z'. ULA array elements are located along the selected
coordinate system axis.

Element normal vectors are determined by the selected array axis

ArrayAxis Property Value Element Normal Direction
'x' azimuth = 90°, elevation = 0° (y-axis)
'y' azimuth = 0°, elevation = 0° (x-axis)
'z' azimuth = 0°, elevation = 0° (x-axis)

Default: 'y'

Taper

Element tapering

Element tapering or weighting, specified as a complex-valued scalar, 1-by-N row vector, or N-by-1
column vector. In this vector, N represents the number of elements of the array. Tapers, also known as
weights, are applied to each sensor element in the sensor array and modify both the amplitude and
phase of the received data. If 'Taper' is a scalar, the same taper value is applied to all elements. If
'Taper' is a vector, each taper value is applied to the corresponding sensor element.

Default: 1

Methods
Specific to phased.ULA Object
beamwidth Compute and display beamwidth of an array
collectPla
neWave

Simulate received plane waves

directivit
y

Directivity of uniform linear array

getElement
Normal

Normal vector to array elements
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Specific to phased.ULA Object
getElement
Position

Positions of array elements

getNumElem
ents

Number of elements in array

getTaper Array element tapers
isPolariza
tionCapabl
e

Polarization capability

pattern Plot array pattern
patternAzi
muth

Plot ULA array directivity or pattern versus azimuth

patternEle
vation

Plot ULA array directivity or pattern versus elevation

plotGratin
gLobeDiagr
am

Plot grating lobe diagram of array

plotRespon
se

Plot response pattern of array

step Output responses of array elements
viewArray View array geometry

Common to All System Objects
release Allow System object property value changes

Examples

Plot Pattern of 4-Element Antenna Array

Create a 4-element undersampled ULA and find the response of each element at boresight. Plot the
array pattern at 1 GHz for azimuth angles between -180 and 180 degrees. The default element
spacing is 0.5 meters.

array = phased.ULA('NumElements',4);
fc = 1e9;
ang = [0;0];
resp = array(fc,ang)

resp = 4×1

     1
     1
     1
     1

c = physconst('LightSpeed');
pattern(array,fc,-180:180,0,'PropagationSpeed',c,...
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    'CoordinateSystem','rectangular',...
    'Type','powerdb','Normalize',true)

Plot Pattern of 10-Element Microphone ULA

Construct a 10-element uniform linear array of omnidirectional microphones spaced 3 cm apart.
Then, plot the array pattern at 100 Hz.

mic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20e3]);
Nele = 10;
array = phased.ULA('NumElements',Nele,...
    'ElementSpacing',3e-2,...
    'Element',mic);
fc = 100;
ang = [0; 0];
resp = array(fc,ang);
c = 340;
pattern(array,fc,[-180:180],0,'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Type','powerdb',...
    'Normalize',true);
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Plot Pattern of Array of Polarized Short-Dipole Antennas

Build a tapered uniform line array of 5 short-dipole sensor elements. Because short dipoles support
polarization, the array should as well. Verify that it supports polarization by looking at the output of
the isPolarizationCapable method.

antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[100e6 1e9],'AxisDirection','Z');
array = phased.ULA('NumElements',5,'Element',antenna,...
    'Taper',[.5,.7,1,.7,.5]);
isPolarizationCapable(array)

ans = logical
   1

Then, draw the array using the viewArray method.

viewArray(array,'ShowTaper',true,'ShowIndex','All')
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Compute the horizontal and vertical responses.

fc = 150e6;
ang = [10];
resp = array(fc,ang);

Display the horizontal polarization response.

resp.H

ans = 5×1

     0
     0
     0
     0
     0

Display the vertical polarization response.

resp.V

ans = 5×1

   -0.6124
   -0.8573
   -1.2247
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   -0.8573
   -0.6124

Plot an azimuth cut of the vertical polarization response.

c = physconst('LightSpeed');
pattern(array,fc,[-180:180],0,...
    'PropagationSpeed',c,...
    'CoordinateSystem','polar',...
    'Polarization','V',...
    'Type','powerdb',...
    'Normalize',true)

References

[1] Brookner, E., ed. Radar Technology. Lexington, MA: LexBook, 1996.

[2] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, plotResponse, and viewArray methods are
not supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CrossedDipoleAntennaElement | phased.CustomAntennaElement |
phased.IsotropicAntennaElement | phased.PartitionedArray |
phased.ReplicatedSubarray | phased.ShortDipoleAntennaElement | phased.UCA |
phased.URA

Topics
Phased Array Gallery

Introduced in R2011a
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directivity
System object: phased.ULA
Package: phased

Directivity of uniform linear array

Syntax
D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)

Description
D = directivity(H,FREQ,ANGLE) computes the “Directivity (dBi)” on page 1-1880 of a uniform
linear array (ULA) of antenna or microphone elements, H, at frequencies specified by FREQ and in
angles of direction specified by ANGLE.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

D = directivity(H,FREQ,ANGLE,Name,Value) returns the directivity with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
H — Uniform linear array
System object

Uniform linear array specified as a phased.ULA System object.
Example: H = phased.ULA;

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double
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ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
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In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Uniform Linear Array

Compute the directivities of two different uniform linear arrays (ULA). One array consists of isotropic
antenna elements and the second array consists of cosine antenna elements. In addition, compute the
directivity when the first array is steered in a specified direction. For each case, calculated the
directivities for a set of seven different azimuth directions all at zero degrees elevation. Set the
frequency to 800 MHz.

Array of isotropic antenna elements

First, create a 10-element ULA of isotropic antenna elements spaced 1/2-wavelength apart.

c = physconst('LightSpeed');
fc = 3e8;
lambda = c/fc;
ang = [-30,-20,-10,0,10,20,30; 0,0,0,0,0,0,0];
myAnt1 = phased.IsotropicAntennaElement;
myArray1 = phased.ULA(10,lambda/2,'Element',myAnt1);

Compute the directivity

d = directivity(myArray1,fc,ang,'PropagationSpeed',c)

d = 7×1

   -6.9886
   -6.2283
   -6.5176
   10.0011
   -6.5176
   -6.2283
   -6.9886
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Array of cosine antenna elements

Next, create a 10-element ULA of cosine antenna elements spaced 1/2-wavelength apart.

myAnt2 = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);
myArray2 = phased.ULA(10,lambda/2,'Element',myAnt2);

Compute the directivity

d = directivity(myArray2,fc,ang,'PropagationSpeed',c)

d = 7×1

   -1.9838
    0.0529
    0.4968
   17.2548
    0.4968
    0.0529
   -1.9838

The directivity of the cosine ULA is greater than the directivity of the isotropic ULA because of the
larger directivity of the cosine antenna element.

Steered array of isotropic antenna elements

Finally, steer the isotropic antenna array to 30 degrees in azimuth and compute the directivity.

w = steervec(getElementPosition(myArray1)/lambda,[30;0]);
d = directivity(myArray1,fc,ang,'PropagationSpeed',c,...
    'Weights',w)

d = 7×1

 -297.5224
  -13.9783
   -9.5713
   -6.9897
   -4.5787
   -2.0536
   10.0000

The directivity is greatest in the steered direction.

More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power
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D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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collectPlaneWave
System object: phased.ULA
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H, when the
input signals indicated by X arrive at the array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal carrier
frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal propagation speed in
C.

Input Arguments
H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an individual
incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the corresponding signal in
X. Each column of ANG is in the form [azimuth; elevation]. The azimuth angle must be between
–180° and 180°, inclusive. The elevation angle must be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this case, the
corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8
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C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments
Y

Received signals. Y is an N-column matrix, where N is the number of elements in the array H. Each
column of Y is the received signal at the corresponding array element, with all incoming signals
combined.

Examples

Simulate Received Signals at ULA

Simulate two received random signals at a 4-element ULA. The signals arrive from 10° and 30°
azimuth. Both signals have an elevation angle of 0°. Assume the propagation speed is the speed of
light and the carrier frequency of the signal is 100 MHz.

array = phased.ULA(4);
y = collectPlaneWave(array,randn(4,2),[10 30],100e6,physconst('LightSpeed'))

y = 4×4 complex

   0.7430 - 0.3705i   0.8433 - 0.1314i   0.8433 + 0.1314i   0.7430 + 0.3705i
   0.8418 + 0.4308i   0.5632 + 0.1721i   0.5632 - 0.1721i   0.8418 - 0.4308i
  -2.4817 + 0.9157i  -2.6683 + 0.3175i  -2.6683 - 0.3175i  -2.4817 - 0.9157i
   1.0724 - 0.4748i   1.1895 - 0.1671i   1.1895 + 0.1671i   1.0724 + 0.4748i

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the delay caused by
the direction of arrival. The method does not account for the response of individual elements in the
array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel
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getElementPosition
System object: phased.ULA
Package: phased

Positions of array elements

Syntax
pos = getElementPosition(sULA)
pos = getElementPosition(sULA,elemidx)

Description
pos = getElementPosition(sULA) returns the element positions of the phased.ULA System
object, sULA. pos is a 3-by-N matrix, where N is the number of elements in sULA. Each column of
pos defines the position of an element in the local coordinate system taking the form[x;y;z]. Units
are meters. The origin of the local coordinate system is the phase center of the array.

pos = getElementPosition(sULA,elemidx) returns only the positions of the elements that are
specified in the element index vector elemidx. This syntax can use any of the input arguments in the
previous syntax.

Examples

ULA Element Positions

Construct a ULA with 5 elements along the z-axis. Obtain the element positions.

sULA = phased.ULA('NumElements',5,'ArrayAxis','z');
pos = getElementPosition(sULA)

pos = 3×5

         0         0         0         0         0
         0         0         0         0         0
   -1.0000   -0.5000         0    0.5000    1.0000
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getElementNormal
System object: phased.ULA
Package: phased

Normal vector to array elements

Syntax
normvec = getElementNormal(sULA)
normvec = getElementNormal(sULA,elemidx)

Description
normvec = getElementNormal(sULA) returns the normal vectors of the array elements of the
phased.ULA System object, sULA. The output argument normvec is a 2-by-N matrix, where N is the
number of elements in array, sULA. Each column of normvec defines the normal direction of an
element in the local coordinate system in the form[az;el]. Units are degrees. Array elements are
located along the axis selected in the ArrayAxis property. Element normal vectors are parallel to the
array normal. The normal to a ULA array depends upon the selected ArrayAxis property.

ArrayAxis Property Value Array Normal Direction
'x' azimuth = 90°, elevation = 0° (y-axis)
'y' azimuth = 0°, elevation = 0° (x-axis)
'z' azimuth = 0°, elevation = 0° (x-axis)

The origin of the local coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sULA,elemidx) returns only the normal vectors of the elements
specified in the element index vector, elemidx. This syntax can use any of the input arguments in the
previous syntax.

Input Arguments
sULA — Uniform line array
phased.ULA System object

Uniform line array, specified as a phased.ULA System object.
Example: sULA = phased.ULA

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1 column vector

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range 1 to N where N
is the number of elements of the array. When elemidx is specified, getElementNormal returns the
normal vectors of the elements contained in elemidx.
Example: [1,5,4]
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Output Arguments
normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of normvec takes the
form [az,el]. When elemidx is not specified, P equals the array dimension. When elemidx is
specified, P equals the length of elemidx, M.

Examples

ULA Element Normals

Construct three ULA's with elements along the x-, y-, and z-axes. Obtain the element normals.

First, choose the array axis along the x-axis.

sULA1 = phased.ULA('NumElements',5,'ArrayAxis','x');
norm = getElementNormal(sULA1)

norm = 2×5

    90    90    90    90    90
     0     0     0     0     0

The element normal vectors point along the y-axis.

Next, choose the array axis along the y-axis.

sULA2 = phased.ULA('NumElements',5,'ArrayAxis','y');
norm = getElementNormal(sULA2)

norm = 2×5

     0     0     0     0     0
     0     0     0     0     0

The element normal vectors point along the x-axis.

Finally, set the array axis along the z-axis. Obtain the normal vectors of the odd-numbered elements.

sULA3 = phased.ULA('NumElements',5,'ArrayAxis','z');
norm = getElementNormal(sULA3,[1,3,5])

norm = 2×3

     0     0     0
     0     0     0

The element normal vectors also point along the x-axis.
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Introduced in R2016a
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getNumElements
System object: phased.ULA
Package: phased

Number of elements in array

Syntax
N = getNumElements(H)

Description
N = getNumElements(H) returns the number of elements, N, in the ULA object H.

Examples

Get Number of ULA Elements

Construct a default ULA and obtain the number of elements in that array.

 array = phased.ULA;
 N = getNumElements(array)

N = 2
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getTaper
System object: phased.ULA
Package: phased

Array element tapers

Syntax
wts = getTaper(h)

Description
wts = getTaper(h) returns the tapers, wts, applied to each element of the phased uniform line
array (ULA), h. Tapers are often referred to as weights.

Input Arguments
h — Uniform line array
phased.ULA System object

Uniform line array specified as a phased.ULA System object.

Output Arguments
wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1 complex-valued vector, where N is the number of
elements in the array.

Examples

Construct ULA with Taylor Window

Construct a 5-element ULA with a Taylor window taper. Then, obtain the element taper values.

taper = taylorwin(5)';
array = phased.ULA(5,'Taper',taper);
w = getTaper(array)

w = 5×1

    0.5181
    1.2029
    1.5581
    1.2029
    0.5181
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isPolarizationCapable
System object: phased.ULA
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the array
supports polarization. An array supports polarization if all of its constituent sensor elements support
polarization.

Input Arguments
h — Uniform line array

Uniform line array specified as a phased.ULA System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value true if the array supports polarization or
false if it does not.

Examples

Short-Dipole Antenna ULA Supports Polarization

Show that an array of phased.ShortDipoleAntennaElement antenna elements supports
polarization.

antenna = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[1e9 10e9]);
array = phased.ULA('NumElements',3,'Element',antenna);
isPolarizationCapable(array)

ans = logical
   1

The returned value of 1 shows that this array supports polarization.
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plotResponse
System object: phased.ULA
Package: phased

Plot response pattern of array

Syntax
plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ. The propagation speed is specified
in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie within the
range specified by a property of H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has no response at frequencies outside
that range. If you set the 'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a
row vector, plotResponse draws multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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CutAngle

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If RespCut is
'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be between –180
and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the array response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This parameter is not
applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.
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• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.

Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

Weights

Weight values applied to the array, specified as a length-N column vector or N-by-M matrix. The
dimension N is the number of elements in the array. The interpretation of M depends upon whether
the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose
N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for the

same single frequency or all M
frequencies.

N-by-M matrix

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

AzimuthAngles

Azimuth angles for plotting array response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting array response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
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Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When yous set the RespCut parameter to '3D',
you can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting array response, specified as a row vector. The UGrid parameter sets
the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting array response, specified as a row vector. The VGrid parameter sets
the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Plot Azimuth Response of 4-Element ULA

Construct a 4-element ULA of isotropic elements (the default) and plot its azimuth response in polar
form. By default, the azimuth cut is at 0 degrees elevation. Assume the operating frequency is 1 GHz
and the wave propagation speed is the speed of light. The nominal element spacing is 1/2 meter
which means that the array is undersampled at this frequency.

ha = phased.ULA(4);
fc = 1e9;
c = physconst('LightSpeed');
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');
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Plot Response of ULA at Two Frequencies

This example shows how to plot an azimuth cut of the response of a uniform linear array at 0 degrees
elevation using a line plot. The plot shows the responses at operating frequencies of 300 MHz and
400 MHz.

h = phased.ULA;
fc = [3e8 4e8];
c = physconst('LightSpeed');
plotResponse(h,fc,c);
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Plot Azimuth Response of Tapered 11-Element ULA

This example shows how to construct an 11-element ULA array of backbaffled omnidirectional
microphones for beamforming the direction of arrival of sound in air. The elements are spaced four
centimeters apart and have a frequency response lying in the 2000-8000 Hz frequency range. Use the
plotResponse method to display an azimuth cut of the array's response at 5000 Hz. Use the
'Weights' parameter to apply both uniform tapering and Taylor window tapering to the array at the
same frequency. Finally, use the 'AzimuthAngles' parameter to limit the display from -45 to 45
degrees in 0.1 degree increments. A typical value for the speed of sound in air is 343 meters/second.

s_omni = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[2000,8000],...
    'BackBaffled',true);
s_ula = phased.ULA(11,'Element',s_omni,...
    'ElementSpacing',0.04);
c = 343.0;
fc = 5000;
wts = taylorwin(11);
plotResponse(s_ula,fc,c,'RespCut','Az',...
    'Format','Polar',...
    'Weights',[ones(11,1),wts],...
    'AzimuthAngles',[-45:.1:45]);
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The plot shows that the Taylor tapered set of weights reduces the adjacent sidelobes while
broadening the main lobe compared to a uniformly tapered array.

Plot Directivity of 11-Element ULA of Cosine Pattern Antennas

This example shows how to construct an 11-element ULA of cosine antenna elements that are spaced
one-half wavelength apart. Then, using the plotResponse method, plot an azimuth cut of the array's
directivity by setting the 'Unit' parameter to 'dbi'. Assume the operating frequency is 1.5 GHz
and the wave propagation speed is the speed of light.

fc = 1.5e9;
c = physconst('Lightspeed');
lambda = c/fc;
sCos = phased.CosineAntennaElement('FrequencyRange',...
    [1e9 2e9],'CosinePower',[2.5,3.5]);
sULA = phased.ULA(11,0.5*lambda,'Element',sCos);
plotResponse(sULA,fc,c,'RespCut','Az','Unit','dbi');
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See Also
azel2uv | uv2azel
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pattern
System object: phased.ULA
Package: phased

Plot array pattern

Syntax
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array specified in
sArray. The operating frequency is specified in FREQ.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the array pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-1908 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sArray — Uniform linear array
System object

Uniform linear array, specified as a phased.ULA System object.
Example: sArray= phased.ULA;
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FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
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'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component
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Example: 'V'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT correspond to the
dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector
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Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Plot Pattern of 9-Element ULA Antenna Array of Short Dipoles

Create an 9-element ULA of short dipole antenna elements spaced 0.2 meters apart. Display the
azimuth and elevation directivities. The operating frequency is 500 MHz. Plot the directivities in polar
coordinates.

Evaluate the fields at 45 degrees azimuth and 0 degrees elevation.

element = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[50e6,1000e6],...
    'AxisDirection','Z');
array = phased.ULA('NumElements',9,'ElementSpacing',1.5,'Element',element);
fc = 500e6;
ang = [45;0];
resp = array(fc,ang);
disp(resp.V)

   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247

Display the azimuth directivity pattern at 500 MHz for azimuth angles between -180 and 180
degrees.

c = physconst('LightSpeed');
pattern(array,fc,[-180:180],0,...
    'Type','directivity',...
    'PropagationSpeed',c)
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Display the elevation directivity pattern at 500 MHz for elevation angles between -90 and 90 degrees.

pattern(array,fc,[0],[-90:90],...
    'Type','directivity',...
    'PropagationSpeed',c)
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Plot Pattern of 10-Element ULA Antenna Array in UV Space

Create a 10-element ULA antenna array consisting of cosine antenna elements spaced 10 cm apart.
Display the 3-D power pattern in UV space. The operating frequency is 500 MHz.

sCos = phased.CosineAntennaElement('FrequencyRange',[100e6 1e9],...
    'CosinePower',[2.5,2.5]);
sULA = phased.ULA('NumElements',10,...
    'ElementSpacing',.1,...
    'Element',sCos);
c = physconst('LightSpeed');
fc = 500e6;
pattern(sULA,fc,[-1:.01:1],[-1:.01:1],...
    'CoordinateSystem','uv',...
    'Type','powerdb',...
    'PropagationSpeed',c)
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More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.
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Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These are the azimuthPattern and elevationPattern methods.

The following table is a guide for converting your code from using plotResponse to pattern. You
should notice that some of the inputs have changed from input arguments to Name-Value pairs and
vice versa. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.ULA
Package: phased

Plot ULA array directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus azimuth (in dBi) for
the array sArray at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternAzimuth(sArray,FREQ,EL), in addition, plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When EL is a vector,
multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the array pattern. PAT is a matrix whose entries represent
the pattern at corresponding sampling points specified by the 'Azimuth' parameter and the EL
input argument.

Input Arguments
sArray — Uniform linear array
System object

Uniform linear array, specified as a phased.ULA System object.
Example: sArray= phased.ULA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension N is the
number of elevation angles, as determined by the EL input argument.

Examples

Plot Azimuth Pattern of ULA

Create a 7-element ULA of short-dipole antenna elements spaced 10 cm apart. Plot an azimuth cut of
directivity at 0 and 10 degrees elevation. Assume the operating frequency is 500 MHz.

fc = 500e6;
sCDant = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6);
sULA = phased.ULA('NumElements',7,'ElementSpacing',0.1,'Element',sCDant);
patternAzimuth(sULA,fc,[0 30])
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You can plot a smaller range of azimuth angles by setting the Azimuth property.

patternAzimuth(sULA,fc,[0 30],'Azimuth',[-90:90])

 patternAzimuth
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More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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Introduced in R2015a
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patternElevation
System object: phased.ULA
Package: phased

Plot ULA array directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus elevation (in dBi)
for the array sArray at zero degrees azimuth angle. When AZ is a vector, multiple overlaid plots are
created. The argument FREQ specifies the operating frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the array pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sArray — Uniform linear array
System object

Uniform linear array, specified as a phased.ULA System object.
Example: sArray= phased.ULA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of elevation angles determined by the 'Elevation' name-value pair argument. The dimension N is
the number of azimuth angles determined by the AZ argument.

Examples

Plot Elevation Pattern of ULA

Create a 6-element ULA of short-dipole antenna elements with element spacing of 10 cm. Plot an
elevation cut of directivity at 0 and 90 degrees azimuth. Assume the operating frequency is 500 MHz.

fc = 500e6;
c = physconst('LightSpeed');
sSD = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6);
sULA = phased.ULA('NumElements',6,'ElementSpacing',0.1,'Element',sSD);
patternElevation(sULA,fc,[0 90],'PropagationSpeed',c)
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You can plot a smaller range of elevation angles by setting the Elevation property.

patternElevation(sULA,fc,[0 45],'Elevation',[0:90],'PropagationSpeed',c)

 patternElevation
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More About
Directivity (dBi)

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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Introduced in R2015a
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plotGratingLobeDiagram
System object: phased.ULA
Package: phased

Plot grating lobe diagram of array

Syntax
plotGratingLobeDiagram(H,FREQ)
plotGratingLobeDiagram(H,FREQ,ANGLE)
plotGratingLobeDiagram(H,FREQ,ANGLE,C)
plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0)
hPlot = plotGratingLobeDiagram( ___ )

Description
plotGratingLobeDiagram(H,FREQ) plots the grating lobe diagram of an array in the u-v
coordinate system. The System object H specifies the array. The argument FREQ specifies the signal
frequency and phase-shifter frequency. The array, by default, is steered to 0° azimuth and 0°
elevation.

A grating lobe diagram displays the positions of the peaks of the narrowband array pattern. The array
pattern depends only upon the geometry of the array and not upon the types of elements which make
up the array. Visible and nonvisible grating lobes are displayed as open circles. Only grating lobe
peaks near the location of the mainlobe are shown. The mainlobe itself is displayed as a filled circle.

plotGratingLobeDiagram(H,FREQ,ANGLE), in addition, specifies the array steering angle,
ANGLE.

plotGratingLobeDiagram(H,FREQ,ANGLE,C), in addition, specifies the propagation speed by C.

plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0), in addition, specifies an array phase-shifter
frequency, F0, that differs from the signal frequency, FREQ. This argument is useful when the signal
no longer satisfies the narrowband assumption and, allows you to estimate the size of beam squint.

hPlot = plotGratingLobeDiagram( ___ ) returns the handle to the plot for any of the input
syntax forms.

Input Arguments
H

Antenna or microphone array, specified as a System object.

FREQ

Signal frequency, specified as a scalar. Frequency units are hertz. Values must lie within a range
specified by the frequency property of the array elements contained in H.Element. The frequency
property is named FrequencyRange or FrequencyVector, depending on the element type.
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ANGLE

Array steering angle, specified as either a 2-by-1 vector or a scalar. If ANGLE is a vector, it takes the
form [azimuth;elevation]. The azimuth angle must lie in the range [-180°,180°]. The
elevation angle must lie in the range [-90°,90°]. All angle values are specified in degrees. If the
argument ANGLE is a scalar, it specifies only the azimuth angle where the corresponding elevation
angle is 0°.

Default: [0;0]

C

Signal propagation speed, specified as a scalar. Units are meters per second.

Default: Speed of light in vacuum

F0

Phase-shifter frequency of the array, specified as a scalar. Frequency units are hertz When this
argument is omitted, the phase-shifter frequency is assumed to be the signal frequency, FREQ.

Default: FREQ

Examples

Create Grating Lobe Diagram for ULA

Plot the grating lobe diagram for a 4-element uniform linear array having element spacing less than
one-half wavelength. Grating lobes are plotted in u-v coordinates.

Assume the operating frequency of the array is 3 GHz and the spacing between elements is 0.45 of
the wavelength. All elements are isotropic antenna elements. Steer the array in the direction 45
degrees in azimuth and 0 degrees in elevation.

c = physconst('LightSpeed');
f = 3e9;
lambda = c/f;
sIso = phased.IsotropicAntennaElement;
sULA = phased.ULA('Element',sIso,'NumElements',4,...
    'ElementSpacing',0.45*lambda);
plotGratingLobeDiagram(sULA,f,[45;0],c);

 plotGratingLobeDiagram
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The main lobe of the array is indicated by a filled black circle. The grating lobes in the visible and
nonvisible regions are indicated by empty black circles. The visible region is defined by the direction
cosine limits between [-1,1] and is marked by the two vertical black lines. Because the array spacing
is less than one-half wavelength, there are no grating lobes in the visible region of space. There are
an infinite number of grating lobes in the nonvisible regions, but only those in the range [-3,3] are
shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe for which
there are no grating lobes in the visible region. In this case, it coincides with the visible region.

The white area of the diagram indicates a region where no grating lobes are possible.

Create Grating Lobe Diagram for Undersampled ULA

Plot the grating lobe diagram for a 4-element uniform linear array having element spacing greater
than one-half wavelength. Grating lobes are plotted in u-v coordinates.

Assume the operating frequency of the array is 3 GHz and the spacing between elements is 0.65 of a
wavelength. All elements are isotropic antenna elements. Steer the array in the direction 45 degrees
in azimuth and 0 degrees in elevation.

c = physconst('LightSpeed');
f = 3e9;
lambda = c/f;
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sIso = phased.IsotropicAntennaElement;
sULA = phased.ULA('Element',sIso,'NumElements',4,'ElementSpacing',0.65*lambda);
plotGratingLobeDiagram(sULA,f,[45;0],c);

The main lobe of the array is indicated by a filled black circle. The grating lobes in the visible and
nonvisible regions are indicated by empty black circles. The visible region, marked by the two black
vertical lines, corresponds to arrival angles between -90 and 90 degrees. The visible region is defined
by the direction cosine limits −1 ≤ u ≤ 1. Because the array spacing is greater than one-half
wavelength, there is now a grating lobe in the visible region of space. There are an infinite number of
grating lobes in the nonvisible regions, but only those for which −3 ≤ u ≤ 3 are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe for which
there are no grating lobes in the visible region. In this case, it lies inside the visible region.

Create Grating Lobe Diagram for ULA With Different Phase-Shifter Frequency

Plot the grating lobe diagram for a 4-element uniform linear array having element spacing greater
than one-half wavelength. Apply a phase-shifter frequency that differs from the signal frequency.
Grating lobes are plotted in u-v coordinates.

Assume the signal frequency is 3 GHz and the spacing between elements is 0.65 λ. All elements are
isotropic antenna elements. The phase-shifter frequency is set to 3.5 GHz. Steer the array in the
direction 45∘ azimuth, 0∘ elevation.

 plotGratingLobeDiagram
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c = physconst('LightSpeed');
f = 3e9;
f0 = 3.5e9;
lambda = c/f;
sIso = phased.IsotropicAntennaElement;
sULA = phased.ULA('Element',sIso,'NumElements',4,...
    'ElementSpacing',0.65*lambda );
plotGratingLobeDiagram(sULA,f,[45;0],c,f0);

As a result of adding the shifted frequency, the mainlobe shifts right towards larger u values. The
beam no longer points toward the actual source arrival angle.

The mainlobe of the array is indicated by a filled black circle. The grating lobes in the visible and
nonvisible regions are indicated by empty black circles. The visible region, marked by the two black
vertical lines, corresponds to arrival angles between ‐90∘ and 90∘. The visible region is defined by the
direction cosine limits −1 ≤ u ≤ 1. Because the array spacing is greater than one-half wavelength,
there is now a grating lobe in the visible region of space. There are an infinite number of grating
lobes in the nonvisible regions, but only those for which −3 ≤ u ≤ 3 are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe for which
there are no grating lobes in the visible region. In this case, it lies inside the visible region.
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Concepts
Grating Lobes

Spatial undersampling of a wavefield by an array gives rise to visible grating lobes. If you think of the
wavenumber, k, as analogous to angular frequency, then you must sample the signal at spatial
intervals smaller than π/kmax (or λmin/2) in order to remove aliasing. The appearance of visible grating
lobes is also known as spatial aliasing. The variable kmax is the largest wavenumber value present in
the signal.

The directions of maximum spatial response of a ULA are determined by the peaks of the array’s
array pattern (alternatively called the beam pattern or array factor). Peaks other than the mainlobe
peak are called grating lobes. For a ULA, the array pattern depends only on the wavenumber
component of the wavefield along the array axis (the y-direction for the phased.ULA System object).
The wavenumber component is related to the look-direction of an arriving wavefield by ky = –2π sin φ/
λ. The angle φ is the broadside angle—the angle that the look-direction makes with a plane
perpendicular to the array. The look-direction points away from the array to the wavefield source.

The array pattern possesses an infinite number of periodically-spaced peaks that are equal in
strength to the mainlobe peak. If you steer the array to the φ0 direction, the array pattern for a ULA
has its mainlobe peak at the wavenumber value of ky0 = –2π sin φ0/λ. The array pattern has strong
grating lobe peaks at kym = ky0 + 2π m/d, for any integer value m. Expressed in terms of direction
cosines, the grating lobes occur at um = u0 + mλ/d, where u0 = sin φ0. The direction cosine, u0, is the
cosine of the angle that the look-direction makes with the y-axis and is equal to sin φ0 when expressed
in terms of the look-direction.

In order to correspond to a physical look-direction, um must satisfy, –1 ≤ um ≤ 1. You can compute a
physical look-direction angle φm from sin φm = um as long as –1 ≤ um ≤ 1. The spacing of grating lobes
depends upon λ/d. When λ/d is small enough, multiple grating lobe peaks can correspond to physical
look-directions.

The presence or absence of visible grating lobes for the ULA is summarized in this table.

Element Spacing Grating Lobes
λ/d ≥ 2 No visible grating lobes for any mainlobe

direction.
1 ≤ λ/d < 2 Visible grating lobes can exist for some range of

mainlobe directions.
λ/d < 1 Visible grating lobes exist for every mainlobe

direction.

References
[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
azel2uv | uv2azel

 plotGratingLobeDiagram

1-1929



step
System object: phased.ULA
Package: phased

Output responses of array elements

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the array element responses, RESP, at the operating
frequencies specified in FREQ and in directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of H.Element. That property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array. The element has zero response at
frequencies outside that range.

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must lie between –180° and 180°, inclusive. The elevation angle
must lie between –90° and 90°, inclusive.
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If ANG is a row vector of length M, each element specifies the azimuth angle of the direction. In this
case, the corresponding elevation angle is assumed to be 0°.

Output Arguments
RESP

Voltage responses of the phased array. The output depends on whether the array supports
polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP, has the
dimensions N-by-M-by-L. N is the number of elements in the array. The dimension M is the
number of angles specified in ANG. L is the number of frequencies specified in FREQ. For any
element, the columns of RESP contain the responses of the array elements for the corresponding
direction specified in ANG. Each of the L pages of RESP contains the responses of the array
elements for the corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a MATLAB
struct containing two fields, RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents the array’s vertical polarization
response. Each field has the dimensions N-by-M-by-L. N is the number of elements in the array,
and M is the number of angles specified in ANG. L is the number of frequencies specified in FREQ.
Each column of RESP contains the responses of the array elements for the corresponding direction
specified in ANG. Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples

Response of Antenna ULA

Create a 4-element ULA of isotropic antenna elements and find the response of each element at
boresight. Plot the array response at 1 GHz for azimuth angles between -180 and 180 degrees.

ha = phased.ULA('NumElements',4);
fc = 1e9;
ang = [0;0];
resp = step(ha,fc,ang);
c = physconst('LightSpeed');
pattern(ha,fc,[-180:180],0,...
    'PropagationSpeed',c,...
    'CoordinateSystem','rectangular')
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Step Response of Microphone ULA Array

Find the response of a ULA array of 10 omnidirectional microphones spaced 1.5 meters apart. Set the
frequency response of the microphone to the range 20 Hz to 20 kHz and choose the signal frequency
to be 100 Hz. Using the step method, determine the response of each element at boresight: 0
degrees azimuth and 0 degrees elevation.

sMic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20e3]);
Nelem = 10;
sULA = phased.ULA('NumElements',Nelem,...
    'ElementSpacing',1.5,...
    'Element',sMic);
fc = 100;
ang = [0;0];
resp = step(sULA,fc,ang)

resp = 10×1

     1
     1
     1
     1
     1
     1

1 Objects

1-1932



     1
     1
     1
     1

Plot the array directivity. Assume the speed of sound in air to be 340 m/s.

c = 340;
pattern(sULA,fc,[-180:180],0,'PropagationSpeed',c,'CoordinateSystem','polar')

See Also
phitheta2azel | uv2azel

 step

1-1933



viewArray
System object: phased.ULA
Package: phased

View array geometry

Syntax
viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray( ___ )

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options specified by
one or more Name,Value pair arguments.

hPlot = viewArray( ___ ) returns the handle of the array elements in the figure window. All input
arguments described for the previous syntaxes also apply here.

Input Arguments
H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each number in the vector must be an
integer between 1 and the number of elements. You can also specify the value 'All' to show the
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

Set this value to true to show the normal directions of all elements of the array. Set this value to
false to plot the elements without showing normal directions.

Default: false
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ShowTaper

Set this value to true to specify whether to change the element color brightness in proportion to the
element taper magnitude. When this value is set to false, all elements are drawn with the same
color.

Default: false

Title

Character vector specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handle of array elements in figure window.

Examples

Geometry and Indices of ULA Elements

This example shows how to draw a 6-element ULA. Use the 'ShowIndex' parameter to show the
indices of the first and third elements.

sULA = phased.ULA(6);
viewArray(sULA,'ShowIndex',[1 3]);

 viewArray
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See Also
phased.ArrayResponse

Topics
Phased Array Gallery
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phased.UnderwaterRadiatedNoise
Package: phased

Radiate acoustic noise from underwater or surface sound source

Description
The phased.UnderwaterRadiatedNoise System object creates a source of underwater radiated
acoustic noise. The noise source can either be on the sea surface or underwater. The radiated noise
consists of two components: broadband noise and tonal noise. Broadband noise fills the entire
operating system bandwidth while tonal noise occurs at discrete frequencies within the bandwidth. In
general, the intensity of the radiated noise depends on the noise spectrum and the source radiation
pattern. The object lets you specify

• The spectral shape and levels of the broadband noise.
• The frequencies and levels of the tones.
• The noise source radiation pattern.

To propagate noise from a source to a receiver, use this object with the
phased.IsoSpeedUnderwaterPaths and the phased.MultipathChannel objects.

To generate radiated underwater noise:

1 Create the phased.UnderwaterRadiatedNoise object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
noiseradiator = phased.UnderwaterRadiatedNoise
noiseradiator = phased.UnderwaterRadiatedNoise(Name,Value)

Description

noiseradiator = phased.UnderwaterRadiatedNoise creates an underwater radiated noise
source with default property values.

noiseradiator = phased.UnderwaterRadiatedNoise(Name,Value) creates an underwater
radiated noise source with each property Name set to a specified Value. You can specify additional
name-value pair arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property
name in single quotes.
Example: noiseradiator = phased.UnderwaterRadiatedNoise('TonalLevels',[4700
4900 5150],'SampleRate',500,'OperatingFrequency',5000) creates a noise source with
tones at 4.7, 4.9, and 5.15 kHz. The sample rate is set to 0.5 kHz and the operating frequency is 5
kHz. The broadband noise levels are set to default values.

 phased.UnderwaterRadiatedNoise
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Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

NumSamples — Number of output noise samples
100 (default) | positive integer

Number of output noise samples, specified as a positive integer.
Example: 500
Data Types: double

SampleRate — Sample rate
1.0e3 (default) | positive scalar

Sample rate, specified as a positive scalar. The sample rate together with the operating frequency
determines the operating frequency band. See “Input and Output Frequency Bands” on page 1-1947
for the definition of the operating frequency band. Units are in Hz.
Example: 2.0e3
Data Types: double

OperatingFrequency — Signal operating frequency
20.0e3 (default) | positive scalar

Signal operating frequency, specified as a positive scalar. The operating frequency determines the
center of the operating frequency band. See “Input and Output Frequency Bands” on page 1-1947 for
the definition of the operating frequency band. Units are in Hz.
Example: 15.0e3
Data Types: double

TonalFrequencies — Radiated tonal noise frequencies
[19700 20100 20300] (default) | real-valued vector of nonnegative values

Radiated tonal frequencies, specified as a vector of nonnegative values. Tonal frequencies must lie in
the operating frequency band. Tonal frequencies outside this band are ignored. The length of the
TonalFrequencies vector must match the length of the TonalLevels vector. Units are in Hz. See
“Input and Output Frequency Bands” on page 1-1947 for the definition of the operating frequency
band.
Example: [14900 15010 15200]
Data Types: double

TonalLevels — Radiated tonal noise levels
[150 150 150] (default) | real-valued vector

Radiated tonal noise levels, specified as a vector of positive values. Units are in dB//1μPa. The length
of the TonalLevels vector must match the length of the TonalFrequencies vector.
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Example: [50 20 170]
Data Types: double

BroadbandLevel — Broadband noise spectrum level
130 (default) | vector of real values

Broadband noise spectrum level, specified as a vector of real-values. This vector specifies the noise
spectrum at uniformly spaced frequencies in the operating system band. Units are in dB/Hz//1μPa.
Example: [140 145 145 130]
Data Types: double

AzimuthAngles — Elevation angles of source radiation pattern entries
-180:180 (default) | vector of real values

Azimuth angles of source radiation pattern entries, specified as a length-P vector. This property
specifies the azimuth angles of the columns of the source radiation pattern, DirectionalPattern
property. P must be greater than 2. Units are in degrees.
Example: [140 145 145 130]
Data Types: double

ElevationAngles — Elevation angles of directional radiation pattern
-90:90 (default) | length-Q vector of real values

Elevation angles of the source radiation pattern entries, specified as a length-Q vector. This property
specifies the elevation angles of the rows of the source radiation pattern, DirectionalPattern . Q must
be greater than 2. Units are in degrees.
Example: [-45 -30 0 45 30]
Data Types: double

DirectionalPattern — Source radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-K array | 1-by-P-by-K
array | real-valued K-by-P matrix

Source radiation pattern, specified as a real-valued matrix or array. Units are in dB. The allowable
pattern dimensions are:

 phased.UnderwaterRadiatedNoise

1-1939



Radiation Pattern Dimensions

Dimensions Application
Q-by-P matrix Specifies a directional pattern as a function of Q

elevation angles and P azimuth angles. The same
pattern is used for all frequencies.

Q-by-P-by-K array Specifies a directional pattern as a function of Q
elevation angles, P azimuth angles, and K
frequencies. If K = 1, the directional pattern is
equivalent to a Q-by-P matrix.

1-by-P-by-K array Specifies a directional pattern as a function of P
azimuth angles and K frequencies. These
dimensions apply when there is only one
elevation angle.

K-by-P matrix

• Q is the length of the vector specified by the ElevationAngles property.
• P is the length of the vector specified by the AzimuthAngles property.
• K is the number of frequencies specified by the FrequencyVector property.

Matrix and Array Specifications

Application Radiation Pattern Dimensions
One source and M radiation directions specified
in the ang argument of the object function.

Specify one radiation pattern matrix or array for
all radiating angles.

M sources with the same pattern and M radiation
directions specified in the ang argument of the
object function.

Specify one radiation pattern matrix or array for
all radiating angles.

M sources with individual radiation patterns and
M radiation directions specified in the ang
argument of the object function.

M radiation patterns in a cell array. All patterns
must have the same sizes and types. The number
of patterns must match the number of radiating
angles.

Example: [1,3;5,-10]
Data Types: double

FrequencyVector — Radiation pattern frequencies
[0 100e6] (default) | positive, real-valued 1-by-K vector

Radiation pattern frequencies, specified as a positive, real-valued 1-by-K vector. The vector defines
the frequencies at which the DirectionalPattern property values are specified. The elements of the
vector must be in strictly increasing order and frequencies must lie in the operating frequency band.
See “Input and Output Frequency Bands” on page 1-1947 for the definition of the operating
frequency band. Units are in Hz.
Example: 1e6
Data Types: double

SeedSource — Random number generator seed source
'Auto' (default) | 'Property'
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Random number generator seed source, specified as 'Auto' or 'Property'. The random numbers
are used to generate the noise. When you set this property to 'Auto', random numbers are
generated using the default MATLAB random number generator. When you set this property to
'Property', the object uses a private random number generator with a seed specified by the Seed
property.

To use this object with Parallel Computing Toolbox software, set this property to 'Auto'.
Data Types: char

Seed — Random number generator seed
0 (default) | nonnegative integer less than 232.

Random number generator seed, specified as a nonnegative integer less than 232.
Example: 10223

Dependencies

To enable this property, set the SeedSource property to 'Property'.
Data Types: double

Usage

Syntax
y = radiatednoise(ang)

Description

y = radiatednoise(ang) returns the noise,y, radiated in the direction, ang.

Input Arguments

ang — Noise radiation directions
real-valued 2-by-M matrix

Noise radiation directions, specified as a real-valued 2-by-M matrix. Each column of ang specifies the
direction of radiation of the corresponding noise signal in the form
[AzimuthAngle;ElevationAngle]. When ang represents multiple angles, the DirectionalPattern
property can contain one pattern or M patterns. In that case, each column of ang corresponds to one
of the patterns. If there is only one pattern, then the multiple noise signals are generated using the
same source pattern. Units are in degrees.
Example: [0 20; 35 -10]
Data Types: double

Output Arguments

y — Radiated noise
complex-valued M-by-N matrix

Radiated noise, specified as a complex-valued M-by-N matrix. M is the number of angles specified in
the ang argument. N is the number of samples specified by the NumSamples property. Radiated noise
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lies in the baseband range [-fs/2 fs/2]. fs represents the sample rate set by the SampleRate property.
Noise units are in Pa.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

The reset object function resets the random number generator state when the SeedSource property
is set to 'Property'.

Examples

Radiate Underwater Noise from Surface Ship

Generate radiated noise from a surface ship. The sonar operating frequency is 5.0 kHz and the
sampling rate is 1.0 kHz. By definition, broadband noise band lies in the band 4.5 kHz to 5.5 kHz. In
addition, there are tonal noises at 4.6, 5.2, and 5.4 kHz.

shippos = [0;0;0];
rcvpos = [100;0;-50];

Compute the noise transmission angle from the ship to the receiver.

[~,ang] = rangeangle(rcvpos,shippos)

ang = 2×1

         0
  -26.5651

Construct a phased.UnderwaterRadiatedNoise System object™ having a radiation pattern that
depends only on elevation angle. Compute the noise radiated in the direction of the receiver. Create
10000 samples of the noise radiated towards the target.

azang = [-180:180];
elang = [-80:80];
pattern = mag2db(repmat(cosd(elang)',1,numel(azang)));
fs = 1000;
noiseradiator = phased.UnderwaterRadiatedNoise('NumSamples',10000, ...
    'SampleRate',fs,'TonalFrequencies',[4600 5200 5400],'TonalLevels',[200,200,200], ...
    'BroadbandLevels',[180 180 190 190 190 188 185],'AzimuthAngles',azang, ...
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    'ElevationAngles',elang,'DirectionalPattern',pattern, ...
    'OperatingFrequency',5e3,'SeedSource','Property','Seed',2781);

Generate 10000 samples of noise.

y = noiseradiator(ang);

Plot the noise power spectral density (psd). Convert the psd to intensity referenced to 1uPa.

[psd,fr] = pwelch(y,[],[],[],noiseradiator.SampleRate,'psd','centered');
plot(fr,10*log10(psd*1e12));
title('Power Spectral Density')
xlabel('frequency (Hz)')
ylabel('PSD //dB/Hz/1uPa')
grid

The three tones appear over the broadband spectrum.

Radiate Underwater Noise with Frequency-Dependent Pattern

Generate radiated noise from an underwater vehicle. Assume that the noise radiation pattern
depends on frequency. The sonar operating frequency is 5.0 kHz and the sampling rate is 1.0 kHz. By
definition, the broadband noise band is from 4.5 kHz to 5.5 kHz. In addition, there are tonal noises at
4.6, 5.2, and 5.3 kHz. Define the radiation pattern at three frequencies within this band. All three
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patterns are multiples of the basic pattern. The frequencies of the radiation patterns are 4.6 kHz, 5.0
kHz, and 5.3 kHz.

First, specify the source and receiver positions.

srcpos = [0;50;-20];
rcvpos = [100;0;-50];

Compute the noise transmission angle from vehicle to receiver.

[~,ang] = rangeangle(rcvpos,srcpos)

ang = 2×1

  -26.5651
  -15.0203

Construct a phased.UnderwaterRadiatedNoise System object™ with a radiation pattern that
depends only the azimuth angle and frequency. Compute the noise radiated in the direction of the
receiver. Create 10000 samples of noise radiated from the vehicle.

azang = [-180:180];
elang = [-90:90];
fc = 5000.0;

Put the radiation pattern in a three-dimensional array.

basepattern = repmat(10*cosd(azang).^2,numel(elang),1);
pattern(:,:,1) = 0.5*basepattern;
pattern(:,:,2) = basepattern;
pattern(:,:,3) = 0.6*basepattern;
patterndb = mag2db(pattern);
noiseradiator = phased.UnderwaterRadiatedNoise('NumSamples',10000, ...
    'SampleRate',1e3,'TonalFrequencies',[4600,5200 5300], ...
    'TonalLevels',[200,210,200],'BroadbandLevels',[180 180 190 190 190 180 170], ...
    'AzimuthAngles',azang,'ElevationAngles',elang, ...
    'FrequencyVector',[4600,5000,5300],'DirectionalPattern',pattern, ...
    'OperatingFrequency',5e3,'SeedSource','Property','Seed',2081);

Generate 10000 samples of noise.

y = noiseradiator(ang);

Plot the noise power spectral density (psd). Convert the psd to intensity referenced to 1uPa.

[psd,fr] = pwelch(y,[],[],[],noiseradiator.SampleRate,'psd','centered');
plot(fr,10*log10(psd*1e12));
title('Power Spectral Density')
xlabel('frequency (Hz)')
ylabel('PSD //dB/Hz/1uPa')
grid
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The three tones appear over the broadband spectrum.

Radiate Underwater Noise from Two Sources

Generate radiated noise from a two underwater vehicles. Assume that the noise radiation pattern is
different for each. The sonar operating frequency is 5.0 kHz and the sampling rate is 1.0 kHz. By
definition, the broadband noise band is from 4.5 kHz to 5.5 kHz. In addition, there are tonal noises at
4.6, 5.2, and 5.3 kHz. The frequencies of the radiation patterns are 4.6 kHz, 5.0 kHz, and 5.3 kHz.

First, specify the source and receiver positions.

srcpos1 = [0;50;-20];
srcpos2 = [200;50;-80];
rcvpos = [100;0;-50];

Compute the noise transmission angle from vehicle to receiver.

[~,ang1] = rangeangle(rcvpos,srcpos1);
[~,ang2] = rangeangle(rcvpos,srcpos2);

Construct a phased.UnderwaterRadiatedNoise System object™ with a radiation pattern that
depends only the azimuth angle and frequency. Compute the noise radiated in the direction of the
receiver. Create 10000 samples of noise radiated from the vehicle.

azang = [-180:180];
elang = [-90:90];
fc = 5000.0;
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Put the radiation pattern in a three-dimensional array.

pattern1 = repmat(10*cosd(azang).^2,numel(elang),1);
pattern2 = ones(181,361);
pattern1db = mag2db(pattern1);
pattern2db = mag2db(pattern2);
noiseradiator = phased.UnderwaterRadiatedNoise('NumSamples',10000, ...
    'SampleRate',1e3,'TonalFrequencies',[4600,5200 5300], ...
    'TonalLevels',[200,210,200],'BroadbandLevels',[180 180 190 190 190 180 170], ...
    'AzimuthAngles',azang,'ElevationAngles',elang, ...
    'FrequencyVector',[4600,5000,5300],'DirectionalPattern',{pattern1,pattern2}, ...
    'OperatingFrequency',5e3,'SeedSource','Property','Seed',2081);

Generate 10000 samples of noise.

y = noiseradiator([ang1,ang2]);

Plot the noise power spectral density (psd). Convert the psd to intensity referenced to 1uPa.

[psd,fr] = pwelch(y,[],[],[],noiseradiator.SampleRate,'psd','centered');
plot(fr,10*log10(psd*1e12));
title('Power Spectral Density')
xlabel('frequency (Hz)')
ylabel('PSD //dB/Hz/1uPa')
grid

The three tones appear over the broadband spectrum.
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More About
Input and Output Frequency Bands

The specified broadband and tonal noise frequencies must lie inside the operating frequency band,
[fc - fs/2, fc + fs/2]

fs represents the sample rate set by the SampleRate property and fc represents the operating
frequency, set by the OperatingFrequency property.

However, the output noise spectrum lies in baseband:
[- fs/2,fs/2]

References
[1] Urick, R.J. Principles of Underwater Sound, 3rd Edition. New York: Peninsula Publishing, 1996.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
System Objects
phased.BackscatterSonarTarget | phased.IsoSpeedUnderwaterPaths |
phased.IsotropicHydrophone | phased.IsotropicProjector | phased.MultipathChannel

Functions
range2tl | sonareqsl | sonareqsnr | sonareqtl | tl2range

Introduced in R2017b
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phased.URA
Package: phased

Uniform rectangular array

Description
The URA object constructs a uniform rectangular array (URA).

To compute the response for each element in the array for specified directions:

1 Define and set up your uniform rectangular array. See “Construction” on page 1-1948.
2 Call step to compute the response according to the properties of phased.URA. The behavior of

step is specific to each object in the toolbox.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
H = phased.URA creates a uniform rectangular array System object, H. The object models a URA
formed with identical sensor elements. Array elements are distributed in the yz-plane in a rectangular
lattice. The array look direction (boresight) is along the positive x-axis.

H = phased.URA(Name,Value) creates the object, H, with each specified property Name set to the
specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

H = phased.URA(SZ,D,Name,Value) creates a URA object, H, with the Size property set to SZ,
the ElementSpacing property set to D and other specified property Names set to the specified
Values. SZ and D are value-only arguments. When specifying a value-only argument, specify all
preceding value-only arguments. You can specify name-value pair arguments in any order.

Properties
Element

Phased array toolbox system object

Element specified as a Phased Array System Toolbox object. This object can be an antenna or
microphone element.

Default: Isotropic antenna element with default properties

Size

Size of array
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A 1-by-2 integer vector or a single integer containing the size of the array. If Size is a 1-by-2 vector,
the vector has the form [NumberOfRows, NumberOfColumns]. If Size is a scalar, the array has the
same number of elements in each row and column. For a URA, array elements are indexed from top
to bottom along a column and continuing to the next columns from left to right. In this illustration, a
'Size' value of [3,2] array has three rows and two columns.

Default: [2 2]

ElementSpacing

Element spacing

A 1-by-2 vector or a scalar containing the element spacing of the array, expressed in meters. If
ElementSpacing is a 1-by-2 vector, it is in the form of
[SpacingBetweenRows,SpacingBetweenColumns]. See “Spacing Between Columns” on page 1-
1954 and “Spacing Between Rows” on page 1-1954. If ElementSpacing is a scalar, both spacings
are the same.

Default: [0.5 0.5]

Lattice

Element lattice

Specify the element lattice as one of 'Rectangular' | 'Triangular'. When you set the Lattice
property to 'Rectangular', all elements in the URA are aligned in both row and column directions.
When you set the Lattice property to 'Triangular', elements in even rows are displaced toward
the positive row axis direction. The displacement is one-half the element spacing along the row.

Default: 'Rectangular'

ArrayNormal

Array normal direction
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Array normal direction, specified as one of 'x', 'y', or 'z'.

URA elements lie in a plane orthogonal to the selected array normal direction. Element boresight
directions point along the array normal direction

ArrayNormal Property Value Element Positions and Boresight Directions
'x' Array elements lie on the yz-plane. All element

boresight vectors point along the x-axis.
'y' Array elements lie on the zx-plane. All element

boresight vectors point along the y-axis.
'z' Array elements lie on the xy-plane. All element

boresight vectors point along the z-axis.

Default: 'x'

Taper

Element tapers

Element tapers, specified as a complex-valued scalar, or 1-by-MN row vector, MN-by-1 column vector,
or M-by-N matrix. Tapers are applied to each element in the sensor array. Tapers are often referred to
as element weights. M is the number of elements along the z-axis, and N is the number of elements
along y-axis. M and N correspond to the values of [NumberofRows, NumberOfColumns] in the
Size property. If Taper is a scalar, the same taper value is applied to all elements. If the value of
Taper is a vector or matrix, taper values are applied to the corresponding elements. Tapers are used
to modify both the amplitude and phase of the received data.

Default: 1

Methods
Specific to phased.URA Object
beamwidth Compute and display beamwidth of an array
collectPla
neWave

Simulate received plane waves

directivit
y

Directivity of uniform rectangular array

getElement
Normal

Normal vector to array elements

getElement
Position

Positions of array elements

getNumElem
ents

Number of elements in array

getTaper Array element tapers
isPolariza
tionCapabl
e

Polarization capability
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Specific to phased.URA Object
pattern Plot URA array pattern
patternAzi
muth

Plot URA array directivity or pattern versus azimuth

patternEle
vation

Plot URA array directivity or pattern versus elevation

plotGratin
gLobeDiagr
am

Plot grating lobe diagram of array

plotRespon
se

Plot response pattern of array

step Output responses of array elements
viewArray View array geometry

Common to All System Objects
release Allow System object property value changes

Examples

Azimuth Response of a 3-by-2 URA at Boresight

Construct a 3-by-2 rectangular lattice URA. By default, the array consists of isotropic antenna
elements. Find the response of each element at boresight, 0 degrees azimuth and elevation. Assume
the operating frequency is 1 GHz.

array = phased.URA('Size',[3 2]);
fc = 1e9;
ang = [0;0];
resp = array(fc,ang);
disp(resp)

     1
     1
     1
     1
     1
     1

Plot the azimuth pattern of the array.

c = physconst('LightSpeed');
pattern(array,fc,[-180:180],0,'PropagationSpeed',c, ...
    'CoordinateSystem','polar','Type','powerdb','Normalize',true)
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Compare Triangular and Rectangular Lattice URA's

This example shows how to find and plot the positions of the elements of a 5-row-by-6-column URA
with a triangular lattice and a URA with a rectangular lattice. The element spacing is 0.5 meters for
both lattices.

Create the arrays.

h_tri = phased.URA('Size',[5 6],'Lattice','Triangular');
h_rec = phased.URA('Size',[5 6],'Lattice','Rectangular');

Get the element y,z positions for each array. All the x coordinates are zero.

pos_tri = getElementPosition(h_tri);
pos_rec = getElementPosition(h_rec);
pos_yz_tri = pos_tri(2:3,:);
pos_yz_rec = pos_rec(2:3,:);

Plot the element positions in the yz-plane.

figure;
gcf.Position = [100 100 300 400];
subplot(2,1,1);
plot(pos_yz_tri(1,:), pos_yz_tri(2,:), '.')
axis([-1.5 1.5 -2 2])
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xlabel('y'); ylabel('z')
title('Triangular Lattice')
subplot(2,1,2);
plot(pos_yz_rec(1,:), pos_yz_rec(2,:), '.')
axis([-1.5 1.5 -2 2])
xlabel('y'); ylabel('z')
title('Rectangular Lattice')

Adding Tapers to an Array

Construct a 5-by-2 element URA with a Taylor window taper along each column. The tapers form a 5-
by-2 matrix.

taper = taylorwin(5);
ha = phased.URA([5,2],'Taper',[taper,taper]);
w = getTaper(ha)

w = 10×1

    0.5181
    1.2029
    1.5581
    1.2029
    0.5181
    0.5181
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    1.2029
    1.5581
    1.2029
    0.5181

More About
Spacing Between Columns

The spacing between columns is the distance between adjacent elements in the same row.

Spacing Between Rows

The spacing between rows is the distance along the column axis direction between adjacent rows.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• pattern, patternAzimuth, patternElevation, plotResponse, and viewArray methods are
not supported.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.ConformalArray | phased.CosineAntennaElement |
phased.CustomAntennaElement | phased.HeterogeneousULA | phased.HeterogeneousURA |
phased.IsotropicAntennaElement | phased.PartitionedArray |
phased.ReplicatedSubarray | phased.ULA

Topics
Phased Array Gallery

Introduced in R2011a
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directivity
System object: phased.URA
Package: phased

Directivity of uniform rectangular array

Syntax
D = directivity(H,FREQ,ANGLE)
D = directivity(H,FREQ,ANGLE,Name,Value)

Description
D = directivity(H,FREQ,ANGLE) computes the “Directivity” on page 1-1960 of a uniform
rectangular array (URA) of antenna or microphone elements, H, at frequencies specified by the FREQ
and in angles of direction specified by the ANGLE.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

D = directivity(H,FREQ,ANGLE,Name,Value) computes the directivity with additional options
specified by one or more Name,Value pair arguments.

Input Arguments
H — Uniform rectangular array
System object

Uniform rectangular array specified as a phased.URA System object.
Example: H = phased.URA

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double
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ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
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In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

Examples

Directivity of Uniform Rectangular Array

Compute the directivity of two uniform rectangular arrays (URA). The first array consists of isotropic
antenna elements. The second array consists of cosine antenna elements. In addition, compute the
directivity of the first array steered to a specific direction.

Array of isotropic antenna elements

First, create a 10-by-10-element URA of isotropic antenna elements spaced one-quarter wavelength
apart. Set the signal frequency to 800 MHz.

c = physconst('LightSpeed');
fc = 3e8;
lambda = c/fc;
myAntIso = phased.IsotropicAntennaElement;
myArray1 = phased.URA;
myArray1.Element = myAntIso;
myArray1.Size = [10,10];
myArray1.ElementSpacing = [lambda*0.25,lambda*0.25];
ang = [0;0];
d = directivity(myArray1,fc,ang,'PropagationSpeed',c)

d = 15.7753

Array of cosine antenna elements

Next, create a 10-by-10-element URA of cosine antenna elements also spaced one-quarter wavelength
apart.

myAntCos = phased.CosineAntennaElement('CosinePower',[1.8,1.8]);
myArray2 = phased.URA;
myArray2.Element = myAntCos;
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myArray2.Size = [10,10];
myArray2.ElementSpacing = [lambda*0.25,lambda*0.25];
ang = [0;0];
d = directivity(myArray2,fc,ang,'PropagationSpeed',c)

d = 19.7295

The directivity is increased due to the directivity of the cosine antenna elements.

Steered array of isotropic antenna elements

Finally, steer the isotropic antenna array to 30 degrees in azimuth and examine the directivity at the
steered angle.

ang = [30;0];
w = steervec(getElementPosition(myArray1)/lambda,ang);
d = directivity(myArray1,fc,ang,'PropagationSpeed',c,...
    'Weights',w)

d = 15.3309

The directivity is maximum in the steered direction and equals the directivity of the unsteered array
at boresight.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth | patternElevation
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collectPlaneWave
System object: phased.URA
Package: phased

Simulate received plane waves

Syntax
Y = collectPlaneWave(H,X,ANG)
Y = collectPlaneWave(H,X,ANG,FREQ)
Y = collectPlaneWave(H,X,ANG,FREQ,C)

Description
Y = collectPlaneWave(H,X,ANG) returns the received signals at the sensor array, H, when the
input signals indicated by X arrive at the array from the directions specified in ANG.

Y = collectPlaneWave(H,X,ANG,FREQ), in addition, specifies the incoming signal carrier
frequency in FREQ.

Y = collectPlaneWave(H,X,ANG,FREQ,C), in addition, specifies the signal propagation speed in
C.

Input Arguments
H

Array object.

X

Incoming signals, specified as an M-column matrix. Each column of X represents an individual
incoming signal.

ANG

Directions from which incoming signals arrive, in degrees. ANG can be either a 2-by-M matrix or a
row vector of length M.

If ANG is a 2-by-M matrix, each column specifies the direction of arrival of the corresponding signal in
X. Each column of ANG is in the form [azimuth; elevation]. The azimuth angle must be between
–180° and 180°, inclusive. The elevation angle must be between –90° and 90°, inclusive.

If ANG is a row vector of length M, each entry in ANG specifies the azimuth angle. In this case, the
corresponding elevation angle is assumed to be 0°.

FREQ

Carrier frequency of signal in hertz. FREQ must be a scalar.

Default: 3e8
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C

Propagation speed of signal in meters per second.

Default: Speed of light

Output Arguments
Y

Received signals. Y is an N-column matrix, where N is the number of elements in the array H. Each
column of Y is the received signal at the corresponding array element, with all incoming signals
combined.

Examples

Simulate Received Signal at URA

Simulate two received random signals at a 6-element URA. The array has a rectangular lattice with
two elements in the row direction and three elements in the column direction. The signals arrive from
10° and 30° azimuth. Both signals have an elevation angle of 0°. Assume the propagation speed is the
speed of light and the carrier frequency of the signal is 100 MHz.

array = phased.URA([2 3]);
fc = 100e6;
y = collectPlaneWave(array,randn(4,2),[10 30],fc,physconst('LightSpeed'));

Algorithms
collectPlaneWave modulates the input signal with a phase corresponding to the delay caused by
the direction of arrival. This method does not account for the response of individual elements in the
array.

For further details, see [1].

References

[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
phitheta2azel | uv2azel
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getElementNormal
System object: phased.URA
Package: phased

Normal vector to array elements

Syntax
normvec = getElementNormal(sURA)
normvec = getElementNormal(sURA,elemidx)

Description
normvec = getElementNormal(sURA) returns the normal vectors of the array elements of the
phased.URA System object, sURA. The output argument normvec is a 2-by-N matrix, where N is the
number of elements in array, sURA. Each column of normvec defines the normal direction of an
element in the local coordinate system in the form[az;el]. Units are degrees. Array elements are
located in the plane selected in the ArrayNormal property. Element normal vectors are parallel to
the array normal. The normal to a URA array depends upon the selected ArrayNormal property.

ArrayNormal Property Value Array Normal Direction Array Plane
'x' azimuth = 0°, elevation = 0° (x-

axis)
yz

'y' azimuth = 90°, elevation = 0°
(y-axis)

zx

'z' azimuth = 0°, elevation = 90°
(z-axis)

xy

The origin of the local coordinate system is defined by the phase center of the array.

normvec = getElementNormal(sURA,elemidx) returns only the normal vectors of the elements
specified in the element index vector, elemidx. This syntax can use any of the input arguments in the
previous syntax.

Input Arguments
sURA — Uniform rectangular array
phased.sURA System object

Uniform line array, specified as a phased.URA System object.
Example: sULA = phased.URA

elemidx — Element indices
all array elements (default) | integer-valued 1-by-M row vector | integer-valued M-by-1 column vector

Element indices , specified as a 1-by-M or M-by-1 vector. Index values lie in the range 1 to N where N
is the number of elements of the array. When elemidx is specified, getElementNormal returns the
normal vectors of the elements contained in elemidx.
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Example: [1,5,4]

Output Arguments
normvec — Element normal vectors
2-by-P real-valued vector

Element normal vectors, specified as a 2-by-P real-valued vector. Each column of normvec takes the
form [az,el]. When elemidx is not specified, P equals the array dimension. When elemidx is
specified, P equals the length of elemidx, M. You can determine element indices using the
viewArray method.

Examples

URA Element Normals

Construct three 2-by-2 URA's with element normals along the x-, y-, and z-axes. Obtain the element
positions and normal directions.

First, choose the array normal along the x-axis.

sURA1 = phased.URA('Size',[2,2],'ArrayNormal','x');
pos = getElementPosition(sURA1)

pos = 3×4

         0         0         0         0
   -0.2500   -0.2500    0.2500    0.2500
    0.2500   -0.2500    0.2500   -0.2500

normvec = getElementNormal(sURA1)

normvec = 2×4

     0     0     0     0
     0     0     0     0

All elements lie in the yz-plane and the element normal vectors point along the x-axis (0°,0°).

Next, choose the array normal along the y-axis.

sURA2 = phased.URA('Size',[2,2],'ArrayNormal','y');
pos = getElementPosition(sURA2)

pos = 3×4

   -0.2500   -0.2500    0.2500    0.2500
         0         0         0         0
    0.2500   -0.2500    0.2500   -0.2500

normvec = getElementNormal(sURA2)
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normvec = 2×4

    90    90    90    90
     0     0     0     0

All elements lie in the zx-plane and the element normal vectors point along the y-axis (90°,0°).

Finally, set the array normal along the z-axis. Obtain the normal vectors of the odd-numbered
elements.

sURA3 = phased.URA('Size',[2,2],'ArrayNormal','z');
pos = getElementPosition(sURA3)

pos = 3×4

   -0.2500   -0.2500    0.2500    0.2500
    0.2500   -0.2500    0.2500   -0.2500
         0         0         0         0

normvec = getElementNormal(sURA3,[1,3])

normvec = 2×2

     0     0
    90    90

All elements lie in the xy-plane and the element normal vectors point along the z-axis (0°,90°).

Introduced in R2016a
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getElementPosition
System object: phased.URA
Package: phased

Positions of array elements

Syntax
POS = getElementPosition(H)
POS = getElementPosition(H,ELEIDX)

Description
POS = getElementPosition(H) returns the element positions of the URA H. POS is a 3-by-N
matrix where N is the number of elements in H. Each column of POS defines the position of an
element in the local coordinate system, in meters, using the form [x; y; z].

For details regarding the local coordinate system of the URA, enter
phased.URA.coordinateSystemInfo.

POS = getElementPosition(H,ELEIDX) returns the positions of the elements that are specified
in the element index vector, ELEIDX. The index of a URA runs down each column, then to the next
column to the right. For example, in a URA with 4 elements in each row and 3 elements in each
column, the element in the third row and second column has an index value of 6.

Examples

Obtain URA Element Positions

Construct a default URA with a rectangular lattice, and obtain the element positions.

array = phased.URA;
pos = getElementPosition(array)

pos = 3×4

         0         0         0         0
   -0.2500   -0.2500    0.2500    0.2500
    0.2500   -0.2500    0.2500   -0.2500
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getNumElements
System object: phased.URA
Package: phased

Number of elements in array

Syntax
N = getNumElements(H)

Description
N = getNumElements(H) returns the number of elements, N, in the URA object H.

Examples

Obtain Number of URA Elements

Construct a default URA, and obtain the number of elements.

array = phased.URA;
N = getNumElements(array)

N = 4
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getTaper
System object: phased.URA
Package: phased

Array element tapers

Syntax
wts = getTaper(h)

Description
wts = getTaper(h) returns the tapers, wts, applied to each element of the phased uniform
rectangular array (URA), h. Tapers are often referred to as weights.

Input Arguments
h — Uniform rectangular array
phased.URA System object

Uniform rectangular array specified as aphased.URA System object.

Output Arguments
wts — Array element tapers
N-by-1 complex-valued vector

Array element tapers returned as an N-by-1, complex-valued vector, where N is the number of
elements in the array.

Examples

Create Tapered URA

Construct a 5-by-2 element URA with a Taylor window taper along each column. Then, draw the array
showing the element taper shading.

taper = taylorwin(5);
array = phased.URA([5,2],'Taper',[taper,taper]);
w = getTaper(array)

w = 10×1

    0.5181
    1.2029
    1.5581
    1.2029
    0.5181
    0.5181
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    1.2029
    1.5581
    1.2029
    0.5181

viewArray(array,'ShowTaper',true)
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pattern
System object: phased.URA
Package: phased

Plot URA array pattern

Syntax
pattern(sArray,FREQ)
pattern(sArray,FREQ,AZ)
pattern(sArray,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(sArray,FREQ) plots the 3-D array directivity pattern (in dBi) for the array specified in
sArray. The operating frequency is specified in FREQ.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

pattern(sArray,FREQ,AZ) plots the array directivity pattern at the specified azimuth angle.

pattern(sArray,FREQ,AZ,EL) plots the array directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the array pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the array pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Note This method replaces the plotResponse method. See “Convert plotResponse to pattern” on
page 1-1976 for guidelines on how to use pattern in place of plotResponse.

Input Arguments
sArray — Uniform rectangular array
System object

Uniform rectangular array, specified as a phased.URA System object.
Example: sArray= phased.URA;
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FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
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'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarized field component
'combined' (default) | 'H' | 'V'

Polarized field component to display, specified as the comma-separated pair consisting of
'Polarization' and 'combined', 'H', or 'V'. This parameter applies only when the sensors are
polarization-capable and when the 'Type' parameter is not set to 'directivity'. This table shows
the meaning of the display options.

'Polarization' Display
'combined' Combined H and V polarization components
'H' H polarization component
'V' V polarization component
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Example: 'V'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
1 (default) | N-by-1 complex-valued column vector | N-by-L complex-valued matrix

Array weights, specified as the comma-separated pair consisting of 'Weights' and an N-by-1
complex-valued column vector or N-by-L complex-valued matrix. Array weights are applied to the
elements of the array to produce array steering, tapering, or both. The dimension N is the number of
elements in the array. The dimension L is the number of frequencies specified by FREQ.

Weights Dimension FREQ Dimension Purpose
N-by-1 complex-valued column
vector

Scalar or 1-by-L row vector Applies a set of weights for the
single frequency or for all L
frequencies.

N-by-L complex-valued matrix 1-by-L row vector Applies each of the L columns of
'Weights' for the
corresponding frequency in
FREQ.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(N,M)
Data Types: double
Complex Number Support: Yes

Output Arguments
PAT — Array pattern
M-by-N real-valued matrix

Array pattern, returned as an M-by-N real-valued matrix. The dimensions of PAT correspond to the
dimensions of the output arguments AZ_ANG and EL_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector
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Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

Examples

Pattern of 5x7-Element URA Antenna Array

Create a 5x7-element URA operating at 1 GHz. Assume the elements are spaced one-half wavelength
apart. Show the 3-D array patterns.

Create the array

sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[50e6,1000e6],...
    'AxisDirection','Z');
fc = 500e6;
c = physconst('LightSpeed');
lam = c/fc;
sURA = phased.URA('Element',sSD,...
    'Size',[5,7],...
    'ElementSpacing',0.5*lam);

Call the step method

Evaluate the fields of the first five elements at 45 degrees azimuth and 0 degrees elevation.

ang = [45;0];
resp = step(sURA,fc,ang);
disp(resp.V(1:5))

   -1.2247
   -1.2247
   -1.2247
   -1.2247
   -1.2247

Display the 3-D directivity pattern at 1 GHz in polar coordinates

pattern(sURA,fc,[-180:180],[-90:90],...
    'CoordinateSystem','polar',...
    'Type','directivity','PropagationSpeed',c)
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Display the 3-D directivity pattern at 1 GHz in UV coordinates

pattern(sURA,fc,[-1.0:.01:1.0],[-1.0:.01:1.0],...
    'CoordinateSystem','uv',...
    'Type','directivity','PropagationSpeed',c)
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

Convert plotResponse to pattern

For antenna, microphone, and array System objects, the pattern method replaces the
plotResponse method. In addition, two new simplified methods exist just to draw 2-D azimuth and
elevation pattern plots. These methods are the azimuthPattern and elevationPattern methods.
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The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
patternAzimuth | patternElevation

Introduced in R2015a
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patternAzimuth
System object: phased.URA
Package: phased

Plot URA array directivity or pattern versus azimuth

Syntax
patternAzimuth(sArray,FREQ)
patternAzimuth(sArray,FREQ,EL)
patternAzimuth(sArray,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(sArray,FREQ) plots the 2-D array directivity pattern versus azimuth (in dBi) for
the array sArray at zero degrees elevation angle. The argument FREQ specifies the operating
frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternAzimuth(sArray,FREQ,EL), in addition, plots the 2-D array directivity pattern versus
azimuth (in dBi) for the array sArray at the elevation angle specified by EL. When EL is a vector,
multiple overlaid plots are created.

patternAzimuth(sArray,FREQ,EL,Name,Value) plots the array pattern with additional options
specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the array pattern. PAT is a matrix whose entries represent
the pattern at corresponding sampling points specified by the 'Azimuth' parameter and the EL
input argument.

Input Arguments
sArray — Uniform rectangular array
System object

Uniform rectangular array, specified as a phased.URA System object.
Example: sArray= phased.URA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
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produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension N is the
number of elevation angles, as determined by the EL input argument.

Examples

Azimuth Pattern of 5x7-Element URA Antenna Array

Create a 5x7-element URA of short-dipole antenna elements operating at 1 GHz. Assume the
elements are spaced one-half wavelength apart. Plot the array azimuth directivity patterns for two
different elevation angles, 0 and 15 degrees. The patternAzimuth method always plots the array
pattern in polar coordinates.

Create the array

sSD = phased.ShortDipoleAntennaElement(...
    'FrequencyRange',[50e6,1000e6],...
    'AxisDirection','Z');
fc = 1e9;
c = physconst('LightSpeed');
lam = c/fc;
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sURA = phased.URA('Element',sSD,...
    'Size',[5,7],...
    'ElementSpacing',0.5*lam);

Display the pattern

Display the azimuth directivity pattern at 1 GHz in polar coordinates

patternAzimuth(sURA,fc,[0 15],...
    'PropagationSpeed',c,...
    'Type','directivity')

Display a subset of angles

You can plot a smaller range of azimuth angles by setting the Azimuth parameter.

patternAzimuth(sURA,fc,[0 15],...
    'PropagationSpeed',c,...
    'Type','directivity',...
    'Azimuth',[-45:45])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternElevation
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patternElevation
System object: phased.URA
Package: phased

Plot URA array directivity or pattern versus elevation

Syntax
patternElevation(sArray,FREQ)
patternElevation(sArray,FREQ,AZ)
patternElevation(sArray,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(sArray,FREQ) plots the 2-D array directivity pattern versus elevation (in dBi)
for the array sArray at zero degrees azimuth angle. When AZ is a vector, multiple overlaid plots are
created. The argument FREQ specifies the operating frequency.

The integration used when computing array directivity has a minimum sampling grid of 0.1 degrees.
If an array pattern has a beamwidth smaller than this, the directivity value will be inaccurate.

patternElevation(sArray,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(sArray,FREQ,AZ,Name,Value) plots the array pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the array pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
sArray — Uniform rectangular array
System object

Uniform rectangular array, specified as a phased.URA System object.
Example: sArray= phased.URA;

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element

 patternElevation

1-1987



produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

PropagationSpeed — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as the comma-separated pair consisting of
'PropagationSpeed' and a positive scalar in meters per second.
Example: 'PropagationSpeed',physconst('LightSpeed')
Data Types: double

Weights — Array weights
M-by-1 complex-valued column vector
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Array weights, specified as the comma-separated pair consisting of 'Weights' and an M-by-1
complex-valued column vector. Array weights are applied to the elements of the array to produce
array steering, tapering, or both. The dimension M is the number of elements in the array.

Note Use complex weights to steer the array response toward different directions. You can create
weights using the phased.SteeringVector System object or you can compute your own weights.
In general, you apply Hermitian conjugation before using weights in any Phased Array System
Toolbox function or System object such as phased.Radiator or phased.Collector. However, for
the directivity, pattern, patternAzimuth, and patternElevation methods of any array
System object use the steering vector without conjugation.

Example: 'Weights',ones(10,1)
Data Types: double
Complex Number Support: Yes

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Array directivity or pattern
L-by-N real-valued matrix

Array directivity or pattern, returned as an L-by-N real-valued matrix. The dimension L is the number
of elevation angles determined by the 'Elevation' name-value pair argument. The dimension N is
the number of azimuth angles determined by the AZ argument.

Examples

Elevation Pattern of 7x7-Element Acoustic URA

Create a 7x7-element URA of backbaffled omnidirectional transducer elements operating at 2 kHz.
Assume the speed of sound in water is 1500 m/s. The elements are spaced less than one-half
wavelength apart. Plot the array elevation directivity patterns for three different azimuth angles, -20,
0, and 15 degrees. The patternElevation method always plots the array pattern in polar
coordinates.

Create the array

element = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20,3000],...
    'BackBaffled',true);
fc = 1000;
c = 1500;
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lam = c/fc;
array = phased.URA('Element',element,...
    'Size',[7,7],...
    'ElementSpacing',0.45*lam);

Display the pattern

Display the azimuth directivity pattern at 1 GHz in polar coordinates

patternElevation(array,fc,[-20, 0, 15],...
    'PropagationSpeed',c,...
    'Type','directivity')

Display a subset of elevation angles

You can plot a smaller range of elevation angles by setting the Elevation parameter.

patternElevation(array,fc,[-20, 0, 15],...
    'PropagationSpeed',c,...
    'Type','directivity',...
    'Elevation',[-45:45])
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More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

See Also
pattern | patternAzimuth
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isPolarizationCapable
System object: phased.URA
Package: phased

Polarization capability

Syntax
flag = isPolarizationCapable(h)

Description
flag = isPolarizationCapable(h) returns a Boolean value, flag, indicating whether the array
supports polarization. An array supports polarization if all of its constituent sensor elements support
polarization.

Input Arguments
h — Uniform rectangular array

Uniform rectangular array specified as phased.URA System object.

Output Arguments
flag — Polarization-capability flag

Polarization-capability flag returned as a Boolean value, true, if the array supports polarization or,
false, if it does not.

Examples

Short-Dipole URA Supports Polarization

Show that a URA array of phased.ShortDipoleAntennaElement short-dipole antenna elements
supports polarization.

antenna = phased.ShortDipoleAntennaElement('FrequencyRange',[1e9 10e9]);
array = phased.URA([3,2],'Element',antenna);
isPolarizationCapable(array)

ans = logical
   1

The returned value 1 shows that this array supports polarization.
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plotResponse
System object: phased.URA
Package: phased

Plot response pattern of array

Syntax
plotResponse(H,FREQ,V)
plotResponse(H,FREQ,V,Name,Value)
hPlot = plotResponse( ___ )

Description
plotResponse(H,FREQ,V) plots the array response pattern along the azimuth cut, where the
elevation angle is 0. The operating frequency is specified in FREQ. The propagation speed is specified
in V.

plotResponse(H,FREQ,V,Name,Value) plots the array response with additional options specified
by one or more Name,Value pair arguments.

hPlot = plotResponse( ___ ) returns handles of the lines or surface in the figure window, using
any of the input arguments in the previous syntaxes.

Input Arguments
H

Array object

FREQ

Operating frequency in Hertz specified as a scalar or 1-by-K row vector. Values must lie within the
range specified by a property of H. That property is named FrequencyRange or FrequencyVector,
depending on the type of element in the array. The element has no response at frequencies outside
that range. If you set the 'RespCut' property of H to '3D', FREQ must be a scalar. When FREQ is a
row vector, plotResponse draws multiple frequency responses on the same axes.

V

Propagation speed in meters per second.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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CutAngle

Cut angle as a scalar. This argument is applicable only when RespCut is 'Az' or 'El'. If RespCut is
'Az', CutAngle must be between –90 and 90. If RespCut is 'El', CutAngle must be between –180
and 180.

Default: 0

Format

Format of the plot, using one of 'Line', 'Polar', or 'UV'. If you set Format to 'UV', FREQ must
be a scalar.

Default: 'Line'

NormalizeResponse

Set this value to true to normalize the response pattern. Set this value to false to plot the response
pattern without normalizing it. This parameter is not applicable when you set the Unit parameter
value to 'dbi'.

Default: true

OverlayFreq

Set this value to true to overlay pattern cuts in a 2-D line plot. Set this value to false to plot
pattern cuts against frequency in a 3-D waterfall plot. If this value is false, FREQ must be a vector
with at least two entries.

This parameter applies only when Format is not 'Polar' and RespCut is not '3D'.

Default: true

Polarization

Specify the polarization options for plotting the array response pattern. The allowable values are
|'None' | 'Combined' | 'H' | 'V' | where

• 'None' specifies plotting a nonpolarized response pattern
• 'Combined' specifies plotting a combined polarization response pattern
• 'H' specifies plotting the horizontal polarization response pattern
• 'V' specifies plotting the vertical polarization response pattern

For arrays that do not support polarization, the only allowed value is 'None'. This parameter is not
applicable when you set the Unit parameter value to 'dbi'.

Default: 'None'

RespCut

Cut of the response. Valid values depend on Format, as follows:

• If Format is 'Line' or 'Polar', the valid values of RespCut are 'Az', 'El', and '3D'. The
default is 'Az'.
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• If Format is 'UV', the valid values of RespCut are 'U' and '3D'. The default is 'U'.

If you set RespCut to '3D', FREQ must be a scalar.

Unit

The unit of the plot. Valid values are 'db', 'mag', 'pow', or 'dbi'. This parameter determines the
type of plot that is produced.

Unit value Plot type
db power pattern in dB scale
mag field pattern
pow power pattern
dbi directivity

Default: 'db'

Weights

Weight values applied to the array, specified as a length-N column vector or N-by-M matrix. The
dimension N is the number of elements in the array. The interpretation of M depends upon whether
the input argument FREQ is a scalar or row vector.

Weights Dimensions FREQ Dimension Purpose
N-by-1 column vector Scalar or 1-by-M row vector Apply one set of weights for the

same single frequency or all M
frequencies.

N-by-M matrix

Scalar Apply all of the M different
columns in Weights for the
same single frequency.

1-by-M row vector Apply each of the M different
columns in Weights for the
corresponding frequency in
FREQ.

AzimuthAngles

Azimuth angles for plotting array response, specified as a row vector. The AzimuthAngles
parameter sets the display range and resolution of azimuth angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'Az' or '3D' and the
Format parameter is set to 'Line' or 'Polar'. The values of azimuth angles should lie between –
180° and 180° and must be in nondecreasing order. When you set the RespCut parameter to '3D',
you can set the AzimuthAngles and ElevationAngles parameters simultaneously.

Default: [-180:180]

ElevationAngles

Elevation angles for plotting array response, specified as a row vector. The ElevationAngles
parameter sets the display range and resolution of elevation angles for visualizing the radiation
pattern. This parameter is allowed only when the RespCut parameter is set to 'El' or '3D' and the
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Format parameter is set to 'Line' or 'Polar'. The values of elevation angles should lie between –
90° and 90° and must be in nondecreasing order. When yous set the RespCut parameter to '3D',
you can set the ElevationAngles and AzimuthAngles parameters simultaneously.

Default: [-90:90]

UGrid

U coordinate values for plotting array response, specified as a row vector. The UGrid parameter sets
the display range and resolution of the U coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to 'U' or '3D'. The values of UGrid should be between –1 and 1 and should be
specified in nondecreasing order. You can set the UGrid and VGrid parameters simultaneously.

Default: [-1:0.01:1]

VGrid

V coordinate values for plotting array response, specified as a row vector. The VGrid parameter sets
the display range and resolution of the V coordinates for visualizing the radiation pattern in U/V
space. This parameter is allowed only when the Format parameter is set to 'UV' and the RespCut
parameter is set to '3D'. The values of VGrid should be between –1 and 1 and should be specified in
nondecreasing order. You can set VGrid and UGrid parameters simultaneously.

Default: [-1:0.01:1]

Examples

Azimuth Response of URA

This example shows how to construct a rectangular lattice 3-by-2 URA and plot that array's azimuth
response.

ha = phased.URA('Size',[3 2]);
fc = 1e9;
c = physconst('LightSpeed');
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar');
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Array Response and Directivity of URA in U/V Space

This example shows how to construct a rectangular lattice 3-by-2 URA. Plot the u cut of the array
response in u− v space.

ha = phased.URA('Size',[3 2]);
c = physconst('lightspeed');
plotResponse(ha,1e9,c,'Format','UV');
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Plot the directivity.

plotResponse(ha,1e9,c,'Format','UV','Unit','dbi');
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Array Response of URA for Subrange of U-V Space

Construct a 5-by-5 square uniform rectangular array (URA) and then plot the 3D response in u-v
space. Restrict the u-v range from -0.25 to 0.25.

array = phased.URA([5,5]);
fc = 500e6;
c = physconst('LightSpeed');
pattern(array,fc,[-0.25:.01:.25],[-0.25:.01:.25],'PropagationSpeed',c,'CoordinateSystem','uv')
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Array Response of URA with Two Sets of Weights

This example shows how to construct a square 5-by-5 URA array having elements spaced 0.3 meters
apart. Apply both uniform weights and tapered weights at a single frequency using the Weights
parameter. Choose the tapered weight values to be smallest at the edges and increasing towards the
center. Then, show that the tapered weight set reduces the adjacent sidelobes while broadening the
main lobe.

ha = phased.URA('Size',[5 5],'ElementSpacing',[0.3,0.3]);
fc = 1e9;
c = physconst('LightSpeed');
wts1 = ones(5,5);
wts1 = wts1(:);
wts1 = wts1/sum(wts1);
wts2 = 0.3*ones(5,5);
wts2(2:4,2:4) = 0.7;
wts2(3,3) = 1;
wts2 = wts2(:);
wts2 = wts2/sum(wts2);
plotResponse(ha,fc,c,'RespCut','Az','Format','Polar','Weights',[wts1,wts2]);
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See Also
azel2uv | uv2azel
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plotGratingLobeDiagram
System object: phased.URA
Package: phased

Plot grating lobe diagram of array

Syntax
plotGratingLobeDiagram(H,FREQ)
plotGratingLobeDiagram(H,FREQ,ANGLE)
plotGratingLobeDiagram(H,FREQ,ANGLE,C)
plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0)
hPlot = plotGratingLobeDiagram( ___ )

Description
plotGratingLobeDiagram(H,FREQ) plots the grating lobe diagram of an array in the u-v
coordinate system. The System object H specifies the array. The argument FREQ specifies the signal
frequency and phase-shifter frequency. The array, by default, is steered to 0° azimuth and 0°
elevation.

A grating lobe diagram displays the positions of the peaks of the narrowband array pattern. The array
pattern depends only upon the geometry of the array and not upon the types of elements which make
up the array. Visible and nonvisible grating lobes are displayed as open circles. Only grating lobe
peaks near the location of the mainlobe are shown. The mainlobe itself is displayed as a filled circle.

plotGratingLobeDiagram(H,FREQ,ANGLE), in addition, specifies the array steering angle,
ANGLE.

plotGratingLobeDiagram(H,FREQ,ANGLE,C), in addition, specifies the propagation speed by C.

plotGratingLobeDiagram(H,FREQ,ANGLE,C,F0), in addition, specifies an array phase-shifter
frequency, F0, that differs from the signal frequency, FREQ. This argument is useful when the signal
no longer satisfies the narrowband assumption and, allows you to estimate the size of beam squint.

hPlot = plotGratingLobeDiagram( ___ ) returns the handle to the plot for any of the input
syntax forms.

Input Arguments
H

Antenna or microphone array, specified as a System object.

FREQ

Signal frequency, specified as a scalar. Frequency units are hertz. Values must lie within a range
specified by the frequency property of the array elements contained in H.Element. The frequency
property is named FrequencyRange or FrequencyVector, depending on the element type.

 plotGratingLobeDiagram

1-2003



ANGLE

Array steering angle, specified as either a 2-by-1 vector or a scalar. If ANGLE is a vector, it takes the
form [azimuth;elevation]. The azimuth angle must lie in the range [-180°,180°]. The
elevation angle must lie in the range [-90°,90°]. All angle values are specified in degrees. If the
argument ANGLE is a scalar, it specifies only the azimuth angle where the corresponding elevation
angle is 0°.

Default: [0;0]

C

Signal propagation speed, specified as a scalar. Units are meters per second.

Default: Speed of light in vacuum

F0

Phase-shifter frequency of the array, specified as a scalar. Frequency units are hertz When this
argument is omitted, the phase-shifter frequency is assumed to be the signal frequency, FREQ.

Default: FREQ

Examples

Grating Lobe Diagram for Microphone URA

Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having element
spacing equal to one-half wavelength.

Assume the operating frequency of the array is 10 kHz. All elements are omnidirectional microphone
elements. Steer the array in the direction 20 degrees in azimuth and 30 degrees in elevation. The
speed of sound in air is 344.21 m/s at 21 deg C.

cair = 344.21;
f = 10.0e3;
lambda = cair/f;
microphone = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20000]);
array = phased.URA('Element',microphone,'Size',[11,9],...
    'ElementSpacing',0.5*lambda*[1,1]);
plotGratingLobeDiagram(array,f,[20;30],cair);
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Plot the grating lobes. The main lobe of the array is indicated by a filled black circle. The grating
lobes in visible and nonvisible regions are indicated by unfilled black circles. The visible region is the
region in u-v coordinates for which u2 + v2 ≤ 1. The visible region is shown as a unit circle centered
at the origin. Because the array spacing is less than one-half wavelength, there are no grating lobes
in the visible region of space. There are an infinite number of grating lobes in the nonvisible regions,
but only those in the range [-3,3] are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe for which
there are no grating lobes in the visible region. In this case, it coincides with the visible region.

The white areas of the diagram indicate a region where no grating lobes are possible.

Create Grating Lobe Diagram for Undersampled Microphone URA

Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having element
spacing greater than one-half wavelength. Grating lobes are plotted in u-v coordinates.

Assume the operating frequency of the array is 10 kHz and the spacing between elements is 0.75 of a
wavelength. All elements are omnidirectional microphone elements. Steer the array in the direction
20 degrees in azimuth and 30 degrees in elevation. The speed of sound in air is 344.21 m/s at 21 deg
C.

cair = 344.21;
f = 10000;
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lambda = cair/f;
sMic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20000]);
sURA = phased.URA('Element',sMic,'Size',[11,9],...
    'ElementSpacing',0.75*lambda*[1,1]);
plotGratingLobeDiagram(sURA,f,[20;30],cair);

The main lobe of the array is indicated by a filled black circle. The grating lobes in visible and
nonvisible regions are indicated by unfilled black circles. The visible region is the region in u-v
coordinates for which u2 + v2 ≤ 1. The visible region is shown as a unit circle centered at the origin.
Because the array spacing is greater than one-half wavelength, there are grating lobes in the visible
region of space. There are an infinite number of grating lobes in the nonvisible regions, but only
those in the range [-3,3] are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe for which
there are no grating lobes in the visible region. In this case, it lies inside the visible region. Because
the mainlobe is outside the green area, there is a grating lobe within the visible region.

Create Grating Lobe Diagram for Microphone URA with Frequency Shift

Plot the grating lobe diagram for an 11-by-9-element uniform rectangular array having element
spacing greater than one-half wavelength. Apply a 20% phase-shifter frequency offset. Grating lobes
are plotted in u-v coordinates.
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Assume the operating frequency of the array is 10 kHz and the spacing between elements is 0.75 of a
wavelength. All elements are omnidirectional microphone elements. Steer the array in the direction
20 degrees in azimuth and 30 degrees in elevation. The shifted frequency is 12000 Hz. The speed of
sound in air is 344.21 m/s at 21 deg C.

cair = 344.21;
f = 10000;
f0 = 12000;
lambda = cair/f;
sMic = phased.OmnidirectionalMicrophoneElement(...
    'FrequencyRange',[20 20000]);
sURA = phased.URA('Element',sMic,'Size',[11,9],...
    'ElementSpacing',0.75*lambda*[1,1]);
plotGratingLobeDiagram(sURA,f,[20;30],cair,f0);

The mainlobe of the array is indicated by a filled black circle. The mainlobe has moved from its
position in the previous example due to the frequency shift. The grating lobes in visible and
nonvisible regions are indicated by unfilled black circles. The visible region is the region in u-v
coordinates for which u2 + v2 ≤ 1. The visible region is shown as a unit circle centered at the origin.
Because the array spacing is greater than one-half wavelength, there are grating lobes in the visible
region of space. There are an infinite number of grating lobes in the nonvisible regions, but only
those in the range [-3,3] are shown.

The grating-lobe free region, shown in green, is the range of directions of the main lobe for which
there are no grating lobes in the visible region. In this case, it lies inside the visible region. Because
the mainlobe is outside the green area, there is a grating lobe within the visible region.
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Concepts
Grating Lobes

Spatial undersampling of a wavefield by an array produces visible grating lobes. If you think of the
wavenumber, k, as analogous to angular frequency, then you must sample the signal at spatial
intervals smaller than π/kmax (or λmin/2) to remove aliasing. The appearance of visible grating lobes is
also known as spatial aliasing. The variable kmax is the largest wavenumber value present in the
signal.

The directions of maximum spatial response of a URA are determined by the peaks of the array
pattern (alternatively called the beam pattern or array factor.) Peaks other than the main lobe peak
are called grating lobes. For a URA, the array pattern depends only on the wavenumber component of
the wavefield in the array plane (the y and z directions for the phased.URA System object). The
wavenumber components are related to the look-direction of an arriving wavefield by ky = –2π sin az
cos el/λ and kz = –2π sin el/λ. The angle az is azimuth angle of the arriving wavefield. The angle el is
elevation angle of the arriving wavefield. The look-direction points away from the array to the
wavefield source.

The array pattern possesses an infinite number of periodically spaced peaks that are equal in
strength to the mainlobe peak. If you steer the array to the az0, el0 azimuth and elevation direction,
the array pattern for the URA has its mainlobe peak at the wavenumber value, ky0 = –2π sin az0 cos
el0/λ, kz0 = –2π sin el0/λ. The array pattern has strong peaks at kym = ky0 + 2π m/dy, kzn = kz0 + 2π n/dz
for integer values of m and n. The quantities dy and dz are the inter-element spacings in the y- and z-
directions, respectively. Expressed in terms of direction cosines, the grating lobes occur at um = u0 –
mλ/dy and vn = v0 –nλ/dz. The main lobe direction cosines are determined by u0 = sin az0 cos el0 and
v0 = sin el0 when expressed in terms of the look-direction.

Grating lobes can be visible or nonvisible, depending upon the value of um
2 + vn

2. When um
2 + vn

2 ≤ 1,
the look direction represents a visible direction. When the value is greater than one, the grating lobe
is non-visible. For each visible grating lobe, you can compute a look direction (azm,n,elm,n) from um =
sin azm cos elm and vn = sin eln. The spacing of grating lobes depends upon λ/d. When λ/d is small
enough, multiple grating lobe peaks can correspond to physical look-directions.

References
[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

See Also
azel2uv | uv2azel
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step
System object: phased.URA
Package: phased

Output responses of array elements

Syntax
RESP = step(H,FREQ,ANG)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

RESP = step(H,FREQ,ANG) returns the responses of the array elements, RESP, at the operating
frequencies specified in FREQ and directions specified in ANG.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Array object

FREQ

Operating frequencies of array in hertz. FREQ is a row vector of length L. Typical values are within
the range specified by a property of H.Element. That property is named FrequencyRange or
FrequencyVector, depending on the type of element in the array. The element has zero response at
frequencies outside that range.

ANG

Directions in degrees. ANG is either a 2-by-M matrix or a row vector of length M.

If ANG is a 2-by-M matrix, each column of the matrix specifies the direction in the form [azimuth;
elevation]. The azimuth angle must lie between –180° and 180°, inclusive. The elevation angle
must lie between –90° and 90°, inclusive.
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If ANG is a row vector of length M, each element specifies the azimuth angle of the direction. In this
case, the corresponding elevation angle is assumed to be 0°.

Output Arguments
RESP

Voltage responses of the phased array. The output depends on whether the array supports
polarization or not.

• If the array is not capable of supporting polarization, the voltage response, RESP, has the
dimensions N-by-M-by-L. N is the number of elements in the array. The dimension M is the
number of angles specified in ANG. L is the number of frequencies specified in FREQ. For any
element, the columns of RESP contain the responses of the array elements for the corresponding
direction specified in ANG. Each of the L pages of RESP contains the responses of the array
elements for the corresponding frequency specified in FREQ.

• If the array is capable of supporting polarization, the voltage response, RESP, is a MATLAB
struct containing two fields, RESP.H and RESP.V. The field, RESP.H, represents the array’s
horizontal polarization response, while RESP.V represents the array’s vertical polarization
response. Each field has the dimensions N-by-M-by-L. N is the number of elements in the array,
and M is the number of angles specified in ANG. L is the number of frequencies specified in FREQ.
Each column of RESP contains the responses of the array elements for the corresponding direction
specified in ANG. Each of the L pages of RESP contains the responses of the array elements for the
corresponding frequency specified in FREQ.

Examples

Response of 2-by-2 URA of Short-Dipole Antennas

Construct a 2-by-2 rectangular lattice URA of short-dipole antenna elements. Then, find the response
of each element at boresight. Assume the operating frequency is 1 GHz.

sSD = phased.ShortDipoleAntennaElement;
sURA = phased.URA('Element',sSD,'Size',[2 2]);
fc = 1e9;
ang = [0;0];
resp = step(sURA,fc,ang);
disp(resp.V)

   -1.2247
   -1.2247
   -1.2247
   -1.2247

See Also
phitheta2azel | uv2azel
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viewArray
System object: phased.URA
Package: phased

View array geometry

Syntax
viewArray(H)
viewArray(H,Name,Value)
hPlot = viewArray( ___ )

Description
viewArray(H) plots the geometry of the array specified in H.

viewArray(H,Name,Value) plots the geometry of the array, with additional options specified by
one or more Name,Value pair arguments.

hPlot = viewArray( ___ ) returns the handle of the array elements in the figure window. All input
arguments described for the previous syntaxes also apply here.

Input Arguments
H

Array object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

ShowIndex

Vector specifying the element indices to show in the figure. Each number in the vector must be an
integer between 1 and the number of elements. You can also specify the value 'All' to show the
indices of all elements of the array or 'None' to suppress indices.

Default: 'None'

ShowNormals

Set this value to true to show the normal directions of all elements of the array. Set this value to
false to plot the elements without showing normal directions.

Default: false
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ShowTaper

Set this value to true to specify whether to change the element color brightness in proportion to the
element taper magnitude. When this value is set to false, all elements are drawn with the same
color.

Default: false

Title

Character vector specifying the title of the plot.

Default: 'Array Geometry'

Output Arguments
hPlot

Handle of array elements in figure window.

Examples

Geometry, Normal Directions, and Indices of URA Elements

This example shows how to display the element positions, normal directions, and indices for all
elements of a 4-by-4 square URA.

ha = phased.URA(4);
viewArray(ha,'ShowNormals',true,'ShowIndex','All');
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See Also
phased.ArrayResponse

Topics
“Phased Array Gallery”
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phased.WidebandBackscatterRadarTarget
Package: phased

Backscatter wideband signal from radar target

Description
The phased.WidebandBackscatterRadarTarget System object models the backscattering of a
wideband signal from a target. Backscattering is a special case of radar target scattering where the
incident and reflected angles are the same. This type of scattering applies to monostatic radar
configurations. The radar cross-section determines the backscattering response of a target to an
incoming signal. This System object lets you specify an angle-dependent radar cross-section model
that covers a range of incident angles. The wideband signal is decomposed into frequency subbands
which are backscattered independently and then recombined.

This System object creates a backscattered signal for polarized or nonpolarized signals. Although
electromagnetic radar signals are polarized, you can often ignore polarization in your simulation and
process the signals as scalars. To ignore polarization, specify the EnablePolarization property as
false. To employ polarization, specify EnablePolarization as true.

For nonpolarized signals, specify the radar cross section (RCS) as an array of values at discrete
azimuth and elevation angles and discrete frequencies. The System object interpolates values for
incident angles between array points. For polarized signals, specify the radar scattering matrix (SCM)
using three arrays defined at discrete azimuth and elevation angles and discrete frequencies. These
three arrays correspond to the HH, HV, and VV polarization components. The VH component is
computed from the conjugate symmetry of the HV component. H and V stand for the horizontal and
vertical polarization components, respectively.

For both nonpolarized and polarized signals, you can employ one of four Swerling models to generate
random fluctuations in the RCS or radar scattering matrix. Choose which model using the Model
property. Then, use the SeedSource and Seed properties to randomize the fluctuations.

EnablePolarization Radar cross-section patterns
false RCSPattern
true ShhPattern, SvvPattern, and ShvPattern

To compute the propagation delay for specified source and receiver points:

1 Define and set up your radar target. You can set phased.WidebandBackscatterRadarTarget
System object properties at construction time or leave them set to their default values. See
“Construction” on page 1-2015. Some properties that you set at construction time can be
changed later. These properties are tunable.

2 To compute the propagated signal, call the step method . The output of the method depends on
the properties of the object. You can change tunable properties at any time.

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.
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Construction
target = phased.WidebandBackscatterRadarTarget creates a wideband backscatter radar
target System object, target.

target = phased.WidebandBackscatterRadarTarget(Name,Value) creates a wideband
backscatter radar target object, with each specified property Name set to the specified Value. You
can specify additional name and value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).

Properties
EnablePolarization — Enable polarized signals
false (default) | true

Option to enable processing of polarized signals, specified as false or true. Set this property to
true to allow the target to simulate the reflection of polarized radiation. Set this property to false
to ignore polarization.
Example: true

FrequencyVector — Wideband backscatter pattern frequencies
[0,1e20] (default) | real-valued row vector in strictly increasing order

Specify the wideband backscatter pattern frequencies used in the RCS or SCM matrices. The
elements of this vector must be in strictly increasing order. The target has no response outside this
frequency range. Frequencies are defined with respect to the physical frequency band, not the
baseband. Frequency units are in hertz.

AzimuthAngles — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Azimuth angles used to define the angular coordinates of each column of the matrices specified by
the RCSPattern, ShhPattern, ShvPattern, or SvvPattern properties. Specify the azimuth angles
as a length P vector. P must be greater than two. Angle units are in degrees.
Example: [-45:0.1:45]
Data Types: double

ElevationAngles — Elevation angles
[-90:90] (default) | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector

Elevation angles used to define the angular coordinates of each row of the matrices specified by the
RCSPattern, ShhPattern, ShvPattern, or SvvPattern properties. Specify the elevation angles as
a length Q vector. Q must be greater than two. Angle units are in degrees.
Example: [-30:0.1:30]
Data Types: double

RCSPattern — Radar cross-section pattern
ones(181,361) (default) | Q-by-P real-valued matrix | Q-by-P-by-K real-valued array | 1-by-P-by-K
real-valued array | K-by-P real-valued matrix

Radar cross-section pattern, specified as a real-valued matrix or array.

 phased.WidebandBackscatterRadarTarget

1-2015



Dimensions Application
Q-by-P matrix Specifies a matrix of RCS values as a function of

Q elevation angles and P azimuth angles. The
same RCS matrix is used for all frequencies.

Q-by-P-by-K array Specifies an array of RCS patterns as a function
of Q elevation angles, P azimuth angles, and K
frequencies. If K = 1, the RCS pattern is
equivalent to a Q-by-P matrix.

1-by-P-by-K array Specifies a matrix of RCS values as a function of
P azimuth angles and K frequencies. These
dimension formats apply when there is only one
elevation angle.

K-by-P matrix

• Q is the length of the vector specified by the ElevationAngles property.
• P is the length of the vector specified by the AzimuthAngles property.
• K is the number of frequencies specified by the FrequencyVector property.

You can specify patterns for L targets by putting L patterns into a cell array. All patterns must have
the same dimensions. The value of L must match the column dimensions of the signals passed as
input into the step method. However, you can use one pattern to model L multiple targets.

RCS units are in square meters.
Example: [1,1;1,1]

Dependencies

To enable this property, set the EnablePolarization property to false.
Data Types: double

ShhPattern — Radar scattering matrix HH polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-K complex-valued array | 1-by-
P-by-K complex-valued array | K-by-P complex-valued matrix

Radar scattering matrix (SCM) HH polarization component, specified as a complex-valued matrix or
array.

Dimensions Application
Q-by-P matrix Specifies the scattering matrix polarization

component as a function of Q elevation angles
and P azimuth angles. The same SCM matrix is
used for all frequencies.

Q-by-P-by-K array Specifies the scattering matrix polarization
component as a function of Q elevation angles, P
azimuth angles, and K frequencies. If K = 1, the
RCS pattern is equivalent to a Q-by-P matrix.

1-by-P-by-K array Specifies the scattering matrix polarization
component as a function of P azimuth angles and
K frequencies. These dimension formats apply
when there is only one elevation angle.

K-by-P matrix
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• Q is the length of the vector specified by the ElevationAngles property.
• P is the length of the vector specified by the AzimuthAngles property.
• K is the number of frequencies specified by the FrequencyVector property.

You can specify polarization component patterns for L targets by putting L patterns into a cell array.
All patterns must have the same dimensions. The value of L must match the column dimensions of the
signals passed as input into the step method. You can, however, use one pattern to model L multiple
targets.

SCM units are in square-meters.
Example: [1,1;1i,1i]

Dependencies

To enable this property, set the EnablePolarization property to true.
Data Types: double
Complex Number Support: Yes

SvvPattern — Radar scattering matrix VV polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-K complex-valued array | 1-by-
P-by-K complex-valued array | K-by-P complex-valued matrix

Radar scattering matrix VV-pol component, specified as a complex-valued vector, matrix, or array.
Different dimension cases have different applications.

Dimensions Application
Q-by-P matrix Specifies the scattering matrix polarization

component as a function of Q elevation angles
and P azimuth angles. The same SCM matrix is
used for all frequencies.

Q-by-P-by-K array Specifies the scattering matrix polarization
component as a function of Q elevation angles, P
azimuth angles, and K frequencies. If K = 1, the
RCS pattern is equivalent to a Q-by-P matrix.

1-by-P-by-K array Specifies the scattering matrix polarization
component as a function of P azimuth angles and
K frequencies. These dimension formats apply
when there is only one elevation angle.

K-by-P matrix

• Q is the length of the vector specified by the ElevationAngles property.
• P is the length of the vector specified by the AzimuthAngles property.
• K is the number of frequencies specified by the FrequencyVector property.

You can specify polarization component patterns for L targets by putting L patterns into a cell array.
All patterns must have the same dimensions. The value of L must match the column dimensions of the
signals passed as input into the step method. You can, however, use one pattern to model L multiple
targets.

SCM units are in square-meters.
Example: [1,1;1i,1i]
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Dependencies

To enable this property, set the EnablePolarization property to true.
Data Types: double
Complex Number Support: Yes

ShvPattern — Radar scattering matrix HV polarization component
ones(181,361) (default) | Q-by-P complex-valued matrix | Q-by-P-by-K complex-valued array | 1-by-
P-by-K complex-valued vector | K-by-P complex-valued matrix

Radar scattering matrix (SCM) HV-pol component, specified as a complex-valued vector, matrix, or
array. Different dimension cases have different applications.

Dimensions Application
Q-by-P matrix Specifies the scattering matrix polarization

component as a function of Q elevation angles
and P azimuth angles. The same SCM matrix is
used for all frequencies.

Q-by-P-by-K array Specifies the scattering matrix polarization
component as a function of Q elevation angles, P
azimuth angles, and K frequencies. If K = 1, the
RCS pattern is equivalent to a Q-by-P matrix.

1-by-P-by-K array Specifies the scattering matrix polarization
component as a function of P azimuth angles and
K frequencies. These dimension formats apply
when there is only one elevation angle.

K-by-P matrix

• Q is the length of the vector specified by the ElevationAngles property.
• P is the length of the vector specified by the AzimuthAngles property.
• K is the number of frequencies specified by the FrequencyVector property.

You can specify polarization component patterns for L targets by putting L patterns into a cell array.
All patterns must have the same dimensions. The value of L must match the column dimensions of the
signals passed as input into the step method. You can, however, use one pattern to model L multiple
targets.

SCM units are in square-meters.
Example: [1,1;1i,1i]

Dependencies

To enable this property, set the EnablePolarization property to true.
Data Types: double
Complex Number Support: Yes

Model — Target fluctuation model
'Nonfluctuating' (default) | 'Swerling1' | 'Swerling2' | 'Swerling3' | 'Swerling4'

Target fluctuation model, specified as 'Nonfluctuating', 'Swerling1', 'Swerling2',
'Swerling3', or 'Swerling4'. If you set this property to a value other than 'Nonfluctuating',
use the update input argument when calling the step method.
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Example: 'Swerling3'
Data Types: char

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6
Data Types: double

NumSubbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128
Data Types: double

SeedSource — Seed source of random number generator for RCS fluctuation model
'Auto' (default) | 'Property'

Seed source of random number generator for RCS fluctuation model, specified as 'Auto' or
'Property'. When you set this property to:

• 'Auto', the object generates random numbers using the default MATLAB random number
generator.

• 'Property', you specify the random number generator seed using the Seed property.

When using this object with Parallel Computing Toolbox software, set this property to 'Auto'.
Dependencies

To enable this property, set the Model property to 'Swerling1', 'Swerling2', 'Swerling3', or
'Swerling4'.
Data Types: char
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Seed — Random number generator seed
0 (default) | nonnegative integer less than 232

Random number generator seed, specified as a nonnegative integer less than 232. .
Example: 32301

Dependencies

To enable this property, set the SeedSource property to 'Property'.
Data Types: double

Methods

reset Reset states of System object
step Backscatter wideband signal from radar target

Common to All System Objects
release Allow System object property value changes

Examples

Backscatter Nonpolarized Wideband Signal

Calculate the reflected radar signal from a nonfluctuating point target having a peak RCS of 10.0
m^2. Use a simple target RCS pattern for illustrative purposes. Real RCS patterns are more
complicated. The RCS pattern covers a range of angles from 10− 30 degrees in azimuth and 5− 15
degrees in elevation. The RCS peaks at 20 degrees azimuth and 10 degrees elevation. The RCS also
has a frequency dependence and is specified at 5 frequencies within the signal bandwidth. Assume
that the radar operating frequency is 100 MHz and that the signal is a linear FM waveform having a
20 MHz bandwidth.

Create and plot the wideband signal.

c = physconst('LightSpeed');
fs = 50e6;
pw = 20e-6;
PRF = 1/(2*pw);
fc = 100e6;
bw = 20e6;
waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw, ...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',bw, ...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval', ...
    'Symmetric');
wav = waveform();
n = size(wav,1);
plot([0:(n-1)]/fs*1e6,real(wav),'b')
xlabel('Time (\mu s)')
ylabel('Waveform Magnitude')
grid
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Create an RCS pattern at five different frequencies within the signal bandwidth using a simplified
frequency dependence. The frequency dependence is unity at the operating frequency and falls off
outside that frequency. Realistic frequency dependencies are more complicated. Plot the RCS pattern
for one of the frequencies.

fvec = fc + [-fs/2,-fs/4,0,fs/4,fs/2];
fdep = cos(3*(1 - fvec/fc));
azmax = 20.0;
elmax = 10.0;
azpattern = [10.0:0.5:30.0];
elpattern = [5.0:0.5:15.0];
rcspattern0 = 10.0*cosd(4*(elpattern - elmax))'*cosd(4*(azpattern - azmax));
for k = 1:5
    rcspattern(:,:,k) = rcspattern0*fdep(k);
end
imagesc(azpattern,elpattern,abs(rcspattern(:,:,1)))
axis image
axis tight
title('RCS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
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Create the phased.WidebandBackscatterRadarTarget System object™.

target = phased.WidebandBackscatterRadarTarget('Model','Nonfluctuating', ...
    'AzimuthAngles',azpattern,'ElevationAngles',elpattern,...
    'RCSPattern',rcspattern,'OperatingFrequency',fc,'NumSubbands',32, ...
    'FrequencyVector',fvec);

For a sequence of incident azimuth angles at constant elevation, find and plot the reflected signal
amplitude.

az0 = 13.0;
el = 10.0;
az = az0 + [0:2:20];
naz = length(az);
magsig = zeros(1,naz);
for k = 1:naz
    y = target(wav,[az(k);el]);
    magsig(k) = max(abs(y));
end
plot(az,magsig,'r.')
xlabel('Azimuth (deg)')
ylabel('Scattered Signal Amplitude')
grid
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Backscatter Nonpolarized Wideband Signal from Fluctuating Target

Calculate the reflected radar signal from a Swerling 4 fluctuating point target with a peak RCS of 0.1
m^2. Use a simple target RCS pattern for illustrative purposes. Real RCS patterns are more
complicated. The RCS pattern covers a range of angles from 10 − 30 degrees in azimuth and 5 −15
degrees in elevation. The RCS peaks at 20 degrees in azimuth and 10 degrees in elevation at a value
of 0.1 m^2. The RCS also has a frequency dependence and is specified at five frequencies within the
signal bandwidth. Assume that the radar operating frequency is 100 MHz and that the signal is a
linear FM waveform with a 20 MHz bandwidth. The sampling frequency is 50 MHz.

Create and plot the wideband signal.

c = physconst('LightSpeed');
fs = 50e6;
pw = 20e-6;
PRF = 1/(2*pw);
fc = 100.0e6;
bw = 20.0e6;
waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw, ...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',bw, ...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval', ...
    'Symmetric');
wav = waveform();
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Create an RCS pattern at five different frequencies within the signal bandwidth using a simple
frequency dependence. The frequency dependence is designed to be unity at the operating frequency
and fall off outside that band. Realistic frequency dependencies are more complicated.

fvec = fc + [-fs/2,-fs/4,0,fs/4,fs/2];
fdep = cos(3*(1 - fvec/fc));
azmax = 20.0;
elmax = 10.0;
azangs = [10.0:0.5:30.0];
elangs = [5.0:0.5:15.0];
rcspattern0 = 0.1*(cosd((elangs - elmax))'*cosd((azangs - azmax))).^2;
for k = 1:5
    rcspattern(:,:,k) = rcspattern0*fdep(k);
end
imagesc(azangs,elangs,abs(rcspattern(:,:,5)))
axis image
axis xy
axis tight
title('RCS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar

Create the phased.WidebandBackscatterRadarTarget System object™.

target = phased.WidebandBackscatterRadarTarget('Model','Swerling4', ...
    'SeedSource','Property','Seed',100213,'AzimuthAngles',azangs, ...
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    'ElevationAngles',elangs,'RCSPattern',rcspattern, ...
    'OperatingFrequency',fc,'NumSubbands',32,'FrequencyVector',fvec);

Find and plot 100 samples of the incident signal and two sequential reflected signals at 10 degrees in
azimuth and 10 degrees in elevation. Update the RCS at each execution of the System object™.

az = 10.0;
el = 10.0;
refl_wav1 = target(wav,[az;el],true);
refl_wav2 = target(wav,[az;el],true);
n = 100;
plot([0:(n-1)]/fs*1e6,real(wav(1:n)))
hold on
plot([0:(n-1)]/fs*1e6,real(refl_wav1(1:n)),'.')
plot([0:(n-1)]/fs*1e6,real(refl_wav2(1:n)),'.')
hold off
legend('Incident Signal','First Backscattered Signal','Second Backscattered Signal')
xlabel('Time (\mu s)')
ylabel('Waveform Magnitude')
title('Swerling 4 RCS')
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More About
Backscattered Wideband Signals

Wideband signals are decomposed into narrowband signals which are reflected from the target
independently.

For a narrowband nonpolarized signal, the reflected signal, Y, is

Y = G ⋅ X,

where:

• X is the incoming signal.
• G is the target gain factor, a dimensionless quantity given by

G = 4πσ
λ2 .

• σ is the mean radar cross-section (RCS) of the target.
• λ is the wavelength of the incoming signal.

The incident signal on the target is scaled by the square root of the gain factor.

For narrowband polarized waves, the single scalar signal, X, is replaced by a vector signal, (EH, EV),
with horizontal and vertical components. The scattering matrix, S, replaces the scalar cross-section,
σ. Through the scattering matrix, the incident horizontal and vertical polarized signals are converted
into the reflected horizontal and vertical polarized signals.

EH
(scat)

EV
(scat)

= 4π
λ2

SHH SVH
SHV SVV

EH
(inc)

EV
(inc)

= 4π
λ2 S

EH
(inc)

EV
(inc)

For further details, see [1] or [2].

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies narrowband
processing to the signal in each subband. The signals for all subbands are summed to form the output
signal.

When using wideband frequency System objects or blocks, you specify the number of subbands, NB,
in which to decompose the wideband signal. Subband center frequencies and widths are
automatically computed from the total bandwidth and number of subbands. The total frequency band
is centered on the carrier or operating frequency, fc. The overall bandwidth is given by the sample
rate, fs. Frequency subband widths are Δf = f s/NB. The center frequencies of the subbands are

fm =
fc−

fs
2 + m− 1 Δf ,   NB even

fc−
NB− 1 fs

2NB
+ m− 1 Δf ,   NB odd

,   m = 1, …, NB

Some System objects let you obtain the subband center frequencies as output when you run the
object. The returned subband frequencies are ordered consistently with the ordering of the discrete
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Fourier transform. Frequencies above the carrier appear first, followed by frequencies below the
carrier.

References
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.BackscatterPedestrian | phased.BackscatterRadarTarget |
phased.BackscatterSonarTarget | phased.RadarTarget

Topics
“Modeling Target Radar Cross Section”
“Designing a Basic Monostatic Pulse Radar”
“Swerling Target Models”

Introduced in R2016b
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reset
System object: phased.WidebandBackscatterRadarTarget
Package: phased

Reset states of System object

Syntax
reset(target)

Description
reset(target) resets the internal state of the phased.WidebandBackscatterRadarTarget
object, target. This method resets the random number generator state if SeedSource is a property
of this System object and has the value 'Property'.

Input Arguments
target — Wideband backscatter radar target
phased.WidebandBackscatterRadarTarget System object

Wideband backscatter radar target, specified as a phased.WidebandBackscatterRadarTarget
System object.

Introduced in R2016b
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step
System object: phased.WidebandBackscatterRadarTarget
Package: phased

Backscatter wideband signal from radar target

Syntax
refl_sig = step(target,sig,ang)
refl_sig = step(target,sig,ang,update)

refl_sig = step(target,sig,ang,laxes)
refl_sig = step(target,sig,ang,laxes,update)

Description

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

refl_sig = step(target,sig,ang) returns the reflected signal, refl_sig, of an incident
nonpolarized signal, sig. This syntax applies when you set the EnablePolarization property to
false and the Model property to 'Nonfluctuating'. In this case, the values specified in the
RCSPattern property are used to compute the RCS values for the incident and reflected directions,
ang.

refl_sig = step(target,sig,ang,update) uses update to control whether to update the RCS
values. This syntax applies when you set the EnablePolarization property to false and the
Model property to one of the fluctuating RCS models: 'Swerling1', 'Swerling2', 'Swerling3',
or 'Swerling4'. If update is true, a new RCS value is generated. If update is false, the previous
RCS value is used.

refl_sig = step(target,sig,ang,laxes) returns the reflected signal, refl_sig, of an
incident polarized signal, sig. This syntax applies when you set EnablePolarization to true and
the Model property to 'Nonfluctuating'. The values specified in the ShhPattern, SvvPattern,
and ShvPattern properties are used to compute the backscattering matrices for the incident
directions, ang. The laxes argument specifies a local coordinate system used to define the horizontal
and vertical polarization components.

refl_sig = step(target,sig,ang,laxes,update) uses the update argument to control
whether to update the scattering matrix values. This syntax applies when you set the
EnablePolarization property to true and the Model property to one of the fluctuating RCS
models: 'Swerling1', 'Swerling2', 'Swerling3', or 'Swerling4'. If update is true, a new
RCS value is generated. If update is false, the previous RCS value is used.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
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the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
target — Wideband backscatter radar target
phased.WidebandBackscatterRadarTarget System object

Backscatter target, specified as a phased.WidebandBackscatterRadarTarget System object.

sig — Wideband signal
N-by-M complex-valued matrix | 1-by-M struct array containing complex-valued fields

• Wideband nonpolarized signal, specified as an N-by-M complex-valued matrix. The quantity N is
the number of signal samples and M is the number of independent signals reflecting off the target.
Each column contains an independent signal reflected from the target.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

• Wideband polarized signal, specified as a 1-by-M struct array containing complex-valued fields.
Each struct element contains three N-by-1 column vectors of electromagnetic field components
(sig.X,sig.Y,sig.Z) representing the polarized signal that reflects from the target. Each
struct element contains three N-by-1 complex-valued column vectors, sig.X, sig.Y, and
sig.Z. These vectors represent the x, y, and z Cartesian components of the polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a
changing signal length such as a pulse waveform with variable pulse repetition frequency.

Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

ang — Incident signal direction
2-by-1 real-valued column vector of positive values | 2-by-M real-valued matrix of positive values

Incident signal direction, specified as a real-valued column 2-by-1 vector or 2-by-M matrix of positive
values. Each column of ang specifies the incident direction of the corresponding signal in the form
[AzimuthAngle;ElevationAngle]. The number of columns in ang must match the number of
independent signals in sig. Units are in degrees.
Example: [30;45]
Data Types: double

update — Update RCS
false (default) | true

Option to enable the RCS values for fluctuation models to update, specified as false or true. When
update is true, a new RCS value is generated with each call to the step method. If update is
false, the RCS remains unchanged with each call to step.
Data Types: logical
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laxes — Local coordinate matrix
eye(3,3) (default) | 3-by-3 real-valued orthonormal matrix | 3-by-3-by-M real-valued array

Local coordinate system matrix, specified as a 3-by-3 real-valued orthonormal matrix or a 3-by-3-by-M
real-valued array. The matrix columns specify the local coordinate system orthonormal x-axis, y-axis,
and z-axis, respectively. Each axis is a vector of the form (x;y;z) with respect to the global coordinate
system. When sig has only one signal, laxes is a 3-by-3 matrix. When sig has multiple signals, you
can use a single 3-by-3 matrix for multiple signals in sig. In this case, all targets have the same local
coordinate systems. When you specify laxes as a 3-by-3-by-M array, each page (third index) defines a
3-by-3 local coordinate matrix for the corresponding target.
Example: [1,0,0;0,0.7071,-0.7071;0,0.7071,0.7071]
Data Types: double

Output Arguments
refl_sig — Wideband reflected signal
N-by-M complex-valued matrix | 1-by-M struct array containing complex-valued fields

• Wideband nonpolarized signal, returned as an N-by-M complex-valued matrix. Each column
contains an independent signal reflected from the target.

• Wideband polarized signal, returned as a 1-by-M struct array containing complex-valued fields.
Each struct element contains three N-by-1 column vectors of electromagnetic field components
(sig.X,sig.Y,sig.Z) representing the polarized signal that reflects from the target.

The quantity N is the number of signal samples and M is the number of signals reflecting off the
target. Each column corresponds to a reflecting angle.

For polarized fields, the struct element contains three N-by-1 complex-valued column vectors:
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The output refl_sig contains signal samples arriving at the signal destination within the current
input time frame. When the propagation time from source to destination exceeds the current time
frame duration, the output does not contain all contributions from the input of the current time
frame. The remaining output appears in the next call to step.

Examples

Backscatter Nonpolarized Wideband Signal

Calculate the reflected radar signal from a nonfluctuating point target having a peak RCS of 10.0
m^2. Use a simple target RCS pattern for illustrative purposes. Real RCS patterns are more
complicated. The RCS pattern covers a range of angles from 10− 30 degrees in azimuth and 5− 15
degrees in elevation. The RCS peaks at 20 degrees azimuth and 10 degrees elevation. The RCS also
has a frequency dependence and is specified at 5 frequencies within the signal bandwidth. Assume
that the radar operating frequency is 100 MHz and that the signal is a linear FM waveform having a
20 MHz bandwidth.

Create and plot the wideband signal.
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c = physconst('LightSpeed');
fs = 50e6;
pw = 20e-6;
PRF = 1/(2*pw);
fc = 100e6;
bw = 20e6;
waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw, ...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',bw, ...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval', ...
    'Symmetric');
wav = waveform();
n = size(wav,1);
plot([0:(n-1)]/fs*1e6,real(wav),'b')
xlabel('Time (\mu s)')
ylabel('Waveform Magnitude')
grid

Create an RCS pattern at five different frequencies within the signal bandwidth using a simplified
frequency dependence. The frequency dependence is unity at the operating frequency and falls off
outside that frequency. Realistic frequency dependencies are more complicated. Plot the RCS pattern
for one of the frequencies.

fvec = fc + [-fs/2,-fs/4,0,fs/4,fs/2];
fdep = cos(3*(1 - fvec/fc));
azmax = 20.0;
elmax = 10.0;
azpattern = [10.0:0.5:30.0];
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elpattern = [5.0:0.5:15.0];
rcspattern0 = 10.0*cosd(4*(elpattern - elmax))'*cosd(4*(azpattern - azmax));
for k = 1:5
    rcspattern(:,:,k) = rcspattern0*fdep(k);
end
imagesc(azpattern,elpattern,abs(rcspattern(:,:,1)))
axis image
axis tight
title('RCS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')

Create the phased.WidebandBackscatterRadarTarget System object™.

target = phased.WidebandBackscatterRadarTarget('Model','Nonfluctuating', ...
    'AzimuthAngles',azpattern,'ElevationAngles',elpattern,...
    'RCSPattern',rcspattern,'OperatingFrequency',fc,'NumSubbands',32, ...
    'FrequencyVector',fvec);

For a sequence of incident azimuth angles at constant elevation, find and plot the reflected signal
amplitude.

az0 = 13.0;
el = 10.0;
az = az0 + [0:2:20];
naz = length(az);
magsig = zeros(1,naz);
for k = 1:naz
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    y = target(wav,[az(k);el]);
    magsig(k) = max(abs(y));
end
plot(az,magsig,'r.')
xlabel('Azimuth (deg)')
ylabel('Scattered Signal Amplitude')
grid

Backscatter Nonpolarized Wideband Signal from Fluctuating Target

Calculate the reflected radar signal from a Swerling 4 fluctuating point target with a peak RCS of 0.1
m^2. Use a simple target RCS pattern for illustrative purposes. Real RCS patterns are more
complicated. The RCS pattern covers a range of angles from 10 − 30 degrees in azimuth and 5 −15
degrees in elevation. The RCS peaks at 20 degrees in azimuth and 10 degrees in elevation at a value
of 0.1 m^2. The RCS also has a frequency dependence and is specified at five frequencies within the
signal bandwidth. Assume that the radar operating frequency is 100 MHz and that the signal is a
linear FM waveform with a 20 MHz bandwidth. The sampling frequency is 50 MHz.

Create and plot the wideband signal.

c = physconst('LightSpeed');
fs = 50e6;
pw = 20e-6;
PRF = 1/(2*pw);
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fc = 100.0e6;
bw = 20.0e6;
waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw, ...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',1,'SweepBandwidth',bw, ...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval', ...
    'Symmetric');
wav = waveform();

Create an RCS pattern at five different frequencies within the signal bandwidth using a simple
frequency dependence. The frequency dependence is designed to be unity at the operating frequency
and fall off outside that band. Realistic frequency dependencies are more complicated.

fvec = fc + [-fs/2,-fs/4,0,fs/4,fs/2];
fdep = cos(3*(1 - fvec/fc));
azmax = 20.0;
elmax = 10.0;
azangs = [10.0:0.5:30.0];
elangs = [5.0:0.5:15.0];
rcspattern0 = 0.1*(cosd((elangs - elmax))'*cosd((azangs - azmax))).^2;
for k = 1:5
    rcspattern(:,:,k) = rcspattern0*fdep(k);
end
imagesc(azangs,elangs,abs(rcspattern(:,:,5)))
axis image
axis xy
axis tight
title('RCS')
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar
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Create the phased.WidebandBackscatterRadarTarget System object™.

target = phased.WidebandBackscatterRadarTarget('Model','Swerling4', ...
    'SeedSource','Property','Seed',100213,'AzimuthAngles',azangs, ...
    'ElevationAngles',elangs,'RCSPattern',rcspattern, ...
    'OperatingFrequency',fc,'NumSubbands',32,'FrequencyVector',fvec);

Find and plot 100 samples of the incident signal and two sequential reflected signals at 10 degrees in
azimuth and 10 degrees in elevation. Update the RCS at each execution of the System object™.

az = 10.0;
el = 10.0;
refl_wav1 = target(wav,[az;el],true);
refl_wav2 = target(wav,[az;el],true);
n = 100;
plot([0:(n-1)]/fs*1e6,real(wav(1:n)))
hold on
plot([0:(n-1)]/fs*1e6,real(refl_wav1(1:n)),'.')
plot([0:(n-1)]/fs*1e6,real(refl_wav2(1:n)),'.')
hold off
legend('Incident Signal','First Backscattered Signal','Second Backscattered Signal')
xlabel('Time (\mu s)')
ylabel('Waveform Magnitude')
title('Swerling 4 RCS')
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See Also

Introduced in R2016b
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phased.WidebandCollector
Package: phased

Wideband signal collector

Description
The phased.WidebandCollector System object implements a wideband signal collector. A
collector converts incident wideband wave fields arriving from specified directions into signals to be
further processed. Wave fields are incident on antenna and microphone elements, sensor arrays, or
subarrays. The object collects signals in one of two ways controlled by the Wavefront Wavefront
property.

• If the Wavefront property is set to 'Plane', the collected signals at each element or subarray are
the coherent sum of all incident plane wave fields sampled at each array element or subarray.

• If the Wavefront property is set to 'Unspecified', the collected signals are formed from an
independent field incident on each individual sensor element.

You can use this object to

• model arriving signals as polarized or non-polarized fields depending upon whether the element or
array supports polarization and the value of the Polarization property. Using polarization, you can
receive a signal as a polarized electromagnetic field, or receive two independent signals using
orthogonal polarization directions.

• model acoustic fields by using nonpolarized microphone and sonar transducer array elements and
by setting the “Polarization” on page 1-0  to 'None'. You must also set the PropagationSpeed
to a value appropriate for the medium.

• collect fields at subarrays created by the phased.ReplicatedSubarray and
phased.PartitionedArray objects. You can steer all subarrays in the same direction using the
steering angle argument, STEERANG, or steer each subarray in a different direction using the
subarray element weights argument, WS. You cannot set the Wavefront property to
'Unspecified' for subarrays.

To collect arriving signals at the elements or arrays:

1 Create the phased.WidebandCollector object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation

Syntax
collector = phased.WidebandCollector
collector = phased.WidebandCollector(Name,Value)
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Description

collector = phased.WidebandCollector creates a wideband signal collector object,
collector, with default property values.

collector = phased.WidebandCollector(Name,Value) creates a wideband signal collector
with each property Name set to a specified Value. You can specify additional name-value pair
arguments in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single
quotes.
Example: collector =
phased.WidebandCollector('Sensor',phased.URA,'CarrierFrequency',300e6) sets the
sensor array to a uniform rectangular array (URA) with default URA property values. The
beamformer assumes a carrier frequency of 300 MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Sensor — Sensor element or sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox sensor or
array

Sensor element or sensor array, specified as a System object belonging to Phased Array System
Toolbox. A sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6
Data Types: double

ModulatedInput — Assume modulated input
true (default) | false
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Set this property to true to indicate the input signal is demodulated at a carrier frequency.
Data Types: logical

CarrierFrequency — Carrier frequency
1e9 (default) | positive real-valued scalar

Carrier frequency, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6
Data Types: double

NumSubbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128
Data Types: double

SensorGainMeasure — Specify sensor gain
'dB' (default) | 'dBi'

Sensor gain measure, specified as 'dB' or 'dBi'.

• When you set this property to 'dB', the input signal power is scaled by the sensor power pattern
(in dB) at the corresponding direction and then combined.

• When you set this property to 'dBi', the input signal power is scaled by the directivity pattern (in
dBi) at the corresponding direction and then combined. This option is useful when you want to
compare results with the values predicted by the radar equation that uses dBi to specify the
antenna gain. The computation using the 'dBi' option is expensive as it requires an integration
over all directions to compute the total radiated power of the sensor.

Data Types: char

Wavefront — Type of incoming wavefront
'Plane' (default) | 'Unspecified'

The type of incoming wavefront, specified as 'Plane' or 'Unspecified':

• 'Plane' — input signals are multiple plane waves impinging on the entire array. Each plane wave
is received by all collecting elements.

• 'Unspecified' — collected signals are independent fields incident on individual sensor
elements. If the Sensor property is an array that contains subarrays, you cannot set the
Wavefront property to 'Unspecified'.

Data Types: char

Polarization — Polarization configuration
'None' (default) | 'Combined' | 'Dual'

Polarization configuration, specified as 'None', 'Combined', or 'Dual'. When you set this property
to 'None', the incident fields are considered scalar fields. When you set this property to
'Combined', the incident fields are polarized and represent a single arriving signal whose
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polarization reflects the sensor's inherent polarization. When you set this property to 'Dual', the H
and V polarization components of the fields are independent signals.
Example: 'Dual'
Data Types: char

WeightsInputPort — Enable weights input
false (default) | true

Enable weights input, specified as false or true. When true, use the object input argument W to
specify weights. Weights are applied to individual array elements (or at the subarray level when
subarrays are supported).
Data Types: logical

Usage

Syntax
Y = collector(X,ANG)
Y = collector(X,ANG,LAXES)
[YH,YV] = collector(X,ANG,LAXES)
[ ___ ] = collector( ___ ,W)
[ ___ ] = collector( ___ ,STEERANG)
[ ___ ] = collector( ___ ,WS)

Description

Y = collector(X,ANG) collects the signals, X, arriving from the directions specified by ANG. Y
contains the collected signals.

Y = collector(X,ANG,LAXES) also specifies LAXES as the local coordinate system axes
directions. To use this syntax, set the property to 'Combined'.

[YH,YV] = collector(X,ANG,LAXES) returns an H-polarization component of the field, YH, and a
V-polarization component, YV. To use this syntax, set the Polarization property to 'Dual'.

[ ___ ] = collector( ___ ,W) also specifies W as array element or subarray weights. To use this
syntax, set the WeightsInputPort property to true.

[ ___ ] = collector( ___ ,STEERANG) also specifies STEERANG as the subarray steering angle. To
use this syntax, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of that array to either 'Phase' or 'Time'.

[ ___ ] = collector( ___ ,WS) also specifies WS as the weights applied to each element within
each subarray. To use this syntax, set the Sensor property to an array that supports subarrays and set
the SubarraySteering of that array to 'Custom'.

Input Arguments

X — Arriving signals
complex-valued M-by-L matrix | complex-valued 1-by-L cell array of structures
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Arriving signals, specified as a complex-valued M-by-L matrix or complex-valued 1-by-L cell array of
structures. M is the number of signal samples and L is the number of arrival angles. This argument
represents the arriving fields.

• If the Polarization property value is set to 'None', X is an M-by-L matrix.
• If the Polarization property value is set to 'Combined' or 'Dual', X is a 1-by-L cell array of

structures. Each cell corresponds to a separate arriving signal. Each struct contains three
column vectors containing the X, Y, and Z components of the polarized fields defined with respect
to the global coordinate system.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined'.
Data Types: double
Complex Number Support: Yes

ANG — Arrival directions of signals
real-valued 2-by-L matrix

Arrival directions of signals, specified as a real-valued 2-by-L matrix. Each column specifies an arrival
direction in the form [AzimuthAngle;ElevationAngle]. The azimuth angle must lie between –
180° and 180°, inclusive. The elevation angle must lie between –90° and 90°, inclusive. When the
Wavefront property is false, the number of angles must equal the number of array elements, N.
Units are in degrees.
Example: [30,20;45,0]
Data Types: double

LAXES — Local coordinate system
real-valued 3-by-3 orthogonal matrix

Local coordinate system, specified as a real-valued 3-by-3 orthogonal matrix. The matrix columns
specify the local coordinate system's orthonormal x, y, and z axes with respect to the global
coordinate system.
Example: rotx(30)
Dependencies

To enable this argument, set the Polarization property to 'Combined' or 'Dual'.
Data Types: double

W — Element or subarray weights
N-by-1 column vector

Element or subarray weights, specified as a complex-valued N-by-1 column vector where N is the
number of array elements (or subarrays when the array supports subarrays).
Dependencies

To enable this argument, set the WeightsInputPort property to true.
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Data Types: double
Complex Number Support: Yes

WS — Subarray element weights
complex-valued NSE-by-N matrix | 1-by-N cell array

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.

Subarray element weights

Sensor Array Subarray weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray Subarrays may not have the same dimensions and
sizes. In this case, you can specify subarray
weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and set the
SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

STEERANG — Subarray steering angle
real-valued 2-by-1 vector

Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuthAngle;elevationAngle]. The azimuth angle must be between –180° and 180°,
inclusive. The elevation angle must be between –90° and 90°, inclusive. Units are in degrees.
Example: [20;15]

Dependencies

To enable this argument, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of that array to either 'Phase' or 'Time'

 phased.WidebandCollector

1-2043



Data Types: double

Output Arguments

Y — Collected signal
complex-valued M-by-N matrix

Collected signal, returned as a complex-valued M-by-N matrix. M is the length of the input signal. N
is the number of array elements (or subarrays when subarrays are supported). Each column
corresponds to the signal collected by the corresponding array element (or corresponding subarrays
when subarrays are supported).

Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined'.
Data Types: double

YH — Collected horizontal polarization signal
complex-valued M-by-N matrix

Collected horizontal polarization signal, returned as a complex-valued M-by-N matrix. M is the length
of the input signal. N is the number of array elements (or subarrays when subarrays are supported).
Each column corresponds to the signal collected by the corresponding array element (or
corresponding subarrays when subarrays are supported).

Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double

YV — Collected vertical polarization signal
complex-valued M-by-N matrix

Collected horizontal polarization signal, returned as a complex-valued M-by-N matrix. M is the length
of the input signal. N is the number of array elements (or subarrays when subarrays are supported).
Each column corresponds to the signal collected by the corresponding array element (or
corresponding subarrays when subarrays are supported).

Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
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release Release resources and allow changes to System object property values and input
characteristics

reset Reset internal states of System object

Examples

Collect Wideband Signal at Single Antenna

Use the phased.WidebandCollector System object™ to construct a signal arriving at a single
isotropic antenna from 10° azimuth and 30° elevation.

antenna = phased.IsotropicAntennaElement;
collector = phased.WidebandCollector('Sensor',antenna);
x = [1;0;-1];
incidentAngle = [10;30];
y = collector(x,incidentAngle);
disp(y)

   1.0000 + 0.0000i
   0.0000 + 0.0000i
  -1.0000 - 0.0000i

Collect Wideband Signal at 5-Element ULA

Use the wideband collector to construct the signal impinging upon a 5-element ULA of isotropic
antennas from 10 degrees azimuth and 30 degrees elevation.

array = phased.ULA('NumElements',5);
collector = phased.WidebandCollector('Sensor',array);
x = [1;1;1];
incidentAngle = [10;30];
y = collector(x,incidentAngle);
disp(y)

  Columns 1 through 4

  -0.9997 + 0.0102i  -0.0051 - 0.9999i   1.0000 + 0.0000i  -0.0051 + 1.0001i
  -0.9999 + 0.0102i  -0.0051 - 1.0000i   1.0000 + 0.0000i  -0.0051 + 1.0000i
  -1.0002 + 0.0102i  -0.0051 - 1.0001i   1.0000 - 0.0000i  -0.0051 + 0.9999i

  Column 5

  -1.0002 - 0.0102i
  -0.9999 - 0.0102i
  -0.9997 - 0.0102i

Collect Different Signals at 3-Element ULA

Collect three signals incoming into a 3-element array of isotropic antenna elements. Each antenna
collects a separate input signal from a separate direction.
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array = phased.ULA('NumElements',3);
collector = phased.WidebandCollector('Sensor',array,...
    'Wavefront','Unspecified');
rng default
x = rand(10,3);
incidentAngles = [10 20 45; 0 5 2];
y = collector(x,incidentAngles);
disp(y)

   0.8147 + 0.0000i   0.1576 + 0.0000i   0.6557 + 0.0000i
   0.9058 + 0.0000i   0.9706 + 0.0000i   0.0357 + 0.0000i
   0.1270 + 0.0000i   0.9572 + 0.0000i   0.8491 + 0.0000i
   0.9134 + 0.0000i   0.4854 + 0.0000i   0.9340 + 0.0000i
   0.6324 + 0.0000i   0.8003 + 0.0000i   0.6787 + 0.0000i
   0.0975 + 0.0000i   0.1419 + 0.0000i   0.7577 + 0.0000i
   0.2785 + 0.0000i   0.4218 + 0.0000i   0.7431 + 0.0000i
   0.5469 + 0.0000i   0.9157 + 0.0000i   0.3922 + 0.0000i
   0.9575 + 0.0000i   0.7922 + 0.0000i   0.6555 + 0.0000i
   0.9649 + 0.0000i   0.9595 + 0.0000i   0.1712 + 0.0000i

More About
Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies narrowband
processing to the signal in each subband. The signals for all subbands are summed to form the output
signal.

When using wideband frequency System objects or blocks, you specify the number of subbands, NB,
in which to decompose the wideband signal. Subband center frequencies and widths are
automatically computed from the total bandwidth and number of subbands. The total frequency band
is centered on the carrier or operating frequency, fc. The overall bandwidth is given by the sample
rate, fs. Frequency subband widths are Δf = f s/NB. The center frequencies of the subbands are

fm =
fc−

fs
2 + m− 1 Δf ,   NB even

fc−
NB− 1 fs

2NB
+ m− 1 Δf ,   NB odd

,   m = 1, …, NB

Some System objects let you obtain the subband center frequencies as output when you run the
object. The returned subband frequencies are ordered consistently with the ordering of the discrete
Fourier transform. Frequencies above the carrier appear first, followed by frequencies below the
carrier.

The phased.WidebandCollector System object uses the narrowband phased approximation of the
time delays across receiving elements in the far field for each subband.

Algorithms
If the Wavefront property value is 'Plane', phased.WidebandCollector does the following for
each plane wave signal:

1 Decomposes the signal into multiple subbands.
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2 Uses the phase approximation of the time delays across collecting elements in the far field for
each subband.

3 Regroups the collected signals in all the subbands to form the output signal.

If the Wavefront property value is 'Unspecified', the object collects each channel independently.

For further details, see [1].

References
[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Requires dynamic memory allocation. See “Limitations for System Objects that Require Dynamic
Memory Allocation”.

• See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.Collector | phased.Radiator | phased.WidebandRadiator

Introduced in R2011a
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step
System object: phased.WidebandCollector
Package: phased

Collect signals

Syntax
Y = step(H,X,ANG)
Y = step(H,X,ANG,LAXES)
Y = step(H,X,ANG,WEIGHTS)
Y = step(H,X,ANG,STEERANGLE)
Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Y = step(H,X,ANG) collects signals X arriving from directions ANG. The collection process depends
on the Wavefront property of H, as follows:

• If Wavefront has the value 'Plane', each collecting element collects all the far field signals in X.
Each column of Y contains the output of the corresponding element in response to all the signals
in X.

• If Wavefront has the value 'Unspecified', each collecting element collects only one impinging
signal from X. Each column of Y contains the output of the corresponding element in response to
the corresponding column of X. The 'Unspecified' option is available when the Sensor
property of H does not contain subarrays.

Y = step(H,X,ANG,LAXES) uses LAXES as the local coordinate system axes directions. This syntax
is available when you set the EnablePolarization property to true.

Y = step(H,X,ANG,WEIGHTS) uses WEIGHTS as the weight vector. This syntax is available when
you set the WeightsInputPort property to true.

Y = step(H,X,ANG,STEERANGLE) uses STEERANGLE as the subarray steering angle. This syntax is
available when you configure H so that H.Sensor is an array that contains subarrays and
H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Y = step(H,X,ANG,LAXES,WEIGHTS,STEERANGLE) combines all input arguments. This syntax is
available when you configure H so that H.WeightsInputPort is true, H.Sensor is an array that
contains subarrays, and H.Sensor.SubarraySteering is either 'Phase' or 'Time'.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
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the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
H

Collector object.

X

Arriving signals. Each column of X represents a separate signal. The specific interpretation of X
depends on the Wavefront property of H.

Wavefront Property
Value

Description

'Plane' Each column of X is a far field signal.
'Unspecified' Each column of X is the signal impinging on the corresponding element.

In this case, the number of columns in X must equal the number of
collecting elements in the Sensor property.

• If the EnablePolarization property value is set to false, X is a matrix. The number of
columns of the matrix equals the number of separate signals.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

• If the EnablePolarization property value is set to true, X is a row vector of MATLAB struct
type. The dimension of the struct array equals the number of separate signals. Each struct
member contains three column-vector fields, X, Y, and Z, representing the x, y, and z components
of the polarized wave vector signals in the global coordinate system.

The size of the first dimension of the matrix fields within the struct can vary to simulate a
changing signal length such as a pulse waveform with variable pulse repetition frequency.

ANG

Incident directions of signals, specified as a two-row matrix. Each column specifies the incident
direction of the corresponding column of X. Each column of ANG has the form [azimuth; elevation], in
degrees. The azimuth angle must be between –180 and 180 degrees, inclusive. The elevation angle
must be between –90 and 90 degrees, inclusive.

LAXES

Local coordinate system. LAXES is a 3-by-3 matrix whose columns specify the local coordinate
system's orthonormal x, y, and z axes, respectively. Each axis is specified in terms of [x;y;z] with
respect to the global coordinate system. This argument is only used when the EnablePolarization
property is set to true.
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WEIGHTS

Vector of weights. WEIGHTS is a column vector of length M, where M is the number of collecting
elements.

Default: ones(M,1)

STEERANGLE

Subarray steering angle, specified as a length-2 column vector. The vector has the form [azimuth;
elevation], in degrees. The azimuth angle must be between –180 and 180 degrees, inclusive. The
elevation angle must be between –90 and 90 degrees, inclusive.

Output Arguments
Y

Collected signals. Each column of Y contains the output of the corresponding element. The output is
the response to all the signals in X, or one signal in X, depending on the Wavefront property of H.

Examples

Collect Wideband Signal at Single Antenna

Use the phased.WidebandCollector System object™ to construct a signal arriving at a single
isotropic antenna from 10° azimuth and 30° elevation.

antenna = phased.IsotropicAntennaElement;
collector = phased.WidebandCollector('Sensor',antenna);
x = [1;0;-1];
incidentAngle = [10;30];
y = collector(x,incidentAngle);
disp(y)

   1.0000 + 0.0000i
   0.0000 + 0.0000i
  -1.0000 - 0.0000i

Collect Wideband Signal at 5-Element ULA

Use the wideband collector to construct the signal impinging upon a 5-element ULA of isotropic
antennas from 10 degrees azimuth and 30 degrees elevation.

array = phased.ULA('NumElements',5);
collector = phased.WidebandCollector('Sensor',array);
x = [1;1;1];
incidentAngle = [10;30];
y = collector(x,incidentAngle);
disp(y)

  Columns 1 through 4
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  -0.9997 + 0.0102i  -0.0051 - 0.9999i   1.0000 + 0.0000i  -0.0051 + 1.0001i
  -0.9999 + 0.0102i  -0.0051 - 1.0000i   1.0000 + 0.0000i  -0.0051 + 1.0000i
  -1.0002 + 0.0102i  -0.0051 - 1.0001i   1.0000 - 0.0000i  -0.0051 + 0.9999i

  Column 5

  -1.0002 - 0.0102i
  -0.9999 - 0.0102i
  -0.9997 - 0.0102i

Collect Different Signals at 3-Element ULA

Collect three signals incoming into a 3-element array of isotropic antenna elements. Each antenna
collects a separate input signal from a separate direction.

array = phased.ULA('NumElements',3);
collector = phased.WidebandCollector('Sensor',array,...
    'Wavefront','Unspecified');
rng default
x = rand(10,3);
incidentAngles = [10 20 45; 0 5 2];
y = collector(x,incidentAngles);
disp(y)

   0.8147 + 0.0000i   0.1576 + 0.0000i   0.6557 + 0.0000i
   0.9058 + 0.0000i   0.9706 + 0.0000i   0.0357 + 0.0000i
   0.1270 + 0.0000i   0.9572 + 0.0000i   0.8491 + 0.0000i
   0.9134 + 0.0000i   0.4854 + 0.0000i   0.9340 + 0.0000i
   0.6324 + 0.0000i   0.8003 + 0.0000i   0.6787 + 0.0000i
   0.0975 + 0.0000i   0.1419 + 0.0000i   0.7577 + 0.0000i
   0.2785 + 0.0000i   0.4218 + 0.0000i   0.7431 + 0.0000i
   0.5469 + 0.0000i   0.9157 + 0.0000i   0.3922 + 0.0000i
   0.9575 + 0.0000i   0.7922 + 0.0000i   0.6555 + 0.0000i
   0.9649 + 0.0000i   0.9595 + 0.0000i   0.1712 + 0.0000i

Algorithms
If the Wavefront property value is 'Plane', phased.WidebandCollector does the following for
each plane wave signal:

1 Decomposes the signal into multiple subbands.
2 Uses the phase approximation of the time delays across collecting elements in the far field for

each subband.
3 Regroups the collected signals in all the subbands to form the output signal.

If the Wavefront property value is 'Unspecified', the object collects each channel independently.

For further details, see [1].
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[1] Van Trees, H. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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phased.WidebandFreeSpace
Package: phased

Wideband freespace propagation

Description
The System object models wideband signal propagation from one point to another in a free-space
environment. The System object applies range-dependent time delay, gain adjustment, and phase
shift to the input signal. The object accounts for doppler shift when either the source or destination is
moving. A free-space environment is a boundary-free medium with a speed of signal propagation
independent of position and direction. The signal propagates along a straight line from source to
destination. For example, you can use this object to model the two-way propagation of a signal from a
radar to a target.

For nonpolarized signals, the System object lets you propagate signals from a single point to multiple
points or from multiple points to a single point. Multiple-point–to–multiple-point propagation is not
supported.

To compute the propagated signal in free space:

1 Define and set up your wideband free space environment as shown in the “Construction” on page
1-2053 section.

2 Call step to propagate the signal through free space according to the properties of the System
object. The behavior of step is specific to each object in the toolbox.

When propagating a round trip signal in free space, you can use one WidebandFreeSpace System
object to compute the two-way propagation delay. Alternatively, you can use two separate
WidebandFreeSpace System objects to compute one-way propagation delays in each direction. Due
to filter distortion, the total round trip delay when you employ two-way propagation can differ from
the delay when you use two one-way phased.WidebandFreeSpace System objects. It is more
accurate to use a single two-way phased.WidebandFreeSpace System object. To set this option,
use the TwoWayPropagation property.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
sWBFS = phased.WidebandFreeSpace creates a wideband free space System object, sWBFS.

sWBFS = phased.WidebandFreeSpace(Name,Value) creates a wideband free space System
object, sWBFS, with each specified property Name set to the specified Value. You can specify
additional name-value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Properties
PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

TwoWayPropagation — Enable two-way propagation
false (default) | true

Enable two-way propagation, specified as a false or true. Set this property to true to perform
round-trip propagation between the signal origin and destination specified in step. Set this property
to false to perform only one-way propagation from the origin to the destination.
Example: true
Data Types: logical

SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: double

NumSubbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128
Data Types: double

MaximumDistanceSource — Source of maximum one-way propagation distance
'Auto' (default) | 'Property'

Source of maximum one-way propagation distance, specified as 'Auto' or 'Property'. The
maximum one-way propagation distance is used to allocate sufficient memory for signal delay
computation. When you set this property to 'Auto', the System object automatically allocates
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memory. When you set this property to 'Property', you specify the maximum one-way propagation
distance using the value of the MaximumDistance property.
Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a positive real-valued scalar. Units are in
meters. Any signal that propagates more than the maximum one-way distance is ignored. The
maximum distance must be greater than or equal to the largest position-to-position distance.
Example: 5000

Dependencies

To enable this property, set the MaximumDistanceSource property to 'Property'.
Data Types: double

MaximumNumInputSamplesSource — Source of maximum number of samples
'Auto' (default) | 'Property'

The source of the maximum number of samples of the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the propagation model automatically allocates
enough memory to buffer the input signal. When you set this property to 'Property', you specify
the maximum number of samples in the input signal using the MaximumNumInputSamples property.
Any input signal longer than that value is truncated.

To use this object with variable-size signals in a MATLAB Function Block in Simulink, set the
MaximumNumInputSamplesSource property to 'Property' and set a value for the
MaximumNumInputSamples property.
Example: 'Property'

Dependencies

To enable this property, set MaximumDistanceSource to 'Property'.
Data Types: char

MaximumNumInputSamples — Maximum number of input signal samples
100 (default) | positive integer

Maximum number of input signal samples, specified as a positive integer. The input signal is the first
argument of the step method, after the System object itself. The size of the input signal is the
number of rows in the input matrix. Any input signal longer than this number is truncated. To process
signals completely, ensure that this property value is greater than any maximum input signal length.

The waveform-generating System objects determine the maximum signal size:

• For any waveform, if the waveform OutputFormat property is set to 'Samples', the maximum
signal length is the value specified in the NumSamples property.

• For pulse waveforms, if the OutputFormat is set to 'Pulses', the signal length is the product of
the smallest pulse repetition frequency, the number of pulses, and the sample rate.

• For continuous waveforms, if the OutputFormat is set to 'Sweeps', the signal length is the
product of the sweep time, the number of sweeps, and the sample rate.
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Example: 2048
Dependencies

To enable this property, set MaximumNumInputSamplesSource to 'Property'.
Data Types: double

Methods
reset Reset states of phased.WidebandFreeSpace System object
step Propagate wideband signal from point to point using free-space channel model

Common to All System Objects
release Allow System object property value changes

Examples

Free-Space Propagation of Wideband Signals

Propagate a wideband signal with three tones in an underwater acoustic with constant speed of
propagation. You can model this environment as free space. The center frequency is 100 kHz and the
frequencies of the three tones are 75 kHz, 100 kHz, and 125 kHz, respectively. Plot the spectrum of
the original signal and the propagated signal to observe the Doppler effect. The sampling frequency
is 100 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

c = 1500;
fc = 100e3;
fs = 100e3;
relfreqs = [-25000,0,25000];

Set up a stationary radar and moving target and compute the expected Doppler.

rpos = [0;0;0];
rvel = [0;0;0];
tpos = [30/fs*c; 0;0];
tvel = [45;0;0];
dop = -tvel(1)./(c./(relfreqs + fc));

Create a signal and propagate the signal to the moving target.

t = (0:199)/fs;
x = sum(exp(1i*2*pi*t.'*relfreqs),2);
channel = phased.WidebandFreeSpace(...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc,...
    'SampleRate',fs);
y = channel(x,rpos,tpos,rvel,tvel);

Plot the spectra of the original signal and the Doppler-shifted signal.
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periodogram([x y],rectwin(size(x,1)),1024,fs,'centered')
ylim([-150 0])
legend('original','propagated');

For this wideband signal, you can see that the magnitude of the Doppler shift increases with
frequency. In contrast, for narrowband signals, the Doppler shift is assumed constant over the band.

More About
Freespace Time Delay and Path Loss

When the origin and destination are stationary relative to each other, you can write the output signal
of a free-space channel as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal delay and Lfsp is the free-space
path loss. The delay τ is given by R/c, where R is the propagation distance and c is the propagation
speed. The free-space path loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or array. In the
near field, the free-space path loss formula is not valid and can result in a loss smaller than one,
equivalent to a signal gain. Therefore, the loss is set to unity for range values, R ≤ λ/4π.
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When the origin and destination have relative motion, the processing also introduces a Doppler
frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
The quantity v is the relative speed of the destination with respect to the origin.

For more details on free space channel propagation, see [2].

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies narrowband
processing to the signal in each subband. The signals for all subbands are summed to form the output
signal.

When using wideband frequency System objects or blocks, you specify the number of subbands, NB,
in which to decompose the wideband signal. Subband center frequencies and widths are
automatically computed from the total bandwidth and number of subbands. The total frequency band
is centered on the carrier or operating frequency, fc. The overall bandwidth is given by the sample
rate, fs. Frequency subband widths are Δf = f s/NB. The center frequencies of the subbands are

fm =
fc−

fs
2 + m− 1 Δf ,   NB even

fc−
NB− 1 fs

2NB
+ m− 1 Δf ,   NB odd

,   m = 1, …, NB

Some System objects let you obtain the subband center frequencies as output when you run the
object. The returned subband frequencies are ordered consistently with the ordering of the discrete
Fourier transform. Frequencies above the carrier appear first, followed by frequencies below the
carrier.

The phased.WidebandFreeSpace System object uses narrowband time delay and loss algorithms
for each subband.

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
fspl | phased.FreeSpace | phased.RadarTarget | phased.TwoRayChannel |
phased.WidebandCollector | phased.WidebandRadiator

Introduced in R2015b
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reset
System object: phased.WidebandFreeSpace
Package: phased

Reset states of phased.WidebandFreeSpace System object

Syntax
reset(sWBFS)

Description
reset(sWBFS) resets the internal state of the phased.WidebandFreeSpace object, sWBFS. If the
SeedSource property applies and has the value 'Property', then this method resets the random
number generator state.

Input Arguments
sWBFS — Wideband free space propagator
System object

Wideband free space propagator, specified as a System object.
Example: phased.WidebandFreeSpace

Introduced in R2015b
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step
System object: phased.WidebandFreeSpace
Package: phased

Propagate wideband signal from point to point using free-space channel model

Syntax
prop_sig = step(sWBFS,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

prop_sig = step(sWBFS,sig,origin_pos,dest_pos,origin_vel,dest_vel) returns the
resulting signal, prop_sig, when a wideband signal sig propagates through a free-space channel
from the origin_pos position to the dest_pos position. Either the origin_pos or dest_pos
arguments can specify more than one point but you cannot specify both as having multiple points.
The velocity of the signal origin is specified in origin_vel and the velocity of the signal destination
is specified in dest_vel. The dimensions of origin_vel and dest_vel must agree with the
dimensions of origin_pos and dest_pos, respectively.

Electromagnetic fields propagated through a free-space channel can be polarized or nonpolarized.
For nonpolarized fields, such as acoustic fields, the propagating signal field, sig, is a vector or
matrix. When the fields are polarized, sig is a struct array. Every structure element represents an
electric field vector signal.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
sWBFS — Wideband free space propagator
System object

Wideband free space propagator, specified as a System object.
Example: phased.WidebandFreeSpace

sig — Wideband signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields
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• Wideband nonpolarized signal, specified as an M-by-N complex-valued matrix. Each column
contains a signal propagated along one of the free-space paths.

• Wideband polarized signal, specified as a 1-by-N struct array containing complex-valued fields.
Each struct element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z) representing a polarized signal propagating along one of the free-space
paths.

The quantity M is the number of signal samples and N is the number of free-space channels. Each
channel corresponds to a source-destination pair.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

For polarized fields, each struct element contains three M-by-1 complex-valued column vectors,
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a changing
signal length such as a pulse waveform with variable pulse repetition frequency.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

origin_pos — Signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. Position units are in meters. The quantity N is the number of free-space channels. If
origin_pos is a column vector, it takes the form [x;y;z]. If origin_pos is a matrix, each column
specifies a different signal origin and has the form [x;y;z].

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [1000;100;500]
Data Types: double

dest_pos — Signal destination
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-
valued matrix. Position units are in meters. The quantity N is the number of free-space channels. If
dest_pos is a 3-by-1 column vector, it takes the form [x;y;z]. If dest_pos is a matrix, each
column specifies a different signal destination and takes the form [x;y;z].

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [0;0;0]
Data Types: double
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origin_vel — Signal origin velocity
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a real-valued 3-by-1 column vector or real-valued 3-by-N matrix.
Velocity units are in meters per second. The dimension of origin_vel must match the dimension of
origin_pos. If origin_vel is a column vector, it takes the form [Vx;Vy;Vz]. If origin_vel is a
3–by-N matrix, each column specifies a different origin velocity and has the form [Vx;Vy;Vz].
Example: [10;0;5]
Data Types: double

dest_vel — Signal destination velocity
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 column vector or 3–by-N matrix. Velocity units are
in meters per second. The dimension of dest_vel must match the dimension of dest_pos. If
dest_vel is a column vector, it takes the form [Vx;Vy;Vz]. If dest_vel is a 3–by-N matrix, each
column specifies a different destination velocity and has the form [Vx;Vy;Vz].
Example: [0;0;0]
Data Types: double

Output Arguments
prop_sig — Wideband propagated signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields

• Wideband nonpolarized signal, specified as an M-by-N complex-valued matrix. Each column
contains a signal propagated along one of the free-space paths.

• Wideband polarized signal, specified as a 1-by-N struct array containing complex-valued fields.
Each struct element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z) representing a polarized signal propagating along one of the free-space
paths.

The output prop_sig contains signal samples arriving at the signal destination within the current
steptime frame. Whenever it takes longer than the current time frame for the signal to propagate
from the origin to the destination, the output may not contain all contribution from the input. The
next call to step will return more of the propagated signal.

Examples

Free-Space Propagation of Wideband Signals

Propagate a wideband signal with three tones in an underwater acoustic with constant speed of
propagation. You can model this environment as free space. The center frequency is 100 kHz and the
frequencies of the three tones are 75 kHz, 100 kHz, and 125 kHz, respectively. Plot the spectrum of
the original signal and the propagated signal to observe the Doppler effect. The sampling frequency
is 100 kHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).
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c = 1500;
fc = 100e3;
fs = 100e3;
relfreqs = [-25000,0,25000];

Set up a stationary radar and moving target and compute the expected Doppler.

rpos = [0;0;0];
rvel = [0;0;0];
tpos = [30/fs*c; 0;0];
tvel = [45;0;0];
dop = -tvel(1)./(c./(relfreqs + fc));

Create a signal and propagate the signal to the moving target.

t = (0:199)/fs;
x = sum(exp(1i*2*pi*t.'*relfreqs),2);
channel = phased.WidebandFreeSpace(...
    'PropagationSpeed',c,...
    'OperatingFrequency',fc,...
    'SampleRate',fs);
y = channel(x,rpos,tpos,rvel,tvel);

Plot the spectra of the original signal and the Doppler-shifted signal.

periodogram([x y],rectwin(size(x,1)),1024,fs,'centered')
ylim([-150 0])
legend('original','propagated');
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For this wideband signal, you can see that the magnitude of the Doppler shift increases with
frequency. In contrast, for narrowband signals, the Doppler shift is assumed constant over the band.

References

[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

[2] Skolnik, M. Introduction to Radar Systems. 3rd Ed. New York: McGraw-Hill

[3] Saakian, A. Radio Wave Propagation Fundamentals. Norwood, MA: Artech House, 2011.

[4] Balanis, C. Advanced Engineering Electromagnetics. New York: Wiley & Sons, 1989.

[5] Rappaport, T. Wireless Communications: Principles and Practice. 2nd Ed. New York: Prentice Hall,
2002.
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phased.WidebandLOSChannel
Package: phased

Wideband LOS propagation channel

Description
The phased.WidebandLOSChannel models the propagation of narrowband electromagnetic signals
through a line-of-sight (LOS) channel from a source to a destination. In an LOS channel, propagation
paths are straight lines from point to point. The propagation model in the LOS channel includes free-
space attenuation in addition to attenuation due to atmospheric gases, rain, fog, and clouds. You can
use phased.WidebandLOSChannel to model the propagation of signals between multiple points
simultaneously. The System object works for all frequencies.

While the attenuation models for atmospheric gases and rain are valid for electromagnetic signals in
the frequency range 1–1000 GHz only, the attenuation model for fog and clouds is valid for 10–1000
GHz. Outside these frequency ranges, the System object uses the nearest valid value.

The phased.WidebandLOSChannel System object applies range-dependent time delays to the
signals, as well as gains or losses. When either the source or destination is moving, the System object
applies Doppler shifts.

Like the phased.WidebandFreeSpace System object, the phased.WidebandLOSChannel System
object supports two-way propagation.

To compute the propagation delay for specified source and receiver points:

1 Define and set up your Wideband LOS channel using the “Construction” on page 1-2065
procedure. You can set the System object properties during construction or leave them at their
default values.

2 Call the step method to compute the propagated signal using the properties of the
phased.WidebandLOSChannel System object. You can change tunable properties before or
after any call to the step method.

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

Construction
sWBLOS = phased.WidebandLOSChannel creates a Wideband LOS attenuating propagation
channel System object, sWBLOS.

sWBLOS = phased.WidebandLOSChannel(Name,Value) creates a System object, sWBLOS, with
each specified property Name set to the specified Value. You can specify additional name and value
pair arguments in any order as (Name1,Value1,...,NameN,ValueN).
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Properties
PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

SpecifyAtmosphere — Enable atmospheric attenuation model
false (default) | true

Option to enable the atmospheric attenuation model, specified as a false or true. Set this property
to true to add signal attenuation caused by atmospheric gases, rain, fog, or clouds. Set this property
to false to ignore atmospheric effects in propagation.

Setting SpecifyAtmosphere to true, enables the Temperature, DryAirPressure,
WaterVapourDensity, LiquidWaterDensity, and RainRate properties.
Data Types: logical

Temperature — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: 20.0
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

DryAirPressure — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar

Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this property corresponds to one standard atmosphere.
Example: 101.0e3
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double
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WaterVapourDensity — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.
Example: 7.4

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

LiquidWaterDensity — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.
Example: 0.1

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

RainRate — Rainfall rate
0.0 (default) | non-negative real-valued scalar

Rainfall rate, specified as a nonnegative real-valued scalar. Units are in mm/hr. This property applies
only when you set SpecifyAtmosphere to true.
Example: 10.0
Data Types: double

TwoWayPropagation — Enable two-way propagation
false (default) | true

Enable two-way propagation, specified as a false or true. Set this property to true to perform
round-trip propagation between the signal origin and destination specified in step. Set this property
to false to perform only one-way propagation from the origin to the destination.
Example: true
Data Types: logical

SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: double

NumSubbands — Number of processing subbands
64 (default) | positive integer
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Number of processing subbands, specified as a positive integer.
Example: 128
Data Types: double

MaximumDistanceSource — Source of maximum one-way propagation distance
'Auto' (default) | 'Property'

Source of maximum one-way propagation distance, specified as 'Auto' or 'Property'. The
maximum one-way propagation distance is used to allocate sufficient memory for signal delay
computation. When you set this property to 'Auto', the System object automatically allocates
memory. When you set this property to 'Property', you specify the maximum one-way propagation
distance using the value of the MaximumDistance property.
Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a positive real-valued scalar. Units are in
meters. Any signal that propagates more than the maximum one-way distance is ignored. The
maximum distance must be greater than or equal to the largest position-to-position distance.
Example: 5000

Dependencies

To enable this property, set the MaximumDistanceSource property to 'Property'.
Data Types: double

MaximumNumInputSamplesSource — Source of maximum number of samples
'Auto' (default) | 'Property'

The source of the maximum number of samples of the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the propagation model automatically allocates
enough memory to buffer the input signal. When you set this property to 'Property', you specify
the maximum number of samples in the input signal using the MaximumNumInputSamples property.
Any input signal longer than that value is truncated.

To use this object with variable-size signals in a MATLAB Function Block in Simulink, set the
MaximumNumInputSamplesSource property to 'Property' and set a value for the
MaximumNumInputSamples property.
Example: 'Property'

Dependencies

To enable this property, set MaximumDistanceSource to 'Property'.
Data Types: char

MaximumNumInputSamples — Maximum number of input signal samples
100 (default) | positive integer

Maximum number of input signal samples, specified as a positive integer. The input signal is the first
argument of the step method, after the System object itself. The size of the input signal is the
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number of rows in the input matrix. Any input signal longer than this number is truncated. To process
signals completely, ensure that this property value is greater than any maximum input signal length.

The waveform-generating System objects determine the maximum signal size:

• For any waveform, if the waveform OutputFormat property is set to 'Samples', the maximum
signal length is the value specified in the NumSamples property.

• For pulse waveforms, if the OutputFormat is set to 'Pulses', the signal length is the product of
the smallest pulse repetition frequency, the number of pulses, and the sample rate.

• For continuous waveforms, if the OutputFormat is set to 'Sweeps', the signal length is the
product of the sweep time, the number of sweeps, and the sample rate.

Example: 2048
Dependencies

To enable this property, set MaximumNumInputSamplesSource to 'Property'.
Data Types: double

Methods
reset Reset states of System object
step Propagate signal in Wideband LOS channel

Common to All System Objects
release Allow System object property value changes

Examples

Spectrum of Propagated Signal in Wideband LOS Channel

Propagate a wideband signal in a line-of-sight (LOS) channel from a radar at (0,0,0) meters to a target
at (35,0,0) meters in medium fog. Set the fog liquid water density to 0.05 gm/m3. Assume rain is
falling at 5 mm/hr. The signal carrier frequency is 20 GHz. The signal is a sum of four cw tones at
19.75, 19.875, 20.125, and 20.25 GHz. Set the signal duration to 0.5 μs and the sample rate to 2.0
GHz. Assume the radar is stationary and the target approaches the radar at 40 m/s. The atmospheric
temperature is 12°C.

Set the signal parameters and create the transmitted signal.

c = physconst('LightSpeed');
fs = 2e9;
freq = [-0.25,-.125,0.125,0.25]*1e9;
fc = 20.0e9;
dt = 1/fs;
t = [0:dt:.5e-6];
sig = sum(exp(1i*2*pi*t.'*freq),2);

Specify the atmosphere parameters and create the phased.WidebandChannel System object™.

lwd = 0.05;
rainrate = 5.0;
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temp = 12.0;
loschannel = phased.WidebandLOSChannel('SampleRate',fs,'PropagationSpeed',c,...
    'SpecifyAtmosphere',true,'OperatingFrequency',fc,'RainRate',rainrate,...
    'LiquidWaterDensity',lwd,'Temperature',temp);

Specify the radar and target positions and velocities.

xradar = [0,0,0].';
vradar = [0,0,0].';
xtgt = [35,0,0].';
vtgt = [-40,0,0].';

Propagated the signal using the step method.

prop_sig = loschannel(sig,xradar,xtgt,vradar,vtgt);

Plot the propagated signal. For a target range of 35 m, the propagation delay is 0.11 μs as seen in the
plot.

plot(t*1e6,real(prop_sig))
grid
xlabel('Time ({\mu}s)')
ylabel('Amplitude')

Using the periodogram function with a Taylor window, plot the spectra of the original and
propagated signals.

nfft = 1024;
nsamp = size(sig,1);
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periodogram([sig prop_sig],taylorwin(nsamp),nfft,fs,'centered')
ylim([-200 0])
legend('transmitted','propagated')

More About
Attenuation and Loss Factors

Attenuation or path loss in the Wideband LOS channel consists of four components. L = LfspLgLcLr,
where

• Lfsp is the free-space path attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each component is in magnitude units, not in dB.

Free-space Time Delay and Loss

When the origin and destination are stationary relative to each other, you can write the output signal
of a free-space channel as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal delay and Lfsp is the free-space
path loss. The delay τ is given by R/c, where R is the propagation distance and c is the propagation
speed. The free-space path loss is given by
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Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or array. In the
near field, the free-space path loss formula is not valid and can result in a loss smaller than one,
equivalent to a signal gain. Therefore, the loss is set to unity for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a Doppler
frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
The quantity v is the relative speed of the destination with respect to the origin.

For more details on free space channel propagation, see [5].

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .
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The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,
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where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies narrowband
processing to the signal in each subband. The signals for all subbands are summed to form the output
signal.

When using wideband frequency System objects or blocks, you specify the number of subbands, NB,
in which to decompose the wideband signal. Subband center frequencies and widths are
automatically computed from the total bandwidth and number of subbands. The total frequency band
is centered on the carrier or operating frequency, fc. The overall bandwidth is given by the sample
rate, fs. Frequency subband widths are Δf = f s/NB. The center frequencies of the subbands are

fm =
fc−

fs
2 + m− 1 Δf ,   NB even

fc−
NB− 1 fs

2NB
+ m− 1 Δf ,   NB odd

,   m = 1, …, NB

Some System objects let you obtain the subband center frequencies as output when you run the
object. The returned subband frequencies are ordered consistently with the ordering of the discrete
Fourier transform. Frequencies above the carrier appear first, followed by frequencies below the
carrier.

The phased.WidebandLOSChannel System object uses narrowband time delay and attenuation
algorithms for each subband.

1 Objects

1-2074



References

[1] Radiocommunication Sector of the International Telecommunication Union. Recommendation ITU-
R P.676-10: Attenuation by atmospheric gases. 2013.

[2] Radiocommunication Sector of the International Telecommunication Union. Recommendation ITU-
R P.840-6: Attenuation due to clouds and fog. 2013.

[3] Radiocommunication Sector of the International Telecommunication Union. Recommendation ITU-
R P.838-3: Specific attenuation model for rain for use in prediction methods. 2005.

[4] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

[5] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
fogpl | fspl | gaspl | rainpl | rangeangle

Objects
phased.BackscatterRadarTarget | phased.FreeSpace | phased.LOSChannel |
phased.RadarTarget | phased.TwoRayChannel | phased.WidebandFreeSpace

Introduced in R2016a
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reset
System object: phased.WidebandLOSChannel
Package: phased

Reset states of System object

Syntax
reset(sWBLOS)

Description
reset(sWBLOS) resets the internal state of the phased.WidebandLOSChannel System object,
sWBLOS. If SeedSource is a property of this System object and has the value 'Property', then this
method resets the random number generator state.

Input Arguments
sWBLOS — Wideband LOS channel
phased.WidebandLOSChannel System object

Wideband LOS channel, specified as a phased.WidebandLOSChannel System object.
Example: phased.WidebandLOSChannel

Introduced in R2016a
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step
System object: phased.WidebandLOSChannel
Package: phased

Propagate signal in Wideband LOS channel

Syntax
prop_sig = step(sLOS,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

prop_sig = step(sLOS,sig,origin_pos,dest_pos,origin_vel,dest_vel) returns the
resulting signal, prop_sig, when a wideband signal, sig, propagates through a line-of-sight (LOS)
channel from a source located at the origin_pos position to a destination at the dest_pos position.
Only one of the origin_pos or dest_pos arguments can specify multiple positions. The other must
contain a single position. The velocity of the signal origin is specified in origin_vel and the velocity
of the signal destination is specified in dest_vel. The dimensions of origin_vel and dest_vel
must match the dimensions of origin_pos and dest_pos, respectively.

Electromagnetic fields propagating through an LOS channel can be polarized or nonpolarized. For
nonpolarized fields, the propagating signal field, sig, is a vector or matrix. For polarized fields, sig
is an array of structures. The structure elements represent an electric field vector in Cartesian form.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
sWBLOS — Wideband LOS channel
phased.WidebandLOSChannel System object

Wideband LOS channel, specified as a phased.WidebandLOSChannel System object.
Example: phased.WidebandLOSChannel

sig — Wideband signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields
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Wideband signal, specified as a matrix or struct array, depending on whether is signal or polarized
or nonpolarized. The quantity M is the number of samples in the signal, and N is the number of
wideband LOS channels. Each channel corresponds to a source-destination pair.

• Wideband nonpolarized scalar signal. Specify sig as an M-by-N complex-valued matrix. Each
column contains one signal propagated along the line-of-sight path.

• Wideband polarized signal. Specify sig as a 1-by-N struct array containing complex-valued
fields. Each struct represents a polarized signal propagated along the line-of-sight path. Each
struct element contains three M-by-1 complex-valued column vectors, sig.X, sig.Y, and
sig.Z. These vectors represent the x, y, and z Cartesian components of the polarized signal.

Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

origin_pos — Signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix. The
quantity N is the number of LOS channels. If origin_pos is a column vector, it takes the form
[x;y;z]. If origin_pos is a matrix, each column specifies a different signal origin and has the form
[x;y;z]. Units are in meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [1000;100;500]
Data Types: double

dest_pos — Signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The quantity N is the number of LOS channels propagating from or to N signal
origins. If dest_pos is a 3-by-1 column vector, it takes the form [x;y;z]. If dest_pos is a matrix,
each column specifies a different signal destination and takes the form [x;y;z] Position units are in
meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [0;0;0]
Data Types: double

origin_vel — Velocities of signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of origin_vel must match the dimensions of origin_pos. If origin_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If origin_vel is a 3-by-N matrix, each column
specifies a different origin velocity and has the form [Vx;Vy;Vz]. Velocity units are in meters per
second.
Example: [10;0;5]
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Data Types: double

dest_vel — Velocities of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The dimensions of dest_vel must match the dimensions of dest_pos. If dest_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If dest_vel is a 3-by-N matrix, each column specifies
a different destination velocity and has the form [Vx;Vy;Vz] Velocity units are in meters per second.
Example: [0;0;0]
Data Types: double

Output Arguments
prop_sig — Wideband propagated signal
M-by-N complex-valued matrix | 1-by-N struct array containing complex-valued fields

Wideband signal, returned as a matrix or struct array, depending on whether the signal is polarized
or nonpolarized. The quantity M is the number of samples in the signal and N is the number of
wideband LOS channels. Each channel corresponds to a source-destination pair.

• Wideband nonpolarized scalar signal. prop_sig is an M-by-N complex-valued matrix.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

• Wideband polarized scalar signal. prop_sig is a 1-by-N struct array containing complex-valued
fields. Each struct element contains three M-by-1 complex-valued column vectors, sig.X,
sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the polarized
signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a
changing signal length such as a pulse waveform with variable pulse repetition frequency.

The prop_sig output contains signal samples arriving at the signal destination within the current
time frame. The current time frame is the time frame of the input signals to step. Whenever it takes
longer than the current time frame for the signal to propagate from the origin to the destination, the
output might not contain all contributions from the input of the current time frame. The remaining
output appears in the next call to step.

Examples

Propagate Wideband Signal in LOS Channel

Propagate a wideband signal in a line-of-sight (LOS) channel from a radar at (0,0,0) meters to a target
at (60,0,0) meters in medium fog. Set the fog liquid water density to 0.05 g/m3. Assume rain is falling
at 5 mm/hr. The signal carrier frequency is 20 GHz. The signal is a sum of four cw tones at 19.75,
19.875, 20.125, and 20.25 GHz. Set the signal duration to 0.5 microsecond and the sample rate to 2.0
GHz. Assume the radar is stationary and the target approaches the radar at 40 m/s. The atmospheric
temperature is 12°C and the dry air pressure is 101.300 kPa.
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Set the signal parameters and create the transmitted signal.

c = physconst('LightSpeed');
fs = 2e9;
freq = [-0.25,-.125,0.0,0.125,0.25]*1e9;
fc = 20.0e9;
dt = 1/fs;
t = [0:dt:.5e-6];
sig = sum(exp(1i*2*pi*t.'*freq),2);

Specify the atmosphere parameters and create the phased.WidebandChannel System object™.

lwd = 0.05;
rainrate = 5.0;
dap = 101300.0;
temp = 12.0;
sWBLOS = phased.WidebandLOSChannel('SampleRate',fs,'PropagationSpeed',c,...
    'SpecifyAtmosphere',true,'OperatingFrequency',fc,'RainRate',rainrate,...
    'LiquidWaterDensity',lwd,'Temperature',temp,'DryAirPressure',dap);

Specify the radar and target positions and velocities.

xradar = [0,0,0].';
vradar = [0,0,0].';
xtgt = [60,0,0].';
vtgt = [-40,0,0].';

Propagated the signal using the step method.

prop_sig = step(sWBLOS,sig,xradar,xtgt,vradar,vtgt);

Plot the propagated signal. For a target range of 60 m, the propagation delay is 0.20 μs as shown in
the plot.

plot(t*1e6,real(prop_sig))
grid
xlabel('Time (\mu sec)')
ylabel('Amplitude')
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phased.WidebandRadiator
Package: phased

Wideband signal radiator

Description
The phased.WidebandRadiator System object implements a wideband signal radiator. A radiator
converts signals into radiated wavefields transmitted from arrays and individual sensor elements
such as antennas, microphone elements, and sonar transducers. The radiator output represents the
fields at a reference distance of one meter from the phase center of the element or array. The
algorithm divides the signal at each element into frequency subbands and applies a narrowband time-
delay to each signal using the phase-shift approximation. Then, the delayed subbands are coherently
added to create the output signal. You can then propagate the signals to the far field using, for
example, the phased.WidebandFreeSpace, phased.WidebandLOSChannel, or
phased.WidebandTwoRayChannel System objects. You can use this object to

• model radiated signals as polarized or non-polarized fields depending upon whether the element
or array supports polarization and the value of the Polarization property. Using polarization, you
can transmit a signal as a polarized electromagnetic field, or transmit two independent signals
using dual polarizations.

• model acoustic radiated fields by using nonpolarized microphone and sonar transducer array
elements and by setting the “Polarization” on page 1-0  to 'None'. You must also set the
PropagationSpeed to a value appropriate for the medium.

• radiate fields from subarrays created by the phased.ReplicatedSubarray and
phased.PartitionedArray objects. You can steer all subarrays in the same direction using the
Steering angle argument, STEERANG, or steer each subarray in a different direction using the
Subarray element weights argument, WS. The radiator distributes the signal powers equally
among the elements of each subarray.

To radiate signals:

1 Create the phased.WidebandRadiator object and set its properties.
2 Call the object with arguments, as if it were a function.

To learn more about how System objects work, see What Are System Objects?.

Creation
Syntax
radiator = phased.WidebandRadiator
radiator = phased.WidebandRadiator(Name,Value)

Description

radiator = phased.WidebandRadiator creates a wideband signal radiator object, radiator,
with default property values.
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radiator = phased.WidebandRadiator(Name,Value) creates a wideband signal radiator with
each property Name set to a specified Value. You can specify additional name-value pair arguments
in any order as (Name1,Value1,...,NameN,ValueN). Enclose each property name in single quotes.
Example: radiator =
phased.WidebandRadiator('Sensor',phased.URA,'CarrierFrequency',300e6) sets the
sensor array to a uniform rectangular array (URA) with default URA property values. The
beamformer has a carrier frequency of 300 MHz.

Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their values
after calling the object. Objects lock when you call them, and the release function unlocks them.

If a property is tunable, you can change its value at any time.

For more information on changing property values, see System Design in MATLAB Using System
Objects.

Sensor — Sensor element or sensor array
phased.ULA array with default property values (default) | Phased Array System Toolbox sensor or
array

Sensor element or sensor array, specified as a System object belonging to Phased Array System
Toolbox. A sensor array can contain subarrays.
Example: phased.URA

PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

SampleRate — Signal sample rate
1e6 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6
Data Types: double

CarrierFrequency — Carrier frequency
1e9 (default) | positive real-valued scalar

Carrier frequency, specified as a positive real-valued scalar. Units are in hertz.
Example: 1e6
Data Types: double
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NumSubbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128
Data Types: double

SensorGainMeasure — Specify sensor gain
'dB' (default) | 'dBi'

Sensor gain measure, specified as 'dB' or 'dBi'.

• When you set this property to 'dB', the input signal power is scaled by the sensor power pattern
(in dB) at the corresponding direction and then combined.

• When you set this property to 'dBi', the input signal power is scaled by the directivity pattern (in
dBi) at the corresponding direction and then combined. This option is useful when you want to
compare results with the values computed by the radar equation that uses dBi to specify the
antenna gain. The computation using the 'dBi' option is expensive as it requires an integration
over all directions to compute the total radiated power of the sensor.

Data Types: char

Polarization — Polarization configuration
'None' (default) | 'Combined' | 'Dual'

Polarization configuration, specified as 'None', 'Combined', or 'Dual'. When you set this property
to 'None', the output field is considered a scalar field. When you set this property to 'Combined',
the radiated fields are polarized and are interpreted as a single signal in the sensor's inherent
polarization. When you set this property to 'Dual', the H and V polarization components of the
radiated field are independent signals.
Example: 'Dual'
Data Types: char

WeightsInputPort — Enable weights input
false (default) | true

Enable weights input, specified as false or true. When true, use the object input argument W to
specify weights. Weights are applied to individual array elements (or at the subarray level when
subarrays are supported).
Data Types: logical

Usage

Syntax
Y = radiator(X,ANG)
Y = radiator(X,ANG,LAXES)
Y = radiator(XH,XV,ANG,LAXES)
Y = radiator( ___ ,W)
Y = radiator( ___ ,STEERANG)
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Y = radiator( ___ ,WS)
Y = radiator(X,ANG,LAXES,W,STEERANG)

Description

Y = radiator(X,ANG) radiates the signal X in the directions specified by ANG. For each direction,
the method computes the radiated signal, Y, by summing the contributions of each element or
subarray.

Y = radiator(X,ANG,LAXES) also specifies the local coordinate system of the radiator, LAXES.
This syntax applies when you set the Polarization property to 'Combined'.

Y = radiator(XH,XV,ANG,LAXES) specifies a horizontal-polarization port signal, XH, and a
vertical-polarization port signal, XV. To use this syntax, set the Polarization property to 'Dual'.

Y = radiator( ___ ,W) also specifies W as array element or subarray weights. To use this syntax,
set the WeightsInputPort property to true.

Y = radiator( ___ ,STEERANG) also specifies STEERANG as the subarray steering angle. To use
this syntax, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of that array to either 'Phase' or 'Time'.

Y = radiator( ___ ,WS) also specifies WS as the weights applied to each element within each
subarray. To use this syntax, set the Sensor property to an array that supports subarrays and set the
SubarraySteering of that array to 'Custom'.

You can combine optional input arguments when their enabling properties are set, for example, Y =
radiator(X,ANG,LAXES,W,STEERANG) combines several input arguments. Optional inputs must
be listed in the same order as the order of the enabling properties.

Input Arguments

X — Signal to radiate
complex-valued M-by-1 vector | complex-valued M-by-N matrix

Signal to radiate, specified as a complex-valued M-by-1 vector or complex-valued M-by-N matrix. M is
the length of the signal, and N is the number of array elements (or subarrays when subarrays are
supported).

Dimensions of X

Dimension Signal
M-by-1 vector The same signal is radiated from all array

elements (or all subarrays when subarrays are
supported).

M-by-N matrix Each column corresponds to the signal radiated
by the corresponding array element (or
corresponding subarrays when subarrays are
supported).

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
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Dependencies

To enable this argument, set the Polarization property to 'None' or 'Combined'.
Data Types: double
Complex Number Support: Yes

ANG — Radiating directions of signals
real-valued 2-by-L matrix

Radiating directions of signals, specified as a real-valued 2-by-L matrix. Each column specifies a
radiating direction in the form [AzimuthAngle;ElevationAngle]. The azimuth angle must lie
between –180° and 180°, inclusive. The elevation angle must lie between –90° and 90°, inclusive.
Units are in degrees.
Example: [30,20;45,0]
Data Types: double

LAXES — Local coordinate system
real-valued 3-by-3 orthogonal matrix

Local coordinate system, specified as a real-valued 3-by-3 orthogonal matrix. The matrix columns
specify the local coordinate system's orthonormal x, y, and z axes with respect to the global
coordinate system.
Example: rotx(30)
Dependencies

To enable this argument, set the Polarization property to 'Combined' or 'Dual'.
Data Types: double

XH — H-polarization port signal to radiate
complex-valued M-by-1 vector | complex-valued M-by-N matrix

H-polarization port signal to radiate, specified as a complex-valued M-by-1 vector or complex-valued
M-by-N matrix. M is the length of the signal, and N is the number of array elements (or subarrays
when subarrays are supported).

Dimensions of XH

Dimension Signal
M-by-1 vector The same signal is radiated from all array

elements (or all subarrays when subarrays are
supported).

M-by-N matrix Each column corresponds to the signal radiated
by the corresponding array element (or
corresponding subarrays when subarrays are
supported).

The dimensions and sizes of XH and XV must be the same.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
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Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

XV — V-polarization port signal to radiate
complex-valued M-by-1 vector | complex-valued M-by-N matrix

V-polarization port signal to radiate, specified as a complex-valued M-by-1 vector or complex-valued
M-by-N matrix. M is the length of the signal, and N is the number of array elements (or subarrays
when subarrays are supported).

Dimensions of XV

Dimension Signal
M-by-1 vector The same signal is radiated from all array

elements (or all subarrays when subarrays are
supported).

M-by-N matrix Each column corresponds to the signal radiated
by the corresponding array element (or
corresponding subarrays when subarrays are
supported).

The dimensions and sizes of XH and XV must be the same.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this argument, set the Polarization property to 'Dual'.
Data Types: double
Complex Number Support: Yes

W — Element or subarray weights
N-by-1 column vector

Element or subarray weights, specified as a complex-valued N-by-1 column vector where N is the
number of array elements (or subarrays when the array supports subarrays).

Dependencies

To enable this argument, set the WeightsInputPort property to true.
Data Types: double
Complex Number Support: Yes

WS — Subarray element weights
complex-valued NSE-by-N matrix | 1-by-N cell array

Subarray element weights, specified as complex-valued NSE-by-N matrix or 1-by-N cell array where N
is the number of subarrays. These weights are applied to the individual elements within a subarray.
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Subarray element weights

Sensor Array Subarray weights
phased.ReplicatedSubarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

phased.PartitionedArray Subarrays may not have the same dimensions and
sizes. In this case, you can specify subarray
weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this argument, set the Sensor property to an array that contains subarrays and set the
SubarraySteering property of the array to 'Custom'.
Data Types: double
Complex Number Support: Yes

STEERANG — Subarray steering angle
real-valued 2-by-1 vector

Subarray steering angle, specified as a length-2 column vector. The vector has the form
[azimuthAngle;elevationAngle]. The azimuth angle must be between –180° and 180°,
inclusive. The elevation angle must be between –90° and 90°, inclusive. Units are in degrees.
Example: [20;15]

Dependencies

To enable this argument, set the Sensor property to an array that supports subarrays and set the
SubarraySteering property of that array to either 'Phase' or 'Time'
Data Types: double

Output Arguments

Y — Radiated signals
complex-valued M-by-L matrix | complex-valued 1-by-L cell array of structures

Radiated signals, specified as a complex-valued M-by-L matrix or a 1-by-L cell array, where L is the
number of radiating angles, ANG. M is the length of the input signal, X.
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• If the Polarization property value is set to 'None', the output argument Y is an M-by-L matrix.
• If the Polarization property value is set to 'Combined' or 'Dual', Y is a 1-by-L cell array of

structures. Each cell corresponds to a separate radiating signal. Each struct contains three
column vectors containing the X, Y, and Z components of the polarized fields defined with respect
to the global coordinate system.

Data Types: double

Object Functions
To use an object function, specify the System object as the first input argument. For example, to
release system resources of a System object named obj, use this syntax:

release(obj)

Common to All System Objects
step Run System object algorithm
release Release resources and allow changes to System object property values and input

characteristics
reset Reset internal states of System object

Examples

Radiate Wideband Energy from Array

Create a 5-by-5 URA and space the elements one-half wavelength apart. The wavelength corresponds
to a design frequency of 300 MHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create 5-by-5 URA Array of Cosine Elements

c = physconst('LightSpeed');
fc = 100e6;
lam = c/fc;
antenna = phased.CosineAntennaElement('CosinePower',[2,2]);
array = phased.URA('Element',antenna,'Size',[5,5],'ElementSpacing',[0.5,0.5]*lam);

Create and Radiate Wideband Signal

Radiate a wideband signal consisting of three sinusoids at 2, 10 and 11 MHz. Set the sampling rate to
25 MHz. Radiate the fields into two directions: (30,10) degrees azimuth and elevation and (20,50)
degrees azimuth and elevation.

fs = 25e6;
f1 = 2e6;
f2 = 10e6;
f3 = 11e6;
dt = 1/fs;
Tsig = 100e-6;
t = [0:dt:Tsig];
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sig = 5.0*sin(2*pi*f1*t) + 2.0*sin(2*pi*f2*t + pi/10) + 4*sin(2*pi*f3*t + pi/2); 
radiatingangles = [30 10; 20 50]';
radiator = phased.WidebandRadiator('Sensor',array,'CarrierFrequency',fc,'SampleRate',fs);
radsig = radiator(sig.',radiatingangles);

Plot Radiated Signal

Plot the input signal to the radiator and the radiated signals.

plot(t(1:300)*1e6,real(sig(1:300)))
hold on
plot(t(1:300)*1e6,real(radsig(1:300,1)))
plot(t(1:300)*1e6,real(radsig(1:300,2)))
hold off
xlabel('Time (\mu sec)')
ylabel('Amplitude')
legend('Input signal','Radiate to (30,10)','Radiate to (20,50)')

Plot the spectra of the signal that is radiated to (30,10) degrees.

periodogram(real(radsig(:,1)),rectwin(size(radsig,1)),4096,fs);
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Radiate Wideband Polarized Fields from Array

Examine the polarized field produced by the wideband radiator from a five-element uniform line array
(ULA) composed of short-dipole antenna elements.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set up the ULA of five short-dipole antennas with polarization enabled. The element spacing is set to
1/2 wavelength of the carrier frequency. Construct the wideband radiator System object(TM).

fc = 100e6;
c = physconst('LightSpeed');
lam = c/fc;
antenna = phased.ShortDipoleAntennaElement;
array = phased.ULA('Element',antenna,'NumElements',5,'ElementSpacing',lam/2);

Radiate a signal consisting of the sum of three sine waves. Radiate the signal into two different
directions. Radiated angles are azimuth and elevation angles defined with respect to a local
coordinate system. The local coordinate system is defined by 10 degree rotation around the x-axis
from the global coordinates.

fs = 25e6;
f1 = 2e6;
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f2 = 10e6;
f3 = 11e6;
dt = 1/fs;
fc = 100e6;
t = [0:dt:100e-6];
sig = 5.0*sin(2*pi*f1*t) + 2.0*sin(2*pi*f2*t + pi/10) + 4*sin(2*pi*f3*t + pi/2);
radiatingAngle = [30 30; 0 20];
laxes = rotx(10);
radiator = phased.WidebandRadiator('Sensor',array,'SampleRate',fs,...
    'CarrierFrequency',fc,'Polarization','Combined');
y = radiator(sig.',radiatingAngle,laxes);

Plot the first 200 samples of the y and z components of the polarized field propagating in the [30,0]
direction.

plot(10^6*t(1:200),real(y(1).Y(1:200)))
hold on
plot(10^6*t(1:200),real(y(1).Z(1:200)))
hold off
xlabel('Time (\mu sec)')
ylabel('Amplitude')
legend('Y Polarization','Z Polarization')
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More About
Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies narrowband
processing to the signal in each subband. The signals for all subbands are summed to form the output
signal.

When using wideband frequency System objects or blocks, you specify the number of subbands, NB,
in which to decompose the wideband signal. Subband center frequencies and widths are
automatically computed from the total bandwidth and number of subbands. The total frequency band
is centered on the carrier or operating frequency, fc. The overall bandwidth is given by the sample
rate, fs. Frequency subband widths are Δf = f s/NB. The center frequencies of the subbands are

fm =
fc−

fs
2 + m− 1 Δf ,   NB even

fc−
NB− 1 fs

2NB
+ m− 1 Δf ,   NB odd

,   m = 1, …, NB

Some System objects let you obtain the subband center frequencies as output when you run the
object. The returned subband frequencies are ordered consistently with the ordering of the discrete
Fourier transform. Frequencies above the carrier appear first, followed by frequencies below the
carrier.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
phased.Collector | phased.Radiator | phased.WidebandCollector |
phased.WidebandFreeSpace

Introduced in R2015b
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reset
System object: phased.WidebandRadiator
Package: phased

Reset states of System object

Syntax
reset(sWBR)

Description
reset(sWBR) resets the internal state of the phased.WidebandRadiator object, sWBR. If the
SeedSource property applies, and has the value 'Property', then this method resets the state of
the random number generator.

Input Arguments
sWBR — Wideband radiator
System object

Wideband radiator, specified as a System object.
Example: phased.WidebandRadiator

Introduced in R2015b
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step
System object: phased.WidebandRadiator
Package: phased

Radiate wideband signals

Syntax
sigrad = step(sWBR,sig,ang)
sigrad = step(sWBR,sig,ang,laxes)
sigrad = step(sWBR,sig,ang,wts)
sigrad = step(sWBR,sig,ang,steerang)

Description

Note Starting in R2016b, instead of using the step method to perform the operation defined by the
System object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

sigrad = step(sWBR,sig,ang) radiates the signal sig in the directions specified by ang. For
each direction, the method computes the radiated signal, sigrad, by summing the contributions of
each element or subarray.

sigrad = step(sWBR,sig,ang,laxes) radiates the signal using the specified the local
coordinate system of the radiator, laxes. This syntax applies when you set the
EnablePolarization property to true.

sigrad = step(sWBR,sig,ang,wts) radiates the signal using wts as the weight vector when the
WeightsInputPort property is true.

sigrad = step(sWBR,sig,ang,steerang) radiates the signal and uses steerang as the
subarray steering angle. steerang must be a length-2 column vector in the form of
[AzimuthAngle; ElevationAngle]. This syntax applies when you use a subarray as the Sensor
property and set the SubarraySteering property of the sensor to 'Phase' or 'Time'.

You can combine optional input arguments when you set their enabling properties in the System
object during construction. Optional inputs must be listed in the same order as their enabling
properties. For example, sigrad = step(sWBR,sig,laxes,wts,steerang) is valid when you set
both EnablePolarization and WeightsInputPort to true and set the SubarraySteering
property of the sensor.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.
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Input Arguments
sWBR — Wideband radiator
System object

Wideband radiator, specified as a phased.WidebandRadiator System object.
Example: phased.WidebandRadiator

sig — Input signals
M-by-1 complex-valued column vector | M-by-N complex-valued matrix

Input signals, specified as an M-by-1 complex-valued column vector or M-by-N complex-valued matrix.
The quantity M is the number of sample values (snapshots) of the signal. If sig is a column vector,
the same signal is radiated through all elements. If sig is a matrix, N is the number of sensor
elements in the array. For subarrays, N is the number of subarrays. Each column of sig represents
the field radiated by the corresponding element or subarray.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [[0;1;2;3;4;3;2;1;0],[1;2;3;4;3;2;1;0;0]]
Data Types: double
Complex Number Support: Yes

ang — Radiating directions
2-by-L real-valued matrix | 1-by-L real-valued row vector

Radiating directions of the signal, specified as 2-by-L real-valued matrix or 1-by-L real-valued row
vector. The quantity L is the number of directions to radiate. If ang is a matrix, each column has the
form [azimuth;elevation]. If ang is a row vector, each entry represents the azimuthal direction.
The elevation direction is zero degrees. Angle units are in degrees. Angles are defined with respect to
the local coordinate system of the array.

When the sensory array is a uniform linear array, ang represents the broadside angle.
Data Types: double

laxes — Local coordinate system axes
eye(3,3) (default) | 3-by-3 real-valued orthonormal matrix

Local coordinate system axes, specified as a 3-by-3 real-valued matrix orthonormal matrix. The matrix
columns specify the x, y, and z axes of the local coordinate system. Each column takes the form
[x;y;z] with respect to the global coordinate system. This argument only applies when the
EnablePolarization property is set to true.
Data Types: double

wts — Weight vector
ones(N,1) (default) | N-by-1 complex-valued column vector

Weight vector, specified as an N-by-1 complex-valued column vector. Each weight vector element
multiplies the signal at the corresponding element or subarray. N is the number of radiating elements
or subarrays. This argument only applies when the WeightsInputPort property is true.
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Data Types: double
Complex Number Support: Yes

steerang — Subarray steering angle
2-by-1 real-valued column vector

Subarray steering angle, specified as a 2-by-1 real-valued column vector in the form of
[AzimuthAngle; ElevationAngle]. This argument applies only when the Sensor property refers
to a subarray and the SubarraySteering property of the sensor is set to 'Phased' or 'Time'.
Angles are defined with respect to the local coordinate system axes. Angle units are in degrees.
Data Types: double

Output Arguments
sigrad — Radiated signal
M-by-L complex-valued matrix | 1-by-L array of struct type

Radiated signal, returned as an M-by-L complex-valued matrix or 1-by-L array of struct type
depending on whether polarization is enabled. The radiated field is the combined far-field output from
all elements or subarrays. The quantity M is the number of sample values (snapshots) of the signal.
The quantity L is the number of entries in ang.

• If you set EnablePolarization to false, sigrad is an M-by-L complex-valued matrix.
• If you set EnablePolarization is true, sigrad is a 1-by-L array of struct type. Each struct

in the array has three data fields: sigrad.X, sigrad.Y, sigrad.Z which correspond to the x, y,
and z components of the electromagnetic field. Electromagnetic field components are defined with
respect to the global coordinate system. Each data field is an M-by-1 column vector.

Examples

Radiate Wideband Energy from Array

Create a 5-by-5 URA and space the elements one-half wavelength apart. The wavelength corresponds
to a design frequency of 300 MHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create 5-by-5 URA Array of Cosine Elements

c = physconst('LightSpeed');
fc = 100e6;
lam = c/fc;
antenna = phased.CosineAntennaElement('CosinePower',[2,2]);
array = phased.URA('Element',antenna,'Size',[5,5],'ElementSpacing',[0.5,0.5]*lam);

Create and Radiate Wideband Signal

Radiate a wideband signal consisting of three sinusoids at 2, 10 and 11 MHz. Set the sampling rate to
25 MHz. Radiate the fields into two directions: (30,10) degrees azimuth and elevation and (20,50)
degrees azimuth and elevation.
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fs = 25e6;
f1 = 2e6;
f2 = 10e6;
f3 = 11e6;
dt = 1/fs;
Tsig = 100e-6;
t = [0:dt:Tsig];
sig = 5.0*sin(2*pi*f1*t) + 2.0*sin(2*pi*f2*t + pi/10) + 4*sin(2*pi*f3*t + pi/2); 
radiatingangles = [30 10; 20 50]';
radiator = phased.WidebandRadiator('Sensor',array,'CarrierFrequency',fc,'SampleRate',fs);
radsig = radiator(sig.',radiatingangles);

Plot Radiated Signal

Plot the input signal to the radiator and the radiated signals.

plot(t(1:300)*1e6,real(sig(1:300)))
hold on
plot(t(1:300)*1e6,real(radsig(1:300,1)))
plot(t(1:300)*1e6,real(radsig(1:300,2)))
hold off
xlabel('Time (\mu sec)')
ylabel('Amplitude')
legend('Input signal','Radiate to (30,10)','Radiate to (20,50)')

Plot the spectra of the signal that is radiated to (30,10) degrees.

periodogram(real(radsig(:,1)),rectwin(size(radsig,1)),4096,fs);
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Radiate Wideband Polarized Fields from Array

Examine the polarized field produced by the wideband radiator from a five-element uniform line array
(ULA) composed of short-dipole antenna elements.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set up the ULA of five short-dipole antennas with polarization enabled. The element spacing is set to
1/2 wavelength of the carrier frequency. Construct the wideband radiator System object(TM).

fc = 100e6;
c = physconst('LightSpeed');
lam = c/fc;
antenna = phased.ShortDipoleAntennaElement;
array = phased.ULA('Element',antenna,'NumElements',5,'ElementSpacing',lam/2);

Radiate a signal consisting of the sum of three sine waves. Radiate the signal into two different
directions. Radiated angles are azimuth and elevation angles defined with respect to a local
coordinate system. The local coordinate system is defined by 10 degree rotation around the x-axis
from the global coordinates.

fs = 25e6;
f1 = 2e6;
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f2 = 10e6;
f3 = 11e6;
dt = 1/fs;
fc = 100e6;
t = [0:dt:100e-6];
sig = 5.0*sin(2*pi*f1*t) + 2.0*sin(2*pi*f2*t + pi/10) + 4*sin(2*pi*f3*t + pi/2);
radiatingAngle = [30 30; 0 20];
laxes = rotx(10);
radiator = phased.WidebandRadiator('Sensor',array,'SampleRate',fs,...
    'CarrierFrequency',fc,'Polarization','Combined');
y = radiator(sig.',radiatingAngle,laxes);

Plot the first 200 samples of the y and z components of the polarized field propagating in the [30,0]
direction.

plot(10^6*t(1:200),real(y(1).Y(1:200)))
hold on
plot(10^6*t(1:200),real(y(1).Z(1:200)))
hold off
xlabel('Time (\mu sec)')
ylabel('Amplitude')
legend('Y Polarization','Z Polarization')

See Also
phased.BeamscanEstimator | phased.Collector | phased.Radiator |
phased.RootMUSICEstimator | phased.WidebandCollector
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Introduced in R2015b
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phased.WidebandTwoRayChannel
Package: phased

Wideband two-ray propagation channel

Description
The phased.WidebandTwoRayChannel models a wideband two-ray propagation channel. A two-ray
propagation channel is the simplest type of multipath channel. You can use a two-ray channel to
simulate propagation of signals in a homogeneous, isotropic medium with a single reflecting
boundary. This type of medium has two propagation paths: a line-of-sight (direct) propagation path
from one point to another and a ray path reflected from the boundary.

You can use this System object for short-range radar and mobile communications applications where
the signals propagate along straight paths and the earth is assumed to be flat. You can also use this
object for sonar and microphone applications. For acoustic applications, you can choose nonpolarized
fields and adjust the propagation speed to be the speed of sound in air or water. You can use
phased.WidebandTwoRayChannel to model propagation from several points simultaneously.

Although the System object works for all frequencies, the attenuation models for atmospheric gases
and rain are valid for electromagnetic signals in the frequency range 1–1000 GHz only. The
attenuation model for fog and clouds is valid for 10–1000 GHz. Outside these frequency ranges, the
System object uses the nearest valid value.

The phased.WidebandTwoRayChannel System object applies range-dependent time delays to the
signals, as well as gains or losses, phase shifts, and boundary reflection loss. When either the source
or destination is moving, the System object applies Doppler shifts to the signals.

Signals at the channel output can be kept separate or be combined. If you keep the signals separate,
both signals arrive at the destination separately and are not combined. If you choose to combine the
signals, the two signals from the source propagate separately but are coherently summed at the
destination into a single quantity. Choose this option when the difference between the sensor or array
gains in the directions of the two paths is insignificant.

In contrast to the phased.WidebandFreeSpace and phased.WidebandLOSChannel System
objects, this System object does not support two-way propagation.

To compute the propagation delay for specified source and receiver points:

1 Define and set up your two-ray channel. See “Construction” on page 1-1786.
2 Call the step method to compute the propagated signal using the properties of the

phased.WidebandTwoRayChannel System object.

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.
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Construction
channel = phased.WidebandTwoRayChannel creates a two-ray propagation channel System
object, channel.

channel = phased.WidebandTwoRayChannel(Name,Value) creates a System object, channel,
with each specified property Name set to the specified Value. You can specify additional name and
value pair arguments in any order as (Name1,Value1,...,NameN,ValueN).

Properties
PropagationSpeed — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. The default
propagation speed is the value returned by physconst('LightSpeed'). See physconst for more
information.
Example: 3e8
Data Types: double

OperatingFrequency — Operating frequency
300e6 (default) | positive scalar

Operating frequency, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

SpecifyAtmosphere — Enable atmospheric attenuation model
false (default) | true

Option to enable the atmospheric attenuation model, specified as a false or true. Set this property
to true to add signal attenuation caused by atmospheric gases, rain, fog, or clouds. Set this property
to false to ignore atmospheric effects in propagation.

Setting SpecifyAtmosphere to true, enables the Temperature, DryAirPressure,
WaterVapourDensity, LiquidWaterDensity, and RainRate properties.
Data Types: logical

Temperature — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: 20.0
Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

DryAirPressure — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar
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Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this property corresponds to one standard atmosphere.
Example: 101.0e3

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

WaterVapourDensity — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.
Example: 7.4

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

LiquidWaterDensity — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.
Example: 0.1

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

RainRate — Rainfall rate
0.0 (default) | nonnegative scalar

Rainfall rate, specified as a nonnegative scalar. Units are in mm/hr.
Example: 10.0

Dependencies

To enable this property, set SpecifyAtmosphere to true.
Data Types: double

SampleRate — Sample rate of signal
1e6 (default) | positive scalar

Sample rate of signal, specified as a positive scalar. Units are in Hz. The System object uses this
quantity to calculate the propagation delay in units of samples.
Example: 1e6
Data Types: double
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NumSubbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128
Data Types: double

EnablePolarization — Enable polarized fields
false (default) | true

Option to enable polarized fields, specified as false or true. Set this property to true to enable
polarization. Set this property to false to ignore polarization.
Data Types: logical

GroundReflectionCoefficient — Ground reflection coefficient
-1 (default) | complex-valued scalar | complex-valued 1-by-N row vector

Ground reflection coefficient for the field at the reflection point, specified as a complex-valued scalar
or a complex-valued 1-by-N row vector. Each coefficient has an absolute value less than or equal to
one. The quantity N is the number of two-ray channels. Units are dimensionless. Use this property to
model nonpolarized signals. To model polarized signals, use the GroundRelativePermittivity
property.
Example: -0.5

Dependencies

To enable this property, set EnablePolarization to false.
Data Types: double
Complex Number Support: Yes

GroundRelativePermittivity — Ground relative permittivity
15 (default) | positive real-valued scalar | real-valued 1-by-Nrow vector of positive values

Relative permittivity of the ground at the reflection point, specified as a positive real-valued scalar or
a 1-by-N real-valued row vector of positive values. The dimension N is the number of two-ray
channels. Permittivity units are dimensionless. Relative permittivity is defined as the ratio of actual
ground permittivity to the permittivity of free space. This property applies when you set the
EnablePolarization property to true. Use this property to model polarized signals. To model
nonpolarized signals, use the GroundReflectionCoefficient property.
Example: 5

Dependencies

To enable this property, set EnablePolarization to true.
Data Types: double

CombinedRaysOutput — Option to combine two rays at output
true (default) | false

Option to combine the two rays at channel output, specified as true or false. When this property is
true, the object coherently adds the line-of-sight propagated signal and the reflected path signal
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when forming the output signal. Use this mode when you do not need to include the directional gain
of an antenna or array in your simulation.
Data Types: logical

MaximumDistanceSource — Source of maximum one-way propagation distance
'Auto' (default) | 'Property'

Source of maximum one-way propagation distance, specified as 'Auto' or 'Property'. The
maximum one-way propagation distance is used to allocate sufficient memory for signal delay
computation. When you set this property to 'Auto', the System object automatically allocates
memory. When you set this property to 'Property', you specify the maximum one-way propagation
distance using the value of the MaximumDistance property.
Data Types: char

MaximumDistance — Maximum one-way propagation distance
10000 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a positive real-valued scalar. Units are in
meters. Any signal that propagates more than the maximum one-way distance is ignored. The
maximum distance must be greater than or equal to the largest position-to-position distance.
Example: 5000
Dependencies

To enable this property, set the MaximumDistanceSource property to 'Property'.
Data Types: double

MaximumNumInputSamplesSource — Source of maximum number of samples
'Auto' (default) | 'Property'

The source of the maximum number of samples of the input signal, specified as 'Auto' or
'Property'. When you set this property to 'Auto', the propagation model automatically allocates
enough memory to buffer the input signal. When you set this property to 'Property', you specify
the maximum number of samples in the input signal using the MaximumNumInputSamples property.
Any input signal longer than that value is truncated.

To use this object with variable-size signals in a MATLAB Function Block in Simulink, set the
MaximumNumInputSamplesSource property to 'Property' and set a value for the
MaximumNumInputSamples property.
Example: 'Property'
Dependencies

To enable this property, set MaximumDistanceSource to 'Property'.
Data Types: char

MaximumNumInputSamples — Maximum number of input signal samples
100 (default) | positive integer

Maximum number of input signal samples, specified as a positive integer. The input signal is the first
argument of the step method, after the System object itself. The size of the input signal is the
number of rows in the input matrix. Any input signal longer than this number is truncated. To process
signals completely, ensure that this property value is greater than any maximum input signal length.
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The waveform-generating System objects determine the maximum signal size:

• For any waveform, if the waveform OutputFormat property is set to 'Samples', the maximum
signal length is the value specified in the NumSamples property.

• For pulse waveforms, if the OutputFormat is set to 'Pulses', the signal length is the product of
the smallest pulse repetition frequency, the number of pulses, and the sample rate.

• For continuous waveforms, if the OutputFormat is set to 'Sweeps', the signal length is the
product of the sweep time, the number of sweeps, and the sample rate.

Example: 2048

Dependencies

To enable this property, set MaximumNumInputSamplesSource to 'Property'.
Data Types: double

Methods
reset Reset states of System object
step Propagate wideband signal from point to point using two-ray channel model

Common to All System Objects
release Allow System object property value changes

Examples

Scalar Wideband Signal Propagating in Two-Ray Channel

This example illustrates the two-ray propagation of a wideband signal, showing how the signals from
the line-of-sight path and reflected path arrive at the receiver at different times.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Create and Plot Transmitted Waveform

Create a nonpolarized electromagnetic field consisting of two linear FM waveform pulses at a carrier
frequency of 100 MHz. Assume the pulse width is 20 μs and the sampling rate is 10 MHz. The
bandwidth of the pulse is 1 MHz. Assume a 50% duty cycle so that the pulse width is one-half the
pulse repetition interval. Create a two-pulse wave train. Set the GroundReflectionCoefficient
to –0.9 to model strong ground reflectivity. Propagate the field from a stationary source to a
stationary receiver. The vertical separation of the source and receiver is approximately 10 km.

c = physconst('LightSpeed');
fs = 10e6;
pw = 20e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
lambda = c/fc;
bw = 1e6;

 phased.WidebandTwoRayChannel

1-2107



waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval',...
    'Positive');
wav = waveform();
n = size(wav,1);
plot([0:(n-1)]/fs*1e6,real(wav),'b')
xlabel('Time (\mu s)')
ylabel('Waveform Magnitude')

Specify the Location of Source and Receiver

Place the source and receiver about 1 km apart horizontally and approximately 5 km apart vertically.

pos1 = [0;0;100];
pos2 = [1e3;0;5.0e3];
vel1 = [0;0;0];
vel2 = [0;0;0];

Create a Wideband Two-Ray Channel System Object

Create a two-ray propagation channel System object™ and propagate the signal along both the line-
of-sight and reflected ray paths. The same signal is propagated along both paths.

channel = phased.WidebandTwoRayChannel('SampleRate',fs,...
    'GroundReflectionCoefficient',-0.9,'OperatingFrequency',fc,...
    'CombinedRaysOutput',false);
prop_signal = channel([wav,wav],pos1,pos2,vel1,vel2);
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[rng2,angs] = rangeangle(pos2,pos1,'two-ray');

Calculate time delays in μs.

tm = rng2/c*1e6;
disp(tm)

   16.6815   17.3357

Display the calculated propagation paths azimuth and elevation angles in degrees.

disp(angs)

         0         0
   78.4654  -78.9063

Plot the Propagated Signals

1 Plot the real part of the signal propagated along the line-of-sight path.
2 Plot the real part of the signal propagated along the reflected path.
3 Plot the real part of the coherent sum of the two signals.

n = size(prop_signal,1);
delay = [0:(n-1)]/fs*1e6;
subplot(3,1,1)
plot(delay,real([prop_signal(:,1)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Direct Path')

subplot(3,1,2)
plot(delay,real([prop_signal(:,2)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Reflected Path')

subplot(3,1,3)
plot(delay,real([prop_signal(:,1) + prop_signal(:,2)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Combined Paths')
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The delay of the reflected path signal agrees with the predicted delay. The magnitude of the
coherently combined signal is less than either of the propagated signals. This result indicates that the
two signals contain some interference.

Compare Wideband Two-Ray Channel Propagation to Free Space

Calculate the result of propagating a wideband LFM signal in a two-ray environment from a radar 10
meters above the origin (0,0,10) to a target at (3000,2000,2000) meters. Assume that the radar and
target are stationary and that the transmitting antenna is isotropic. Combine the signal from the two
paths and compare the signal to a signal propagating in free space. The system operates at 300 MHz.
Set the CombinedRaysOutput property to true to combine the direct path and reflected path
signals when forming the output signal.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a linear FM waveform.

fop = 300.0e6;
fs = 1.0e6;
waveform = phased.LinearFMWaveform();
x = waveform();

Specify the target position and velocity.
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posTx = [0; 0; 10];
posTgt = [3000; 2000; 2000];
velTx = [0;0;0];
velTgt = [0;0;0];

Model the free space propagation.

fschannel = phased.WidebandFreeSpace('SampleRate',waveform.SampleRate);
y_fs = fschannel(x,posTx,posTgt,velTx,velTgt);

Model two-ray propagation from the position of the radar to the target.

tworaychannel = phased.WidebandTwoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',true);
y_tworay = tworaychannel(x,posTx,posTgt,velTx,velTgt);
plot(abs([y_tworay y_fs]))
legend('Wideband two-ray (Position 1)','Wideband free space (Position 1)',...
    'Location','best')
xlabel('Samples')
ylabel('Signal Magnitude')
hold on

Move the radar by 10 meters horizontally to a second position.

posTx = posTx + [10;0;0];
y_fs = fschannel(x,posTx,posTgt,velTx,velTgt);
y_tworay = tworaychannel(x,posTx,posTgt,velTx,velTgt);
plot(abs([y_tworay y_fs]))
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legend('Wideband two-ray (Position 1)','Wideband free space (Position 1)',...
    'Wideband two-ray (Position 2)','Wideband free space (Position 2)',...
    'Location','best')
hold off

The free-space propagation losses are the same for both the first and second positions of the radar.
The two-ray losses are different due to the interference effect of the two-ray paths.

Wideband Polarized Field Propagation in Two-Ray Channel

Create a polarized electromagnetic field consisting of linear FM waveform pulses. Propagate the field
from a stationary source with a crossed-dipole antenna element to a stationary receiver
approximately 10 km away. The transmitting antenna is 100 m above the ground. The receiving
antenna is 150 m above the ground. The receiving antenna is also a crossed-dipole. Plot the received
signal.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Set Radar Waveform Parameters

Assume the pulse width is10μs and the sampling rate is 10 MHz. The bandwidth of the pulse is 1
MHz. Assume a 50% duty cycle in which the pulse width is one-half the pulse repetition interval.
Create a two-pulse wave train. Assume a carrier frequency of 100 MHz.

1 Objects

1-2112



c = physconst('LightSpeed');
fs = 20e6;
pw = 10e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
bw = 1e6;
lambda = c/fc;

Set Up Required System Objects

Use a GroundRelativePermittivity of 10.

waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval',...
    'Positive');
antenna = phased.CrossedDipoleAntennaElement(...
    'FrequencyRange',[50,200]*1e6);
radiator = phased.Radiator('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');
channel = phased.WidebandTwoRayChannel('SampleRate',fs,...
    'OperatingFrequency',fc,'CombinedRaysOutput',false,...
    'EnablePolarization',true,'GroundRelativePermittivity',10);
collector = phased.Collector('Sensor',antenna,'OperatingFrequency',fc,...
    'Polarization','Combined');

Set Up Scene Geometry

Specify transmitter and receiver positions, velocities, and orientations. Place the source and receiver
approximately 1000 m apart horizontally and approximately 50 m apart vertically.

posTx = [0;100;100];
posRx = [1000;0;150];
velTx = [0;0;0];
velRx = [0;0;0];
laxRx = rotz(180);
laxTx = rotx(1)*eye(3);

Create and Radiate Signals from Transmitter

Compute the transmission angles for the two rays traveling toward the receiver. These angles are
defined with respect to the transmitter local coordinate system. The phased.Radiator System
object(TM) uses these angles to apply separate antenna gains to the two signals.

[rng,angsTx] = rangeangle(posRx,posTx,laxTx,'two-ray');
wav = waveform();

Plot the transmitted waveform.

n = size(wav,1);
plot([0:(n-1)]/fs*1000000,real(wav))
xlabel('Time ({\mu}sec)')
ylabel('Waveform')

 phased.WidebandTwoRayChannel

1-2113



sig = radiator(wav,angsTx,laxTx);

Propagate the signals to the receiver via a two-ray channel.

prop_sig = channel(sig,posTx,posRx,velTx,velRx);

Receive Propagated Signal

Compute the reception angles for the two rays arriving at the receiver. These angles are defined with
respect to the receiver local coordinate system. The phased.Collector System object(TM) uses
these angles to apply separate antenna gains to the two signals.

[rng1,angsRx] = rangeangle(posTx,posRx,laxRx,'two-ray');
delays = rng1/c*1e6

delays = 1×2

    3.3564    3.4544

Collect and combine the received rays.

y = collector(prop_sig,angsRx,laxRx);

Plot the received waveform.

plot([0:(n-1)]/fs*1000000,real(y))
xlabel('Time ({\mu}sec)')
ylabel('Received Waveform')
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Two-Ray Propagation of Wideband LFM Waveform with Atmospheric Losses

Propagate a wideband linear FM signal in a two-ray channel. The signal bandwidth is 15% of the
carrier frequency. Assume there is signal loss caused by atmospheric gases and rain. The signal
propagates from a transmitter located at (0,0,0) meters in the global coordinate system to a
receiver at (10000,200,30) meters. Assume that the transmitter and the receiver are stationary
and that they both have cosine antenna patterns. Plot the received signal. Set the dry air pressure to
102.0 Pa and the rain rate to 5 mm/hr.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Set Radar Waveform Parameters

c = physconst('LightSpeed');
fs = 40e6;
pw = 10e-6;
pri = 2.5*pw;
PRF = 1/pri;
fc = 100e6;
bw = 15e6;
lambda = c/fc;
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Set Up Radar Scenario

Create the required System objects.

waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval',...
    'Positive');
antenna = phased.CosineAntennaElement;
radiator = phased.Radiator('Sensor',antenna);
collector = phased.Collector('Sensor',antenna);
channel = phased.WidebandTwoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',false,'GroundReflectionCoefficient',0.95,...
    'SpecifyAtmosphere',true,'Temperature',20,...
    'DryAirPressure',102.5,'RainRate',5.0);

Set up the scene geometry. Specify transmitter and receiver positions and velocities. The transmitter
and receiver are stationary.

posTx = [0;0;0];
posRx = [10000;200;30];
velTx = [0;0;0];
velRx = [0;0;0];

Specify the transmitting and receiving radar antenna orientations with respect to the global
coordinates. The transmitting antenna points along the positive x-direction and the receiving antenna
points close to the negative x-direction.

laxTx = eye(3);
laxRx = rotx(5)*rotz(170);

Compute the transmission angles which are the angles at which the two rays traveling toward the
receiver leave the transmitter. The phased.Radiator System object™ uses these angles to apply
separate antenna gains to the two signals. Because the antenna gains depend on path direction, you
must transmit and receive the two rays separately.

[~,angTx] = rangeangle(posRx,posTx,laxTx,'two-ray');

Create and Radiate Signals from Transmitter

Radiate the signals along the transmission directions.

wavfrm = waveform();
wavtrans = radiator(wavfrm,angTx);

Propagate the signals to the receiver via a two-ray channel.

wavrcv = channel(wavtrans,posTx,posRx,velTx,velRx);

Collect Signal at Receiver

Compute the angle at which the two rays traveling from the transmitter arrive at the receiver. The
phased.Collector System object™ uses these angles to apply separate antenna gains to the two
signals.

[~,angRcv] = rangeangle(posTx,posRx,laxRx,'two-ray');

Collect and combine the two received rays.
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yR = collector(wavrcv,angRcv);

Plot Received Signal

dt = 1/waveform.SampleRate;
n = size(yR,1);
plot([0:(n-1)]*dt*1e6,real(yR))
xlabel('Time ({\mu}sec)')
ylabel('Signal Magnitude')

More About
Two-Ray Propagation Paths

A two-ray propagation channel is the next step up in complexity from a free-space channel and is the
simplest case of a multipath propagation environment. The free-space channel models a straight-line
line-of-sight path from point 1 to point 2. In a two-ray channel, the medium is specified as a
homogeneous, isotropic medium with a reflecting planar boundary. The boundary is always set at z =
0. There are at most two rays propagating from point 1 to point 2. The first ray path propagates along
the same line-of-sight path as in the free-space channel (see the phased.FreeSpace System object).
The line-of-sight path is often called the direct path. The second ray reflects off the boundary before
propagating to point 2. According to the Law of Reflection , the angle of reflection equals the angle of
incidence. In short-range simulations such as cellular communications systems and automotive
radars, you can assume that the reflecting surface, the ground or ocean surface, is flat.

 phased.WidebandTwoRayChannel

1-2117



The phased.TwoRayChannel and phased.WidebandTwoRayChannel System objects model
propagation time delay, phase shift, Doppler shift, and loss effects for both paths. For the reflected
path, loss effects include reflection loss at the boundary.

The figure illustrates two propagation paths. From the source position, ss, and the receiver position,
sr, you can compute the arrival angles of both paths, θ′los and θ′rp. The arrival angles are the elevation
and azimuth angles of the arriving radiation with respect to a local coordinate system. In this case,
the local coordinate system coincides with the global coordinate system. You can also compute the
transmitting angles, θlos and θrp. In the global coordinates, the angle of reflection at the boundary is
the same as the angles θrp and θ′rp. The reflection angle is important to know when you use angle-
dependent reflection-loss data. You can determine the reflection angle by using the rangeangle
function and setting the reference axes to the global coordinate system. The total path length for the
line-of-sight path is shown in the figure by Rlos which is equal to the geometric distance between
source and receiver. The total path length for the reflected path is Rrp= R1 + R2. The quantity L is the
ground range between source and receiver.

You can easily derive exact formulas for path lengths and angles in terms of the ground range and
object heights in the global coordinate system.
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R = x s− x r

Rlos = R = zr − zs
2 + L2

R1 =
zr

zr + zz
zr + zs

2 + L2

R2 =
zs

zs + zr
zr + zs

2 + L2

Rrp = R1 + R2 = zr + zs
2 + L2

tanθlos =
zs− zr

L

tanθrp = −
zs + zr

L
θ′los = − θlos

θ′rp = θrp

Two-Ray Attenuation

Attenuation or path loss in the two-ray channel is the product of five components, L = Ltworay LG Lg Lc
Lr, where

• Ltworay is the two-ray geometric path attenuation
• LG is the ground reflection attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each component is in magnitude units, not in dB.

Ground Reflection and Propagation Loss

Losses occurs when a signal is reflected from a boundary. You can obtain a simple model of ground
reflection loss by representing the electromagnetic field as a scalar field. This approach also works
for acoustic and sonar systems. Let E be a scalar free-space electromagnetic field having amplitude
E0 at a reference distance R0 from a transmitter (for example, one meter). The propagating free-space
field at distance Rlos from the transmitter is

Elos = E0
R0

Rlos
eiω t − Rlos/c

for the line-of-sight path. You can express the ground-reflected E-field as

Erp = LGE0
R0
Rrp

eiω t − Rrp/c

where Rrp is the reflected path distance. The quantity LG represents the loss due to reflection at the
ground plane. To specify LG, use the GroundReflectionCoefficient property. In general, LG
depends on the incidence angle of the field. If you have empirical information about the angular
dependence of LG, you can use rangeangle to compute the incidence angle of the reflected path.
The total field at the destination is the sum of the line-of-sight and reflected-path fields.
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For electromagnetic waves, a more complicated but more realistic model uses a vector representation
of the polarized field. You can decompose the incident electric field into two components. One
component, Ep, is parallel to the plane of incidence. The other component, Es, is perpendicular to the
plane of incidence. The ground reflection coefficients for these components differ and can be written
in terms of the ground permittivity and incidence angle.

Gp =
Z1cosθ1− Z2cosθ2
Z1cosθ1 + Z2cosθ2

=
cosθ1−

Z2
Z1

cosθ2

cosθ1 +
Z2
Z1

cosθ2

Gs =
Z2cosθ1− Z1cosθ2
Z2cosθ1 + Z1cosθ2

=
cosθ2−

Z2
Z1

cosθ1

cosθ2 +
Z2
Z1

cosθ1

Z1 =
μ1
ε1

Z2 =
μ2
ε2

where Z is the impedance of the medium. Because the magnetic permeability of the ground is almost
identical to that of air or free space, the ratio of impedances depends primarily on the ratio of electric
permittivities

Gp =
ρcosθ1− cosθ2
ρcosθ1 + cosθ2

Gs =
ρcosθ2− cosθ1
ρcosθ2 + cosθ1

where the quantity ρ = ε2/ε1 is the ground relative permittivity set by the
GroundRelativePermittivity property. The angle θ1 is the incidence angle and the angle θ2 is
the refraction angle at the boundary. You can determine θ2 using Snell’s law of refraction.

After reflection, the full field is reconstructed from the parallel and perpendicular components. The
total ground plane attenuation, LG, is a combination of Gs and Gp.

When the origin and destination are stationary relative to each other, you can write the output Y of
step as Y(t) = F(t-τ)/L. The quantity τ is the signal delay and L is the free-space path loss. The delay
τ is given by R/c. R is either the line-of-sight propagation path distance or the reflected path distance,
and c is the propagation speed. The path loss

Ltworay = (4πR)2

λ2 ,

where λ is the signal wavelength.

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
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coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.
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Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,

where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
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This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies narrowband
processing to the signal in each subband. The signals for all subbands are summed to form the output
signal.

When using wideband frequency System objects or blocks, you specify the number of subbands, NB,
in which to decompose the wideband signal. Subband center frequencies and widths are
automatically computed from the total bandwidth and number of subbands. The total frequency band
is centered on the carrier or operating frequency, fc. The overall bandwidth is given by the sample
rate, fs. Frequency subband widths are Δf = f s/NB. The center frequencies of the subbands are

fm =
fc−

fs
2 + m− 1 Δf ,   NB even

fc−
NB− 1 fs

2NB
+ m− 1 Δf ,   NB odd

,   m = 1, …, NB

Some System objects let you obtain the subband center frequencies as output when you run the
object. The returned subband frequencies are ordered consistently with the ordering of the discrete
Fourier transform. Frequencies above the carrier appear first, followed by frequencies below the
carrier.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

See “System Objects in MATLAB Code Generation” (MATLAB Coder).

See Also
Functions
fogpl | fspl | gaspl | rainpl | rangeangle

Objects
phased.FreeSpace | phased.LOSChannel | phased.TwoRayChannel |
phased.WidebandBackscatterRadarTarget | phased.WidebandFreeSpace |
phased.WidebandLOSChannel

Introduced in R2016b
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reset
System object: phased.WidebandTwoRayChannel
Package: phased

Reset states of System object

Syntax
reset(channel)

Description
reset(channel) resets the internal state of the phased.WidebandTwoRayChannel System object,
channel.

Input Arguments
channel — Wideband two-ray channel
phased.WidebandTwoRayChannel System object

Wideband two-ray channel, specified as a System object.

Introduced in R2016b
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step
System object: phased.WidebandTwoRayChannel
Package: phased

Propagate wideband signal from point to point using two-ray channel model

Syntax
prop_sig = step(channel,sig,origin_pos,dest_pos,origin_vel,dest_vel)

Description

Note Alternatively, instead of using the step method to perform the operation defined by the System
object, you can call the object with arguments, as if it were a function. For example, y =
step(obj,x) and y = obj(x) perform equivalent operations.

prop_sig = step(channel,sig,origin_pos,dest_pos,origin_vel,dest_vel) returns the
resulting signal, prop_sig, when a wideband signal, sig, propagates through a two-ray channel
from the origin_pos position to the dest_pos position. Either the origin_pos or dest_pos
arguments can have multiple points but you cannot specify both as having multiple points. Specify
the velocity of the signal origin in origin_vel and the velocity of the signal destination in
dest_vel. The dimensions of origin_vel and dest_vel must agree with the dimensions of
origin_pos and dest_pos, respectively.

In the two-ray environment, two signal paths connect every signal origin and destination pair. For N
signal origins (or N signal destinations), there are 2N paths. The signals for each origin-destination
pair do not have to be identical. The signals along the two paths for any source-destination pair can
have different amplitudes or phases.

The CombinedRaysOutput property controls whether the two signals at the destination are kept
separate or combined. Combined means that the signals at the source propagate separately along the
two paths but are coherently summed at the destination into a single quantity. Separatemeans that
the two signals are not summed at the destination. To use the combined option, set
CombinedRaysOutput to true. To use the separate option, set CombinedRaysOutput to false.
The combined option is convenient when the difference between the sensor or array gains in the
directions of the two paths is not significant.

Note The object performs an initialization the first time the object is executed. This initialization
locks nontunable properties and input specifications, such as dimensions, complexity, and data type of
the input data. If you change a nontunable property or an input specification, the System object
issues an error. To change nontunable properties or inputs, you must first call the release method to
unlock the object.

Input Arguments
channel — Wideband two-ray channel
System object
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Wideband two-ray channel, specified as a System object.
Example: phased.WidebandTwoRayChannel

sig — Wideband signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields

Electromagnetic fields propagated through a two-ray channel can be polarized or nonpolarized. For
nonpolarized fields, such as an acoustic field, the propagating signal field, sig, is a vector or matrix.
When the fields are polarized, sig is an array of structures. Every structure element contains an
array of electric field vectors in Cartesian form.

• Specify wideband nonpolarized scalar signals as a

• M-by-N complex-valued matrix. The same signal is propagated along both the line-of-sight path
and the reflected path.

• M-by-2N complex-valued matrix. Each adjacent pair of columns represents a different channel.
Within each pair, the first column represents the signal propagated along the line-of-sight path
and the second column represents the signal propagated along the reflected path.

• Specify wideband polarized signals as a

• 1-by-N struct array containing complex-valued fields. Each struct element contains an M-
by-1 column vector of electromagnetic field components (sig.X,sig.Y,sig.Z). The same
signal is propagated along both the line-of-sight path and the reflected path.

• 1-by-2N struct array containing complex-valued fields. Each pair of array columns represents
a different source-receiver channel. The first column of the pair represents the signal along the
line-of-sight path and the second column represents the signal along the reflected path. Each
structure element contains an M-by-1 column vector of electromagnetic field components
(sig.X,sig.Y,sig.Z).

For nonpolarized fields, the quantity M is the number of samples of the signal and N is the number of
two-ray channels. Each channel corresponds to a source-destination pair.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

For polarized fields, the struct element contains three M-by-1 complex-valued column vectors,
sig.X, sig.Y, and sig.Z. These vectors represent the x, y, and z Cartesian components of the
polarized signal.

The size of the first dimension of the matrix fields within the struct can vary to simulate a changing
signal length such as a pulse waveform with variable pulse repetition frequency.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

origin_pos — Signal origins
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of two-ray channels. If origin_pos is a column vector, it takes
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the form [x;y;z]. If origin_pos is a matrix, each column specifies a different signal origin and has
the form [x;y;z]. Position units are in meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [1000;100;500]
Data Types: double

dest_pos — Signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Destination position of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N
real-valued matrix. The quantity N is the number of two-ray channels propagating from or to N signal
origins. If dest_pos is a 3-by-1 column vector, it takes the form [x;y;z]. If dest_pos is a matrix,
each column specifies a different signal destination and takes the form [x;y;z] Position units are in
meters.

You cannot specify both origin_pos and dest_pos as matrices. At least one must be a 3-by-1
column vector.
Example: [0;0;0]
Data Types: double

origin_vel — Velocity of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of origin_vel must match the dimensions of origin_pos. If origin_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If origin_vel is a 3-by-N matrix, each column
specifies a different origin velocity and has the form [Vx;Vy;Vz]. Velocity units are in meters per
second.
Example: [10;0;5]
Data Types: double

dest_vel — Velocity of signal destinations
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal destinations, specified as a 3-by-1 real-valued column vector or 3–by-N real-valued
matrix. The dimensions of dest_vel must match the dimensions of dest_pos. If dest_vel is a
column vector, it takes the form [Vx;Vy;Vz]. If dest_vel is a 3-by-N matrix, each column specifies
a different destination velocity and has the form [Vx;Vy;Vz] Velocity units are in meters per second.
Example: [0;0;0]
Data Types: double

Output Arguments
prop_sig — Propagated signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix | 1-by-N struct array containing
complex-valued fields | 1-by-2N struct array containing complex-valued fields
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• Wideband nonpolarized scalar signal, returned as an:

• M-by-N complex-valued matrix. To return this format, set the CombinedRaysOutput property
to true. Each matrix column contains the coherently combined signals from the line-of-sight
path and the reflected path.

• M-by-2N complex-valued matrix. To return this format set the CombinedRaysOutput property
to false. Alternate columns of the matrix contain the signals from the line-of-sight path and
the reflected path.

• Wideband polarized scalar signal, returned as:

• 1-by-N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to true. Each column of the array contains the coherently
combined signals from the line-of-sight path and the reflected path. Each structure element
contains the electromagnetic field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

• 1-by-2N struct array containing complex-valued fields. To return this format, set the
CombinedRaysOutput property to false. Alternate columns contains the signals from the
line-of-sight path and the reflected path. Each structure element contains the electromagnetic
field vector (prop_sig.X,prop_sig.Y,prop_sig.Z).

The output prop_sig contains signal samples arriving at the signal destination within the current
input time frame. Sometimes it can take longer than the current time frame for the signal to
propagate from the origin to the destination, the output may not contain all contributions from the
input of the current time frame. In this case, the output does not need to contain all contributions
from the input of the current time frame. The remaining output appears in the next call to step.

Examples

Scalar Wideband Signal Propagating in Two-Ray Channel

This example illustrates the two-ray propagation of a wideband signal, showing how the signals from
the line-of-sight path and reflected path arrive at the receiver at different times.

Note: You can replace each call to the function with the equivalent step syntax. For example,
replace myObject(x) with step(myObject,x).

Create and Plot Transmitted Waveform

Create a nonpolarized electromagnetic field consisting of two linear FM waveform pulses at a carrier
frequency of 100 MHz. Assume the pulse width is 20 μs and the sampling rate is 10 MHz. The
bandwidth of the pulse is 1 MHz. Assume a 50% duty cycle so that the pulse width is one-half the
pulse repetition interval. Create a two-pulse wave train. Set the GroundReflectionCoefficient
to –0.9 to model strong ground reflectivity. Propagate the field from a stationary source to a
stationary receiver. The vertical separation of the source and receiver is approximately 10 km.

c = physconst('LightSpeed');
fs = 10e6;
pw = 20e-6;
pri = 2*pw;
PRF = 1/pri;
fc = 100e6;
lambda = c/fc;
bw = 1e6;
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waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',pw,...
    'PRF',PRF,'OutputFormat','Pulses','NumPulses',2,'SweepBandwidth',bw,...
    'SweepDirection','Down','Envelope','Rectangular','SweepInterval',...
    'Positive');
wav = waveform();
n = size(wav,1);
plot([0:(n-1)]/fs*1e6,real(wav),'b')
xlabel('Time (\mu s)')
ylabel('Waveform Magnitude')

Specify the Location of Source and Receiver

Place the source and receiver about 1 km apart horizontally and approximately 5 km apart vertically.

pos1 = [0;0;100];
pos2 = [1e3;0;5.0e3];
vel1 = [0;0;0];
vel2 = [0;0;0];

Create a Wideband Two-Ray Channel System Object

Create a two-ray propagation channel System object™ and propagate the signal along both the line-
of-sight and reflected ray paths. The same signal is propagated along both paths.

channel = phased.WidebandTwoRayChannel('SampleRate',fs,...
    'GroundReflectionCoefficient',-0.9,'OperatingFrequency',fc,...
    'CombinedRaysOutput',false);
prop_signal = channel([wav,wav],pos1,pos2,vel1,vel2);
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[rng2,angs] = rangeangle(pos2,pos1,'two-ray');

Calculate time delays in μs.

tm = rng2/c*1e6;
disp(tm)

   16.6815   17.3357

Display the calculated propagation paths azimuth and elevation angles in degrees.

disp(angs)

         0         0
   78.4654  -78.9063

Plot the Propagated Signals

1 Plot the real part of the signal propagated along the line-of-sight path.
2 Plot the real part of the signal propagated along the reflected path.
3 Plot the real part of the coherent sum of the two signals.

n = size(prop_signal,1);
delay = [0:(n-1)]/fs*1e6;
subplot(3,1,1)
plot(delay,real([prop_signal(:,1)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Direct Path')

subplot(3,1,2)
plot(delay,real([prop_signal(:,2)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Reflected Path')

subplot(3,1,3)
plot(delay,real([prop_signal(:,1) + prop_signal(:,2)]),'b')
grid
xlabel('Time (\mu sec)')
ylabel('Real Part')
title('Combined Paths')
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The delay of the reflected path signal agrees with the predicted delay. The magnitude of the
coherently combined signal is less than either of the propagated signals. This result indicates that the
two signals contain some interference.

Compare Wideband Two-Ray Channel Propagation to Free Space

Calculate the result of propagating a wideband LFM signal in a two-ray environment from a radar 10
meters above the origin (0,0,10) to a target at (3000,2000,2000) meters. Assume that the radar and
target are stationary and that the transmitting antenna is isotropic. Combine the signal from the two
paths and compare the signal to a signal propagating in free space. The system operates at 300 MHz.
Set the CombinedRaysOutput property to true to combine the direct path and reflected path
signals when forming the output signal.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create a linear FM waveform.

fop = 300.0e6;
fs = 1.0e6;
waveform = phased.LinearFMWaveform();
x = waveform();

Specify the target position and velocity.
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posTx = [0; 0; 10];
posTgt = [3000; 2000; 2000];
velTx = [0;0;0];
velTgt = [0;0;0];

Model the free space propagation.

fschannel = phased.WidebandFreeSpace('SampleRate',waveform.SampleRate);
y_fs = fschannel(x,posTx,posTgt,velTx,velTgt);

Model two-ray propagation from the position of the radar to the target.

tworaychannel = phased.WidebandTwoRayChannel('SampleRate',waveform.SampleRate,...
    'CombinedRaysOutput',true);
y_tworay = tworaychannel(x,posTx,posTgt,velTx,velTgt);
plot(abs([y_tworay y_fs]))
legend('Wideband two-ray (Position 1)','Wideband free space (Position 1)',...
    'Location','best')
xlabel('Samples')
ylabel('Signal Magnitude')
hold on

Move the radar by 10 meters horizontally to a second position.

posTx = posTx + [10;0;0];
y_fs = fschannel(x,posTx,posTgt,velTx,velTgt);
y_tworay = tworaychannel(x,posTx,posTgt,velTx,velTgt);
plot(abs([y_tworay y_fs]))
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legend('Wideband two-ray (Position 1)','Wideband free space (Position 1)',...
    'Wideband two-ray (Position 2)','Wideband free space (Position 2)',...
    'Location','best')
hold off

The free-space propagation losses are the same for both the first and second positions of the radar.
The two-ray losses are different due to the interference effect of the two-ray paths.

Introduced in R2016b
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polarpattern class
Interactive plot of radiation patterns in polar format

Description

polarpattern class plots antenna or array radiation patterns in interactive polar format. You can
also plot other types of polar data. Use these plots when interactive data visualization or
measurement is required. Right-click the Polar Measurement window to change the properties,
zoom in, or add more data to the plot.

Construction
polarpattern plots antenna or array radiation patterns and other types of data in polar format.
polarpattern plots field value data of radiation patterns for visualization and measurement. Right-
click the polar plot to interact.

polarpattern(data) creates a polar plot with magnitude values in the vector d. In this polar plot,
angles are uniformly spaced on the unit circle, starting at 0 degrees.

polarpattern(angle,magnitude) creates a polar plot from a set of angle vectors and
corresponding magnitudes. You can also create polar plots from multiple sets for angle vectors and
corresponding sets of magnitude using the syntax: polarpattern(angle1, magnitude1,
angle2, magnitude2...).
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p = polarpattern( ___ ) returns an object handle that you can use to customize the plot or add
measurements. You can specify any of the arguments from the previous syntaxes.

p = polarpattern('gco') returns an object handle from polar pattern in the current figure.

polarpattern( ___ ,Name,Value) creates a polar plot, with additional properties specified by one
or more name-value pair arguments. Name is the property name and Value is the corresponding
property value. You can specify several name-value pair arguments in any order as Name1,
Value1, ..., NameN, ValueN. Properties not specified retain their default values. To list all the
property Name,Value pairs, use details(p). To list all the property Name,Value pairs, use
details(p). You can use the properties to extract any data from the radiation pattern from the
polar plot. For example, p = polarpattern(data,'Peaks',3) identifies and displays the three
highest peaks in the pattern data.

For a list of properties, see PolarPattern.

polarpattern(ax, ___ ) creates a polar plot using axes handle, ax instead of the current axes
handle.

Input Arguments
data — Antenna or array data
real length-M vector | real M-by-N matrix | real N-D array | complex vector or matrix

Antenna or array data, specified as one of the following:

• A real length-M vector, where M contains the magnitude values with angles assumed to be
(0:M − 1)

M × 360∘ degrees.

• A real M-by-N matrix, where M contains the magnitude values and N contains the independent
data sets. Each column in the matrix has angles taken from the vector (0:M − 1)

M × 360∘ degrees.

• A real N-D array, where N is the number of dimensions. Arrays with dimensions 2 and greater are
independent data sets.

• A complex vector or matrix, where data contains Cartesian coordinates (x, y) of each point. x
contains the real (data) and y contains the imaginary (data).

When data is in a logarithmic form, such as dB, magnitude values can be negative. In this
case,polarpattern plots the smallest magnitude values at the origin of the polar plot and largest
magnitude values at the maximum radius.

angle — Set of angles
vector in degrees

Set of angles, specified as a vector in degrees.

magnitude — Set of magnitude values
vector | matrix

Set of magnitude values, specified as a vector or a matrix. For a matrix of magnitude values, each
column is an independent set of magnitude values and corresponds to the same set of angles.
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Methods
add Add data to existing polar plot
addCursor Add cursor to polar plot angle
animate Replace existing data with new data for

animation
createLabels Create legend labels
findLobes Main, back and side lobe data
replace Replace existing data with new data in polar plot
showPeaksTable Show or hide peak marker table
showSpan Show or hide angle span between two markers

Examples

Plot Cosine Pattern in Polar Coordinates

Specify a cosine antenna pattern from 0° to 360° in azimuth at 0° elevation. Then, plot the antenna
pattern using polarpattern.

Create the pattern.

az = [0:360];
p = abs(cosd(az));

Plot the polar pattern of the antenna for an azimuth cut at 0° elevation.

polarpattern(p,'TitleTopTextInterpreter','tex','TitleTop','Azimuth Cut (Elevation Angle = 0^{\circ})');
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Azimuth Pattern of a 3-by-2 URA

Construct a 3-by-2 rectangular lattice URA. By default, the array consists of isotropic antenna
elements. Assume the operating frequency is 1 GHz. Then, plot the antenna pattern using
polarpattern.

Create the array.

array = phased.URA('Size',[3 2]);
fc = 1.0e9;

Plot the polar pattern of the array for an elevation cut at 0° azimuth.

c = physconst('LightSpeed');
p = pattern(array,fc,[-180:180],0,'PropagationSpeed',c,'CoordinateSystem',...
    'polar','Type','powerdb','Normalize',true);
polarpattern([-180:180],p);
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Polar Pattern Display with Title for Short-Dipole Antenna

Specify a short-dipole antenna with the dipole oriented along the z-axis and operating at 250 MHz.
Then, plot the antenna pattern using polarpattern and specifying a title.

Create the short-dipole antenna element System object™.

antenna = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6,600e6],...
    'AxisDirection','Z');
fc = 250.0e6;

Plot the polar pattern of the antenna for an elevation cut at 0° azimuth.

v = pattern(antenna,fc,0,-90:90);
polarpattern([-90:90],v,'TitleTopTextInterpreter','tex',...
    'TitleTop','Elevation Cut (Azimuth Angle = 0^{\circ})');
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Polar Pattern Properties

Specify a short-dipole antenna with the dipole oriented along the z-axis and operating at 250 MHz.
Then, plot the antenna pattern using polarpattern and specifying a title.

Create the short-dipole antenna element System object™.

antenna = phased.ShortDipoleAntennaElement('FrequencyRange',[100e6,600e6],...
    'AxisDirection','Z');
fc = 250.0e6;

Create the polar pattern of the antenna for an elevation cut at 0° azimuth.

p = pattern(antenna,fc,0,-90:90);
P = polarpattern([-90:90],p,'TitleTopTextInterpreter','tex',...
    'TitleTop','Elevation Cut (Azimuth Angle = 0^{\circ})');

1 Objects

1-2140



Display the properties of the plot.

details(P)

  internal.polari handle with properties:

                      Interactive: 1
                     LegendLabels: ''
                   AntennaMetrics: 0
                        CleanData: 0
                        AngleData: [181x1 double]
                    MagnitudeData: [181x1 double]
                    IntensityData: []
                     AngleMarkers: [0x1 struct]
                    CursorMarkers: [0x1 struct]
                      PeakMarkers: [0x1 struct]
                    ActiveDataset: 1
                  AngleLimVisible: 0
                    LegendVisible: 0
                             Span: 0
                         TitleTop: 'Elevation Cut (Azimuth Angle = 0^{\circ})'
                      TitleBottom: ''
                            Peaks: []
                         FontSize: 10
                     MagnitudeLim: [-40 10]
               MagnitudeAxisAngle: 75
                    MagnitudeTick: [-40 -30 -20 -10 0 10]
          MagnitudeTickLabelColor: 'k'
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                         AngleLim: [0 360]
                   AngleTickLabel: {1x24 cell}
              AngleTickLabelColor: 'k'
       TitleTopFontSizeMultiplier: 1.1000
    TitleBottomFontSizeMultiplier: 0.9000
               TitleTopFontWeight: 'bold'
            TitleBottomFontWeight: 'normal'
          TitleTopTextInterpreter: 'tex'
       TitleBottomTextInterpreter: 'none'
                   TitleTopOffset: 0.1500
                TitleBottomOffset: 0.1500
                         ToolTips: 1
               MagnitudeLimBounds: [-Inf Inf]
      MagnitudeFontSizeMultiplier: 0.9000
          AngleFontSizeMultiplier: 1
                       AngleAtTop: 90
                   AngleDirection: 'ccw'
                  AngleResolution: 15
           AngleTickLabelRotation: 0
             AngleTickLabelFormat: '360'
          AngleTickLabelColorMode: 'contrast'
                     PeaksOptions: {}
            AngleTickLabelVisible: 1
                            Style: 'line'
                        DataUnits: 'dB'
                     DisplayUnits: 'dB'
                    NormalizeData: 0
                 ConnectEndpoints: 0
              DisconnectAngleGaps: 0
                        EdgeColor: 'k'
                        LineStyle: '-'
                        LineWidth: 1
                         FontName: 'Helvetica'
                     FontSizeMode: 'auto'
              GridForegroundColor: [0.8000 0.8000 0.8000]
              GridBackgroundColor: 'w'
                 DrawGridToOrigin: 0
                     GridOverData: 0
               GridAutoRefinement: 0
                        GridWidth: 0.5000
                      GridVisible: 1
                         ClipData: 1
                  TemporaryCursor: 1
                 MagnitudeLimMode: 'auto'
           MagnitudeAxisAngleMode: 'auto'
                MagnitudeTickMode: 'auto'
      MagnitudeTickLabelColorMode: 'contrast'
        MagnitudeTickLabelVisible: 1
                   MagnitudeUnits: ''
                   IntensityUnits: ''
                           Marker: 'none'
                       MarkerSize: 6
                           Parent: [1x1 Figure]
                         NextPlot: 'replace'
                       ColorOrder: [7x3 double]
                  ColorOrderIndex: 1
                     SectorsColor: [16x3 double]
                     SectorsAlpha: 0.5000
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                             View: 'full'
                    ZeroAngleLine: 0

See Also

Introduced in R2016a
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add
Class: polarpattern

Add data to polar plot

Syntax
add(p,d)
add(p,angle,magnitude)

Description
add(p,d) adds new antenna data to the polar plot, p based on the real amplitude values, data.

add(p,angle,magnitude) adds data sets of angle vectors and corresponding magnitude
matrices to polar plot p.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

data — Antenna or array data
real length-M vector | real M-by-N matrix | real N-D array | complex vector or matrix

Antenna or array data, specified as one of the following:

• A real length-M vector, where M contains the magnitude values with angles assumed to be
(0:M − 1)

M × 360∘ degrees.

• A real M-by-N matrix, where M contains the magnitude values and N contains the independent
data sets. Each column in the matrix has angles taken from the vector (0:M − 1)

M × 360∘ degrees.
The set of each angle can vary for each column.

• A real N-D array, where N is the number of dimensions. Arrays with dimensions 2 and greater are
independent data sets.

• A complex vector or matrix, where data contains Cartesian coordinates ((x,y) of each point. x
contains the real part of data and y contains the imaginary part of data.

When data is in a logarithmic form such as dB, magnitude values can be negative. In this
case,polarpattern plots the lowest magnitude values at the origin of the polar plot and highest
magnitude values at the maximum radius.

angle — Set of angles
vector in degrees

Set of angles, specified as a vector in degrees.
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magnitude — Set of magnitude values
vector | matrix

Set of magnitude values, specified as a vector or a matrix. For a matrix of magnitude values, each
column is an independent set of magnitude values and corresponds to the same set of angles.

Examples

Add Data To Existing Polar Plot

Create a cosine-pattern antenna and plot the pattern from 0° to 360&deg.

az = [0:360];
p1 = abs(cosd(az));

Plot the polar pattern.

P = polarpattern(p1);

Create a second cosine-pattern antenna rotated by 60°. Add this pattern to the existing pattern.

p2 = abs(cosd(az - 50));
add(P,p2);
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Add Second Plot to Polar Pattern

Create a cosine antenna and plot the polar pattern of its directivity at 75 MHz.

cosineantenna = phased.CosineAntennaElement('FrequencyRange',[1.0e0 100.0e9],...
    'CosinePower',[2,2]);
p1 = pattern(cosineantenna,75.0e6,[-90:90],0,'Type','Directivity');
P = polarpattern([-90:90],p1);
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Create an isotropic antenna. Calculate the directivity of this antenna at 75 MHz.

isoantenna = phased.IsotropicAntennaElement('FrequencyRange',...
    [1.0e0 100.0e9]);
p2 = pattern(isoantenna,75.0e6,[-180:180],0,'Type','Directivity');

Add the directivity plot of the isotropic antenna to the directivity plot of the cosine antenna.

add(P,[-180:180],p2);

 add

1-2147



See Also
addCursor | animate | createLabels | findLobes | replace | showPeaksTable | showSpan

Introduced in R2016a
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addCursor
Class: polarpattern

Add cursor to polar plot angle

Syntax
addCursor(p,angle)
addCursor(p,angle,index)
id = addCursor( ___ )

Description
addCursor(p,angle) adds a cursor to the active polar plot, p, at the data point closest to the
specified angle. Angle units are in degrees.

The first cursor added is called 'C1', the second 'C2', and so on.

addCursor(p,angle,index) adds a cursor at a specified data set index. index can be a vector of
indices.

id = addCursor( ___ ) returns a cell array with one ID for each cursor created. You can specify
any of the arguments from the previous syntaxes.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

angle — Angle values
scalar in degrees | vector in degrees

Angle values at which the cursor is added, specified as a scalar or a vector in degrees.

index — Data set index
scalar | vector

Data set index, specified as a scalar or a vector.

Examples

Add Cursors to Single Polar Pattern Plot

Create a cosine antenna and plot the polar pattern of its directivity at 75 MHz. Then add cursors at
two 150° and 270°.

cosineantenna = phased.CosineAntennaElement('FrequencyRange',[1.0e0 100.0e9],...
    'CosinePower',[2,2]);

 addCursor

1-2149



p = pattern(cosineantenna,75.0e6,[-90:90],0,'Type','Directivity');
P = polarpattern([-90:90],p);
addCursor(P,[45 135]);

Add Cursors to Multiple Polar Pattern Plots

Create a cosine antenna and plot the polar pattern of its directivity at 75 MHz. Then create an
isotropic antenna. Also calculate the directivity of this antenna at 75 MHz. Add the directivity plot of
the isotropic antenna to the directivity plot of the cosine antenna. Then add cursors at several points,

cosineantenna = phased.CosineAntennaElement('FrequencyRange',[1.0e0 100.0e9],...
    'CosinePower',[2,2]);
p1 = pattern(cosineantenna,75.0e6,[-90:90],0,'Type','Directivity');
P = polarpattern([-90:90],p1);
isoantenna = phased.IsotropicAntennaElement('FrequencyRange',...
    [1.0e0 100.0e9]);
p2 = pattern(isoantenna,75.0e6,[-180:180],0,'Type','Directivity');
add(P,[-180:180],p2);
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Add a cursor at approximately 30� to the cosine antenna pattern (designated by index 1) and at
150� and 270� to the isotropic polar pattern (designated by index 2).

addCursor(P,[30.5 149.0 314.7],[1 2 1]);
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See Also
add | animate | createLabels | findLobes | replace | showPeaksTable | showSpan

Introduced in R2016a
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animate
Class: polarpattern

Replace existing data with new data for animation

Syntax
animate(p,data)
animate(p,angle,magnitude)

Description
animate(p,data) removes all the current data from polar plot, p and adds new data, based on real
amplitude values, data.

animate(p,angle,magnitude) removes all the current data polar plot, p and adds new data sets
of angle vectors and corresponding magnitude matrices.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

data — Antenna or array data
real length-M vector | real M-by-N matrix | real N-D array | complex vector or matrix

Antenna or array data, specified as one of the following:

• A real length-M vector, where M contains the magnitude values with angles assumed to be
(0:M − 1)

M × 360∘ degrees.

• A real M-by-N matrix, where M contains the magnitude values and N contains the independent
data sets. Each column in the matrix has angles taken from the vector (0:M − 1)

M × 360∘ degrees.
The set of each angle can vary for each column.

• A real N-D array, where N is the number of dimensions. Arrays with dimensions 2 and greater are
independent data sets.

• A complex vector or matrix, where data contains Cartesian coordinates ((x,y) of each point. x
contains the real part of data and y contains the imaginary part of data.

When data is in a logarithmic form such as dB, magnitude values can be negative. In this
case,polarpattern plots the lowest magnitude values at the origin of the polar plot and highest
magnitude values at the maximum radius.

angle — Set of angles
vector in degrees
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Set of angles, specified as a vector in degrees.

magnitude — Set of magnitude values
vector | matrix

Set of magnitude values, specified as a vector or a matrix. For a matrix of magnitude values, each
column is an independent set of magnitude values and corresponds to the same set of angles.

Examples

Animate Cosine Pattern Antenna Plot

Create a cosine-pattern antenna and plot the pattern from 0° to 360°.

az = [0:360];
p1 = abs(cosd(az));

Plot the polar pattern.

P = polarpattern(p1);

Create a second cosine-pattern antenna rotated by 60°. Animate the pattern by adding this pattern.

p2 = abs(cosd(az - 50));
animate(P,p2);
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Animate Existing Polar Azimuth Plot Data

Create a 15-element ULA of cosine antennas with elements spaced one-half wavelength apart. Plot
the directivity of the array at 20 GHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

fc = 20.0e9;
c = physconst('Lightspeed');
lam = c/fc;
angs = [-180:1:180];
antenna = phased.CosineAntennaElement('FrequencyRange',[1.0e9,100.0e9],...
    'CosinePower',[2.5 2.5]);
array = phased.ULA('Element',antenna,'NumElements',15,'ElementSpacing',lam/2);
a = pattern(array,fc,angs,0);
P = polarpattern(angs,a);
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Then, steer the array to 45° and, using the animate method, replace the existing polar plot with the
steered array directivity.

steervec = phased.SteeringVector('SensorArray',array,'PropagationSpeed',c,...
    'IncludeElementResponse',true);
sv = steervec(fc,[45;0]);
a1 = pattern(array,fc,angs,0,'Weights',sv);
animate(P,angs,a1);
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See Also
add | addCursor | createLabels | findLobes | replace | showPeaksTable | showSpan

Introduced in R2016a
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createLabels
Class: polarpattern

Create legend labels for polar plot

Syntax
createLabels(p,format,array)

Description
createLabels(p,format,array) adds the specified format label to each array of the polar plot
p. The labels are stored as a cell array in the LegendLabels property of p.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

format — Format for legend label
cell array

Format for legend label added to the polar plot, specified as a cell array. For more information on
legend label format see, legend.
Data Types: char

array — Values to apply to format
array

Values to apply to format , specified as an array. The values can be an array of angles or array of
magnitude.

Examples

Add Legend Label to Polar Plot

Create a polar plot of cosine powers rotated in 30° increments. Generate a legend label for this plot.

az = [0:359]';
a1 = abs(cosd(az).^5);
a2 = abs(cosd(az - 30).^5);
a3 = abs(cosd(az - 60).^5);
a4 = abs(cosd(az - 90).^5);
P = polarpattern([a1,a2,a3,a4],'Style','filled');
createLabels(P,'az = %d#deg',0:30:90)
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See Also
add | addCursor | animate | findLobes | replace | showPeaksTable | showSpan

Introduced in R2016a
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findLobes
Class: polarpattern

Main, back, and side lobe data

Syntax
L = findLobes(p)
L = findLobes(p,index)

Description
L = findLobes(p) returns a structure, L, defining the main, back, and side lobes of the antenna or
array radiation pattern in the specified polar plot, p.

L = findLobes(p,index) returns the radiation pattern lobes from the data set specified in index.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

index — Index of data set
scalar

Index of data set, specified as a scalar.

Examples

Find Lobes of Isotropic Antenna ULA

Create a 15-element ULA of isotropic antenna with elements spaced one-half wavelength apart. Plot
the directivity of the array at 20 GHz. Then, find the mainlobe, sidelobe, and backlobe directions of
the array pattern.

fc = 20.0e9;
c = physconst('Lightspeed');
lam = c/fc;
angs = [-180:1:180];
antenna = phased.IsotropicAntennaElement('FrequencyRange',[1.0e9,100.0e9]);
array = phased.ULA('Element',antenna,'NumElements',15,'ElementSpacing',lam/2);
a = pattern(array,fc,angs,0);
P = polarpattern(angs,a);
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L = findLobes(P)

L = struct with fields:
     mainLobe: [1x1 struct]
     backLobe: [1x1 struct]
    sideLobes: [1x1 struct]
           FB: 0
          SLL: 0
         HPBW: 8.0000
         FNBW: 16.0000
        FBIdx: [181 1]
       SLLIdx: [181 361]
      HPBWIdx: [357 5]
      HPBWAng: [176 -176]
      FNBWIdx: [173 189]

Find Lobes of Steered Isotropic Antenna ULA Patterns

Create a 15-element ULA of isotropic antenna with elements spaced one-half wavelength apart. Plot
the directivity of the array at 20 GHz. Then steer the array to 45° azimuth and plot the directivity.
Then, find the mainlobe, sidelobe, and backlobe directions of the array pattern.

fc = 20.0e9;
c = physconst('Lightspeed');
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lam = c/fc;
angs = [-180:1:180];
antenna = phased.IsotropicAntennaElement('FrequencyRange',[1.0e9,100.0e9]);
array = phased.ULA('Element',antenna,'NumElements',15,'ElementSpacing',lam/2);
a = pattern(array,fc,angs,0);
P = polarpattern(angs,a);

Steer the array to 45&deg azimuth and add the steered pattern to the polar plot.

steervec = phased.SteeringVector('SensorArray',array,'PropagationSpeed',c);
sv = steervec(fc,[45;0]);
a1 = pattern(array,fc,angs,0,'Weights',sv);
add(P,angs,a1);
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Find the lobes of the steered pattern.

L = findLobes(P,2);
L.mainLobe

ans = struct with fields:
        index: 226
    magnitude: 11.7609
        angle: 45
       extent: [216 238]

See Also
add | addCursor | animate | createLabels | replace | showPeaksTable | showSpan

Introduced in R2016a
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replace
Class: polarpattern

Replace polar plot data with new data

Syntax
replace(p,data)
replace(p,angle,magnitude)

Description
replace(p,data) removes all data from polar plot, p and adds new data based on real amplitude
values, data.

replace(p,angle,magnitude) removes all the current data and adds new data sets of angle
vectors and corresponding magnitude matrices to the polar plot, p.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

data — Antenna or array data
real length-M vector | real M-by-N matrix | real N-D array | complex vector or matrix

Antenna or array data, specified as one of the following:

• A real length-M vector, where M contains the magnitude values with angles assumed to be
(0:M − 1)

M × 360∘ degrees.

• A real M-by-N matrix, where M contains the magnitude values and N contains the independent
data sets. Each column in the matrix has angles taken from the vector (0:M − 1)

M × 360∘ degrees.
The set of each angle can vary for each column.

• A real N-D array, where N is the number of dimensions. Arrays with dimensions 2 and greater are
independent data sets.

• A complex vector or matrix, where data contains Cartesian coordinates ((x,y) of each point. x
contains the real part of data and y contains the imaginary part of data.

When data is in a logarithmic form such as dB, magnitude values can be negative. In this
case,polarpattern plots the lowest magnitude values at the origin of the polar plot and highest
magnitude values at the maximum radius.

angle — Set of angles
vector in degrees
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Set of angles, specified as a vector in degrees.

magnitude — Set of magnitude values
vector | matrix

Set of magnitude values, specified as a vector or a matrix. For a matrix of magnitude values, each
column is an independent set of magnitude values and corresponds to the same set of angles.

Examples

Replace Cosine Polar Plot With Rotated Cosine Polar Plot

Plot cosine pattern in polar coordinates Specify a cosine antenna pattern from 0° to 360° in azimuth
at 0° elevation. Then, plot the antenna pattern using polarpattern.

Create the pattern.

az = [0:360];
a = abs(cosd(az));

Plot the polar pattern of the antenna for an azimuth cut at 0° elevation.

P = polarpattern(a,'TitleTopTextInterpreter','tex','TitleTop','Azimuth Cut (Elevation Angle = 0^{\circ})');

Replace this plot with a rotated cosine pattern.
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a = abs(cosd(az + 30.0));
replace(P,a);

Replace Polar Plot Data with New Angle-Magnitude Data

Create a 15-element ULA of cosine antennas with elements spaced one-half wavelength apart. Plot
the directivity of the array at 20 GHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

fc = 20.0e9;
c = physconst('Lightspeed');
lam = c/fc;
angs = [-180:1:180];
antenna = phased.CosineAntennaElement('FrequencyRange',[1.0e9,100.0e9],...
    'CosinePower',[2.5 2.5]);
array = phased.ULA('Element',antenna,'NumElements',15,'ElementSpacing',lam/2);
a = pattern(array,fc,angs,0);
P = polarpattern(angs,a);
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Then, steer the array to 45° and, using the replace method, replace the existing polar plot with the
steered array directivity.

steervec = phased.SteeringVector('SensorArray',array,'PropagationSpeed',c,...
    'IncludeElementResponse',true);
sv = steervec(fc,[45;0]);
a1 = pattern(array,fc,angs,0,'Weights',sv);
replace(P,angs,a1);
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See Also
add | addCursor | animate | createLabels | findLobes | showPeaksTable | showSpan

Introduced in R2016a
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showPeaksTable
Class: polarpattern

Show or hide peak marker table

Syntax
showPeaksTable(p,vis)

Description
showPeaksTable(p,vis) shows or hides a table of the peak values. By default, the peak values
table is visible.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

vis — Show or hide peaks table
0 | 1

Show or hide peaks table, specified as 0 or 1.

Examples

Peaks of ULA Array in Polar Pattern

Create a 15-element ULA of cosine antennas with elements spaced one-half wavelength apart. Then,
plot the directivity of the array at 20 GHz.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

fc = 20.0e9;
c = physconst('Lightspeed');
lam = c/fc;
angs = [-180:1:180];
antenna = phased.CosineAntennaElement('FrequencyRange',[1.0e9,100.0e9],...
    'CosinePower',[2.5 2.5]);
array = phased.ULA('Element',antenna,'NumElements',15,'ElementSpacing',lam/2);

Plot the polar pattern and show three peaks of the antenna. When creating a polarpattern plot, if
you specify the Peaks property, the peaks table is displayed by default.

a = pattern(array,fc,angs,0);
P = polarpattern(angs,a,'Peaks',3);
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Hide the table. When the peaks table is hidden, the peak markers display the peak values.

showPeaksTable(P,0);
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See Also
add | addCursor | animate | createLabels | findLobes | replace | showSpan

Introduced in R2016a
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PolarPattern Properties
Control appearance and behavior of polar plot

Description
Polar pattern properties control the appearance and behavior of the polar pattern object. By changing
property values, you can modify certain aspects of the polar plot. To change the default properties
use:

p = polarpattern(____,Name,Value)

To view all the properties of the polar pattern object use:

details(p)

Properties
Antenna Metrics

'AntennaMetrics' — Show antenna metric
0 (default) | 1

Show antenna metrics, specified as a comma-separated pair consisting of 'AntennaMetrics' and 0
or 1. Antenna metric displays main, back, and side lobes of antenna/array pattern passed as input.
Data Types: logical

'Peaks' — Maximum number of peaks to compute for each data set
positive integer | vector of integers

Maximum number of peaks to compute for each data set, specified as a comma-separated pair
consisting of 'Peaks' and a positive scalar or vector of integers.
Data Types: double

Angle Properties

'AngleAtTop' — Angle at top of polar plot
90 (default) | scalar in degrees

Angle at the top of the polar plot, specified as a comma-separated pair consisting of 'AngleAtTop'
and a scalar in degrees.
Data Types: double

'AngleLim' — Visible polar angle span
[0 360] (default) | 1-by-2 vector of real values

Visible polar angle span, specified as a comma-separated pair consisting of 'AngleLim' and a 1-by-2
vector of real values.
Data Types: double
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'AngleLimVisible' — Show interactive angle limit cursors
0 (default) | 1

Show interactive angle limit cursors, specified as a comma-separated pair consisting of
'AngleLimVisible' and 0 or 1.
Data Types: logical

'AngleDirection' — Direction of increasing angle
'ccw' (default) | 'cw'

Direction of increasing angle, specified as a comma-separated pair consisting of 'AngleDirection'
and 'ccw' (counterclockwise) or 'cw' (clockwise).
Data Types: char

'AngleResolution' — Number of degrees between radial lines
15 (default) | scalar in degrees

Number of degrees between radial lines depicting angles in the polar plot, specified as a comma-
separated pair consisting of 'AngleResolution' and a scalar in degrees.
Data Types: double

'AngleTickLabelRotation' — Rotate angle tick labels
0 (default) | 1

Rotate angle tick labels, specified as a comma-separated pair consisting of
'AngleTickLabelRotation' and 0 or 1.
Data Types: logical

'AngleTickLabelVisible' — Show angle tick labels
1 (default) | 0

Show angle tick labels, specified as a comma-separated pair consisting of
'AngleTickLabelVisible' and 0 or 1.
Data Types: logical

'AngleTickLabelFormat' — Format for angle tick labels
360 (default) | 180

Format for angle tick labels, specified as a comma-separated pair consisting of
'AngleTickLabelFormat' and 360 degrees or 180 degrees.
Data Types: double

'AngleFontSizeMultiplier' — Scale factor of angle tick font
1 (default) | numeric value greater than zero

Scale factor of angle tick font, specified as a comma-separated pair consisting of
'AngleFontSizeMultiplier' and a numeric value greater than zero.
Data Types: double

'Span' — Show angle span measurement
0 (default) | 1
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Show angle span measurement, specified as a comma-separated pair consisting of 'Span' and 0 or
1.
Data Types: logical

'ZeroAngleLine' — Highlight radial line at zero degrees
0 (default) | 1

Highlight radial line at zero degrees, specified as a comma-separated pair consisting of
'ZeroAngleLine' and 0 or 1.
Data Types: logical

'DisconnectAngleGaps' — Show gaps in line plots with nonuniform angle spacing
1 (default) | 0

Show gaps in line plots with nonuniform angle spacing, specified as a comma-separated pair
consisting of 'DisconnectAngleGaps' and 0 or 1.
Data Types: logical

Magnitude Properties

'MagnitudeAxisAngle' — Angle of magnitude tick label radial line
75 (default) | real scalar in degrees

Angle of magnitude tick label radial line, specified as a comma-separated pair consisting of
'MagnitudeAxisAngle' and real scalar in degrees.
Data Types: double

'MagnitudeTick' — Magnitude ticks
[0 0.2 0.4 0.6 0.8] (default) | 1-by-N vector

Magnitude ticks, specified as a comma-separated pair consisting of 'MagnitudeTick' and a 1-by-N
vector, where N is the number of magnitude ticks.
Data Types: double

'MagnitudeTickLabelVisible' — Show magnitude tick labels
1 (default) | 0

Show magnitude tick labels, specified as a comma-separated pair consisting of
'MagnitudeTickLabelVisible' and 0 or 1.
Data Types: logical

'MagnitudeLim' — Minimum and maximum magnitude limits
[0 1] (default) | two-element vector of real values

Minimum and maximum magnitude limits, specified as a comma-separated pair consisting of
'MagnitudeLim' and a two-element vector of real values.
Data Types: double

'MagnitudeLimMode' — Determine magnitude dynamic range
'auto' (default) | 'manual'
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Determine magnitude dynamic range, specified as a comma-separated pair consisting of
'MagnitudeLimMode' and 'auto' or 'manual'.
Data Types: char

'MagnitudeAxisAngleMode' — Determine angle for magnitude tick labels
'auto' (default) | 'manual'

Determine angle for magnitude tick labels, specified as a comma-separated pair consisting of
'MagnitudeAxisAngleMode' and 'auto' or 'manual'.
Data Types: char

'MagnitudeTickMode' — Determine magnitude tick locations
'auto' (default) | 'manual'

Determine magnitude tick locations, specified as a comma-separated pair consisting of
'MagnitudeTickMode' and 'auto' or 'manual'.
Data Types: char

'MagnitudeUnits' — Magnitude units
'dB' | 'dBLoss'

Magnitude units, specified as a comma-separated pair consisting of 'MagnitudeUnits' and 'db' or
'dBLoss'.
Data Types: char

'MagnitudeFontSizeMultiplier' — Scale factor of magnitude tick font
0.9000 (default) | numeric value greater than zero

Scale factor of magnitude tick font, specified as a comma-separated pair consisting of
'MagnitudeFontSizeMultiplier' and a numeric value greater than zero.
Data Types: double

Miscellaneous Properties

'NormalizeData' — Normalize each data trace to maximum value
0 (default) | 1

Normalize each data trace to maximum value, specified as a comma-separated pair consisting of
'NormalizeData' and 0 or 1.
Data Types: logical

'ConnectEndpoints' — Connect first and last angles
0 (default) | 1

Connect first and last angles, specified as a comma-separated pair consisting of
'ConnectEndpoints' and 0 or 1.
Data Types: logical

'Style' — Style of polar plot display
'line' (default) | 'filled'
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Style of polar plot display, specified as a comma-separated pair consisting of 'Style' and 'line' or
'filled'.
Data Types: char

'TemporaryCursor' — Create temporary cursor
0 (default) | 1

Create a temporary cursor, specified as a comma-separated pair consisting of 'TemporaryCursor'
and 0 or 1.
Data Types: logical

'ToolTips' — Show tool tips
1 (default) | 0

Show tool tips when you hover over a polar plot element, specified as a comma-separated pair
consisting of 'ToolTips' and 0 or 1.
Data Types: logical

'ClipData' — Clip data to outer circle
0 (default) | 1

Clip data to outer circle, specified as a comma-separated pair consisting of 'ClipData' and 0 or 1.
Data Types: logical

'NextPlot' — Directive on how to add next plot
'replace' (default) | 'new' | 'add'

Directive on how to add next plot, specified as a comma-separated pair consisting of 'NextPlot'
and one of the values in the table:

Property Value Effect
'new' Creates a figure and uses it as the current figure.
'add' Adds new graphics objects without clearing or

resetting the current figure.
'replace' Removes all axes objects and resets figure

properties to their defaults before adding new
graphics objects.

Legend and Title Properties

'LegendLabels' — Data tables for legend annotation
character vector | cell array of character vectors

Data tables for legend annotation, specified as a comma-separated pair consisting of
'LegendLabels' and a character vector or cell array of character vectors. Ⓐ denotes the active line
for interactive operation.
Data Types: char

'LegendVisible' — Show legend label
0 (default) | 1
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Show legend label, specified as a comma-separated pair consisting of 'LegendVisible' and 0 or 1.
Data Types: logical

'TitleTop' — Title to display above the polar plot
character vector

Title to display above the polar plot, specified as a comma-separated pair consisting of 'TitleTop'
and a character vector.
Data Types: char

'TitleBottom' — Title to display below the polar plot
character vector

Title to display below the polar plot, specified as a comma-separated pair consisting of
'TitleBottom' and a character vector.
Data Types: char

'TitleTopOffset' — Offset between top title and angle ticks
0.1500 (default) | scalar

Offset between top title and angle ticks, specified as a comma-separated pair consisting of
'TitleTopOffset' and a scalar. The value must be in the range [-0.5,0.5].
Data Types: double

'TitleBottomOffset' — Offset between bottom title and angle ticks
0.1500 (default) | scalar

Offset between bottom title and angle ticks, specified as a comma-separated pair consisting of
'TitleBottomOffset' and a scalar. The value must be in the range [-0.5,0.5].
Data Types: double

'TitleTopFontSizeMultiplier' — Scale factor of top title font
1.1000 (default) | numeric value greater than zero

Scale factor of top title font, specified as a comma-separated pair consisting of
'TitleTopFontSizeMultiplier' and a numeric value greater than zero.
Data Types: double

'TitleBottomFontSizeMultiplier' — Scale factor of bottom title font
0.9000 (default) | numeric value greater than zero

Scale factor of bottom title font, specified as a comma-separated pair consisting of
'TitleBottomFontSizeMultiplier' and a numeric value greater than zero.
Data Types: double

'TitleTopFontWeight' — Thickness of top title font
'bold' (default) | 'normal'

Thickness of top title font, specified as a comma-separated pair consisting of
'TitleTopFontWeight' and 'bold' or 'normal.
Data Types: char
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'TitleBottomFontWeight' — Thickness of bottom title font
'normal' (default) | 'bold'

Thickness of bottom title font, specified as a comma-separated pair consisting of
'TitleBottomFontWeight' and 'bold' or 'normal.
Data Types: char

'TitleTopTextInterpreter' — Interpretation of top title characters
'none' (default) | 'tex' | 'latex'

Interpretation of top title characters, specified as a comma-separated pair consisting of
'TitleTopTextInterpreter' and:

• 'tex' — Interpret using a subset of TeX markup
• 'latex' — Interpret using LaTeX markup
• 'none' — Display literal characters

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add superscripts and
subscripts, modify the text type and color, and include special characters in the text.

This table lists the supported modifiers when the TickLabelInterpreter property is set to 'tex',
which is the default value. Modifiers remain in effect until the end of the text, except for superscripts
and subscripts which only modify the next character or text within curly braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
_{ } Subscript 'text_{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely available) '\sl text'
\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name of

a font family to change the font
style. You can use this modifier
with other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifier as one of these
colors: red, green, yellow,
magenta, blue, black, white,
gray, darkGreen, orange, or
lightBlue.

'\color{magenta} text'

\color[rgb]{specifier} Set specifier as a three-
element RGB triplet to change
the font color.

'\color[rgb]{0,0.5,0.5}
text'
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LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. The displayed text
uses the default LaTeX font style. The FontName, FontWeight, and FontAngle properties do not
have an effect. To change the font style, use LaTeX markup within the text.

The maximum size of the text that you can use with the LaTeX interpreter is 1200 characters. For
multiline text, the maximum size reduces by about 10 characters per line.
Data Types: char

'TitleBottomTextInterpreter' — Interpretation of bottom title characters
'none' (default) | 'tex' | 'latex'

Interpretation of bottom title characters, specified as a comma-separated pair consisting of
'TitleBottomTextInterpreter' and:

• 'tex' — Interpret using a subset of TeX markup
• 'latex' — Interpret using LaTeX markup
• 'none' — Display literal characters

TeX Markup

By default, MATLAB supports a subset of TeX markup. Use TeX markup to add superscripts and
subscripts, modify the text type and color, and include special characters in the text.

This table lists the supported modifiers when the TickLabelInterpreter property is set to 'tex',
which is the default value. Modifiers remain in effect until the end of the text, except for superscripts
and subscripts which only modify the next character or the text within the curly braces {}.

Modifier Description Example
^{ } Superscript 'text^{superscript}'
_{ } Subscript 'text_{subscript}'
\bf Bold font '\bf text'
\it Italic font '\it text'
\sl Oblique font (rarely available) '\sl text'
\rm Normal font '\rm text'
\fontname{specifier} Set specifier as the name of

a font family to change the font
style. You can use this modifier
with other modifiers.

'\fontname{Courier}
text'

\fontsize{specifier} Set specifier as a scalar
numeric value to change the
font size.

'\fontsize{15} text'

\color{specifier} Set specifier as one of these
colors: red, green, yellow,
magenta, blue, black, white,
gray, darkGreen, orange, or
lightBlue.

'\color{magenta} text'
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Modifier Description Example
\color[rgb]{specifier} Set specifier as a three-

element RGB triplet to change
the font color.

'\color[rgb]{0,0.5,0.5}
text'

LaTeX Markup

To use LaTeX markup, set the TickLabelInterpreter property to 'latex'. The displayed text
uses the default LaTeX font style. The FontName, FontWeight, and FontAngle properties do not
have an effect. To change the font style, use LaTeX markup within the text.

The maximum size of the text that you can use with the LaTeX interpreter is 1200 characters. For
multiline text, the maximum size reduces by about 10 characters per line.
Data Types: char

Grid Properties

'GridOverData' — Draw grid over data plots
0 (default) | 1

Draw grid over data plots, specified as a comma-separated pair consisting of 'GridOverData' and 0
or 1.
Data Types: logical

'DrawGridToOrigin' — Draw radial lines within innermost circle
0 (default) | 1

Draw radial lines within innermost circle of the polar plot, specified as a comma-separated pair
consisting of 'DrawGridToOrigin' and 0 or 1.
Data Types: logical

'GridAutoRefinement' — Increase angle resolution
0 (default) | 1

Increase angle resolution in the polar plot, specified as a comma-separated pair consisting of
'GridAutoRefinement' and 0 or 1. This property increases angle resolution by doubling the
number of radial lines outside each magnitude.
Data Types: logical

'GridWidth' — Width of grid lines
0.5000 (default) | positive scalar

Width of grid lines, specified as a comma-separated pair consisting of 'GridWidth' and a positive
scalar.
Data Types: double

'GridVisible' — Show grid lines
1 (default) | 0

Show grid lines, including magnitude circles and angle radii, specified as a comma-separated pair
consisting of 'GridVisible' and 0 or 1.
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Data Types: logical

'GridForeGroundColor' — Color of foreground grid lines
[0.8000 0.8000 0.8000] (default) | 'none' | character vector of color names

Color of foreground grid lines, specified as a comma-separated pair consisting of
'GridForeGroundColor' and an RGB triplet, character vector of color names, or 'none'.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

'GridBackGroundColor' — Color of background grid lines
'w' (default) | character vector of color names | 'none'
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Color of background grid lines, specified as a comma-separated pair consisting of
'GridBackGroundColor' and an RGB triplet, character vector of color names, or 'none'.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

Marker, Color, Line, and Font Properties

'Marker' — Marker symbol
'none' (default) | character vector of symbols

Marker symbol, specified as a comma-separated pair consisting of 'Marker' and either 'none' or
one of the symbols in this table. By default, a line does not have markers. Add markers at selected
points along the line by specifying a marker.
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Value Description
'o' Circle
'+' Plus sign
'*' Asterisk
'.' Point
'x' Cross
'_' Horizontal line
'|' Vertical line
'square' or 's' Square
'diamond' or 'd' Diamond
'^' Upward-pointing triangle
'v' Downward-pointing triangle
'>' Right-pointing triangle
'<' Left-pointing triangle
'pentagram' or 'p' Five-pointed star (pentagram)
'hexagram' or 'h' Six-pointed star (hexagram)
'none' No markers

'MarkerSize' — Marker size
6 (default) | positive value

Marker size, specified as a comma-separated pair consisting of 'MarkerSize' and a positive value
in point units.
Data Types: double

'ColorOrder' — Colors to use for multiline plots
seven predefined colors (default) | three-column matrix of RGB triplets

Colors to use for multi-line plots, specified as a comma-separated pair consisting of 'ColorOrder'
and a three-column matrix of RGB triplets. Each row of the matrix defines one color in the color
order.
Data Types: double

'ColorOrderIndex' — Next color to use in color order
1 (default) | positive integer

Next color to use in color order, specified as a comma-separated pair consisting of
'ColorOrderIndex' and a positive integer. New plots added to the axes use colors based on the
current value of the color order index.
Data Types: double

'EdgeColor' — Color of data lines
'k' (default) | RGB triplet vector

Color of data lines, specified as a comma-separated pair consisting of 'EdgeColor' and a character
vector of color names or RGB triplet vector.
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RGB triplets and hexadecimal color codes are useful for specifying custom colors.

• An RGB triplet is a three-element row vector whose elements specify the intensities of the red,
green, and blue components of the color. The intensities must be in the range [0,1]; for example,
[0.4 0.6 0.7].

• A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#)
followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case
sensitive. Thus, the color codes '#FF8800', '#ff8800', '#F80', and '#f80' are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options,
the equivalent RGB triplets, and hexadecimal color codes.

Color Name Short Name RGB Triplet Hexadecimal
Color Code

Appearance

'red' 'r' [1 0 0] '#FF0000'
'green' 'g' [0 1 0] '#00FF00'
'blue' 'b' [0 0 1] '#0000FF'
'cyan' 'c' [0 1 1] '#00FFFF'
'magenta' 'm' [1 0 1] '#FF00FF'
'yellow' 'y' [1 1 0] '#FFFF00'
'black' 'k' [0 0 0] '#000000'
'white' 'w' [1 1 1] '#FFFFFF'

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many
types of plots.

RGB Triplet Hexadecimal Color Code Appearance
[0 0.4470 0.7410] '#0072BD'
[0.8500 0.3250 0.0980] '#D95319'
[0.9290 0.6940 0.1250] '#EDB120'
[0.4940 0.1840 0.5560] '#7E2F8E'
[0.4660 0.6740 0.1880] '#77AC30'
[0.3010 0.7450 0.9330] '#4DBEEE'
[0.6350 0.0780 0.1840] '#A2142F'

Data Types: double | char

'LineStyle' — Line style of the plot
'-' (default) | '--' | ':' | '-.' | 'none'

Line style of the plot, specified as a comma-separated pair consisting of 'LineStyle' and one of the
symbols in the table:

Symbol Line Style Resulting Line
'-' Solid line
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Symbol Line Style Resulting Line
'--' Dashed line

':' Dotted line

'-.' Dash-dotted line

'none' No line No line

'LineWidth' — Line width of plot
1 (default) | positive scalar | positive vector

Line width of the plot, specified as a comma-separated pair consisting of 'LineWidth' and a positive
scalar or vector.

'FontSize' — Font size of text in plot
10 (default) | positive scalar

Font size of text in the plot, specified as a comma-separated pair consisting of 'FontSize' and a
positive scalar.

'FontSizeAutoMode' — Set font size
'auto' (default) | 'manual'

Set font size, specified as a comma-separated pair consisting of 'FontSizeAutoMode' and 'auto'
or 'manual'.
Data Types: char

See Also
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showSpan
Class: polarpattern

Show or hide angle span between two markers

Syntax
showSpan(p,id1,id2)
showSpan(p,id1,id2,true)
showSpan(p,vis)
showSpan(p)
d = showSpan( ___ )

Description
showSpan(p,id1,id2) displays the angle span between two angle markers, id1 and id2. The
angle span is calculated counterclockwise.

showSpan(p,id1,id2,true) automatically reorders the angle markers such that the initial angle
span is less than or equal to 180° counterclockwise.

showSpan(p,vis) sets angle span visibility by setting vis to true or false.

showSpan(p) toggles the angle span display on and off.

d = showSpan( ___ ) returns angle span details in a structure, d using any of the previous
syntaxes.

Input Arguments
p — Polar plot
scalar handle

Polar plot, specified as a scalar handle.

id1,id2 — Cursor or peak marker identifiers
character vector

Cursor or peak marker identifiers, specified as character vector. Adding cursors to the polar plot
creates cursor marker identifiers. Adding peaks to the polar plot creates peak marker identifiers.
Example: showspan(p,'C1','C2'). Displays the angle span between cursors, C1 and C2 in polar
plot, p.

Examples

Show Angle Span for Short-Dipole Antenna

Create a short-dipole antenna element and plot the field values at 250 MHz.
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antenna = phased.ShortDipoleAntennaElement('FrequencyRange',[100,900]*1e6,...
    'AxisDirection','Y');
angs = [-180:1:180];
fc = 250.0e6;
p = pattern(antenna,250.0e6,angs,0,'CoordinateSystem','polar','Type',...
    'efield','Polarization','H');
P = polarpattern(angs,abs(p));

Add cursors to the polar plot at -30° and 30°.

addCursor(P,[-30 30]);
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Show the angle span between the two angles.

showSpan(P,'C1','C2');
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See Also
add | addCursor | animate | createLabels | findLobes | replace | showPeaksTable

Introduced in R2016a
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AlphaBetaFilter
Alpha-beta filter for object tracking

Description
The AlphaBetaFilter object represents an alpha-beta filter designed for object tracking. Use this
tracker for platforms that follow a linear motion model and have a linear measurement model. Linear
motion is defined by constant velocity or constant acceleration. Use the filter to predict the future
location of an object, to reduce noise for a detected location, or to help associate multiple objects
with their tracks.

Creation

Syntax
abf = AlphaBetaFilter
abf = AlphaBetaFilter(Name,Value,...)

Description

abf = AlphaBetaFilter creates an alpha-beta filter for a discrete time, 2-D constant velocity
system. The motion model of the filter corresponds to setting the MotionModel property to '2D
Constant Velocity'. In this case, the filter state takes the form [x; vx; y; vy].

abf = AlphaBetaFilter(Name,Value,...) specifies the properties of the filter using one or
more Name,Value pair arguments. Any unspecified properties take default values.

Properties
MotionModel — Model of target motion
'2D Constant Velocity' (default) | '1D Constant Velocity' | '3D Constant Velocity' |
'1D Constant Acceleration' | '2D Constant Acceleration' | '3D Constant
Acceleration'

Model of target motion, specified as a character vector or string. Specifying 1D, 2D or 3D sets the
dimensions of the targets motion. Specifying Constant Velocity assumes that the target motion
has constant velocity at each simulation step. Specifying Constant Acceleration assumes that
the target motion has constant acceleration at each simulation step.
Data Types: char | string

State — Filter state
scalar | real-valued M-element vector

Filter state, specified as a scalar or a real-valued M-element vector. A scalar input is extended to an
M-element vector. The state vector is the concatenated states from each dimension.

The state vectors for each motion model are column vectors:
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MotionModel Property State Vector
'1D Constant Velocity' [x; vx]
'2D Constant Velocity' [x; vx; y; vy]
'3D Constant Velocity' [x; vx; y; vy; z; vz]
'1D Constant Acceleration' [x; vx; ax]
'2D Constant Acceleration' [x; vx; ax; y; vy; ay]
'3D Constant Acceleration' [x; vx; ax; y; vy; ay; z; vz; az]

where, for example, vx denotes velocity in the x-direction and ax denotes acceleration in the x-
direction.
Example: [200;0.2;150;0.1;0;0.25]
Data Types: double

StateCovariance — State estimation error covariance
M-by-M matrix | scalar

State error covariance, specified as an M-by-M matrix where M is the size of the filter state. A scalar
input is extended to an M-by-M matrix. The covariance matrix represents the uncertainty in the filter
state.
Example: eye(6)

ProcessNoise — Process noise covariance
D-by-D matrix | scalar

Process noise covariance, specified as a scalar or an D-by-D matrix where D is the dimensionality of
motion. For example, if MotionModel is '2D Constant Velocity, then D = 2. A scalar input is
extended to an D-by-D matrix.
Example: [20 0.1; 0.1 1]

MeasurementNoise — Measurement noise covariance
D-by-D matrix | scalar

Measurement noise covariance, specified as a scalar or an D-by-D matrix where D is the
dimensionality of motion. For example, if MotionModel is '2D Constant Velocity, then D = 2. A
scalar input is extended to an M-by-M matrix.
Example: [20 0.1; 0.1 1]

Coefficients — Alpha-beta filter coefficients
scalar | row vector of real values

Alpha-beta filter coefficients, specified as a scalar or row vector of real values. Any scalar input is
extended to a row vector. If you specify constant velocity in the MotionModel property, the
coefficients are [alpha beta]. If you specify constant acceleration in the MotionModel property,
the coefficients are [alpha beta gamma].
Example: [20 0.1]
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Object Functions
predict Predict the state and state estimation error covariance
correct Correct the state and state estimation error covariance
distance Distances between measurements and predicted measurements
likelihood Likelihood of measurement
clone Create identical object

Examples

Track Constant-Velocity Target Using Alpha-Beta Filter

Apply the alpha-beta filter to track a target moving at constant velocity along the x-axis.

T = 0.1;
V0 = 100;
N = 100;
plat = phased.Platform('MotionModel','Velocity', ...
    'VelocitySource','Input port','InitialPosition',[100;0;0]);
abfilt = phased.AlphaBetaFilter('MotionModel','1D Constant Velocity');
Z = zeros(1,N);
Zp = zeros(1,N);
Zc = zeros(1,N);
for m = 1:N
    pos = plat(T,[100+20*randn;0;0]);
    Z(m) = pos(1);
    [~,~,Zp(m)] = predict(abfilt,T);
    [~,~,Zc(m)] = correct(abfilt,Z(m));
end
t = (0:N-1)*T;
plot(t,Z,t,Zp,t,Zc)
xlabel('Time (s)')
ylabel('Position (m)')
legend('True Track','Predicted Track','Corrected Track', ...
    'Location','Best')
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Track Constant-Acceleration Target Using Alpha-Beta Filter

Apply the alpha-beta filter to track a target moving at constant acceleration along the x-axis.

T = 0.1;
a0 = 100;
N = 100;
plat = phased.Platform('MotionModel','Acceleration', ...
    'AccelerationSource','Input port','InitialPosition',[100;0;0]);
abfilt = phased.AlphaBetaFilter( ...
    'MotionModel','1D Constant Acceleration', ...
    'Coefficients',[0.5 0.5 0.1]);
Z = zeros(1,N);  
Zp = zeros(1,N);
Zc = zeros(1,N);
for m = 1:N
    pos = plat(T,[100+20*randn;0;0]);
    Z(m) = pos(1);
    [~,~,Zp(m)] = predict(abfilt,T);
    [~,~,Zc(m)] = correct(abfilt,Z(m));
end
t = (0:N-1)*T;
plot(t,Z,t,Zp,t,Zc)
xlabel('Time (s)')
ylabel('Position (m)');
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legend('True Track','Predicted Track','Corrected Track', ...
    'Location','Best');

Track Target in 3-D Using Alpha-Beta Filter

Apply the alpha-beta filter to track a target moving at constant velocity in three dimensions.

T = 0.1;
V0 = 100;
N = 100;
plat = phased.Platform('MotionModel','Velocity', ...
    'VelocitySource','Input port','InitialPosition',[100;0;0]);
abfilt = phased.AlphaBetaFilter('MotionModel', ...
    '3D Constant Velocity','State',zeros(6,1));
Z = zeros(3,N);
Zp = zeros(3,N);
Zc = zeros(3,N);
for m = 1:N
    Z(:,m) = plat(T,[V0+20*randn;0;0]);
    [~,~,Zp(:,m)] = predict(abfilt,T);
    [~,~,Zc(:,m)] = correct(abfilt,Z(:,m));
end
t = (0:N-1)*T;
plot(t,Z(1,:),t,Zp(1,:),t,Zc(1,:))
xlabel('Time (s)')

1 Objects

1-2194



ylabel('Position along X (m)')
legend('True Track','Predicted Track','Corrected Track', ...
    'Location','Best')

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Introduced in R2018b

 AlphaBetaFilter

1-2195



clone
Copy of alpha-beta tracking filter

Syntax
abfilter2 = clone(abfilter)

Description
abfilter2 = clone(abfilter) creates a copy, abfilter2, of the filter object, abfilter, with
the same property values.

Input Arguments
abfilter — Alpha-beta tracking filter
phased.AlphaBetaFilter object

Alpha-beta tracking filter, specified as a phased.AlphaBetaFilter object.

Output Arguments
abfilter2 — Copy of alpha-beta tracking filter
phased.AlphaBetaFilter

Copy of alpha-beta tracking filter, returned as a phased.AlphaBetaFilter object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
correct | distance | likelihood | predict

System Objects
phased.Platform

Introduced in R2018b
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correct
Correct the state and state estimation error covariance

Syntax
xCorr = correct(abfilter,zMeas)
[xCorr,pCorr] = correct(abfilter,zMeas)
[xCorr,pCorr,zCorr] = correct(abfilter,zMeas)

Description
xCorr = correct(abfilter,zMeas) returns the corrected the state, xCorr, of the tracking filter
abfilter given the measurement, zMeas. Calling correct overwrites the internal states of the
object.

[xCorr,pCorr] = correct(abfilter,zMeas) also returns the corrected state covariance
matrix, pCorr.

[xCorr,pCorr,zCorr] = correct(abfilter,zMeas) also returns the corrected measurement,
zCorr.

Input Arguments
abfilter — Alpha-beta tracking filter
phased.AlphaBetaFilter object

Alpha-beta tracking filter, specified as a phased.AlphaBetaFilter object. Calling correct
overwrites the internal states of the object.

zMeas — Measurement of tracked object
K-by-1 vector

Measurement of tracked object, specified as a K-by-1 vector, where K is the size of the measurement.

Output Arguments
xCorr — Corrected state of the filter
L-by-1 vector

Corrected state of the filter, returned as an L-by-1 vector. The corrected state overrides the value of
the State property.

pCorr — Corrected state covariance of the filter
L-by-L matrix

Corrected state covariance of the filter, returned as an L-by-L matrix. The corrected state covariance
overrides the value of the StateCovariance property.

zCorr — Corrected measurement of the filter
K-by-1 vector

 correct

1-2197



Corrected measurement of the filter, returned as a K-by-1 vector.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
clone | distance | likelihood | predict

System Objects
phased.Platform

Introduced in R2018b
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distance
Distances between measurements and predicted measurements

Syntax
dist = distance(abfilter,zMatrix)

Description
dist = distance(abfilter,zMatrix) computes the distance between one or more predicted
measurements given in zMatrix and the measurement predicted by the abfilter object.

Input Arguments
abfilter — Alpha-beta tracking filter
phased.AlphaBetaFilter object

Alpha-beta tracking filter, specified as a phased.AlphaBetaFilter object.

zMatrix — Measurements of tracked objects
N-by-K matrix

Measurements of tracked objects, specified as an N-by-K matrix where N is the number of
measurements. Each row of the matrix contains a measurement vector. The number of columns, K,
must match the measurement dimensions of the motion model. This computation takes into account
the covariance of the predicted state and the process noise.

Output Arguments
dist — Distances between measurements and filter predictions
length-N row vector

Distances between measurements and filter predictions, returned as a row vector. Each element
corresponds to a distance between the predicted measurement coming from the abfilter object
and a row of zMatrix.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
clone | correct | likelihood | predict

System Objects
phased.Platform
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Introduced in R2018b
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predict
Predict the state and state estimation error covariance

Syntax
xPred = predict(abfilter,tstep)
[xPred,pPred] = predict(abfilter,tstep)
[xPred,pPred,zPred] = predict(abfilter,tstep)

Description
xPred = predict(abfilter,tstep) returns the predicted filter state, xPred, of the filter,
abfilter, after the elapsed time, tstep.

[xPred,pPred] = predict(abfilter,tstep) also returns the estimated state covariance,
pPred.

[xPred,pPred,zPred] = predict(abfilter,tstep) also returns the predicted measurements,
zPred.

Input Arguments
abfilter — Alpha-beta tracking filter object
phased.AlphaBetaFilter object

Alpha-beta tracking filter, specified as a phased.AlphaBetaFilter object. Calling predict
overwrites the internal states of the object.

tstep — Time step
positive scalar

Time step for next prediction, specified as a positive scalar. The time step is the interval from the last
prediction-correction to the current prediction. Units are in seconds.

Output Arguments
xPred — Predicted state of the filter
L-by-1 vector

Predicted state of the filter, returned as an L-by-1 vector where L is the size of the state vector. The
predicted state overrides the value of the State property.

pPred — Predicted state covariance of the filter
L-by-L matrix

Predicted state covariance of the filter, returned as an L-by-L matrix. The predicted state covariance
overrides the value of the StateCovariance property.

zPred — Predicted measurement
K-by-1 vector
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Predicted measurement, returned as a K-by-1 vector, where K is the size of the measurement.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
clone | correct | distance | likelihood

System Objects
phased.Platform

Introduced in R2018b
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likelihood
Likelihood of measurement

Syntax
lk = likelihood(abfilter,zMeas)

Description
lk = likelihood(abfilter,zMeas) computes the likelihood, lk, of the current measurement,
zMeas, from the filter, abfilter.

Input Arguments
abfilter — Alpha-beta tracking filter
phased.AlphaBetaFilter object

Alpha-beta tracking filter, specified as a phased.AlphaBetaFilter object.

zMeas — Measurements of tracked object
K-by-1 vector

Measurements of tracked object, specified as a K-by-1 vector, where K is the size of the measurement.

Output Arguments
lk — Likelihood of measurement
scalar

Likelihood of current measurement, returned as a scalar.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
Functions
clone | correct | distance | predict

System Objects
phased.Platform

Introduced in R2018b
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directivity
Package: phased

Directivity of antenna or transducer element

Syntax
D = directivity(element,FREQ,ANGLE)

Description
D = directivity(element,FREQ,ANGLE) returns the “Directivity” on page 1-2205 of the antenna
or transducer element, element, at frequencies specified by FREQ in direction angles specified by
ANGLE.

Input Arguments
element — Antenna or transducer element
Phased Array System Toolbox System object

Antenna or transducer element, specified as a Phased Array System Toolbox System object.

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

ANGLE — Angles for computing directivity
1-by-M real-valued row vector | 2-by-M real-valued matrix

Angles for computing directivity, specified as a 1-by-M real-valued row vector or a 2-by-M real-valued
matrix, where M is the number of angular directions. Angle units are in degrees. If ANGLE is a 2-by-M
matrix, then each column specifies a direction in azimuth and elevation, [az;el]. The azimuth angle
must lie between –180° and 180°. The elevation angle must lie between –90° and 90°.

If ANGLE is a 1-by-M vector, then each entry represents an azimuth angle, with the elevation angle
assumed to be zero.
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The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis. The elevation angle
is the angle between the direction vector and xy plane. This angle is positive when measured towards
the z-axis. See “Azimuth and Elevation Angles”.
Example: [45 60; 0 10]
Data Types: double

Output Arguments
D — Directivity
M-by-L matrix

Directivity, returned as an M-by-L matrix. Each row corresponds to one of the M angles specified by
ANGLE. Each column corresponds to one of the L frequency values specified in FREQ. Directivity units
are in dBi where dBi is defined as the gain of an element relative to an isotropic radiator.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth and elevation angles of a direction vector.
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See Also
beamwidth | pattern | patternAzimuth | patternElevation

Introduced in R2019a
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beamwidth
Package: phased

Compute and display beamwidth of an array

Syntax
beamwidth(array,freq)
beamwidth(array,freq,Name,Value)
[bw,angles] = beamwidth( ___ )

Description
beamwidth(array,freq) plots the 2-D power pattern (in dB) of the array for all azimuth angles at
a fixed elevation angle of zero degrees. The plot displays the half-power beamwidth (in degrees) at
the frequency specified in freq (in Hz) and the angles (in degrees) in azimuth at which the
magnitude of the power pattern decreases by 3 dB from the peak of the main beam.

beamwidth(array,freq,Name,Value) plots the beamwidth with the specified parameter Name set
to the specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).
Example: beamwidth(array,3e8,'Cut','Elevation')

[bw,angles] = beamwidth( ___ ) returns the angular beamwidth bw (in degrees). The function
also returns the corresponding angle values (in degrees) that mark the beamwidth.

Examples

Plot Beamwidth of Sonar Array

Plot the beamwidth of a sonar array operating at a frequency of 2 kHz when the propagation speed of
sound in water is 1500 m/s.

The sonar array consists of a 20-element uniform linear array (ULA). Consider the element of the ULA
to be a backbaffled phased.IsotropicProjector with a VoltageResponse of 100 Volts and with
a FrequencyRange from 10 Hz to 300 kHz. Create a phased.ULA object to model the uniform linear
array.

 projector = phased.IsotropicProjector('BackBaffled',true,...
        'VoltageResponse',100,'FrequencyRange',[10 300000])

projector = 
  phased.IsotropicProjector with properties:

    VoltageResponse: 100
     FrequencyRange: [10 300000]
        BackBaffled: true
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myArray = phased.ULA('Element',projector,'NumElements',20,...
    'ElementSpacing',1500/200e3/2)

myArray = 
  phased.ULA with properties:

           Element: [1x1 phased.IsotropicProjector]
       NumElements: 20
    ElementSpacing: 0.0037
         ArrayAxis: 'y'
             Taper: 1

Using the beamwidth function, calculate and plot the 6 dB beamwidth of the Sonar array.

beamwidth(myArray,200e3,'dBDown',6,'PropagationSpeed',1500)

ans = 6.9200

Calculate Beamwidth and Angles of Uniform Linear Array (ULA)

Calculate the half-power beamwidth and angles of a 20-element uniform linear array (ULA) of cosine
antenna elements.

Create a phased.CosineAntennaElement object with the 'CosinePower' exponents set to 1.5.
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myAnt = phased.CosineAntennaElement

myAnt = 
  phased.CosineAntennaElement with properties:

    FrequencyRange: [0 1.0000e+20]
       CosinePower: [1.5000 1.5000]

Create a phased.ULA object to model a 20-element ULA of cosine antenna elements. These elements
are spaced at 0.5 meters on the azimuth plane.

array = phased.ULA('Element',myAnt,'NumElements',20)

array = 
  phased.ULA with properties:

           Element: [1x1 phased.CosineAntennaElement]
       NumElements: 20
    ElementSpacing: 0.5000
         ArrayAxis: 'y'
             Taper: 1

Compute the beamwidth and angles of the array when it is operating at 3e8 Hz. Specify the
beamwidth to be computed along the elevation plane.

[BW,Ang] = beamwidth(array,3e8,'Cut','Elevation')

BW = 74.8200

Ang = 1×2

  -37.4100   37.4100

Input Arguments
array — Array of sensor elements
Phased Array System Toolbox System object

Array of sensor elements, specified as one of the following System objects:

• phased.ULA
• phased.URA
• phased.UCA
• phased.ConformalArray
• phased.HeterogeneousULA
• phased.HeterogeneousURA
• phased.HeterogeneousConformalArray

freq — Frequency used to calculate beamwidth
scalar in Hz
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Frequency used to calculate the beamwidth, specified as a scalar in Hz.
Example: 3e8
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: beamwidth(array,3e8,'Cut','Azimuth','CutAngle',45) plots the beamwidth of
the array that is operating at a frequency of 0.3 GHz, with the slice direction set to 'Azimuth', and
the cut angle set to 45 degrees.

Cut — Slice direction in azimuth-elevation space
'Azimuth' (default) | 'Elevation'

The slice direction in azimuth-elevation space along which the beamwidth is computed, specified as
the comma-separated pair consisting of 'Cut' and 'Azimuth' for the azimuth plane, and 'Cut' and
'Elevation' for the elevation plane.

CutAngle — Angle for plane to get required 2-D cut
0 (default) | scalar

Corresponding angle (in degrees) for the plane to get the required 2-D cut, specified as the comma-
separated pair consisting of 'CutAngle' and a scalar. If 'Cut' is specified as 'Azimuth', then
'CutAngle' (Elevation) should lie between [−90, 90] degrees. If 'Cut' is specified as
'Elevation', then 'CutAngle' (Azimuth) should lie between [−180, 180] degrees.
Data Types: double

dBDown — Power value from peak of main lobe
3 (default) | positive scalar

Power value (in dB) from the peak of the main lobe, specified as the comma-separated pair consisting
of 'dBDown' and a positive scalar. The default value is 3 dB, which translates to half-power
beamwidth. To calculate first-null beamwidth, specify the 'dBDown' value as Inf.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PropagationSpeed — Propagation speed
3×10^8 m/s (speed of light) (default) | positive scalar

Propagation speed, specified as the comma-separated pair consisting of 'PropagationSpeed' and a
positive scalar (in m/s).
Data Types: double

Weights — Weights applied to array
length-N column vector

Weights applied to the array of sensor elements, specified as the comma-separated pair consisting of
'Weights' and a length-N column vector, where N is the number of elements in the array.
Data Types: double
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Output Arguments
bw — Angular beamwidth
scalar in degrees

Angular beamwidth of the array of sensor elements, returned as a scalar in degrees.
Data Types: double

angles — Angle values of beamwidth
1-by-2 vector in degrees

Angle values of the beamwidth, returned as a 1-by-2 vector. The two elements in the vector [amin, amax]
define the beamwidth bw as amax−amin.

See Also
Objects
phased.ConformalArray | phased.HeterogeneousConformalArray |
phased.HeterogeneousULA | phased.HeterogeneousURA | phased.UCA | phased.ULA |
phased.URA

Introduced in R2020b
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beamwidth
Package: phased

Compute and display beamwidth of a subarray

Syntax
beamwidth(subarray,freq)
beamwidth(subarray,freq,Name,Value)
[bw,angles] = beamwidth( ___ )

Description
beamwidth(subarray,freq) plots the 2-D power pattern (in dB) of the subarray for all azimuth
angles at a fixed elevation angle of zero degrees. The plot displays the half-power beamwidth (in
degrees) at the frequency specified in freq (in Hz) and the angles (in degrees) in azimuth at which
the magnitude of the power pattern decreases by 3 dB from the peak of the main beam.

beamwidth(subarray,freq,Name,Value) computes and plots the beamwidth with the specified
parameter Name set to the specified Value. You can specify additional name-value pair arguments in
any order as (Name1,Value1,...,NameN,ValueN).
Example: beamwidth(subarray,5e8,'Cut','Elevation')

[bw,angles] = beamwidth( ___ ) returns the angular beamwidth bw (in degrees). The function
also returns the corresponding angle values (in degrees) of the beamwidth.

Examples

Plot Beamwidth of Rectangular Lattice Array

Plot the beamwidth of a rectangular lattice array composed of two uniform rectangular arrays.
Consider the antenna elements of the array to be cosine antenna elements.

First, construct a phased.CosineAntennaElement object.

myAnt = phased.CosineAntennaElement

myAnt = 
  phased.CosineAntennaElement with properties:

    FrequencyRange: [0 1.0000e+20]
       CosinePower: [1.5000 1.5000]

Next, construct a 5-by-5 uniform rectangular array by creating a phased.URA object.

myArray = phased.URA([5 5],[0.5 0.5],'Element',myAnt,...
    'ElementSpacing',[0.15 0.15])

myArray = 
  phased.URA with properties:
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           Element: [1x1 phased.CosineAntennaElement]
              Size: [5 5]
    ElementSpacing: [0.1500 0.1500]
           Lattice: 'Rectangular'
       ArrayNormal: 'x'
             Taper: 1

Use two of these 5-by-5 uniform rectangular arrays to construct a 5-by-10 rectangular lattice.
Construct the lattice using the phased.ReplicatedSubarray object.

myRSA = phased.ReplicatedSubarray('Subarray',myArray,...
'Layout','Rectangular','GridSize',[1 2],...
'GridSpacing','Auto','SubarraySteering','Phase')

myRSA = 
  phased.ReplicatedSubarray with properties:

                 Subarray: [1x1 phased.URA]
                   Layout: 'Rectangular'
                 GridSize: [1 2]
              GridSpacing: 'Auto'
         SubarraySteering: 'Phase'
    PhaseShifterFrequency: 300000000
      NumPhaseShifterBits: 0

Now visualize the 10dB beamwidth of the obtained lattice across the azimuth plane (0 degrees
elevation). The subarray is phase steered toward 24 degrees azimuth. Assume the operating
frequency of the array to be 1 GHz.

stv = phased.SteeringVector('SensorArray',myRSA);
beamwidth(myRSA,1e9,'dBDown',10,'SteerAngle',24,'Weights',stv(1e9,24))
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ans = 16.4600

Calculate Beamwidth and Angles of two ULAs

Calculate the 3 dB beamwidth of a 10-element uniform linear array (ULA) composed of two 5-element
ULAs across the azimuth plane and at 0 degrees elevation. By default, the antenna elements are
isotropic. Assume the operating frequency of the array to be 500MHz.

myArray = phased.ULA('NumElements',5)

myArray = 
  phased.ULA with properties:

           Element: [1x1 phased.IsotropicAntennaElement]
       NumElements: 5
    ElementSpacing: 0.5000
         ArrayAxis: 'y'
             Taper: 1

myRSA = phased.ReplicatedSubarray('Subarray',myArray,...
'GridSize',[1 2])

myRSA = 
  phased.ReplicatedSubarray with properties:
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            Subarray: [1x1 phased.ULA]
              Layout: 'Rectangular'
            GridSize: [1 2]
         GridSpacing: 'Auto'
    SubarraySteering: 'None'

[BW,Ang] = beamwidth(myRSA,5e8)

BW = 6.1200

Ang = 1×2

   -3.0600    3.0600

Input Arguments
subarray — Subarray of sensor elements
Phased Array System Toolbox System object

Subarray of sensor elements, specified as one of the following System objects:

• phased.PartitionedArray
• phased.ReplicatedSubarray

freq — Frequency used to calculate beamwidth
scalar in Hz

Frequency used to calculate the beamwidth, specified as a scalar in Hz.
Example: 5e8
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: beamwidth(subarray,5e8,'Cut','Azimuth','CutAngle',45) plots the beamwidth
of the subarray that is operating at a frequency of 0.5 GHz, with the slice direction set to 'Azimuth',
and the cut angle set to 45 degrees.

Cut — Slice direction in azimuth-elevation space
'Azimuth' (default) | 'Elevation'

The slice direction in azimuth-elevation space along which the beamwidth is computed, specified as
the comma-separated pair consisting of 'Cut' and 'Azimuth' for the azimuth plane, and 'Cut' and
'Elevation' for the elevation plane.

CutAngle — Angle for plane to get required 2-D cut
0 (default) | scalar
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Corresponding angle (in degrees) for the plane to get the required 2-D cut, specified as the comma-
separated pair consisting of 'CutAngle' and a scalar. If 'Cut' is specified as 'Azimuth', then
'CutAngle' (Elevation) should lie between [−90, 90] degrees. If 'Cut' is specified as
'Elevation', then 'CutAngle' (Azimuth) should lie between [−180, 180] degrees.
Data Types: double

dBDown — Power value from peak of main lobe
3 (default) | Inf | positive scalar

Power value (in dB) from the peak of the main lobe, specified as the comma-separated pair consisting
of 'dBDown' and a positive scalar. The default value is 3 dB, which translates to half-power
beamwidth. To calculate the first-null beamwidth, specify the 'dBDown' value as Inf.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

PropagationSpeed — Propagation speed
3×10^8 m/s (speed of light) (default) | positive scalar

Propagation speed, specified as the comma-separated pair consisting of 'PropagationSpeed' and a
positive scalar (in m/s).
Data Types: double

Weights — Weights applied to array
length-N column vector

Weights applied to the array of sensor elements, specified as the comma-separated pair consisting of
'Weights' and a length-N column vector, where N is the number of elements in the array.
Data Types: double

SteerAngle — Subarray steering angle
[0; 0] (default) | scalar | length-2 column vector

Subarray steering angle (in degrees), specified as the comma-separated pair consisting of
'SteerAngle' and a scalar or a length-2 column vector. If the steering angle is a scalar, the value
represents the azimuth angle and the elevation angle is assumed to be 0. If the steering angle is a
vector, the angle is specified in the form of [AzimuthAngle; ElevationAngle].

Dependencies

This parameter is applicable when you set the SubarraySteering property of subarray object to
either 'Phase' or 'Time'.
Data Types: double

ElementWeights — Weights applied to each element in subarray
matrix of all ones (default) | matrix | cell array

Weights applied to each element in the subarray, specified as the comma-separated pair consisting of
'ElementWeights' and a matrix or a cell array.

For a ReplicatedSubarray object, ElementWeights must be a NSE-by-N matrix, where NSE is
the number of elements in each individual subarray and N is the number of subarrays. Each column
in ElementWeights specifies the weights for the elements in the corresponding subarray.
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For a PartitionedArray object, if the individual subarrays have the same number of elements,
ElementWeights must be an NSE-by-N matrix, where NSE is the number of elements in each
individual subarray and N is the number of subarrays.

Each column in the WS property of the subarray object specifies the weights for the elements in the
corresponding subarray. If subarrays in the PartitionedArray object have different number of
elements, ElementWeights can be one of the following:

• NSE-by-N matrix –– NSE indicates the number of elements in the largest subarray and N is the
number of subarrays.

• 1-by-N cell array –– N is the number of subarrays and each cell contains a column vector whose
length is the same as the number of elements of the corresponding subarray.

If WS is a matrix, the first K entries in each column specify the weights for the elements in the
corresponding subarray. K is the number of elements in the corresponding subarray. If WS is a cell
array, each cell in the array is a column vector specifying the weights for the elements in the
corresponding subarray.

Dependencies

This parameter is applicable when you set the SubarraySteering property of subarray object to
'Custom'.
Data Types: double

Output Arguments
bw — Angular beamwidth
scalar in degrees

Angular beamwidth of the subarray, returned as a scalar in degrees.
Data Types: double

angles — Angle values of beamwidth
1-by-2 vector in degrees

Angle values of the beamwidth, returned as a 1-by-2 vector. The two elements in the vector [amin, amax]
define the beamwidth bw as amax−amin.

See Also
Objects
phased.PartitionedArray | phased.ReplicatedSubarray

Introduced in R2020b
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beamwidth
Package: phased

Compute and display beamwidth of sensor element pattern

Syntax
beamwidth(element,freq)
beamwidth(element,freq,Name,Value)
[bw,angles] = beamwidth( ___ )

Description
beamwidth(element,freq) plots the 2-D power pattern (in dB) of the element for all azimuth
angles at an elevation angle of zero degrees. The plot displays the half-power beamwidth (in degrees)
at the frequency specified in freq (in Hz) and the angles (in degrees) in azimuth at which the
magnitude of the power pattern decreases by 3 dB from the peak of the main beam.

beamwidth(element,freq,Name,Value) plots the beamwidth with the specified parameter Name
set to the specified Value. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN).
Example: beamwidth(element,1e9,'Cut','Elevation)

[bw,angles] = beamwidth( ___ ) returns the angular beamwidth bw (in degrees). The function
also returns the corresponding angle values (in degrees) that mark the beamwidth.

Examples

Plot Beamwidth of Isotropic Antenna

Plot the beamwidth for an isotropic antenna at 1 GHz.

Create an isotropic antenna using a phased.IsotropicAntennaElement object.

antenna = phased.IsotropicAntennaElement('FrequencyRange',[800e6 1.2e9])

antenna = 
  phased.IsotropicAntennaElement with properties:

    FrequencyRange: [800000000 1.2000e+09]
       BackBaffled: false

Using the beamwidth function, plot the half-power (3 dB) beamwidth for the antenna. Use a
frequency value of 1 GHz.

beamwidth(antenna, 1e9)
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ans = 360

Calculate Beamwidth and Angles of Cosine Antenna Element

Calculate the half-power beamwidth and angles of a cosine antenna element.

Create a phased.CosineAntennaElement object with the 'CosinePower' exponents set to 10.

myAnt = phased.CosineAntennaElement('CosinePower',[10 10])

myAnt = 
  phased.CosineAntennaElement with properties:

    FrequencyRange: [0 1.0000e+20]
       CosinePower: [10 10]

Compute the beamwidth and angles of the antenna element when it is operating at 1 GHz. Set
'dbDown' to 3 dB.

[BW,Ang] = beamwidth(myAnt,1e9,'dbDown',3)

BW = 29.9600

Ang = 1×2

 beamwidth

1-2219



  -14.9800   14.9800

Input Arguments
element — Antenna or microphone element
Phased Array System Toolbox System object

Antenna or microphone element, specified as one of the following System objects:

• phased.CosineAntennaElement
• phased.CrossedDipoleAntennaElement
• phased.CustomAntennaElement
• phased.IsotropicAntennaElement
• phased.IsotropicHydrophone
• phased.IsotropicProjector
• phased.ShortDipoleAntennaElement
• phased.OmnidirectionalMicrophoneElement
• phased.CustomMicrophoneElement

freq — Frequency used to calculate beamwidth
scalar in Hz

Frequency used to calculate the beamwidth, specified as a scalar in Hz.
Example: 1e9
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: beamwidth(element,1e9,'Cut','Azimuth','CutAngle',45) plots the beamwidth of
the antenna element that is operating at a frequency of 1 GHz, with the slice direction set to
'Azimuth', and the cut angle set to 45 degrees.

Cut — Slice direction in azimuth-elevation space
'Azimuth' (default) | 'Elevation'

The slice direction in azimuth-elevation space along which the beamwidth is computed, specified as
the comma-separated pair consisting of 'Cut' and 'Azimuth' for the azimuth plane, and 'Cut' and
'Elevation' for the elevation plane.

CutAngle — Angle for plane to get required 2-D cut
0 (default) | scalar

Corresponding angle (in degrees) for the plane to get the required 2-D cut, specified as the comma-
separated pair consisting of 'CutAngle' and a scalar. If 'Cut' is specified as 'Azimuth', then
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'CutAngle' (Elevation) should lie between [−90, 90] degrees. If 'Cut' is specified as
'Elevation', then 'CutAngle' (Azimuth) should lie between [−180, 180] degrees.
Data Types: double

dBDown — Power value from peak of main lobe
3 (default) | Inf | positive scalar

Power value (in dB) from the peak of the main lobe, specified as the comma-separated pair consisting
of 'dBDown' and a positive scalar. The default value is 3 dB, which translates to half-power
beamwidth. To calculate the first-null beamwidth, specify the 'dBDown' value as Inf.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64

Output Arguments
bw — Angular beamwidth
scalar in degrees

Angular beamwidth of the sensor element, returned as a scalar in degrees.
Data Types: double

angles — Angle values of beamwidth
1-by-2 vector in degrees

Angle values of the beamwidth, returned as a 1-by-2 vector. The two elements in the vector [amin, amax]
define the beamwidth bw as amax−amin.

See Also
Functions
directivity | isPolarizationCapable | pattern | patternAzimuth | patternElevation

Introduced in R2020b
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isPolarizationCapable
Package: phased

Antenna element polarization capability

Syntax
capflag = isPolarizationCapable(element)

Description
capflag = isPolarizationCapable(element) returns a Boolean value, capflag, indicating
whether the antenna element supports polarization. An antenna element supports polarization if it
can create or respond to polarized fields.

Input Arguments
element — Antenna or transducer element
Phased Array System Toolbox System object

Antenna or transducer element, specified as a Phased Array System Toolbox System object.

Output Arguments
capflag — Polarization-capability flag
true | false

Polarization-capability flag returned as a Boolean value true if the antenna element supports
polarization or false if it does not.

See Also
Functions
beamwidth | directivity | pattern | patternAzimuth | patternElevation

Introduced in R2019a
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pattern
Package: phased

Plot antenna or transducer element directivity and patterns

Syntax
pattern(element,FREQ)
pattern(element,FREQ,AZ)
pattern(element,FREQ,AZ,EL)
pattern( ___ ,Name,Value)
[PAT,AZ_ANG,EL_ANG] = pattern( ___ )

Description
pattern(element,FREQ) plots the 3-D array directivity pattern (in dBi) for the element specified in
element. The operating frequency is specified in FREQ. You can use this function to display the
patterns for antennas that support polarization.

pattern(element,FREQ,AZ) plots the element directivity pattern at the specified azimuth angle.

pattern(element,FREQ,AZ,EL) plots the element directivity pattern at specified azimuth and
elevation angles.

pattern( ___ ,Name,Value) plots the element pattern with additional options specified by one or
more Name,Value pair arguments.

[PAT,AZ_ANG,EL_ANG] = pattern( ___ ) returns the element pattern in PAT. The AZ_ANG output
contains the coordinate values corresponding to the rows of PAT. The EL_ANG output contains the
coordinate values corresponding to the columns of PAT. If the 'CoordinateSystem' parameter is
set to 'uv', then AZ_ANG contains the U coordinates of the pattern and EL_ANG contains the V
coordinates of the pattern. Otherwise, they are in angular units in degrees. UV units are
dimensionless.

Input Arguments
element — Antenna or transducer element
Phased Array System Toolbox System object

Antenna or transducer element, specified as a Phased Array System Toolbox System object.

FREQ — Frequency for computing directivity and patterns
positive scalar | 1-by-L real-valued row vector

Frequencies for computing directivity and patterns, specified as a positive scalar or 1-by-L real-
valued row vector. Frequency units are in hertz.

• For an antenna, microphone, or sonar hydrophone or projector element, FREQ must lie within the
range of values specified by the FrequencyRange or FrequencyVector property of the element.
Otherwise, the element produces no response and the directivity is returned as –Inf. Most
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elements use the FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.

Example: [1e8 2e6]
Data Types: double

AZ — Azimuth angles
[-180:180] (default) | 1-by-N real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. When measured from the x-axis toward the y-axis, this angle is positive.
Example: [-45:2:45]
Data Types: double

EL — Elevation angles
[-90:90] (default) | 1-by-M real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-M real-valued row vector
where M is the number of desired elevation directions. Angle units are in degrees. The elevation
angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: [-75:1:70]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: CoordinateSystem,'polar',Type,'directivity'

CoordinateSystem — Plotting coordinate system
'polar' (default) | 'rectangular' | 'uv'

Plotting coordinate system of the pattern, specified as the comma-separated pair consisting of
'CoordinateSystem' and one of 'polar', 'rectangular', or 'uv'. When
'CoordinateSystem' is set to 'polar' or 'rectangular', the AZ and EL arguments specify the
pattern azimuth and elevation, respectively. AZ values must lie between –180° and 180°. EL values
must lie between –90° and 90°. If 'CoordinateSystem' is set to 'uv', AZ and EL then specify U
and V coordinates, respectively. AZ and EL must lie between -1 and 1.
Example: 'uv'
Data Types: char

1 Objects

1-2224



Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Normalize — Display normalize pattern
true (default) | false

Display normalized pattern, specified as the comma-separated pair consisting of 'Normalize' and a
Boolean. Set this parameter to true to display a normalized pattern. This parameter does not apply
when you set 'Type' to 'directivity'. Directivity patterns are already normalized.
Data Types: logical

PlotStyle — Plotting style
'overlay' (default) | 'waterfall'

Plotting style, specified as the comma-separated pair consisting of 'Plotstyle' and either
'overlay' or 'waterfall'. This parameter applies when you specify multiple frequencies in FREQ
in 2-D plots. You can draw 2-D plots by setting one of the arguments AZ or EL to a scalar.
Data Types: char

Polarization — Polarization type
'combined' (default) | 'H' | 'V'

Polarization type, specified as the comma-separated pair consisting of 'Polarization' and either
'combined', 'H', or 'V'. If Polarization is 'combined', the horizontal and vertical polarization
patterns are combined. If Polarization is 'H', only the horizontal polarization is displayed. If
Polarization is 'V', only the vertical polarization is displayed.

Dependencies

To enable this property, set the element argument to an antenna that supports polarization:
phased.CrossedDipoleAntennaElement, phased.ShortDipoleAntennaElement, or
phased.CustomAntennaElement, and then set the 'Type' name-value pair to 'efield',
'power', or 'powerdb'.
Data Types: char | string

Output Arguments
PAT — Element pattern
N-by-M real-valued matrix
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Element pattern, returned as an N-by-M real-valued matrix. The pattern is a function of azimuth and
elevation. The rows of PAT correspond to the azimuth angles in the vector specified by EL_ANG. The
columns correspond to the elevation angles in the vector specified by AZ_ANG.

AZ_ANG — Azimuth angles
scalar | 1-by-N real-valued row vector

Azimuth angles for displaying directivity or response pattern, returned as a scalar or 1-by-N real-
valued row vector corresponding to the dimension set in AZ. The columns of PAT correspond to the
values in AZ_ANG. Units are in degrees.

EL_ANG — Elevation angles
scalar | 1-by-M real-valued row vector

Elevation angles for displaying directivity or response, returned as a scalar or 1-by-M real-valued row
vector corresponding to the dimension set in EL. The rows of PAT correspond to the values in
EL_ANG. Units are in degrees.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.
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Algorithms
Convert plotResponse to Pattern

For antenna, transducer, and array System objects, the pattern function replaces the
plotResponse function. In addition, two new simplified functions exist just to draw 2-D azimuth and
elevation pattern plots. These functions are azimuthPattern and elevationPattern.

The following table is a guide for converting your code from using plotResponse to pattern.
Notice that some of the inputs have changed from input arguments to Name-Value pairs and
conversely. The general pattern method syntax is

pattern(H,FREQ,AZ,EL,'Name1','Value1',...,'NameN','ValueN')

plotResponse Inputs plotResponse Description pattern Inputs
H argument Antenna, microphone, or array

System object.
H argument (no change)

FREQ argument Operating frequency. FREQ argument (no change)
V argument Propagation speed. This argument

is used only for arrays.
'PropagationSpeed' name-value
pair. This parameter is only used for
arrays.
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plotResponse Inputs plotResponse Description pattern Inputs
'Format' and 'RespCut' name-
value pairs

These options work together to let
you create a plot in angle space
(line or polar style) or UV space.
They also determine whether the
plot is 2-D or 3-D. This table shows
you how to create different types of
plots using plotResponse.

Display space  
Angle space (2D) Set 'RespCut'

to 'Az' or
'El'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using either
the
'AzimuthAngle
s' or
'ElevationAng
les' name-
value pairs.

Angle space (3D) Set 'RespCut'
to '3D'. Set
'Format' to
'line' or
'polar'.

Set the display
axis using both
the
'AzimuthAngle
s'
and'Elevation
Angles' name-
value pairs.

UV space (2D) Set 'RespCut'
to'U'. Set
'Format' to
'UV'. Set the
display range
using the
'UGrid' name-
value pair.

UV space (3D) Set 'RespCut'
to'3D'. Set
'Format' to

'CoordinateSystem' name-value
pair used together with the AZ and
EL input arguments.

'CoordinateSystem' has the
same options as the plotResponse
method 'Format'name-value pair,
except that 'line' is now named
'rectangular'. The table shows
how to create different types of
plots using pattern.

Display space  
Angle space (2D) Set

'Coordinate
System' to
'rectangular'
or 'polar'.
Specify either AZ
or EL as a scalar.

Angle space (3D) Set
'Coordinate
System' to
'rectangular'
or 'polar'.
Specify both AZ
and EL as
vectors.

UV space (2D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space scalar.

UV space (3D) Set
'Coordinate
System' to
'uv'. Use AZ to
specify a U-
space vector.
Use EL to specify
a V-space vector.

If you set CoordinateSystem to
'uv', enter the UV grid values
using AZ and EL.
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plotResponse Inputs plotResponse Description pattern Inputs
Display space  

'UV'. Set the
display range
using both the
'UGrid' and
'VGrid' name-
value pairs.

'CutAngle' name-value pair Constant angle at to take an
azimuth or elevation cut. When
producing a 2-D plot and when
'RespCut' is set to 'Az' or 'El',
use 'CutAngle' to set the slice
across which to view the plot.

No equivalent name-value pair. To
create a cut, specify either AZ or EL
as a scalar, not a vector.

'NormalizeResponse' name-
value pair

Normalizes the plot. When 'Unit'
is set to 'dbi', you cannot specify
'NormalizeResponse'.

Use the 'Normalize' name-value
pair. When 'Type' is set to
'directivity' you cannot specify
'Normalize'.

'OverlayFreq' name-value pair Plot multiple frequencies on the
same 2-D plot. Available only when
'Format' is set to 'line' or 'uv'
and 'RespCut' is not set to '3D'.
The value true produces an overlay
plot and the value false produces
a waterfall plot.

'PlotStyle' name-value pair
plots multiple frequencies on the
same 2-D plot.

The values 'overlay' and
'waterfall' correspond to
'OverlayFreq' values of true
and false. The option
'waterfall' is allowed only when
'CoordinateSystem' is set to
'rectangular' or 'uv'.

'Polarization' name-value pair Determines how to plot polarized
fields. Options are 'None',
'Combined', 'H', or 'V'.

'Polarization' name-value pair
determines how to plot polarized
fields. The 'None' option is
removed. The options 'Combined',
'H', or 'V' are unchanged.

'Unit' name-value pair Determines the plot units. Choose
'db', 'mag', 'pow', or 'dbi',
where the default is 'db'.

'Type' name-value pair, uses
equivalent options with different
names

plotResponse pattern
'db' 'powerdb'
'mag' 'efield'
'pow' 'power'
'dbi' 'directivity'

'Weights' name-value pair Array element tapers (or weights). 'Weights' name-value pair (no
change).

'AzimuthAngles' name-value pair Azimuth angles used to display the
antenna or array response.

AZ argument
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plotResponse Inputs plotResponse Description pattern Inputs
'ElevationAngles' name-value
pair

Elevation angles used to display the
antenna or array response.

EL argument

'UGrid' name-value pair Contains U coordinates in UV-
space.

AZ argument when
'CoordinateSystem' name-value
pair is set to 'uv'

'VGrid' name-value pair Contains V-coordinates in UV-space. EL argument when
'CoordinateSystem' name-value
pair is set to 'uv'

See Also
beamwidth | directivity | patternAzimuth | patternElevation

Introduced in R2019a
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patternAzimuth
Package: phased

Plot antenna or transducer element directivity and pattern versus azimuth

Syntax
patternAzimuth(element,FREQ)
patternAzimuth(element,FREQ,EL)
patternAzimuth(element,FREQ,EL,Name,Value)
PAT = patternAzimuth( ___ )

Description
patternAzimuth(element,FREQ) plots the 2-D element directivity pattern versus azimuth (in dBi)
for the element element at zero-degrees elevation angle. The argument FREQ specifies the operating
frequency.

patternAzimuth(element,FREQ,EL), in addition, plots the 2-D element directivity pattern versus
azimuth (in dBi) at the elevation angle specified by EL. When EL is a vector, multiple overlaid plots
are created.

patternAzimuth(element,FREQ,EL,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternAzimuth( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Azimuth' parameter and
the EL input argument.

Input Arguments
element — Antenna or transducer element
Phased Array System Toolbox System object

Antenna or transducer element, specified as a Phased Array System Toolbox System object.

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.
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Example: 1e8
Data Types: double

EL — Elevation angles
1-by-N real-valued row vector

Elevation angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector. The quantity N is the number of requested elevation directions. Angle units are in
degrees. The elevation angle must lie between –90° and 90°.

The elevation angle is the angle between the direction vector and the xy plane. When measured
toward the z-axis, this angle is positive.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Azimuth,[-90:90],Type,'directivity'

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Azimuth — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector

Azimuth angles, specified as the comma-separated pair consisting of 'Azimuth' and a 1-by-P real-
valued row vector. Azimuth angles define where the array pattern is calculated.
Example: 'Azimuth',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of azimuth values determined by the 'Azimuth' name-value pair argument. The dimension
N is the number of elevation angles, as determined by the EL input argument.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.
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See Also
beamwidth | directivity | pattern | patternElevation

Introduced in R2019a
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patternElevation
Package: phased

Plot antenna or transducer element directivity and pattern versus elevation

Syntax
patternElevation(element,FREQ)
patternElevation(element,FREQ,AZ)
patternElevation(element,FREQ,AZ,Name,Value)
PAT = patternElevation( ___ )

Description
patternElevation(element,FREQ) plots the 2-D element directivity pattern versus elevation (in
dBi) for the element element at zero-degrees azimuth angle. The argument FREQ specifies the
operating frequency.

patternElevation(element,FREQ,AZ), in addition, plots the 2-D element directivity pattern
versus elevation (in dBi) at the azimuth angle specified by AZ. When AZ is a vector, multiple overlaid
plots are created.

patternElevation(element,FREQ,AZ,Name,Value) plots the element pattern with additional
options specified by one or more Name,Value pair arguments.

PAT = patternElevation( ___ ) returns the element pattern. PAT is a matrix whose entries
represent the pattern at corresponding sampling points specified by the 'Elevation' parameter
and the AZ input argument.

Input Arguments
element — Antenna or transducer element
Phased Array System Toolbox System object

Antenna or transducer element, specified as a Phased Array System Toolbox System object.

FREQ — Frequency for computing directivity and pattern
positive scalar

Frequency for computing directivity and pattern, specified as a positive scalar. Frequency units are in
hertz.

• For an antenna or microphone element, FREQ must lie within the range of values specified by the
FrequencyRange or the FrequencyVector property of the element. Otherwise, the element
produces no response and the directivity is returned as –Inf. Most elements use the
FrequencyRange property except for phased.CustomAntennaElement and
phased.CustomMicrophoneElement, which use the FrequencyVector property.

• For an array of elements, FREQ must lie within the frequency range of the elements that make up
the array. Otherwise, the array produces no response and the directivity is returned as –Inf.
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Example: 1e8
Data Types: double

AZ — Azimuth angles for computing directivity and pattern
1-by-N real-valued row vector

Azimuth angles for computing sensor or array directivities and patterns, specified as a 1-by-N real-
valued row vector where N is the number of desired azimuth directions. Angle units are in degrees.
The azimuth angle must lie between –180° and 180°.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy plane. This angle is positive when measured from the x-axis toward the y-axis.
Example: [0,10,20]
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: Azimuth,[-90:90],Type,'directivity'

Type — Displayed pattern type
'directivity' (default) | 'efield' | 'power' | 'powerdb'

Displayed pattern type, specified as the comma-separated pair consisting of 'Type' and one of

• 'directivity' — directivity pattern measured in dBi.
• 'efield' — field pattern of the sensor or array. For acoustic sensors, the displayed pattern is for

the scalar sound field.
• 'power' — power pattern of the sensor or array defined as the square of the field pattern.
• 'powerdb' — power pattern converted to dB.

Example: 'powerdb'
Data Types: char

Elevation — Elevation angles
[-90:90] (default) | 1-by-P real-valued row vector

Elevation angles, specified as the comma-separated pair consisting of 'Elevation' and a 1-by-P
real-valued row vector. Elevation angles define where the array pattern is calculated.
Example: 'Elevation',[-90:2:90]
Data Types: double

Output Arguments
PAT — Element directivity or pattern
P-by-N real-valued matrix
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Element directivity or pattern, returned as an P-by-N real-valued matrix. The dimension P is the
number of elevation angles determined by the 'Elevation' name-value pair argument. The
dimension N is the number of azimuth angles determined by the AZ argument.

More About
Directivity

Directivity describes the directionality of the radiation pattern of a sensor element or array of sensor
elements.

Higher directivity is desired when you want to transmit more radiation in a specific direction.
Directivity is the ratio of the transmitted radiant intensity in a specified direction to the radiant
intensity transmitted by an isotropic radiator with the same total transmitted power

D = 4π
Urad θ, φ

Ptotal

where Urad(θ,φ) is the radiant intensity of a transmitter in the direction (θ,φ) and Ptotal is the total
power transmitted by an isotropic radiator. For a receiving element or array, directivity measures the
sensitivity toward radiation arriving from a specific direction. The principle of reciprocity shows that
the directivity of an element or array used for reception equals the directivity of the same element or
array used for transmission. When converted to decibels, the directivity is denoted as dBi. For
information on directivity, read the notes on “Element Directivity” and “Array Directivity”.

Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.
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See Also
beamwidth | directivity | pattern | patternAzimuth

Introduced in R2019a
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plotSpectrum
Package: phased

Plot spatial spectrum

Syntax
plotSpectrum(estimator)
plotSpectrum(estimator,Name,Value)
hl = plotSpectrum( ___ )

Description
plotSpectrum(estimator) plots the spatial spectrum resulting from the most recent execution of
the estimator object.

plotSpectrum(estimator,Name,Value) plots the spatial spectrum with additional options
specified by one or more Name,Value pair arguments.

hl = plotSpectrum( ___ ) returns the line handle of the spectrum plot in the figure.

Input Arguments
estimator — Spectrum estimator
System object

Spectrum estimator, specified as a Phased Array System Toolbox System object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'NormalizedResponse',true,'Unit','pow'

NormalizeResponse — Plot normalized response
false (default) | true

Option to enable plotting of normalized response, specified as false or true. Set this value to true
to plot the normalized spectrum. Set this value to false to plot the spectrum without normalization.
Data Types: logical

Title — Title of plot figure
'' (default) | character vector

Title of plot figure, specified as a character vector.
Example: 'Beamscan Spectrum'
Data Types: char
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Unit — Plot units
'db' (default) | 'mag' | 'pow'

Plot units, specified as

• 'db' – decibels
• 'mag' – magnitude
• 'pow' – power

.

Output Arguments
hl — Line handle
line handle

Plot line, returned as a handle.

Introduced in R2012a
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aictest
Dimension of signal subspace

Syntax
nsig = aictest(X)
nsig = aictest(X,'fb')

Description
nsig = aictest(X) estimates the number of signals, nsig, present in a snapshot of data, X, that
impinges upon the sensors in an array. The estimator uses the Akaike Information Criterion test
(AIC). The input argument, X, is a complex-valued matrix containing a time sequence of data samples
for each sensor. Each row corresponds to a single time sample for all sensors.

nsig = aictest(X,'fb') estimates the number of signals. Before estimating, it performs forward-
backward averaging on the sample covariance matrix constructed from the data snapshot, X. This
syntax can use any of the input arguments in the previous syntax.

Examples

Estimate the Signal Subspace Dimensions for Two Arriving Signals

Construct a data snapshot for two plane waves arriving at a half-wavelength-spaced uniform line
array with 10 elements. The plane waves arrive from 0° and –25° azimuth, both with elevation angles
of 0°. Assume the signals arrive in the presence of additive noise that is both temporally and spatially
Gaussian white. For each signal, the SNR is 5 dB. Take 300 samples to build a 300-by-10 data
snapshot. Then, solve for the number of signals using aictest.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25];
x = sensorsig(elementPos,300,angles,db2pow(-5));
nsig = aictest(x)

nsig = 2

The result shows that the number of signals is two, as expected.

Estimate the Signal Subspace Dimension using Forward-Backward Smoothing

Construct a data snapshot for two plane waves arriving at a half-wavelength-spaced uniform line
array with 10 elements. Two correlated plane waves arrive from 0° and 10° azimuth, both with
elevation angles of 0°. Assume that the signals arrive in the presence of additive noise that is both
temporally and spatially Gaussian white. For each signal, the SNR is 10 dB. Take 300 samples to build
a 300-by-10 data snapshot. Then, solve for the number of signals using aictest.
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N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 10];
ncov = db2pow(-10);
scov = [1 .5]'*[1 .5];
x = sensorsig(elementPos,300,angles,ncov,scov);
Nsig = aictest(x)

Nsig = 1

This result shows that aictest cannot determine the number of signals correctly when the signals
are correlated.

Use the forward-backward smoothing option.

Nsig = aictest(x,'fb')

Nsig = 2

The addition of forward-backward smoothing yields the correct number of signals.

Input Arguments
X — Data snapshot
complex-valued K-by-N matrix

Data snapshot, specified as a complex-valued, K-by-N matrix. A snapshot is a sequence of time-
samples taken simultaneous at each sensor. In this matrix, K represents the number of time samples
of the data, while N represents the number of sensor elements.
Example: [ –0.1211 + 1.2549i, 0.1415 + 1.6114i, 0.8932 + 0.9765i;]
Data Types: double
Complex Number Support: Yes

Output Arguments
nsig — Dimension of signal subspace
non-negative integer

Dimension of signal subspace, returned as a non-negative integer. The dimension of the signal
subspace is the number of signals in the data.

More About
Estimating the Number of Sources

AIC and MDL tests

Direction finding algorithms such as MUSIC and ESPRIT require knowledge of the number of sources
of signals impinging on the array or equivalently, the dimension, d, of the signal subspace. The Akaike
Information Criterion (AIC) and the Minimum Description Length (MDL) formulas are two frequently-
used estimators for obtaining that dimension. Both estimators assume that, besides the signals, the
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data contains spatially and temporally white Gaussian random noise. Finding the number of sources
is equivalent to finding the multiplicity of the smallest eigenvalues of the sampled spatial covariance
matrix. The sample spatial covariance matrix constructed from a data snapshot is used in place of the
actual covariance matrix.

A requirement for both estimators is that the dimension of the signal subspace be less than the
number of sensors, N, and that the number of time samples in the snapshot, K, be much greater than
N.

A variant of each estimator exists when forward-backward averaging is employed to construct the
spatial covariance matrix. Forward-backward averaging is useful for the case when some of the
sources are highly correlated with each other. In that case, the spatial covariance matrix may be ill
conditioned. Forward-backward averaging can only be used for certain types of symmetric arrays,
called centro-symmetric arrays. Then the forward-backward covariance matrix can be constructed
from the sample spatial covariance matrix, S, using SFB = S + JS*J where J is the exchange matrix.
The exchange matrix maps array elements into their symmetric counterparts. For a line array, it
would be the identity matrix flipped from left to right.

All the estimators are based on a cost function

Ld(d) = K(N − d)ln

1
N − d ∑

i = d + 1

N
λ i

∏
i = d + 1

N
λ i

1
N − d

plus an added penalty term. The value λi represent the smallest (N–d) eigenvalues of the spatial
covariance matrix. For each specific estimator, the solution for d is given by

• AIC

d AIC = argmin
d

Ld(d) + d(2N − d)

• AIC for forward-backward averaged covariance matrices

d AIC: FB = argmin
d

Ld(d) + 1
2d(2N − d + 1)

• MDL

d MDL = argmin
d

Ld(d) + 1
2(d(2N − d) + 1)lnK

• MDL for forward-backward averaged covariance matrices

d MDL FB = argmin
d

Ld(d) + 1
4d(2N − d + 1)lnK

References
[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
espritdoa | mdltest | rootmusicdoa | spsmooth

Introduced in R2013a
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albersheim
Required SNR using Albersheim’s equation

Syntax
SNR = albersheim(prob_Detection,prob_FalseAlarm)
SNR = albersheim(prob_Detection,prob_FalseAlarm,N)

Description
SNR = albersheim(prob_Detection,prob_FalseAlarm) returns the signal-to-noise ratio in
decibels. This value indicates the ratio required to achieve the given probabilities of detection
prob_Detection and false alarm prob_FalseAlarm for a single sample.

SNR = albersheim(prob_Detection,prob_FalseAlarm,N) determines the required SNR for
the noncoherent integration of N samples.

Examples

Compute Required SNR for Probability of Detection

Compute the required SNR of a single pulse to achieve a detection probability of 0.9 as a function of
the false alarm probability.

Set the probability of detection to 0.9 and the probabilities of false alarm from .0001 to .01.

Pd=0.9;
Pfa=0.0001:0.0001:.01;

Loop the Albersheim equation over all Pfa's.

snr = zeros(1,length(Pfa));
for j=1:length(Pfa)
    snr(j) = albersheim(Pd,Pfa(j));
end

Plot SNR versus Pfa.

semilogx(Pfa,snr,'k','linewidth',1)
grid
axis tight
xlabel('Probability of False Alarm')
ylabel('Required SNR (dB)')
title('Required SNR for P_D = 0.9 (N = 1)')
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Compute Required SNR for Probability of Detection of 10 Pulses

Compute the required SNR of 10 non-coherently integrated pulse to achieve a detection probability of
0.9 as a function of the false alarm probability.

Set the probability of detection to 0.9 and the probabilities of false alarm from .0001 to .01.

Pd=0.9;
Pfa=0.0001:0.0001:.01;
Npulses = 10;

Loop over the Albersheim equation over all Pfa's.

snr = zeros(1,length(Pfa));
for j=1:length(Pfa)
    snr(j) = albersheim(Pd,Pfa(j),Npulses);
end

Plot SNR versus Pfa.

semilogx(Pfa,snr,'k','linewidth',1)
grid
axis tight
xlabel('Probability of False Alarm')
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ylabel('Required SNR (dB)')
title('Required SNR for P_D = 0.9 (N = 10)')

More About
Albersheim's Equation

Albersheim's equation uses a closed-form approximation to calculate the SNR. This SNR value is
required to achieve the specified detection and false-alarm probabilities for a nonfluctuating target in
independent and identically distributed Gaussian noise. The approximation is valid for a linear
detector and is extensible to the noncoherent integration of N samples.

Let

A = ln0.62
PFA

and

B = ln PD
1− PD

where PFA and PD are the false-alarm and detection probabilities.

Albersheim's equation for the required SNR in decibels is:
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SNR = − 5log10N + [6.2 + 4.54/ N + 0.44]log10(A + 0.12AB + 1.7B)

where N is the number of noncoherently integrated samples.

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005, p. 329.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001, p. 49.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
shnidman

Introduced in R2011a
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ambgfun
Ambiguity and crossambiguity function

Syntax
afmag = ambgfun(x,Fs,PRF)
afmag = ambgfun(x,y,Fs,PRF)
[afmag,delay,doppler] = ambgfun( ___ )
[afmag,delay,doppler] = ambgfun( ___ ,'Cut','2D')
[afmag,delay] = ambgfun( ___ ,'Cut','Doppler')
[afmag,delay] = ambgfun( ___ ,'Cut','Doppler','CutValue',V)
[afmag,doppler] = ambgfun( ___ ,'Cut','Delay')
[afmag,doppler] = ambgfun( ___ ,'Cut','Delay','CutValue',V)
ambgfun( ___ )

Description
afmag = ambgfun(x,Fs,PRF) returns the magnitude of the normalized ambiguity function for the
vector x. Fs is the sampling rate. PRF is the pulse repetition rate.

afmag = ambgfun(x,y,Fs,PRF) returns the magnitude of the normalized crossambiguity function
between the pulse x and the pulse y.

[afmag,delay,doppler] = ambgfun( ___ ) or [afmag,delay,doppler] = ambgfun( ___
,'Cut','2D') returns the time delay vector, delay, and the Doppler frequency vector, doppler.

[afmag,delay] = ambgfun( ___ ,'Cut','Doppler') returns delays from a zero-Doppler cut
through the 2-D normalized ambiguity function magnitude.

[afmag,delay] = ambgfun( ___ ,'Cut','Doppler','CutValue',V) returns delays from a
nonzero Doppler cut through the 2-D normalized ambiguity function magnitude at Doppler value, V.

[afmag,doppler] = ambgfun( ___ ,'Cut','Delay') returns the Doppler values from zero-
delay cut through the 2-D normalized ambiguity function magnitude.

[afmag,doppler] = ambgfun( ___ ,'Cut','Delay','CutValue',V) returns the Doppler
values from a one-dimensional cut through the 2-D normalized ambiguity function magnitude at a
delay value of V.

ambgfun( ___ ), with no output arguments, plots the ambiguity or crossambiguity function. When
'Cut' is '2D', the function produces a contour plot of the periodic ambiguity function. When 'Cut'
is 'Delay' or 'Doppler', the function produces a line plot of the periodic ambiguity function cut.

Input Arguments
x — Input pulse waveform
complex-valued row or column vector

Input pulse waveform.
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y — Second input pulse waveform
complex-valued row or column vector

Second input pulse waveform.

Fs — Sample rate
real positive scalar

Sampling rate in hertz.

PRF — Pulse repetition frequency
real positive scalar

Pulse repetition frequency in hertz.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'Cut','Doppler','CutValue',10 specifies that a vector of ambiguity function values
be produced at a Doppler shift of 10 Hz.

Cut — Direction of one-dimensional cut through ambiguity function
'2D' (default) | 'Delay' | 'Doppler'

Used to generate an ambiguity surface or one-dimensional cut through the ambiguity diagram. The
value '2D' generates a surface plot of the two-dimensional ambiguity function. The direction of the
one-dimensional cut is determined by setting the value of 'Cut' to 'Delay' or 'Doppler'.

The choice of 'Delay' generates a cut at zero time delay. In this case, the second output argument
of ambgfuncontains the ambiguity function values at Doppler shifted values. You can create a cut at
nonzero time delay using the name-value pair 'CutValue'.

The choice of 'Doppler' generates a cut at zero Doppler shift. In this case, the second output
argument of ambgfun contains the ambiguity function values at time-delayed values. You can create
cut at nonzero Doppler using the name-value pair 'CutValue'.

CutValue — Optional time delay or Doppler shift at which ambiguity function cut is taken
0 (default) | real-valued scalar

When setting the name-value pair 'Cut' to 'Delay' or 'Doppler', you can set 'CutValue' to
specify a cross-section that may not coincide with either zero time delay or zero Doppler shift.
However, 'CutValue' cannot be used when 'Cut' is set to '2D'.

When 'Cut' is set to 'Delay' ,'CutValue' is the time delay at which the cut is taken. Time delay
units are in seconds.

When 'Cut' is set to 'Doppler', 'CutValue' is the Doppler shift at which the cut is taken.
Doppler units are in hertz.
Example: 'CutValue',10.0
Data Types: double
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Output Arguments
afmag

Normalized ambiguity or crossambiguity function magnitudes. afmag is an M-by-N matrix where M is
the number of Doppler frequencies and N is the number of time delays.

delay

Time delay vector.

delay is an N-by-1 vector of time delays.

For the ambiguity function, if Nx is the length of signal x, then the delay vector consist of N = 2Nx – 1
samples in the range, –(Nx/2) – 1,...,(Nx/2) – 1).

For the crossambiguity function, let Ny be the length of the second signal. The time delay vector
consists of N = Nx+ Ny– 1 equally spaced samples. For an even number of delays, the delay sample
times are –(N/2 – 1)/Fs,...,(N/2 – 1))/Fs. For an odd number of delays, if Nf = floor(N/2), the delay
sample times are –Nf /Fs,...,(Nf – 1)/Fs.

doppler

Doppler frequency vector.

doppler is an M-by-1 vector of Doppler frequencies. The Doppler frequency vector consists of M =
2ceil(log2 N) equally-spaced samples. Frequencies are (–(M/2)Fs,...,(M/2–1)Fs).

Examples

Plot Ambiguity Function of Rectangular Pulse

Plot the ambiguity function magnitude of a rectangular pulse.

waveform = phased.RectangularWaveform;
x = waveform();
PRF = 2e4;
[afmag,delay,doppler] = ambgfun(x,waveform.SampleRate,PRF);
contour(delay,doppler,afmag)
xlabel('Delay (seconds)')
ylabel('Doppler Shift (hertz)')
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Plot Autocorrelation Sequences of Rectangular and Linear FM Pulses

This example shows how to plot zero-Doppler cuts of the autocorrelation sequences of rectangular
and linear FM pulses of equal duration. Note the pulse compression exhibited in the autocorrelation
sequence of the linear FM pulse.

hrect = phased.RectangularWaveform('PRF',2e4);
hfm = phased.LinearFMWaveform('PRF',2e4);
xrect = step(hrect);
xfm = step(hfm);
[ambrect,delayrect] = ambgfun(xrect,hrect.SampleRate,...,
    hrect.PRF,'Cut','Doppler');
[ambfm,delayfm] = ambgfun(xfm,hfm.SampleRate,...,
    hfm.PRF,'Cut','Doppler');
figure;
subplot(211);
stem(delayrect,ambrect);
title('Autocorrelation of Rectangular Pulse');
subplot(212);
stem(delayfm,ambfm)
xlabel('Delay (seconds)');
title('Autocorrelation of Linear FM Pulse');
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Plot Nonzero-Doppler Cuts of Autocorrelation Sequences

Plot nonzero-Doppler cuts of the autocorrelation sequences of rectangular and linear FM pulses of
equal duration. Both cuts are taken at a 5 kHz Doppler shift. Besides the reduction of the peak value,
there is a strong shift in the position of the linear FM peak, evidence of range-doppler coupling.

hrect = phased.RectangularWaveform('PRF',2e4);
hfm = phased.LinearFMWaveform('PRF',2e4);
xrect = step(hrect);
xfm = step(hfm);
fd = 5000;
[ambrect,delayrect] = ambgfun(xrect,hrect.SampleRate,...,
    hrect.PRF,'Cut','Doppler','CutValue',fd);
[ambfm,delayfm] = ambgfun(xfm,hfm.SampleRate,...,
    hfm.PRF,'Cut','Doppler','CutValue',fd);
figure;
subplot(211);
stem(delayrect*10^6,ambrect);
title('Autocorrelation of Rectangular Pulse at 5 kHz Doppler Shift');
subplot(212);
stem(delayfm*10^6,ambfm)
xlabel('Delay (\mu sec)');
title('Autocorrelation of Linear FM Pulse at 5 kHz Doppler Shift');
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Plot Crossambiguity Function

Plot the crossambiguity function between an LFM pulse and a delayed replica. Compare the
crossambiguity function with the original ambiguity function. Set the sampling rate to 100 Hz, the
pulse width to 0.5 sec, and the pulse repetition frequency to 1 Hz. The delay or lag is 10 samples
equal to 100 ms. The bandwidth of the LFM signal is 10 Hz.

fs = 100.0;
bw1 = 10.0;
prf = 1;
nsamp = fs/prf;
pw = 0.5;
nlag = 10;

Create the original waveform and its delayed replica.

waveform1 = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',1,...
    'SweepBandwidth',bw1,'SweepDirection','Up','PulseWidth',pw,'PRF',prf);
wav1 = waveform1();
wav2 = [zeros(nlag,1);wav1(1:(end-nlag))];

Plot the ambiguity and crossambiguity functions.

ambgfun(wav1,fs,prf,'Cut','Doppler','CutVal',5)
hold on
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ambgfun(wav1,wav2,fs,[prf,prf],'Cut','Doppler','CutVal',5)
legend('Signal ambiguity', 'Crossambiguity')
hold off

More About
Normalized Ambiguity Function

The normalized ambiguity function is

A(t, fd) = 1
Ex ∫−∞

∞
x(u)e j2πfdux*(u− t) du

Ex =∫−∞
∞

x(u)x*(u) du

where Ex is the squared norm of the signal, x(t), t is the time delay, and fd is the Doppler shift. The
asterisk (*) denotes the complex conjugate. The ambiguity function describes the effects of time
delays and Doppler shifts on the output of a matched filter.

The magnitude of the ambiguity function achieves maximum value at (0,0). At this point, there is
perfect correspondence between the received waveform and the matched filter. The maximum value
of the normalized ambiguity function is one.

The magnitude of the ambiguity function at zero time delay and Doppler shift, A(0, 0) , is the
matched filter output when the received waveform exhibits the time delay and Doppler shift for which
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the matched filter is designed. Nonzero values of the time delay and Doppler shift variables indicate
that the received waveform exhibits mismatches in time delay and Doppler shift from the matched
filter.

The crossambiguity function between two different signals is

A(t, fd) = 1
ExEy
∫−∞
∞

x(u)e j2πfduy*(u− t) du

Ex =∫−∞
∞

x(u)x*(u) du

Ex =∫−∞
∞

y(u)y*(u) du

The peak of the crossambiguity function is not necessarily unity.

References

[1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John Wiley & Sons, 2004.

[2] Mahafza, B. R., and A. Z. Elsherbeni. MATLAB Simulations for Radar Systems Design. Boca Raton,
FL: CRC Press, 2004.

[3] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.
• Supported only when output arguments are specified.

See Also
Functions
pambgfun

System Objects
phased.LinearFMWaveform | phased.MatchedFilter | phased.PhaseCodedWaveform |
phased.RectangularWaveform | phased.SteppedFMWaveform

Introduced in R2011a
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aperture2gain
Convert effective aperture to gain

Syntax
G = aperture2gain(A,lambda)

Description
G = aperture2gain(A,lambda) returns the antenna gain in decibels corresponding to an effective
aperture of A square meters for an incident electromagnetic wave with wavelength lambda meters. A
can be a scalar or vector. If A is a vector, G is a vector of the same size as A. The elements of G
represent the gains for the corresponding elements of A. lambda must be a scalar.

Input Arguments
A

Antenna effective aperture in square meters. The effective aperture describes how much energy is
captured from an incident electromagnetic plane wave. The argument describes the functional area
of the antenna and is not equivalent to the actual physical area. For a fixed wavelength, the antenna
gain is proportional to the effective aperture. A can be a scalar or vector. If A is a vector, each element
of A is the effective aperture of a single antenna.

lambda

Wavelength of the incident electromagnetic wave. The wavelength of an electromagnetic wave is the
ratio of the wave propagation speed to the frequency. For a fixed effective aperture, the antenna gain
is inversely proportional to the square of the wavelength. lambda must be a scalar.

Output Arguments
G

Antenna gain in decibels. G is a scalar or a vector. If G is a vector, each element of G is the gain
corresponding to effective aperture of the same element in A.

Examples

Compute Antenna Gain

An antenna has an effective aperture of 3 square meters. Find the antenna gain when used to capture
an electromagnetic wave with a wavelength of 10 cm.

g = aperture2gain(3,0.1)

g = 35.7633
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More About
Gain and Effective Aperture

The relationship between the gain, G, and effective aperture of an antenna, Ae is:

G = 4π
λ2 Ae

where λ is the wavelength of the incident electromagnetic wave. The gain expressed in decibels is:

10log10(G)

References

[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
gain2aperture

Introduced in R2011a
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az2broadside
Convert azimuth and elevation angle to broadside angle

Syntax
bsang = az2broadside(az)
bsang = az2broadside(az,el)

Description
bsang = az2broadside(az) returns the broadside angle on page 2-21, bsang, corresponding to
the azimuth angle, az, and zero elevation angle. All angles are define with respect to the local
coordinate system.

bsang = az2broadside(az,el) also specifies the elevation angle, el.

Examples

Convert Azimuth Angle to Broadside Angle

Return the broadside angle corresponding to 45° azimuth and 0° elevation.

bsang = az2broadside(45)

bsang = 45.0000

Convert Azimuth and Elevation to Broadside Angle

Return the broadside angle corresponding to 45° azimuth and 45° elevation.

bsang = az2broadside(45,45)

bsang = 30.0000

Convert Multiple Azimuth and Elevation Angles to Broadside Angles

Return broadside angles for 10 azimuth-elevation pairs.

az = (75:5:120)';
el = (45:5:90)';
bsang = az2broadside(az,el);
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Input Arguments
az — Azimuth angle
scalar | vector of real values

Azimuth angle, specified as a scalar or vector of real values. Azimuth angles lie in the range from –
180° to 180°. Units are in degrees.
Example: [35;20;-10]

el — Elevation angle
0 (default) | scalar | vector of real values

Elevation angle, specified as a scalar or vector. The elevation angle lie in the range from –90° to 90°.
The length of el must equal the length of az. Units are in degrees.
Example: [5;2;-1]

Output Arguments
bsang — Broadside angle
scalar | vector of real values

Broadside angle, returned as a scalar or vector. The length of bsang equals the length of az. Units
are in degrees.

More About
Broadside Angle

Broadside angles are useful in describing the response pattern of a uniform linear array (ULA).

For the definition of the broadside angle and how to convert between azimuth and elevation, and
broadside angle see “Broadside Angles”. For definitions of the azimuth and elevation angles, see
“Azimuth and Elevation Angles”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
azel2phitheta | azel2uv | broadside2az

Introduced in R2011a
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azel2phitheta
Convert angles from azimuth-elevation form to phi-theta form

Syntax
PhiTheta = azel2phitheta(AzEl)
PhiTheta = azel2phitheta(AzEl,RotAx)

Description
PhiTheta = azel2phitheta(AzEl) converts the azimuth/elevation angle on page 2-23 pairs to
their corresponding phi/theta angle on page 2-24 pairs.

PhiTheta = azel2phitheta(AzEl,RotAx) also specifies the choice of phi-theta angle convention
using RotAx.

Examples

Convert Azimuth-Elevation Coordinates to Phi-Theta Coordinates

Find the phi-theta representation for 30° azimuth and 10° elevation for the convention where phi is
defined from the y-axis to the z-axis, and theta is defined from the x-axis toward the yz-plane.

PhiTheta = azel2phitheta([30;10])

PhiTheta = 2×1

   19.4254
   31.4749

Azimuth-Elevation Coordinates to Alternative Phi-Theta Coordinates

Find the phi-theta representation for 30° azimuth and 10° elevation for the convention with phi
defined from the x-axis to the y-axis, and theta defined from the z-axis toward the xy-plane.

PhiTheta = azel2phitheta([30;10],false)

PhiTheta = 2×1

    30
    80
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Input Arguments
AzEl — Azimuth-elevation angle pairs
two-row matrix

Azimuth and elevation angles, specified as a two-row matrix. Each column of the matrix represents an
angle in degrees, in the form [azimuth; elevation].
Data Types: double

RotAx — Phi-theta angle convention selection
true (default) | false

Phi-theta angle convention selection, specified as true or false.

• If RotAx is true, the phi angle is defined from the y-axis to the z-axis and the theta angle is
defined from the x-axis toward the yz-plane.

• If RotAx is false, the phi angle is defined from the x-axis to the y-axis and the theta angle is
defined from the z-axis toward the xy- plane. (see “Alternative Definition of Phi and Theta” on page
2-25).

Data Types: double

Output Arguments
PhiTheta — Phi-theta angle pairs
two-row matrix

Phi and theta angles, returned as a two-row matrix. Each column of the matrix represents an angle in
degrees, in the form [phi; theta]. The matrix dimensions of PhiTheta are the same as those of AzEl.

More About
Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.
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Phi and Theta Angles

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.
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The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

This transformation applies when RotAx is true.

Alternative Definition of Phi and Theta

The phi angle (φ) is the angle from the positive x-axis to the vector’s orthogonal projection onto the xy
plane. The angle is positive toward the positive y-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the z-axis to the vector itself. The angle is positive toward the xy
plane. The theta angle is between 0 and 180 degrees.
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The figure illustrates φ and θ for a vector that appears as a green solid line.

ϕ = az
θ = 90− el
az = ϕ
el = 90− θ
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phitheta2azel

Topics
“Spherical Coordinates”

Introduced in R2012a
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azel2phithetapat
Convert radiation pattern from azimuth-elevation coordinates to phi-theta coordinates

Syntax
pat_phitheta = azel2phithetapat(pat_azel,az,el)
pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta)
pat_phitheta = azel2phithetapat( ___ ,'RotateZ2X',rotpatax)
[pat_phitheta,phi_pat,theta_pat] = azel2phithetapat( ___ )

Description
pat_phitheta = azel2phithetapat(pat_azel,az,el) converts the antenna radiation pattern,
pat_azel, from azimuth and elevation coordinates to the pattern, pat_phitheta, in phi and theta
coordinates. az and el are the azimuth and elevation angles at which the pat_azel values are
defined. The pat_phitheta matrix covers theta values from 0 to 180 degrees and phi values from 0
to 360 degrees in one degree increments. The function interpolates the pat_azel matrix to estimate
the response of the antenna in a given phi-theta direction.

pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta) also specifies phi and
theta as the grid at which to sample pat_phitheta. To avoid interpolation errors, phi should cover
the range [0,180], and theta should cover the range [0,360].

pat_phitheta = azel2phithetapat( ___ ,'RotateZ2X',rotpatax) also specifies rotpatax
to indicate the boresight direction of the pattern along the x-axis or the z-axis.

[pat_phitheta,phi_pat,theta_pat] = azel2phithetapat( ___ ) also returns vectors
phi_pat and theta_pat containing the phi and theta angles at which pat_phitheta is sampled.

Examples

Convert Radiation Pattern to Phi-Theta

Convert a radiation pattern to φ/θ form, with the φ and θ angles spaced 1 degree apart.

Define the pattern in terms of azimuth and elevation.

az = -180:180;
el = -90:90;
pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Convert the pattern to φ/θ space.

pat_phitheta = azel2phithetapat(pat_azel,az,el);
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Plot Converted Radiation Pattern

Plot the result of converting a radiation pattern to ϕ/θ space with the ϕ and θ angles spaced 1 degree
apart.

The radiation pattern is the cosine of the elevation.

az = -180:180;
el = -90:90;
pat_azel = repmat(cosd(el)',1,numel(az));

Convert the pattern to ϕ/θ space. Use the returned ϕ and θ angles for plotting.

[pat_phitheta,phi,theta] = azel2phithetapat(pat_azel,az,el);

Plot the result.

H = surf(phi,theta,mag2db(pat_phitheta));
H.LineStyle = 'none';
xlabel('phi (degrees)');
ylabel('theta (degrees)');
zlabel('Pattern');
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Convert Radiation Pattern to Alternate Phi-Theta Coordinates

Convert a radiation pattern to the alternate phi-theta coordinates, with the phi and theta angles
spaced one degree apart.

Create a simple radiation pattern in terms of azimuth and elevation. Add an offset to the pattern to
suppress taking the logarithm of zero in mag2db.

az = -180:180;
el = -90:90;
pat_azel = mag2db(cosd(el).^2'*sind(az).^2 + 1);

imagesc(az,el,pat_azel)
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar

Convert the pattern to phi-theta space.

[pat_phitheta,phi_pat,theta_pat] = azel2phithetapat(pat_azel,az,el,'RotateZ2X',false);
imagesc(phi_pat,theta_pat,pat_phitheta)
xlabel('Phi (deg)')
ylabel('Theta (deg)')
colorbar
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Convert Radiation Pattern For Specific Phi/Theta Values

Convert a radiation pattern to ϕ/θ space with ϕ and θ angles spaced 5 degrees apart.

The radiation pattern is the cosine of the elevation.

az = -180:180;
el = -90:90;
pat_azel = repmat(cosd(el)',1,numel(az));

Define the set of ϕ and θ angles at which to sample the pattern. Then, convert the pattern.

phi = 0:5:360;
theta = 0:5:180;
pat_phitheta = azel2phithetapat(pat_azel,az,el,phi,theta);

Plot the result.

H = surf(phi,theta,mag2db(pat_phitheta));
H.LineStyle = 'none';
xlabel('phi (degrees)');
ylabel('theta (degrees)');
zlabel('Pattern');
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Input Arguments
pat_azel — Antenna radiation pattern
real-valued Q-by-P matrix

Antenna radiation pattern as a function of azimuth and elevation, specified as a real-valued Q-by-P
matrix. pat_azel contains the magnitude pattern. P is the length of the az vector, and Q is the
length of the el vector. Units are in dB.
Data Types: double

az — Azimuth angles
real-valued length-P vector

Azimuth angles at which the pat_azel pattern is sampled, specified as a real-valued length-P vector.
Azimuth angles lie between –180 and 180, inclusive. Units are in degrees.
Data Types: double

el — Elevation angles
real-valued length-Q vector

Elevation angles at which the pat_azel pattern is sampled, specified as a real-valued length-Q
vector. Azimuth angles lie between –90 and 90, inclusive. Units are in degrees.
Data Types: double
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phi — Phi angles
[0:360] (default) | real-valued length-L vector

Phi angles at which the pat_phitheta pattern is sampled, specified as a real-valued length-L vector.
Phi angles lie between 0 and 360, inclusive. Units are in degrees.
Data Types: double

theta — Theta angles
[0:180] (default) | real-valued length-M vector

Theta angles at which the pat_phitheta pattern is sampled, specified as a real-valued length-M
vector. Theta angles lie between 0 and 180, inclusive. Units are in degrees.
Data Types: double

rotpatax — Pattern boresight direction selector
true (default) | false

Pattern boresight direction selector, specified as true or false.

• If rotpatax is true, the pattern boresight is along the x-axis. In this case, the z-axis of phi-theta
space is aligned with the x-axis of azimuth and elevation space. The phi angle is defined from the
y-axis to the z-axis and the theta angle is defined from the x-axis toward the yz-plane. (See “Phi
and Theta Angles” on page 2-35).

• If rotpatax is false, the phi angle is defined from the x-axis to the y-axis and the theta angle is
defined from the z-axis toward the xy-plane. (See “Alternative Definition of Phi and Theta” on page
2-36).

Data Types: logical

Output Arguments
pat_phitheta — Antenna radiation pattern in phi-theta coordinates
real-valued M-by-L matrix

Antenna radiation pattern in phi-theta coordinates, returned as a real-valued M-by-L matrix.
pat_phitheta represents the magnitude pattern. L is the length of the phi_pat vector, and M is
the length of the theta_pat vector. Units are in dB.

phi_pat — Phi angles
real-valued length-L vector

Phi angles at which the pat_phitheta pattern is sampled, returned as a real-valued length L vector.
Units are in degrees.

theta_pat — Theta angles
real-valued length-M vector

Theta angles at which the pat_phitheta pattern is sampled, returned as a real-valued length-M
vector. Units are in degrees.
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More About
Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.
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Phi and Theta Angles

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.

The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz
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Alternative Definition of Phi and Theta

The phi angle (φ) is the angle from the positive x-axis to the vector’s orthogonal projection onto the xy
plane. The angle is positive toward the positive y-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the z-axis to the vector itself. The angle is positive toward the xy
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line.
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ϕ = az
θ = 90− el
az = ϕ
el = 90− θ

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
azel2phitheta | phased.CustomAntennaElement | phitheta2azel | phitheta2azelpat

Topics
“Spherical Coordinates”

Introduced in R2012a
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azel2uv
Convert azimuth/elevation angles to u/v coordinates

Syntax
UV = azel2uv(AzEl)

Description
UV = azel2uv(AzEl) converts the azimuth/elevation angle on page 2-39 pairs to their
corresponding coordinates in u/v space on page 2-40.

Examples

Conversion of Azimuth and Elevation to UV

Find the corresponding uv representation for 30° azimuth and 0° elevation.

uv = azel2uv([30;0])

uv = 2×1

    0.5000
         0

Input Arguments
AzEl — Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, specified as a two-row matrix. Each column of the matrix represents an
angle in degrees, in the form [azimuth; elevation].
Data Types: double

Output Arguments
UV — Angle in u/v space
two-row matrix

Angle in u/v space, returned as a two-row matrix. Each column of the matrix represents an angle in
the form [u; v]. The matrix dimensions of UV are the same as those of AzEl.
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More About
Azimuth Angle, Elevation Angle

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.
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U/V Space

The u/v coordinates for the positive hemisphere x ≥ 0 can be derived from the phi and theta angles
on page 2-40.

The relation between these two coordinates systems is

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = coselsinaz
v = sinel

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = u/v

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v

sinel = v

tanaz = u
1− u2− v2

Phi Angle, Theta Angle

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.
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The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.
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See Also
uv2azel

Topics
“Spherical Coordinates”

Introduced in R2012a

2 Functions

2-42



azel2uvpat
Convert radiation pattern from azimuth/elevation form to u/v form

Syntax
pat_uv = azel2uvpat(pat_azel,az,el)
pat_uv = azel2uvpat(pat_azel,az,el,u,v)
[pat_uv,u_pat,v_pat] = azel2uvpat( ___ )

Description
pat_uv = azel2uvpat(pat_azel,az,el) expresses the antenna radiation pattern pat_azel in
u/v space on page 2-48 coordinates instead of azimuth/elevation angle on page 2-47 coordinates.
pat_azel samples the pattern at azimuth angles in az and elevation angles in el. The pat_uv
matrix uses a default grid that covers u values from –1 to 1 and v values from –1 to 1. In this grid,
pat_uv is uniformly sampled with a step size of 0.01 for u and v. The function interpolates to
estimate the response of the antenna at a given direction. Values in pat_uv are NaN for u and v
values outside the unit circle because u and v are undefined outside the unit circle.

pat_uv = azel2uvpat(pat_azel,az,el,u,v) uses vectors u and v to specify the grid at which
to sample pat_uv. To avoid interpolation errors, u should cover the range [–1, 1] and v should cover
the range [–1, 1].

[pat_uv,u_pat,v_pat] = azel2uvpat( ___ ) returns vectors containing the u and v coordinates
at which pat_uv samples the pattern, using any of the input arguments in the previous syntaxes.

Examples

Convert Radiation Pattern to UV Space

Convert a radiation pattern to u-v space, with the u and v coordinates spaced by 0.01.

Define the pattern in terms of azimuth and elevation.

az = -90:90;
el = -90:90;
pat_azel = mag2db(repmat(cosd(el)',1,numel(az)));

Convert the pattern to u-v space.

pat_uv = azel2uvpat(pat_azel,az,el);

Plot Converted Radiation Pattern

Plot the result of converting a radiation pattern to u/v space with the u and v coordinates spaced by
0.01.
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The radiation pattern is the cosine of the elevation angle.

az = -90:90;
el = -90:90;
pat_azel = repmat(cosd(el)',1,numel(az));

Convert the pattern to u/v space. Use the u and v coordinates for plotting.

[pat_uv,u,v] = azel2uvpat(pat_azel,az,el);

Plot the result.

H = surf(u,v,mag2db(pat_uv));
H.LineStyle = 'none';
xlabel('u');
ylabel('v');
zlabel('Pattern');

Convert Radiation Pattern For Specific U/V Values

Convert a radiation pattern to u/v form, with the u and v coordinates spaced by 0.05.

The radiation pattern is cosine of the elevation angle.
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az = -90:90;
el = -90:90;
pat_azel = repmat(cosd(el)',1,numel(az));

Define the set of u and v coordinates at which to sample the pattern. Then, convert the pattern.

u = -1:0.05:1;
v = -1:0.05:1;
pat_uv = azel2uvpat(pat_azel,az,el,u,v);

Plot the result.

H = surf(u,v,mag2db(pat_uv));
H.LineStyle = 'none';
xlabel('u');
ylabel('v');
zlabel('Pattern');

Input Arguments
pat_azel — Antenna radiation pattern in azimuth/elevation form
Q-by-P matrix

Antenna radiation pattern in azimuth/elevation form, specified as a Q-by-P matrix. pat_azel samples
the 3-D magnitude pattern in decibels, in terms of azimuth and elevation angles. P is the length of the
az vector, and Q is the length of the el vector.
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Data Types: double

az — Azimuth angles
vector of length P

Azimuth angles at which pat_azel samples the pattern, specified as a vector of length P. Each
azimuth angle is in degrees, between –90 and 90. Such azimuth angles are in the hemisphere for
which u and v are defined.
Data Types: double

el — Elevation angles
vector of length Q

Elevation angles at which pat_azel samples the pattern, specified as a vector of length Q. Each
elevation angle is in degrees, between –90 and 90.
Data Types: double

u — u coordinates
[-1:0.01:1] (default) | vector of length L

u coordinates at which pat_uv samples the pattern, specified as a vector of length L. Each u
coordinate is between –1 and 1.
Data Types: double

v — v coordinates
[-1:0.01:1] (default) | vector of length M

v coordinates at which pat_uv samples the pattern, specified as a vector of length M. Each v
coordinate is between –1 and 1.
Data Types: double

Output Arguments
pat_uv — Antenna radiation pattern in u/v form
M-by-L matrix

Antenna radiation pattern in u/v form, returned as an M-by-L matrix. pat_uv samples the 3-D
magnitude pattern in decibels, in terms of u and v coordinates. L is the length of the u vector, and M
is the length of the v vector. Values in pat_uv are NaN for u and v values outside the unit circle
because u and v are undefined outside the unit circle.

u_pat — u coordinates
vector of length L

u coordinates at which pat_uv samples the pattern, returned as a vector of length L.

v_pat — v coordinates
vector of length M

v coordinates at which pat_uv samples the pattern, returned as a vector of length M.
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More About
Azimuth Angle, Elevation Angle

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.
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U/V Space

The u and v coordinates are the direction cosines of a vector with respect to the y-axis and z-axis,
respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles on page 2-
48 by:

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = coselsinaz
v = sinel

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = u/v

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v

sinel = v

tanaz = u
1− u2− v2

Phi Angle, Theta Angle

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.
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The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.
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See Also
azel2uv | phased.CustomAntennaElement | uv2azel | uv2azelpat

Topics
“Spherical Coordinates”

Introduced in R2012a
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azelcut2pat
Create 3-D response pattern from azimuth and elevation cuts

Syntax
pat = azelcut2pat(azcut,elcut)

Description
pat = azelcut2pat(azcut,elcut) creates a 3-D element response pattern, pat, from an
azimuth cut, azcut, and an elevation cut, elcut. An azimuth cut consists of an antenna pattern over
all azimuth angles at 0° elevation. An elevation cut consists of the antenna pattern over all elevation
angles at 0° azimuth. You can specify cuts for different frequencies at the same time.

Examples

Create Custom Antenna Pattern from Azimuth and Elevations Cuts

Create a custom antenna pattern from azimuth and elevation cuts of a cosine-squared pattern.

az = -180:180;
azcut = mag2db(cosd(az).^2);
el = -90:90;
elcut = mag2db(cosd(el).^2);
pat = azelcut2pat(azcut,elcut);
antenna = phased.CustomAntennaElement('AzimuthAngles',az,...
    'ElevationAngles',el,'MagnitudePattern',pat,...
    'PhasePattern',zeros(size(pat)));

Display the antenna pattern for 200 MHz.

fs = 200.0e6;
pattern(antenna,fs);
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Input Arguments
azcut — Azimuth pattern cut
zeros(1,361) (default) | real-valued 1-by-Q vector | real-valued L-by-Q matrix

Azimuth pattern cut, specified as a real-valued 1-by-Q vector or a real-valued L-by-Q matrix. Q is the
number of azimuth angles, and L is the number of frequencies. Azimuth cuts are assumed to be made
at 0° elevation. When azcut is a matrix, each column represents a different azimuth angle, and each
row represents a different frequency. Units are in dB.
Data Types: double

elcut — Elevation pattern cut
zeros(1,181) (default) | real-valued 1-by-P vector | real-valued L-by-P matrix

Elevation pattern cut, specified as a real-valued 1-by-P vector or a real-valued L-by-P matrix. P is the
number of elevation angles, and L is the number of frequencies. Elevation cuts are assumed to be
made at 0° azimuth. When elcut is a matrix, each column represents a different elevation angle, and
each row represents a different frequency. Units are in dB.
Data Types: double
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Output Arguments
pat — 3-D antenna pattern
real-valued P-by-Q matrix | real-valued P-by-Q-by-L array

3-D array or antenna pattern, returned as a real-valued P-by-Q matrix or real-valued P-by-Q-by-L
MATLAB array. Units are in dB.

Algorithms
The function returns a 3-D antenna pattern at the same azimuth and elevation angles used to define
the azcut and elcut cuts. Because the cuts are specified in dB, the 3-D pattern is computed from
the sum of the cut patterns.

pat(az,el) = pat(az) + pat(el)

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also

Introduced in R2019a
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azelaxes
Spherical basis vectors in 3-by-3 matrix form

Syntax
A = azelaxes(az,el)

Description
A = azelaxes(az,el) returns a 3-by-3 matrix containing the components of the basis(eR, eaz, eel)
at each point on the unit sphere specified by azimuth, az, and elevation, el. The columns of A contain
the components of basis vectors in the order of radial, azimuthal and elevation directions.

Examples

Compute Spherical Basis Vectors

At the point located at 45° azimuth, 45° elevation, compute the 3-by-3 matrix containing the
components of the spherical basis.

A = azelaxes(45,45)

A = 3×3

    0.5000   -0.7071   -0.5000
    0.5000    0.7071   -0.5000
    0.7071         0    0.7071

The first column of A contains the radial basis vector [0.5000; 0.5000; 0.7071]. The second and
third columns are the azimuth and elevation basis vectors, respectively.

Input Arguments
az — Azimuth angle
scalar in range [–180,180]

Azimuth angle specified as a scalar in the closed range [–180,180]. Angle units are in degrees. To
define the azimuth angle of a point on a sphere, construct a vector from the origin to the point. The
azimuth angle is the angle in the xy-plane from the positive x-axis to the vector's orthogonal
projection into the xy-plane. As examples, zero azimuth angle and zero elevation angle specify a point
on the x-axis while an azimuth angle of 90° and an elevation angle of zero specify a point on the y-
axis.
Example: 45
Data Types: double
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el — Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle units are in degrees. To
define the elevation of a point on the sphere, construct a vector from the origin to the point. The
elevation angle is the angle from its orthogonal projection into the xy-plane to the vector itself. As
examples, zero elevation angle defines the equator of the sphere and ±90° elevation define the north
and south poles, respectively.
Example: 30
Data Types: double

Output Arguments
A — Spherical basis vectors
3-by-3 matrix

Spherical basis vectors returned as a 3-by-3 matrix. The columns contain the unit vectors in the
radial, azimuthal, and elevation directions, respectively. Symbolically we can write the matrix as

(eR, eaz, eel)

where each component represents a column vector.

More About
Spherical basis

Spherical basis vectors are a local set of basis vectors which point along the radial and angular
directions at any point in space.

The spherical basis vectors (eR, eaz, eel) at the point (az,el) can be expressed in terms of the
Cartesian unit vectors by

eR = cos(el)cos(az) i + cos(el)sin(az) j + sin(el)k

eaz = − sin(az) i + cos(az) j

eel = − sin(el)cos(az) i − sin(el)sin(az) j + cos(el)k

.

This set of basis vectors can be derived from the local Cartesian basis by two consecutive rotations:
first by rotating the Cartesian vectors around the y-axis by the negative elevation angle, -el, followed
by a rotation around the z-axis by the azimuth angle, az. Symbolically, we can write
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eR = Rz(az)Ry(− el)
1
0
0

eaz = Rz(az)Ry(− el)
0
1
0

eel = Rz(az)Ry(− el)
0
0
1

The following figure shows the relationship between the spherical basis and the local Cartesian unit
vectors.

Algorithms
MATLAB computes the matrix A from the equations

A = [cosd(el)*cosd(az), -sind(az), -sind(el)*cosd(az); ...
        cosd(el)*sind(az),  cosd(az), -sind(el)*sind(az); ...
        sind(el),           0,         cosd(el)];

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
cart2sphvec | sph2cartvec

Introduced in R2013a
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beat2range
Convert beat frequency to range

Syntax
r = beat2range(fb,slope)
r = beat2range(fb,slope,c)

Description
r = beat2range(fb,slope) converts the beat frequency on page 2-58 of a dechirped linear
FMCW signal to its corresponding range. slope is the slope of the FMCW sweep.

r = beat2range(fb,slope,c) specifies the signal propagation speed.

Examples

Range of Target in FMCW Radar System

Assume that an FMCW waveform sweeps a band of 3 MHz in 2 ms. The dechirped target return has a
beat frequency of 1 kHz. Compute the target range.

slope = 30e6/(2e-3);
fb = 1e3;
r = beat2range(fb,slope)

r = 9.9931

Input Arguments
fb — Beat frequency of dechirped signal
M-by-1 vector | M-by-2 matrix

Beat frequency of dechirped signal, specified as an M-by-1 vector or M-by-2 matrix in hertz. If the
FMCW signal performs an upsweep or downsweep, fb is a vector of beat frequencies.

If the FMCW signal has a triangular sweep, fb is an M-by-2 matrix in which each row represents a
pair of beat frequencies. Each row has the form
[UpSweepBeatFrequency,DownSweepBeatFrequency].
Data Types: single | double

slope — Sweep slope
nonzero scalar

Slope of FMCW sweep, specified as a nonzero scalar in hertz per second. If the FMCW signal has a
triangular sweep, slope is the sweep slope of the up-sweep half. In this case, slope must be positive
and the down-sweep half is assumed to have a slope of -slope.
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Data Types: single | double

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: single | double

Output Arguments
r — Range
M-by-1 column vector

Range, returned as an M-by-1 column vector in meters. Each row of r is the range corresponding to
the beat frequency in a row of fb.
Data Types: single | double

More About
Beat Frequency

For an up-sweep or down-sweep FMCW signal, the beat frequency is Ft – Fr. In this expression, Ft is
the transmitted signal’s carrier frequency, and Fr is the received signal’s carrier frequency.

For an FMCW signal with triangular sweep, the upsweep and downsweep have separate beat
frequencies.

Algorithms
If fb is a vector, the function computes c*fb/(2*slope).

If fb is an M-by-2 matrix with a row [UpSweepBeatFrequency,DownSweepBeatFrequency], the
corresponding row in r is c*((UpSweepBeatFrequency - DownSweepBeatFrequency)/2)/
(2*slope).

This function supports single and double precision for input data and arguments.

References
[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept Radar. Artech House, Boston,

2009.

[2] Skolnik, M.I. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

• Usage notes and limitations:
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• Does not support variable-size inputs.
• This function supports single and double precision for input data and arguments.

See Also
dechirp | phased.FMCWWaveform | range2beat | rdcoupling

Topics
Automotive Adaptive Cruise Control Using FMCW Technology

Introduced in R2012b

 beat2range

2-59



billingsleyicm
Billingsley’s intrinsic clutter motion (ICM) model

Syntax
P = billingsleyicm(fd,fc,wspeed)
P = billingsleyicm(fd,fc,wspeed,c)

Description
P = billingsleyicm(fd,fc,wspeed) calculates the clutter Doppler spectrum shape, P, due to
intrinsic clutter motion (ICM) at Doppler frequencies specified in fd. ICM arises when wind blows on
vegetation or other clutter sources. This function uses Billingsley’s model in the calculation. fc is the
operating frequency of the system. wspeed is the wind speed.

P = billingsleyicm(fd,fc,wspeed,c) specifies the propagation speed c in meters per second.

Input Arguments
fd

Doppler frequencies in hertz. This value can be a scalar or a vector.

fc

Operating frequency of the system in hertz.

wspeed

Wind speed in meters per second.

c

Propagation speed in meters per second.

Default: Speed of light

Output Arguments
P

Shape of the clutter Doppler spectrum due to intrinsic clutter motion. The vector size of P is the same
as that of fd.

Examples
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Compute Billingsley Doppler Spectrum

Calculate and plot the Doppler spectrum shape predicted by the Billingsley ICM model. Assume the
PRF is 2 kHz, the operating frequency is 1 GHz, and the wind speed is 5 m/s.

v = -3:0.1:3;
fc = 1e9;
wspeed = 5;
c = physconst('LightSpeed');
fd = 2*v/(c/fc);
p = billingsleyicm(fd,fc,wspeed);
plot(fd,pow2db(p))
xlabel('Doppler frequency (Hz)')
ylabel('P (dB)')

References

[1] Billingsley, J. Low Angle Radar Clutter. Norwich, NY: William Andrew Publishing, 2002.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 billingsleyicm

2-61



Usage notes and limitations:

Does not support variable-size inputs.

Introduced in R2011b
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blakechart
Range-angle-height (Blake) chart

Syntax
blakechart(vcp,vcpangles)
blakechart(vcp,vcpangles,rmax,hmax)
blakechart( ___ ,'Name','Value')

Description
blakechart(vcp,vcpangles) creates a range-angle-height plot (also called a Blake chart) for a
narrowband radar antenna. This chart shows the maximum radar range as a function of target
elevation. In addition, the Blake chart displays lines of constant range and lines of constant height.
The input consist of the vertical coverage pattern, vcp, and vertical coverage pattern angles,
vcpangles, produced by radarvcd.

blakechart(vcp,vcpangles,rmax,hmax), in addition, specifies the maximum range and height
of the Blake chart. You can specify range and height units separately in the Name-Value pairs,
RangeUnit and HeightUnit. This syntax can use any of the input arguments in the previous syntax.

blakechart( ___ ,'Name','Value') allows you to specify additional input parameters in the form
of Name-Value pairs. You can specify additional name-value pair arguments in any order as
(Name1,Value1,...,NameN,ValueN). This syntax can use any of the input arguments in the previous
syntaxes.

Examples

Display Vertical Coverage Diagram

Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed 20 meters
above the ground. Set the free-space range to 100 km. Use default plotting parameters.

freq = 100e6;
ant_height = 20;
rng_fs = 100;
[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);
blakechart(vcp, vcpangles);
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Display Vertical Coverage Diagram Specifying Maximum Range and Height

Display the vertical coverage diagram of an antenna transmitting at 100 MHz and placed 20 meters
above the ground. Set the free-space range to 100 km. Set the maximum plotting range to 300 km
and the maximum plotting height to 250 km.

freq = 100e6;
ant_height = 20;
rng_fs = 100;
[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height);
rmax = 300;
hmax = 250;
blakechart(vcp,vcpangles,rmax,hmax);
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Display Vertical Coverage Diagram of Sinc Pattern Antenna

Plot the range-height-angle curve of a radar having a sinc-function antenna pattern.

Specify antenna pattern

Specify the antenna pattern as a sinc function.

pat_angles = linspace(-90,90,361)';
pat_u = 1.39157/sind(90/2)*sind(pat_angles);
pat = sinc(pat_u/pi);

Specify radar and environment parameters

Set the transmitting frequency to 100 MHz, the free-space range to 100 km, the antenna tilt angle to
0 degrees, and place the antenna 20 meters above the ground. Assume a surface roughness of one
meter.

freq = 100e6;
ant_height = 10;
rng_fs = 100;
tilt_ang = 0;
surf_roughness = 1;

 blakechart

2-65



Create radar range-height-angle data

[vcp, vcpangles] = radarvcd(freq,rng_fs,ant_height,...
    'RangeUnit','km','HeightUnit','m',...
    'AntennaPattern',pat,...
    'PatternAngles',pat_angles,'TiltAngle',tilt_ang,...
    'SurfaceRoughness',surf_roughness);

Plot radar range-height-angle data

Set the maximum plotting range to 300 km and the maximum plotting height to 250,000 m. Choose
the range units as kilometers, 'km', and the height units as meters, 'm'. Set the range and height
axes scale powers to 1/2.

rmax = 300;
hmax = 250e3;
blakechart(vcp, vcpangles, rmax, hmax, 'RangeUnit','km',...
    'ScalePower',1/2,'HeightUnit','m');

Input Arguments
vcp — Vertical coverage pattern
real-valued vector

Vertical coverage pattern specified as a K-by-1 column vector. The vertical coverage pattern is the
actual maximum range of the radar. Each entry of the vertical coverage pattern corresponds to one of
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the angles specified in vcpangles. Values are expressed in kilometers unless you change the unit of
measure using the 'RangeUnit' Name-Value pair.
Example: [282.3831; 291.0502; 299.4252]
Data Types: double

vcpangles — Vertical coverage pattern angles
real-valued vector

Vertical coverage pattern angles specified as a K-by-1 column vector. The set of angles range from –
90° to 90°.
Example: [2.1480; 2.2340; 2.3199]
Data Types: double

rmax — Maximum range of plot
real-valued scalar

Maximum range of plot specified as a real-valued scalar. Range units are specified by the RangeUnit
Name-Value pair.
Example: 200
Data Types: double

hmax — Maximum height of plot
real-valued scalar

Maximum height of plot specified as a real-valued scalar. Height units are specified by the
HeightUnit Name-Value pair.
Example: 100000
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ‘RangeUnit’,’m’

RangeUnit — Radar range units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm'

Range units denoting nautical miles, miles, kilometers, feet or meters. This Name-Value pair specifies
the units for the vertical coverage pattern input argument, vcp, and the maximum range input
argument, rmax.
Example: 'mi'
Data Types: char

HeightUnit — Height units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm'
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Height units specified as one of 'nmi' | 'mi' | 'km' | 'ft' |'m' denoting nautical miles, miles,
kilometers, feet or meters. This Name-Value pair specifies the units for the maximum height, hmax.
Example: 'm'
Data Types: char

ScalePower — Scale power
0.25 (default) | real-valued scalar

Scale power, specified as a scalar between 0 and 1. This parameter specifies the range and height
axis scale power.
Example: 0.5
Data Types: double

SurfaceRefractivity — Surface refractivity
313 (default) | real-valued scalar

Surface refractivity, specified as a non-negative real-valued scalar. The surface refractivity is a
parameter of the “CRPL Exponential Reference Atmosphere Model” on page 2-68 used in this
function.
Example: 314
Data Types: double

RefractionExponent — Refraction exponent
0.143859 (default) | real-valued scalar

Refraction exponent specified as a non-negative, real-valued scalar. The refraction exponent is a
parameter of the “CRPL Exponential Reference Atmosphere Model” on page 2-68 used in this
function.
Example: 0.15
Data Types: double

More About
CRPL Exponential Reference Atmosphere Model

The blakechart function uses the CRPL Exponential Reference Atmosphere to model refraction
effects. The index of refraction is a function of height

n(h) = 1.0 + Ns × 10−6 e−Rexph

where Ns is the atmospheric refractivity value (in units of 10–6) at the surface of the earth, Rexp is a
decay constant, and h is the height above the surface in kilometers. The default value of Ns is 313 and
can be modified using the 'SurfaceRefractivity' Name-Value pair. The default value of Rexp is
0.143859 and can be modified using the 'RefractionExponent' Name-Value pair.

References
[1] Blake, L.V. Machine Plotting of Radar Vertical-Plane Coverage Diagrams. Naval Research

Laboratory Report 7098, 1970.

2 Functions

2-68



See Also
radarvcd

Introduced in R2013a
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blkdiagbfweights
MIMO channel block diagonalized weights

Syntax
[wp,wc] = blkdiagbfweights(chanmat,ns)
[wp,wc] = blkdiagbfweights(chanmat,ns,pt)

Description
[wp,wc] = blkdiagbfweights(chanmat,ns) returns precoding weights, wp, and combining
weights, wc, derived from the channel response matrices contained in a MATLAB cell array chanmat.

• You can specify multiple user channels by putting each channel in a chanmat cell. chanmat{k}
represents the kthchannel from the transmitter to the user.

• • For a single frequency, specify the channel cell as a matrix.
• For multiply frequencies, specify the channel cell as a three-dimensional array where the rows

represent different subcarriers.
• Specify multiple subchannels per channel using the ns argument. Subchannels represent different

data streams. ns specifies the number of subchannels for each user channel. Multiply the data
streams by the precoding weights, wp.

The precoding and combining weights diagonalize the channel into independent subchannels so that
for the kthuser, the matrix wp*chanmat{k}*wc{k} is diagonal for each subcarrier.

[wp,wc] = blkdiagbfweights(chanmat,ns,pt) also specifies the total transmitted power, pt,
per subcarrier.

Examples

Spatial Multiplexing with Block Diagonal Weights

Start with a base station consisting of a uniform linear array (ULA) with 16 antennas, and two users
having receiver ULA arrays with 8 and 4 antennas, respectively. Show that using block
diagonalization-based precoding and combining weights achieves spatial multiplexing, where the
received signal at each user can be decoded without interference from the other user. Specify two
data streams for each user.

Specify the transmitter location in txpos and two user receiver locations in rxpos1 and rxpos2.
Array elements are spaced one-half wavelength apart.

txpos = (0:15)*0.5;
rxpos1 = (0:7)*0.5;
rxpos2 = (0:3)*0.5;

Create the channel matrix cell array using scatteringchanmtx and then compute the beamforming
weights wp and wc. Each channel corresponds to a user. Assume that the channels have 10 scatterers.
Each channel has two subchannels specified by the vector ns.
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chanmat = {scatteringchanmtx(txpos,rxpos1,10), ...
    scatteringchanmtx(txpos,rxpos2,10)};
ns = [2 2];
[wp,wc] = blkdiagbfweights(chanmat,ns);

The weights diagonalize the channel matrices for each user.

For channel 1:

disp(wp*chanmat{1}*wc{1})

   8.2269 - 0.0000i   0.0000 - 0.0000i
   0.0000 + 0.0000i   6.1371 - 0.0000i
   0.0000 - 0.0000i  -0.0000 + 0.0000i
   0.0000 - 0.0000i   0.0000 + 0.0000i

For channel 2:

disp(wp*chanmat{2}*wc{2})

  -0.0000 + 0.0000i  -0.0000 + 0.0000i
  -0.0000 + 0.0000i  -0.0000 + 0.0000i
   8.7543 - 0.0000i   0.0000 - 0.0000i
   0.0000 + 0.0000i   4.4372 + 0.0000i

First create four subchannels to carry the data streams: two subchannels per channel. Each data
stream contains 20 samples of ±1. Precode the input streams and combine the streams to produce
the recovered signals.

x = 2*round(rand([20,4])) - 1;
xp = x*wp;
y1 = xp*chanmat{1} + 0.1*randn(20,8);
y2 = xp*chanmat{2} + 0.1*randn(20,4);
y = [y1*wc{1},y2*wc{2}];

Overlay stem plots of the input and recovered signals to show that the received user signals are the
same as the transmitted signals.

for m = 1:4
    subplot(4,1,m)
    s = stem([x(:,m) 2*((real(y(:,m)) > 0) - 0.5)]);
    s(1).LineWidth = 2;
    s(2).MarkerEdgeColor = 'none';
    s(2).MarkerFaceColor = 'r';
    ylabel('Signal')
    title(sprintf('User %d Stream %d',ceil(m/2),rem(m-1,2) + 1))
    if m==1
        legend('Input','Recovered','Location','best')
    end
end
xlabel('Samples')
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Spatial Multiplexing with Specified Power

Start with a base station consisting of a uniform linear array (ULA) with 16 antennas, and two users
having receiver ULA arrays with 8 and 5 antennas, respectively. Show how to use three-dimensional
arrays of channel matrices to handle two subcarriers. Then, the channel matrix for the first user takes
the form 2-by-16-by-8 and the channel matrix for the second users takes the form 2-by-16-by-5. Also
assume that there are two data streams for each user.

Specify the transmitter location in txpos and two user receiver locations in rxpos1 and rxpos2.
Array elements are spaced one-half wavelength apart.

nr1 = 8;
nr2 = 5;
txpos = (0:15)*0.5;
rxpos1 = (0:(nr1-1))*0.5;
rxpos2 = (0:(nr2-1))*0.5;

Create the channel matrices using scatteringchanmtx and put them in a cell array. To create a
second subchannel for each receiver, duplicate each channel matrix. Assume 10 point scatterers in
computing the channel matrix.

smtmp1 = scatteringchanmtx(txpos,rxpos1,10);
smtmp2 = scatteringchanmtx(txpos,rxpos2,10);
sm1 = zeros(2,16,8);
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sm2 = zeros(2,16,5);
sm1(1,:,:) = smtmp1;
sm1(2,:,:) = smtmp1;
sm2(1,:,:) = smtmp2;
sm2(2,:,:) = smtmp2;
chanmat = {sm1,sm2};

Specify that there are two data streams for each user.

ns = [2 2];

Specify the transmitted powers for each subcarrier.

pt = [1.0 1.5];

Compute the beamforming weights.

[wp,wc] = blkdiagbfweights(chanmat,ns,pt);

Show that the channels are diagonalized for the first subcarrier.

ksubcr = 1;
wpx = squeeze(wp(ksubcr,:,:));
chanmat1 = squeeze(chanmat{1}(ksubcr,:,:));
chanmat2 = squeeze(chanmat{2}(ksubcr,:,:));
wc1 = squeeze(wc{1}(ksubcr,:,:));
wc2 = squeeze(wc{2}(ksubcr,:,:));
wpx*chanmat1*wc1

ans = 4×2 complex

   8.2104 + 0.0000i  -0.0000 - 0.0000i
   0.0000 - 0.0000i   5.9732 - 0.0000i
   0.0000 - 0.0000i  -0.0000 - 0.0000i
   0.0000 - 0.0000i   0.0000 - 0.0000i

wpx*chanmat2*wc2

ans = 4×2 complex

  -0.0000 + 0.0000i   0.0000 + 0.0000i
  -0.0000 + 0.0000i   0.0000 + 0.0000i
   8.8122 + 0.0000i  -0.0000 + 0.0000i
   0.0000 + 0.0000i   4.8186 - 0.0000i

Propagate the signals to each user and then decode. Generate four streams of random data
containing -1's and +1's and having two columns for each user. Each stream is a subchannel.

x = 2*(round(rand([20 4]))) - 1;

Precode the data streams.

xp = x*wpx;
y1 = xp*chanmat1 + 0.1*randn(20,8);
y2 = xp*chanmat2 + 0.1*randn(20,5);

Decode the data streams.
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y = [y1*wc1,y2*wc2];

Overlay stem plots of the input and recovered signals to show that the received user signals are the
same as the transmitted signals.

for m = 1:4
    subplot(4,1,m)
    s = stem([x(:,m) 2*((real(y(:,m)) > 0) - 0.5)]);
    s(1).LineWidth = 2;
    s(2).MarkerEdgeColor = 'none';
    s(2).MarkerFaceColor = 'r';
    ylabel('Signal')
    title(sprintf('User %d Stream %d',ceil(m/2),rem(m-1,2) + 1))
    if m==1
        legend('Input','Recovered','Location','best')
    end
end
xlabel('Samples')

Input Arguments
chanmat — Channel response matrices
Nu-element cell array

Channel response matrices, specified as an Nu-element cell array. Nu is the number of receive arrays.
Each cell corresponds to a different channel and contains a channel response matrix or a three
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dimensional MATLAB array. The cell array must contain either all matrices or all arrays. For matrices,
the number of rows for all matrices must be the same. For three-dimensional arrays, the number of
rows and columns must be the same.

• If the kth cell is a matrix, the matrix has the size Nt-by-Nr(k). Nt is the number of elements in the
transmitting array and Nr(k) is the number of elements in the kth receiving array.

• If the kth cell is an array, the array has the size L-by-Nt-by-Nr(k). L is the number of subcarriers. Nt
is the number of elements in the transmit array and Nr(k) is the number of elements in the kth

receive array.

Data Types: double
Complex Number Support: Yes

ns — Number of data streams per receive array
Nu-element row vector of positive integers

Number of data streams per receive array, specified as an Nu-element row vector of positive integers.
Nu is the number of receive arrays.
Data Types: double

pt — Total transmitted power per subcarrier
1 (default) | positive scalar | L-element vector of positive values

Total transmitted power per subcarrier, specified as a positive scalar or an L-element vector of
positive values. L is the number of subcarriers. If pt is a scalar, all subcarriers have the same
transmitted power. If pt is a vector, each vector element specifies the transmitted power for the
corresponding subcarrier. Power is in linear units.
Data Types: double

Output Arguments
wp — Precoding weights
complex-valued Nst-by-Nt matrix | complex-valued L-by-Nst-by-Nt MATLAB array

Precoding weights, returned as a complex-valued Nst-by-Nt matrix or a complex-valued L-by-Nst-by-Nt
MATLAB array.

• If chanmat contains matrices, wp is a complex-valued Nst-by-Nt matrix where Nst is the total
number of data channels (sum(ns)).

• If chanmat contains three-dimensional MATLAB arrays, wp is a complex-valued L-by-Nst-by-Nt
MATLAB array where Nst is the total number of data channels (sum(ns)).

Units are dimensionless.
Data Types: double

wc — Combining weights
Nu-element cell array

Combining weights, returned as an Nu-element cell array. Units are dimensionless.

• If chanmat contains matrices, the kth cell in wc contains a complex valued Nr(k)-by-Ns(k) matrix.
Ns(k) is the value of the argument ns for the kth receive array.
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• If chanmat contains three-dimensional MATLAB arrays, the kth cell of wc contains a complex-
valued L-by-Nr(k)-by-Ns(k) MATLAB array. Ns(k) is the value of the kth entry of the ns vector.

Data Types: double

References
[1] Heath, Robert W., et al. “An Overview of Signal Processing Techniques for Millimeter Wave MIMO

Systems.” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, Apr. 2016, pp.
436–53. DOI.org (Crossref), doi:10.1109/JSTSP.2016.2523924. Bibliography

[2] Tse, D. and P. Viswanath, Fundamentals of Wireless Communications, Cambridge: Cambridge
University Press, 2005.

[3] Paulraj, A. Introduction to Space-Time Wireless Communications, Cambridge: Cambridge
University Press, 2003.

[4] Spencer, Q.H., et al. "Zero-Forcing Methods for Downlink Spatial Multiplexing in Multiuser MIMO
Channels." IEEE Transactions on Signal Processing, Vol. 52, No. 2, February 2004, pp.
461-471. DOI.org (Crossref), doi:10.1109/TSP.2003.821107.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.

See Also
Functions
diagbfweights | scatteringchanmtx | waterfill

Objects
phased.ScatteringMIMOChannel

Introduced in R2020a
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broadside2az
Convert broadside angle to azimuth angle

Syntax
az = broadside2az(bsang)
az = broadside2az(bsang,el)

Description
az = broadside2az(bsang) returns the azimuth angle on page 2-78, az, corresponding to the
broadside angle, bsang, for zero elevation angle. Angles are defined with respect to the local
coordinate system.

az = broadside2az(bsang,el) also specifies the elevation angle, el.

Examples

Convert Broadside Angle to Azimuth Angle at Zero Elevation

Return the azimuth angle corresponding to a broadside angle of 45° at 0° elevation.

az = broadside2az(45.0)

az = 45.0000

Convert Broadside Angle to Azimuth Angle

Return the azimuth angle corresponding to a broadside angle of 45° and an elevation angle of 20°.

az = broadside2az(45,20)

az = 48.8063

Convert Multiple Broadside Angles to Azimuth Angles

Return azimuth angles for 10 pairs of broadside angle and elevation angle.

BSang = (45:5:90)';
el = (45:-5:0)';
az = broadside2az(BSang,el);
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Input Arguments
bsang — Broadside angle
scalar | vector of real values

Broadside angle, specified as a scalar or vector of real values. Units are in degrees. This argument
supports single and double precision.
Example: [10;-22;-80]

el — Elevation angle
0 (default) | scalar | vector of real values

Elevation angle, specified as a scalar or vector of real values. The length of el must match the length
of bsang. Elevation angles lie in the range from –90° to 90°. Units are in degrees. This argument
supports single and double precision.
Example: [5;2;-1]

Output Arguments
az — Azimuth angle
scalar | vector of real values

Azimuth angle, returned as a scalar or vector of real values. The length of azequals the length of
bsang. Azimuth angles lie in the range from –180° to 180°. Units are in degrees.

More About
Broadside Angle

Broadside angles are useful in describing the response pattern of a uniform linear array (ULA).

For the definition of the broadside angle and how to convert between azimuth and elevation, and
broadside angle see “Broadside Angles”. For definitions of the azimuth and elevation angles, see
“Azimuth and Elevation Angles”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
az2broadside | phitheta2azel | uv2azel

Introduced in R2011a
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bw2range
Convert bandwidth to range resolution

Syntax
rngres = bw2range(bw)
rngres = bw2range(bw,c)

Description
rngres = bw2range(bw) returns the range resolution of a signal corresponding to its bandwidth.
Range resolution gives you the minimum range difference needed to distinguish two targets. The
function applies to two-way propagation, as in a monostatic radar system.

rngres = bw2range(bw,c) specifies the signal propagation speed, c.

Examples

Compute Range Resolution from Bandwidth

Assume you have a monostatic radar system that uses a rectangular waveform. Calculate the range
resolution obtained using a bandwidth of 20 MHz.

bw = 20e6;
rngres = bw2range(bw)

rngres = 7.4948

Compute Sonar Range Resolution from Bandwidth

Calculate the range resolution of a two-way sonar system that uses a rectangular waveform. The
signal bandwidth is 2 kHz. The speed of sound is 1520 m/s.

bw = 2e3;
c = 1520.0;
rngres = bw2range(bw,c)

rngres = 0.3800

Input Arguments
bw — Signal bandwidth
positive scalar | MATLAB array of positive real values

Signal bandwidth, specified as any array of array of positive real values. Units are in hertz.
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c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar. The default value is the output of
physconst('LightSpeed'). Units are in meters per second.
Data Types: double

Output Arguments
rngres — Target range resolution
positive scalar | MATLAB array of positive real values

Target range resolution, returned as a scalar or MATLAB array of positive real numbers. The
dimensions of rngres are the same as those of bw. Units are in meters.
Data Types: double

Tips
• This function assumes two-way propagation. For one-way propagation, you can find the required

range resolution by multiplying the output of this function by 2.

Algorithms
The function computes range resolution from rngres = c/(2*bw).

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.FMCWWaveform | range2bw | range2time | time2range

Topics
Automotive Adaptive Cruise Control Using FMCW Technology

Introduced in R2017a
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cart2sphvec
Convert vector from Cartesian components to spherical representation

Syntax
vs = cart2sphvec(vr,az,el)

Description
vs = cart2sphvec(vr,az,el) converts the components of a vector or set of vectors, vr, from
their representation in a local Cartesian coordinate system to a spherical basis representation
contained in vs. A spherical basis representation is the set of components of a vector projected into a
basis given by (eaz, eel, eR). The orientation of a spherical basis depends upon its location on the
sphere as determined by azimuth, az, and elevation, el.

Examples

Spherical Representation of Unit Z-Vector

Start with a vector in Cartesian coordinates pointing along the z-direction and located at 45° azimuth,
45° elevation. Compute its components with respect to the spherical basis at that point.

vr = [0;0;1];
vs = cart2sphvec(vr,45,45)

vs = 3×1

         0
    0.7071
    0.7071

Input Arguments
vr — Vector in Cartesian basis representation
3-by-1 column vector | 3-by-N matrix

Vector in Cartesian basis representation specified as a 3-by-1 column vector or 3-by-N matrix. Each
column of vr contains the three components of a vector in the right-handed Cartesian basis x,y,x.
Example: [4.0; -3.5; 6.3]
Data Types: double
Complex Number Support: Yes

az — Azimuth angle
scalar in range [–180,180]

Azimuth angle specified as a scalar in the closed range [–180,180]. Angle units are in degrees. To
define the azimuth angle of a point on a sphere, construct a vector from the origin to the point. The
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azimuth angle is the angle in the xy-plane from the positive x-axis to the vector's orthogonal
projection into the xy-plane. As examples, zero azimuth angle and zero elevation angle specify a point
on the x-axis while an azimuth angle of 90° and an elevation angle of zero specify a point on the y-
axis.
Example: 45
Data Types: double

el — Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle units are in degrees. To
define the elevation of a point on the sphere, construct a vector from the origin to the point. The
elevation angle is the angle from its orthogonal projection into the xy-plane to the vector itself. As
examples, zero elevation angle defines the equator of the sphere and ±90° elevation define the north
and south poles, respectively.
Example: 30
Data Types: double

Output Arguments
vs — Vector in spherical basis
3-by-1 column vector | 3-by-N matrix

Spherical representation of a vector returned as a 3-by-1 column vector or 3-by-N matrix having the
same dimensions as vs. Each column of vs contains the three components of the vector in the right-
handed (eaz, eel, eR) basis.

More About
Spherical basis representation of vectors

Spherical basis vectors are a local set of basis vectors which point along the radial and angular
directions at any point in space.

The spherical basis is a set of three mutually orthogonal unit vectors (eaz, eel, eR) defined at a point
on the sphere. The first unit vector points along lines of azimuth at constant radius and elevation. The
second points along the lines of elevation at constant azimuth and radius. Both are tangent to the
surface of the sphere. The third unit vector points radially outward.

The orientation of the basis changes from point to point on the sphere but is independent of R so as
you move out along the radius, the basis orientation stays the same. The following figure illustrates
the orientation of the spherical basis vectors as a function of azimuth and elevation:
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For any point on the sphere specified by az and el, the basis vectors are given by:

eaz = − sin(az) i + cos(az) j

eel = − sin(el)cos(az) i − sin(el)sin(az) j + cos(el)k

eR = cos(el)cos(az) i + cos(el)sin(az) j + sin(el)k   .

Any vector can be written in terms of components in this basis as v = vazeaz + veleel + vReR. The
transformations between spherical basis components and Cartesian components take the form

vx
vy
vz

=
−sin(az) −sin(el)cos(az) cos(el)cos(az)
cos(az) −sin(el)sin(az) cos(el)sin(az)

0 cos(el) sin(el)

vaz
vel
vR

.

and

vaz
vel
vR

=
−sin(az) cos(az) 0

−sin(el)cos(az) −sin(el)sin(az) cos(el)
cos(el)cos(az) cos(el)sin(az) sin(el)

vx
vy
vz

.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
azelaxes | sph2cartvec

Introduced in R2013a
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cbfweights
Conventional beamformer weights

Syntax
wt = cbfweights(pos,ang)
wt = cbfweights(pos,ang,nqbits)

Description
wt = cbfweights(pos,ang) returns narrowband conventional beamformer weights. When applied
to the elements of a sensor array, these weights steer the response of the array to a specified arrival
direction or set of directions. The pos argument specifies the sensor positions in the array. The ang
argument specifies the azimuth and elevation angles of the desired response directions. The output
weights, wt, are returned as an N-by-M matrix. In this matrix, N represents the number of sensors in
the array while M represents the number of arrival directions. Each column of wt contains the
weights for the corresponding direction specified in the ang. The argument wt is equivalent to the
output of the function steervec divided by N. All elements in the sensor array are assumed to be
isotropic.

wt = cbfweights(pos,ang,nqbits) returns quantized narrowband conventional beamformer
weights when the number of phase-shifter bits is set to nqbits.

Examples

Conventional Weights for Two Beamformer Directions

Specify a line array of five elements spaced 10 cm apart. Compute the weights for two directions: 30°
azimuth, 0° elevation, and 45° azimuth, 0° elevation. Assume the array is tuned to plane waves
having a frequency of 1 GHz.

elementPos = (0:.1:.4);
c = physconst('LightSpeed');
fc = 1e9;
lambda = c/fc;
ang = [30 45];
wt = cbfweights(elementPos/lambda,ang)

wt = 5×2 complex

   0.2000 + 0.0000i   0.2000 + 0.0000i
   0.0999 + 0.1733i   0.0177 + 0.1992i
  -0.1003 + 0.1731i  -0.1969 + 0.0353i
  -0.2000 - 0.0004i  -0.0527 - 0.1929i
  -0.0995 - 0.1735i   0.1875 - 0.0696i
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Quantized Weights for Two Beamformer Directions

Specify a line array of five elements spaced 10 cm apart. Compute the weights for two directions: 30°
azimuth, 0° elevation, and 45° azimuth, 0° elevation. Assume the array is tuned to plane waves
having a frequency of 1 GHz. Assume the weights are quantized to six bits.

elementPos = (0:.1:.4);
c = physconst('LightSpeed');
fc = 1e9;
lambda = c/fc;
ang = [30 45];
nqbits = 6;
wt = cbfweights(elementPos/lambda,ang,nqbits)

wt = 5×2 complex

   0.2000 + 0.0000i   0.2000 + 0.0000i
   0.0943 + 0.1764i   0.0196 + 0.1990i
  -0.0943 + 0.1764i  -0.1962 + 0.0390i
  -0.2000 + 0.0000i  -0.0581 - 0.1914i
  -0.0943 - 0.1764i   0.1848 - 0.0765i

Input Arguments
pos — Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector, a 2-by-N matrix, or a 3-by-N
matrix. In this vector or matrix, N represents the number of elements of the array. Each column of
pos represents the coordinates of an element. You define sensor position units in term of signal
wavelength. If pos is a 1-by-N vector, then it represents the y-coordinate of the sensor elements of a
line array. The x and z-coordinates are assumed to be zero. When pos is a 2-by-N matrix, it represents
the (y,z)-coordinates of the sensor elements of a planar array. This array is assumed to lie in the yz-
plane. The x-coordinates are assumed to be zero. When pos is a 3-by-N matrix, then the array has
arbitrary shape.
Example: [0,0,0; 0.1,0.4,0.3;1,1,1]
Data Types: double

ang — Beamforming directions
1-by-M real-valued vector | 2-by-M real-valued matrix

Beamforming directions specified as a 1-by-M vector or a 2-by-M matrix. In this vector or matrix, M
represents the number of incoming signals. If ang is a 2-by-M matrix, each column specifies the
direction in azimuth and elevation of the beamforming direction as [az;el]. Angular units are
specified in degrees. The azimuth angle must lie between –180° and 180° and the elevation angle
must lie between –90° and 90°. The azimuth angle is the angle between the x-axis and the projection
of the beamforming direction vector onto the xy plane. The angle is positive when measured from the
x-axis toward the y-axis. The elevation angle is the angle between the beamforming direction vector
and xy-plane. It is positive when measured towards the positive z axis. If ang is a 1-by-M vector, then
it represents a set of azimuth angles with the elevation angles assumed to be zero.
Example: [45;10]
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Data Types: double

nqbits — Number of phase shifter quantization bits
0 (default) | non-negative integer

Number of bits used to quantize the phase shift in beamformer or steering vector weights, specified
as a non-negative integer. A value of zero indicates that no quantization is performed.
Example: 5

Output Arguments
wt — Beamformer weights
N-by-M complex-valued matrix

Beamformer weights returned as an N-by-M complex-valued matrix. In this matrix, N represents the
number of sensor elements of the array while M represents the number of beamforming directions.
Each column of wt corresponds to a beamforming direction specified in ang.

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ: Prentice Hall,
1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial filtering”. IEEE
ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
lcmvweights | mvdrweights | phased.PhaseShiftBeamformer | sensorcov | steervec

Introduced in R2013a
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circpol2pol
Convert circular component representation of field to linear component representation

Syntax
fv = circpol2pol(cfv)

Description
fv = circpol2pol(cfv) converts the circular polarization components of the field or fields
contained in cfv to their linear polarization components contained in fv. Any polarized field can be
expressed as a linear combination of horizontal and vertical components.

Examples

Convert Circular to Linear Polarization

Convert a horizontally polarized field, originally expressed in circular polarization components, into
linear polarization components.

cfv = [1;1];
fv = circpol2pol(cfv)

fv = 2×1

    1.4142
         0

The vertical component of the output is zero for horizontally polarized fields.

Convert Circular Polarization Ratio to Linear Polarization Ratio

Create a right circularly polarized field. Compute the circular polarization ratio and convert to a
linear polarization ratio equivalent. Note that the input circular polarization ratio is Inf.

cfv = [0;1];
q = cfv(2)/cfv(1);
p = circpol2pol(q)

p = 0.0000 - 1.0000i

Input Arguments
cfv — Field vector in circular polarization representation
1-by-N complex-valued row vector or 2-by-N complex-valued matrix
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Field vector in its circular polarization representation specified as a 1-by-N complex row vector or a
2-by-N complex matrix. If cfv is a matrix, each column represents a field in the form of [El;Er],
where El and Er are the left and right circular polarization components of the field. If cfv is a row
vector, each column in cfv represents the polarization ratio, Er/El. For a row vector, the value Inf
can designate the case when the ratio is computed for El = 0.
Example: [1;-1]
Data Types: double
Complex Number Support: Yes

Output Arguments
fv — Field vector in linear polarization representation or Jones vector
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in linear polarization representation or Jones vector returned as a 1-by-N complex-valued
row vector or 2-by-N complex-valued matrix. fv has the same dimensions as cfv. If cfv is a matrix,
each column of fv contains the horizontal and vertical linear polarization components of the field in
the form, [Eh;Ev]. If cfv is a row vector, each entry in fv contains the linear polarization ratio,
defined as Ev/Eh.

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp. 299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge University Press,
1999, pp 25–32.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
pol2circpol | polellip | polratio | stokes

Introduced in R2013a
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cranerainpl
RF signal attenuation due to rainfall using Crane model

Syntax
L = cranerainpl(range,freq,rainrate)
L = cranerainpl(range,freq,rainrate,elev)
L = cranerainpl(range,freq,rainrate,elev,tau)

Description
L = cranerainpl(range,freq,rainrate) returns the signal attenuation, L, due to rain based on
the Crane rain model [1]. Signal attenuation is a function of the signal path length, range, the signal
frequency, freq, and the rain rate, rainrate. The rain rate is defined as the long-term statistical
rain rate. The attenuation model applies only for frequencies from 1 GHz to 1000 GHz and is valid for
ranges up to 22.5 km. The Crane model accounts for the cellular nature of rainstorms.

L = cranerainpl(range,freq,rainrate,elev) also specifies the elevation angle, elev, of the
signal path.

L = cranerainpl(range,freq,rainrate,elev,tau) also specifies the polarization tilt angle,
tau, of the signal.

Examples

Compare Attenuation for Two Rain Rates Using Crane Model

Use the Crane rain model to compute the signal attenuation caused by rain for a 20 GHz signal sent
over a distance of 10 km. Use rain rates of 10.0 and 100.0 mm/hr.

First, set the rain rate to 10 mm/hr.

rr = 10.0;
L = cranerainpl(10e3,20.0e9,rr)

L = 12.5988

Repeat the computation using a rain rate of 100.0 mm/hr.

rr = 100.0;
L = cranerainpl(10e3,20.0e9,rr)

L = 73.1912
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Rain Attenuation as a Function of Frequency Using Crane Model

Plot the signal attenuation due to rain for signals in the frequency range from 1 to 1000 GHz. Use the
Crane model to compute the attenuation for a rain rate of 30.0 mm/hr and a signal path distance of
10 km.

rr = 30.0;
freq = [1:1000]*1e9;
L = cranerainpl(10e3,freq,rr);
semilogx(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')

Rain Attenuation as a Function of Elevation Using Crane Model

Plot the signal attenuation due to rain as a function of elevation angle. Elevation angles vary from 0
to 90 degrees. Assume a path distance of 10 km and a signal frequency of 10 GHz. The rain rate is
100 mm/hr.

rr = 100.0;

Set the elevation angles, frequency, and path length.
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elev = [0:1:90];
freq = 10.0e9;
rng = 10e3*ones(size(elev));

Compute and plot the loss.

L = cranerainpl(rng,freq,rr,elev);
plot(elev,L)
grid
xlabel('Path Elevation (degrees)')
ylabel('Attenuation (dB)')

Rain Attenuation as a Function of Polarization Using Crane Model

Plot the signal attenuation due to rainfall as a function of the polarization tilt angle. Assume a path
distance of 10 km, a signal frequency of 10 GHz, and a path elevation angle of 0 degrees. Set the
rainfall rate to 70 mm/hour. Plot the signal attenuation against polarization tilt angle.

Set the polarization tilt angle to vary from -90 to 90 degrees.

tau = -90:90;

Set the elevation angle, frequency, path distance, and rain rate.

elev = 0;
freq = 10.0e9;
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rng = 10e3*ones(size(tau));
rr = 70.0;

Compute and plot the attenuation.

L = cranerainpl(rng,freq,rr,elev,tau);
plot(tau,L)
grid
xlabel('Tilt Angle (degrees)')
ylabel('Attenuation (dB)')

Input Arguments
range — Signal path length
positive scalar | real-valued 1-by-M vector of positive values | real-valued M-by-1 vector of positive
values

Signal path length, specified as a positive scalar, a real-valued 1-by-M vector of positive values, or
real-valued M-by-1 vector of positive values. Units are in meters.
Example: [13000.0,14000.0]

freq — Signal frequency
positive scalar | real-valued 1-by-N vector of positive values | real-valued N-by-1 vector of positive
values
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Signal frequency, specified as a positive scalar, a real-valued 1-by-N vector of positive values, or a
real-valued N-by-1 vector of positive values. Units are in Hz. Frequencies must lie in the range 1–
1000 GHz.
Example: [2.0:2:10.0]*1e9]

rainrate — Rain rate
nonnegative scalar

Rain rate, specified as a nonnegative scalar. Rain rate represents the long-term statistical rainfall rate
provided by Crane (see [1]). Units are in mm/hr.
Example: 100.5

elev — Signal path elevation angle
0.0 (default) | scalar | real-valued 1-by-M vector | real-valued M-by-1 vector

Signal path elevation angle, specified as a real-valued scalar, or real-valued M-by-1 or real-valued 1-
by-M vector. Units are in degrees between –90° and 90°.

• If elev is a scalar, all propagation paths have the same elevation angle.
• If elev is a vector, its length must match the length of range and each element in elev

corresponds to a propagation range.

Example: [0,45]

tau — Tilt angle of signal polarization ellipse
0.0 (default) | scalar | real-valued 1-by-M vector | real-valued M-by-1 vector

Tilt angle of the signal polarization ellipse, specified as a scalar, a real-valued 1-by-M vector, or a real-
valued M-by-1 vector. Tilt angle values are in the range –90° and 90°, inclusive. Units are in degrees.

• If tau is a scalar, all signals have the same tilt angle.
• If tau is a vector, its length must match the length of range. In that case, each element in tau

corresponds to a propagation path in range.

The tilt angle is defined as the angle between the semimajor axis of the polarization ellipse and the x-
axis. Because the ellipse is symmetrical, a tilt angle of 10° corresponds to the same polarization state
as a tilt angle of -80°. Thus, the tilt angle need only be specified between ±90°.
Example: [45,30]

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.
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More About
Crane Rainfall Attenuation Model

The Crane model calculates the attenuation of signals that propagate through regions of rainfall. The
model was developed for use on Earth–space or terrestrial propagation paths and is a commonly-used
method for the calculation of rain attenuation. The model is based on observations of rain rate, rain
structure, and the vertical variation of temperature in the atmosphere. The Crane model (see
Electromagnetic Wave Propagation through Rain) is primarily applicable to North America. The
Crane model generally predicts losses greater than those of the ITU rain attenuation model used in
the rainpl function. However, the uncertainty of both models and the short-term variation of fade
can be large.

The ITU and Crane models are very similar but have some differences. The ITU and Crane rain
attenuation models both require statistical annual rainfall rates and utilize an effective path length
reduction factor to account for the cellular nature of storms. The 0.01% rainfall rate tables provided
by Crane and the ITU are different. The Crane rainfall zones are similar to the ITU zones but more
zones are defined in the US than in the ITU model. The ITU rainfall zones are discussed in ITU-R
P.838-3: Specific attenuation model for rain for use in prediction methods. The Crane model is more
complex consisting of a piecewise combination of path profiles composed of exponential functions.

The Crane model utilizes two exponential functions to span the distance from 0 to 22.5 km.

• For δ < D < 22.5,

L = γ eyδ− 1
y − bαezδ

z + bαezD

z

• For 0 < D < δ,

L = γ eyD− 1
y

where

• L = path attenuation (dB)
• �� = propagation distance (km)
• R = statistical 0.01% rain rate (mm/hr)
• γ = specific attenuation identical to that calculated in rainpl.

γR = kRα,

The parameters k and α depend on the frequency, the polarization state, and the elevation angle of
the signal path. These coefficients, given by both Crane Electromagnetic Wave Propagation
through Rain and the ITU-R P.838-3: Specific attenuation model for rain for use in prediction
methods, are identical and are valid from 1 GHz to 1000 GHz. The specific attenuation model is
valid for frequencies from 1–1000 GHz. Rainfall specific attenuation is computed according to the
ITU rainfall model in ITU-R P.838-3: Specific attenuation model for rain for use in prediction
methods.

The remaining parameters are empirical constants defined as:

• b = 2.3R-0.17
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• c = 0.026 - 0.03ln R
• δ = 3.8 - 0.6 ln R
• u = ln (becδ)/δ
• y = αu
• z = αc

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the propagation distance.

You can also apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

References
[1] Crane, Robert K. Electromagnetic Wave Propagation through Rain. Wiley, 1996.

[2] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.838-3: Specific attenuation model for rain for use in prediction methods. P Series,
Radiowave Propagation 2005.

[3] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.530-17: Propagation data and prediction methods required for the design of terrestrial line-
of-sight systems. 2017.

[4] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.837-7: Characteristics of precipitation for propagation modelling. 6/2017

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
LOSChannel | WidebandLOSChannel | fogpl | fspl | gaspl | rainpl

Introduced in R2020a
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dechirp
Perform dechirp operation on FMCW signal

Syntax
y = dechirp(x,xref)

Description
y = dechirp(x,xref) mixes the incoming signal, x, with the reference signal, xref. The signals
can be complex baseband signals. In an FMCW radar system, x is the received signal and xref is the
transmitted signal.

Examples

Dechirp FMCW Signal

Dechirp a delayed FMCW signal, and plot the spectrum before and after dechirping.

Create an FMCW signal.

Fs = 2e5; Tm = 0.001;
hwav = phased.FMCWWaveform('SampleRate',Fs,'SweepTime',Tm);
xref = step(hwav);

Dechirp a delayed copy of the signal.

x = [zeros(10,1); xref(1:end-10)];
y = dechirp(x,xref);

Plot the spectrum before dechirping.

[Pxx,F] = periodogram(x,[],1024,Fs,'centered');
plot(F/1000,10*log10(Pxx)); grid;
xlabel('Frequency (kHz)');
ylabel('Power/Frequency (dB/Hz)');
title('Periodogram Power Spectral Density Estimate Before Dechirping');
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Plot the spectrum after dechirping.

[Pyy,F] = periodogram(y,[],1024,Fs,'centered');
plot(F/1000,10*log10(Pyy));
xlabel('Frequency (kHz)');
ylabel('Power/Frequency (dB/Hz)');
ylim([-100 -30]); grid
title('Periodogram Power Spectral Density Estimate After Dechirping');
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Input Arguments
x — Incoming signal
M-by-N matrix

Incoming signal, specified as an M-by-N matrix. Each column of x is an independent signal and is
individually mixed with xref.
Data Types: single | double
Complex Number Support: Yes

xref — Reference signal
M-by-1 vector

Reference signal, specified as an M-by-1 vector.
Data Types: single | double
Complex Number Support: Yes

Output Arguments
y — Dechirped signal
M-by-N matrix
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Dechirped signal, returned as an M-by-N matrix. Each column is the mixer output for the
corresponding column of x.
Data Types: single | double

Algorithms
For column vectors x and xref, the mix operation is defined as xref .* conj(x).

If x has multiple columns, the mix operation applies the preceding expression to each column of x
independently.

The mix operation reverses the Doppler shift embedded in x, because of the mixing order of xref
and x. The mixing order affects the sign of the imaginary part of the output argument, y. There is no
consistent convention in the literature about the mixing order. This function and the beat2range
function use the same convention. If your program processes the output of dechirp in other ways,
take the mixing order into account.

This function supports single and double precision for input data and arguments. If the input data, x,
is single precision, the output data is single precision, regardless of the precision of the arguments. If
the input data is double precision, the output data is double precision, regardless of the precision of
the arguments.

References
[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept Radar. Boston: Artech House,

2009.

[2] Skolnik, M.I. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• This function does not support variable-size inputs.
• This function supports single and double precision for input data and arguments. If the input data,

x, is single precision, the output data is single precision, regardless of the precision of the
arguments. If the input data is double precision, the output data is double precision, regardless of
the precision of the arguments.

See Also
beat2range | phased.RangeDopplerResponse

Topics
Automotive Adaptive Cruise Control Using FMCW Technology

Introduced in R2012b
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delayseq
Delay or advance sequence

Syntax
shifted_data = delayseq(data,delay)
shifted_data = delayseq(data,delay,fs)

Description
shifted_data = delayseq(data,delay) delays or advances the signal in data by the number of
samples specified in delay. Positive values of delay delay the signal, while negative values advance
the signal. Noninteger values of delay represent fractional delays or advances. For fractional delays,
the function interpolates between samples.

How the delayseq function operates on data depends on the dimensions of the data and delay
arguments:

• When delay is a scalar, the function applies the same delay to each column of data.
• When delay is a vector:

• If data is a matrix, the length of the delay vector must equal the number of columns in the
matrix. The function applies a delay to each column using the corresponding delay entry.

• If data is a column vector, the function creates a matrix where each column is the shift in the
data vector by each entry in delay. The number of columns in shifted_data equals the
length of the delay vector. The kth column of shifted_data is the result of shifting data by
delay(k).

shifted_data = delayseq(data,delay,fs) specifies delay in seconds. fs is the sampling
frequency of data. If the product of delay and fs is not an integer, delayseq implements a
fractional delay or advance of the signal using interpolation.

Examples

Delay Signal by Integer Number of Samples

Delay a 1 kHz cosine signal by an integer number of samples. Assume a sampling rate of 10 kHz.

fs = 1.0e4;
t = 0:1/fs:0.005;
signal = cos(2*pi*1000*t)';

Set the delay to 5 samples (0.5 ms).

shifted_signal = delayseq(signal,5);

Plot the original and delayed signals.

subplot(2,1,1)
plot(t.*1000,signal)
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title('Input')
subplot(2,1,2)
plot(t.*1000,shifted_signal)
title('5 Sample Delay')
xlabel('msec')

Delay Signal by Fractional Number of Samples

Delay a 1 kHz cosine signal by a fractional number of samples. Assume a sampling rate of 10 kHz.

fs = 1e4;
t = 0:1/fs:0.005;
signal = cos(2*pi*1000*t)';

Set the delay to 0.25 ms or 2.5 samples.

delayed_signal = delayseq(signal,0.25e-3,fs);

Plot the original and delayed signals.

plot(t.*1000,signal)
title('Delayed Signal')
hold on
plot(t.*1000,delayed_signal,'r')
axis([0 5 -1.1 1.1])

2 Functions

2-102



xlabel('msec')
legend('Original Signal','Delayed Signal')
hold off

The delayed signal values differ from the original signal values because interpolation is used to
implement the fractional delay.

Input Arguments
data — Input signal
real-valued length-M vector | complex-valued length-M vector | real-valued M-by-N matrix | complex-
valued M-by-N matrix

Input signal, specified as a real-valued length-M vector, complex-valued length-M vector, real-valued
M-by-N matrix, or complex-valued M-by-N matrix.

M is the number of samples in data. When data is a matrix, N is the number of independent signals.
Data Types: single | double
Complex Number Support: Yes

delay — Signal delay or advance
scalar | real-valued N-length vector
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Signal delay or advance, specified as a scalar or real-value N-length vector. If you specify the fs
argument, delay units are in seconds. When delay is a scalar, the same delay is applied to all
columns of data. delay units are in samples if fs is not specified and in seconds if fs is specified.
Data Types: single | double

fs — Sampling frequency
1 (default) | positive scalar

Sampling frequency of the signal, specified as a positive scalar. Units are in Hz.
Data Types: single | double

Output Arguments
shifted_data — Delayed or advanced signal
real-valued length-M vector | complex-valued length-M vector | real-valued M-by-N matrix | complex-
valued M-by-N matrix

Delayed or advanced signal, returned as a real-valued length-M vector, complex-valued length-M
vector, real-valued M-by-N matrix, or complex-valued M-by-N matrix. shifted_data has the same
number of rows as data, with appropriate truncations or zero padding.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.TimeDelayBeamformer

Introduced in R2011a
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depressionang
Depression angle of surface target

Syntax
depAng = depressionang(H,R)
depAng = depressionang(H,R,MODEL)
depAng = depressionang(H,R,MODEL,Re)

Description
depAng = depressionang(H,R) returns the depression angle from the horizontal at an altitude of
H meters to surface targets. The sensor is H meters above the surface. R is the range from the sensor
to the surface targets. The computation assumes a curved earth model with an effective earth radius
of approximately 4/3 times the actual earth radius.

depAng = depressionang(H,R,MODEL) specifies the earth model used to compute the depression
angle. MODEL is either 'Flat' or 'Curved'.

depAng = depressionang(H,R,MODEL,Re) specifies the effective earth radius. Effective earth
radius applies to a curved earth model. When MODEL is 'Flat', the function ignores Re.

Input Arguments
H

Height of the sensor above the surface, in meters. This argument can be a scalar or a vector. If both H
and R are nonscalar, they must have the same dimensions.

R

Distance in meters from the sensor to the surface target. This argument can be a scalar or a vector. If
both H and R are nonscalar, they must have the same dimensions. R must be between H and the
horizon range determined by H.

MODEL

Earth model, as one of | 'Curved' | 'Flat' |.

Default: 'Curved'

Re

Effective earth radius in meters. This argument requires a positive scalar value.

Default: effearthradius, which is approximately 4/3 times the actual earth radius
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Output Arguments
depAng

Depression angle, in degrees, from the horizontal at the sensor altitude toward surface targets R
meters from the sensor. The dimensions of depAng are the larger of size(H) and size(R).

Examples

Compute Depression Angle

Calculate the depression angle for a ground clutter patch that is 1.0 km away from a sensor. The
sensor is located on a platform 300 m above the ground.

depang = depressionang(300,1000)

depang = 17.4608

More About
Depression Angle

The depression angle is the angle between a horizontal line containing the sensor and the line from
the sensor to a surface target.

For the curved earth model with an effective earth radius of Re, the depression angle is:

sin−1 H2 + 2HRe + R2

2R(H + Re)

For the flat earth model, the depression angle is:

sin−1 H
R

References

[1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.
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[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,” Technical Report
1015, MIT Lincoln Laboratory, December, 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
grazingang | horizonrange

Introduced in R2011b
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diagbfweights
Diagonalize MIMO channel

Syntax
[wp,wc] = diagbfweights(chanmat)
[wp,wc,P] = diagbfweights(chanmat)
[wp,wc,P,G] = diagbfweights(chanmat)
[wp,wc,P,G,C] = diagbfweights(chanmat)
[ ___ ] = diagbfweights(chanmat,Pt)
[ ___ ] = diagbfweights(chanmat,Pt, Pn)
[ ___ ] = diagbfweights(chanmat,Pt, Pn,powdistoption)

Description
[wp,wc] = diagbfweights(chanmat) returns precoding weights, wp, and combining weights, wc,
for the channel response matrix, chanmat. Together, these weights diagonalize the channel into
subchannels so that the matrix wp*chanmat*wc is diagonal.

[wp,wc,P] = diagbfweights(chanmat) also returns the distributed power, P, for each element
of the transmitting array.

[wp,wc,P,G] = diagbfweights(chanmat) also returns the subcarrier gains, G.

[wp,wc,P,G,C] = diagbfweights(chanmat) also returns the channel capacity sum, C.

[ ___ ] = diagbfweights(chanmat,Pt) also specifies total transmit power, Pt, and returned
values any of the previous output argument combinations.

[ ___ ] = diagbfweights(chanmat,Pt, Pn) also specifies the noise power per transmitting
antenna, Pn.

[ ___ ] = diagbfweights(chanmat,Pt, Pn,powdistoption) also specifies the noise
distribution, powdistoption, across all transmitting antennas.

Examples

Compute and Diagonalize Channel Matrix

Compute the channel matrix for a 4-by-4 transmitting URA array and a 5-by-5 receiving URA array.
Assume that three scatterers are randomly located located within a specified angular range. The
element spacings for both arrays is one-half wavelength. The receive array is 500 wavelengths away
from the transmitting array along the x-axis. Constrain the angular span for the transmitting and
receiving arrays. Diagonalize the channel matrix to compute the precoding and combining weights.

Specify the 4-by-4 transmitting array. Element spacing is in units of wavelength.

Nt = 4;
sp = 0.5;
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ygridtx = (0:Nt-1)*sp - (Nt-1)/2*sp;
zgridtx = (0:Nt-1)*sp - (Nt-1)/2*sp;
[ytx,ztx] = meshgrid(ygridtx,zgridtx);
txpos = [zeros(1,Nt*Nt);ytx(:).';ztx(:).'];

Specify the 5-by-5 receiving array. Element spacing is in units of wavelength.

Nr = 5;
sp = 0.5;
ygridrx = (0:Nr-1)*sp - (Nr-1)/2*sp;
zgridrx = (0:Nr-1)*sp - (Nr-1)/2*sp;
[yrx,zrx] = meshgrid(ygridrx,zgridrx);
rxpos = [500*ones(1,Nr*Nr);yrx(:).';zrx(:).'];

Set the angular limits for transmitting and receiving.

• The azimuth angle limits for the transmitter are −45° to +45°.
• The azimuth angle limits for the receiver are −75° to +50°.
• The elevation angle limits for the transmitter are −12° to +12°.
• The elevation angle limits for the receiver are −30° to +30°.

angrange = [-45 45 -75 50; -12 12 -30 30];

Specify three scatterers and create the channel matrix.

numscat = 3;
chmat = scatteringchanmtx(txpos,rxpos,numscat,angrange);

Diagonalize the channel matrix.

[wp,wc] = diagbfweights(chmat);
z = wp*chmat*wc;

Show the first four diagonal elements.

z(1:4,1:4)

ans = 4×4 complex

  23.3713 + 0.0000i  -0.0000 + 0.0000i  -0.0000 + 0.0000i   0.0000 - 0.0000i
   0.0000 - 0.0000i  10.7803 + 0.0000i   0.0000 - 0.0000i  -0.0000 + 0.0000i
  -0.0000 - 0.0000i   0.0000 - 0.0000i   1.0566 + 0.0000i  -0.0000 - 0.0000i
  -0.0000 + 0.0000i   0.0000 + 0.0000i   0.0000 - 0.0000i   0.0000 - 0.0000i

Distributed Power of Diagonalized Channel Matrix

Compute the channel matrix for a 4-by-4 transmitting URA array and a 5-by-5 receiving URA array.
Assume that three scatterers are randomly located within a specified angular range. The element
spacings for both arrays is one-half wavelength. The receive array is 500 wavelengths away along the
x-axis. Diagonalize the channel matrix to compute the precoding and combining weights and the
distributed power.

Specify the 4-by-4 transmitting array. Element spacing is in units of wavelength.
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Nt = 4;
sp = 0.5;
ygridtx = (0:Nt-1)*sp - (Nt-1)/2*sp;
zgridtx = (0:Nt-1)*sp - (Nt-1)/2*sp;
[ytx,ztx] = meshgrid(ygridtx,zgridtx);
txpos = [zeros(1,Nt*Nt);ytx(:).';ztx(:).'];

Specify the 5-by-5 receiving array. Element spacing is in units of wavelength.

Nr = 5;
sp = 0.5;
ygridrx = (0:Nr-1)*sp - (Nr-1)/2*sp;
zgridrx = (0:Nr-1)*sp - (Nr-1)/2*sp;
[yrx,zrx] = meshgrid(ygridrx,zgridrx);
rxpos = [500*ones(1,Nr*Nr);yrx(:).';zrx(:).'];

Set the angular limits for transmitting and receiving.

• The azimuth angle limits for the transmitter are −45° to +45°.
• The azimuth angle limits for the receiver are −75° to +50°.
• The elevation angle limits for the transmitter are −12° to +12°.
• The elevation angle limits for the receiver are −30° to +30°.

angrange = [-45 45 -75 50; -12 12 -30 30];

Specify three scatterers and create the channel matrix.

numscat = 3;
chmat = scatteringchanmtx(txpos,rxpos,numscat,angrange);

Diagonalize the channel matrix and return the distributed power.

[wp,wc,P] = diagbfweights(chmat);
disp(P.')

    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625
    0.0625

Subchannel Gains of Diagonalized Channel Matrix

Compute the channel matrix for an 11-element transmitting ULA array and a 7-element receiving
ULA array. Assume that there are five randomly located scatterers. The element spacings for both
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arrays is one-half wavelength. The receive array is 500 wavelengths away from the transmit array
along the x-axis. Diagonalize the channel matrix to compute the precoding and combining weights,
the distributed power, and the subchannel gains.

Specify the 11-element transmitting ULA array. Element spacing is in units of wavelength.

Nt = 11;
sp = 0.5;
txpos = (0:Nt-1)*sp - (Nt-1)/2*sp;

Specify the 7-element receiving ULA array. Element spacing is in units of wavelength.

Nr = 7;
sp = 0.5;
rxpos = (0:Nr-1)*sp - (Nr-1)/2*sp;
numscat = 5;
chmat = scatteringchanmtx(txpos,rxpos,numscat);

Diagonalize the channel matrix and return the subchannel gains.

[wp,wc,P,G] = diagbfweights(chmat);
disp(G.')

  221.8345
   56.8443
   47.6711
    0.8143
    0.0000
    0.0000
    0.0000

Channel Capacity Sum of Diagonalized Channel Matrix

Compute the channel matrix for an 11-element transmitting ULA array and a 7-element receiving
ULA array. Assume that there are five randomly located scatterers. The element spacings for both
arrays is one-half wavelength. The receive array is 500 wavelengths away from the transmitting array
along the x-axis. Create a channel matrix with two subcarriers. Diagonalize the channel matrix to
compute the precoding and combining weights, the distributed power, the subchannel gains, and the
channel capacity sum.

Specify the 11-element transmitting ULA array. Element spacing is in units of wavelength.

Nt = 11;
sp = 0.5;
txpos = (0:Nt-1)*sp - (Nt-1)/2*sp;

Specify the 7-element receiving ULA array. Element spacing is in units of wavelength.

Nr = 7;
sp = 0.5;
rxpos = (0:Nr-1)*sp - (Nr-1)/2*sp;
numscat = 5;

Create two subcarriers.

 diagbfweights

2-111



chmat1 = scatteringchanmtx(txpos,rxpos,numscat);
chmat2 = scatteringchanmtx(txpos,rxpos,numscat);
chmat(1,:,:) = chmat1;
chmat(2,:,:) = chmat2;

Diagonalize the channel matrix and return the subchannel gains.

[wp,wc,P,G,C] = diagbfweights(chmat);
disp(C.')

    9.5466    9.3605

Diagonalize Channel Matrix with Specified Power

Compute the channel matrix for an 11-element transmitting ULA array and a 7-element receiving
ULA array. Specify the total transmitted power at 1000. Assume that there are five randomly located
scatterers. The element spacings for both arrays is one-half wavelength. The receive array is 500
wavelengths away from the transmitting array along the x-axis. Create a channel matrix with two
subcarriers. Diagonalize the channel matrix to compute the precoding and combining weights, the
distributed power, the subchannel gains, and the channel capacity sum.

Specify the 11-element transmitting ULA array. Element spacing is in units of wavelength.

Nt = 11;
sp = 0.5;
txpos = (0:Nt-1)*sp - (Nt-1)/2*sp;

Specify the 7-element receiving ULA array. Element spacing is in units of wavelength.

Nr = 7;
sp = 0.5;
rxpos = (0:Nr-1)*sp - (Nr-1)/2*sp;
numscat = 5;

Create two subcarriers.

chmat1 = scatteringchanmtx(txpos,rxpos,numscat);
chmat2 = scatteringchanmtx(txpos,rxpos,numscat);
chmat(1,:,:) = chmat1;
chmat(2,:,:) = chmat2;

Diagonalize the channel matrix and return the distributed power for both subcarriers.

Pt = 1000.0;
[wp,wc,P,G,C] = diagbfweights(chmat,Pt);
disp(P.')

   90.9091   90.9091
   90.9091   90.9091
   90.9091   90.9091
   90.9091   90.9091
   90.9091   90.9091
   90.9091   90.9091
   90.9091   90.9091
   90.9091   90.9091
   90.9091   90.9091
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   90.9091   90.9091
   90.9091   90.9091

Diagonalize Channel Matrix with Specified Noise Power

Compute the channel matrix for an 11-element transmitting ULA array and a 7-element receiving
ULA array. Specify the total transmitted power at 1000 and the transmitting antenna noise power at
100. Assume that there are five randomly located scatterers. The element spacings for both arrays is
one-half wavelength. The receive array is 500 wavelengths away from the transmit array along the x-
axis. Create a channel matrix with two subcarriers. Diagonalize the channel matrix to compute the
precoding and combining weights, the distributed power, subchannel gains, and channel capacity
sum.

Specify the 11-element transmitting ULA array. Element spacing is in units of wavelength.

Nt = 11;
sp = 0.5;
txpos = (0:Nt-1)*sp - (Nt-1)/2*sp;

Specify the 7-element receiving ULA array. Element spacing is in units of wavelength.

Nr = 7;
sp = 0.5;
rxpos = (0:Nr-1)*sp - (Nr-1)/2*sp;
numscat = 5;

Create two subcarriers.

chmat1 = scatteringchanmtx(txpos,rxpos,numscat);
chmat2 = scatteringchanmtx(txpos,rxpos,numscat);
chmat(1,:,:) = chmat1;
chmat(2,:,:) = chmat2;

Diagonalize the channel matrix and return the gain for both subcarriers.

Pt = 1000.0;
Pn = 100.0;
[wp,wc,P,G,C] = diagbfweights(chmat,Pt,Pn);
disp(G.')

  221.8345  119.7549
   56.8443  115.9814
   47.6711   24.9780
    0.8143    5.1025
    0.0000    0.0059
    0.0000    0.0000
    0.0000    0.0000

Diagonalize Channel Matrix Using Waterfill Power Distribution

Compute the channel matrix for an 11-element transmitting ULA array and a 7-element receiving
ULA array. Specify the total transmitted power at 1000 and the transmitting antenna noise power at
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100. Specify the transmitted power distribution as 'Waterfill'. Assume that there are five
randomly located scatterers. The element spacing for both arrays is one-half wavelength. The receive
array is 500 wavelengths away from the transmitting array along the x-axis. Create a channel matrix
with two subcarriers. Diagonalize the channel matrix to compute the precoding and combining
weights, the distributed power, the subchannel gains, and the channel capacity sum.

Specify the 11-element transmitting ULA array. Element spacing is in units of wavelength.

Nt = 11;
sp = 0.5;
txpos = (0:Nt-1)*sp - (Nt-1)/2*sp;

Specify the 7-element receiving ULA array. Element spacing is in units of wavelength.

Nr = 7;
sp = 0.5;
rxpos = (0:Nr-1)*sp - (Nr-1)/2*sp;
numscat = 5;

Create two subcarriers.

chmat1 = scatteringchanmtx(txpos,rxpos,numscat);
chmat2 = scatteringchanmtx(txpos,rxpos,numscat);
chmat(1,:,:) = chmat1;
chmat(2,:,:) = chmat2;

Diagonalize the channel matrix and return the gain for both subcarriers.

Pt = 1000.0;
Pn = 100.0;
[wp,wc,P,G,C] = diagbfweights(chmat,Pt,Pn,'Waterfill');
disp(G.')

  221.8345  119.7549
   56.8443  115.9814
   47.6711   24.9780
    0.8143    5.1025
    0.0000    0.0059
    0.0000    0.0000
    0.0000    0.0000

Input Arguments
chanmat — Channel response matrix
Nt-by-Nr complex-valued matrix | L-by-Nt-by-Nr complex-valued MATLAB array

Channel response matrix, specified as an Nt-by-Nr complex-valued matrix or an L-by-Nt-by-Nr
complex-valued MATLAB array.

• Nt is the number of elements in the transmitting array.
• Nr is the number of elements in the receiving array.
• L is the number of subcarriers.

When chanmat is a MATLAB array containing subcarriers, each subcarrier is decomposed
independently into subchannels.
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Data Types: double
Complex Number Support: Yes

Pt — Total transmit power
1 (default) | positive scalar | L-element vector of positive values

Total transmit power, specified as a positive scalar or an L-element vector of positive values. Pt has
the same units as the total distributed power, P.
Data Types: double

Pn — Noise power
1 (default) | positive scalar

Noise power in each receiving antenna, specified as a positive scalar. Pn has the same units as the
total transmit power, Pt.
Data Types: double

powdistoption — Power distribution option
'Uniform' (default) | 'Waterfill'

Power distribution option, specified as 'Uniform' or 'Waterfill'. When powdistoption is
'Uniform', the transmit power is evenly distributed across all Nt channels. If powdistoption is
'Waterfill', the transmit power is distributed across the Nt channels using a waterfill algorithm.
Data Types: char

Output Arguments
wp — Precoding weights
Nt-by-Nt complex-valued matrix | L-by-Nt-by-Nt complex-valued MATLAB array

Precoding weights, returned as an Nt-by-Nt complex-valued matrix or an L-by-Nt-by-Nt complex-
valued MATLAB array. Units are dimensionless.
Data Types: double

wc — Combining weights
Nr-by-Nr complex-valued matrix | L-by-Nr-by-Nr complex-valued MATLAB array

Combining weights, returned as an Nr-by-Nr complex-valued matrix or an L-by-Nr-by-Nr complex-
valued MATLAB array. Units are dimensionless.
Data Types: double

P — Distributed power
1-by-Nt real-valued row vector | L-by-Nt real-valued matrix

Distributed power, returned as a vector or matrix.

• When chanmat is an Nt-by-Nr real-valued matrix, P is a 1-by-Nt real-valued row vector.
• When chanmat is an L-by-Nt-by-Nr real-valued MATLAB array, P is an L-by-Nt real-valued matrix.

Power units are linear.
Data Types: double
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G — Subchannel gains
1-by-Ng complex-valued row vector | L-by-Ng complex-valued matrix

Subchannel gains, returned as a vector or matrix.

• When chanmat is an Nt-by-Nr complex-valued matrix, G is a 1-by-Ng complex-valued row vector.
• When chanmat is an L-by-Nt-by-Nr complex-valued MATLAB array, G is an L-by-Ng complex-valued

matrix.

Ng is the smaller of Nt and Nr.

Gain units are linear.
Data Types: double

C — Channel capacity sum for each subcarrier
scalar | L-by-1 vector

Channel capacity sum for each subcarrier, returned as a scalar or vector.

• When chanmat is an Nt-by-Nr complex-valued matrix, C is a scalar.
• When chanmat is an L-by-Nt-by-Nr complex-valued MATLAB array, C is an L-by-1 vector.

Capacity units are in bps/Hz.
Data Types: double

References
[1] Heath, R. Jr. et al. “An Overview of Signal Processing Techniques for Millimeter Wave MIMO

Systems”, arXiv.org:1512.03007 [cs.IT], 2015.

[2] Tse, D. and P. Viswanath, Fundamentals of Wireless Communications, Cambridge: Cambridge
University Press, 2005.

[3] Paulraj, A. Introduction to Space-Time Wireless Communications, Cambridge: Cambridge
University Press, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.

See Also
Functions
blkdiagbfweights | scatteringchanmtx | waterfill

Objects
phased.ScatteringMIMOChannel
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Introduced in R2017a
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dop2speed
Convert Doppler shift to speed

Syntax
radvel = dop2speed(Doppler_shift,wavelength)

Description
radvel = dop2speed(Doppler_shift,wavelength) returns the radial velocity in meters per
second. This value corresponds to the one-way Doppler shift, Doppler_shift, for the wavelength,
wavelength, in meters.

This function supports single and double precision for input data and arguments.

Examples

Calculate Speed of Car

Calculate the radial velocity of an automobile based on the Doppler shift of a continuous-wave radar.
The radar carrier frequency is 24.15 GHz. Assume a doppler shift of 2.880 kHz.

f0 = 24.15e9;
lambda = physconst('LightSpeed')/f0;
dopshift = 2.880e3;
radvel = dop2speed(dopshift,lambda)

radvel = 35.7516

The radial velocity is 35.75 meters per second or 80 miles/hour.

More About
Doppler-Radial Velocity Relation

The radial velocity of a source relative to a receiver can be computed from the one-way Doppler shift:

Vs, r = Δf λ

where Vs,r denotes the radial velocity of the source relative to the receiver, Δf is the Doppler shift in
hertz, and λ is the carrier frequency wavelength in meters.

References

[1] Rappaport, T. Wireless Communications: Principles & Practices. Upper Saddle River, NJ: Prentice
Hall, 1996.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

This function supports single and double precision for input data and arguments.

See Also
dopsteeringvec | speed2dop

Introduced in R2011a
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dopsteeringvec
Doppler steering vector

Syntax
DSTV = dopsteeringvec(dopplerfreq,numpulses)
DSTV = dopsteeringvec(dopplerfreq,numpulses,PRF)

Description
DSTV = dopsteeringvec(dopplerfreq,numpulses) returns the N-by-1 temporal (time-domain)
Doppler steering vector for a target at a normalized Doppler frequency of dopplerfreq in hertz. The
pulse repetition frequency is assumed to be 1 Hz.

DSTV = dopsteeringvec(dopplerfreq,numpulses,PRF) specifies the pulse repetition
frequency, PRF.

Input Arguments
dopplerfreq

The Doppler frequency in hertz. The normalized Doppler frequency is the Doppler frequency divided
by the pulse repetition frequency. This argument supports single and double precision.

numpulses

The number of pulses. The time-domain Doppler steering vector consists of numpulses samples
taken at intervals of 1/PRF (slow-time samples). This argument supports single and double precision.

PRF

Pulse repetition frequency in hertz. The time-domain Doppler steering vector consists of numpulses
samples taken at intervals of 1/PRF (slow-time samples). The normalized Doppler frequency is the
Doppler frequency divided by the pulse repetition frequency. This argument supports single and
double precision.

Output Arguments
DSTV

Temporal (time-domain) Doppler steering vector. DSTV is an N-by-1 column vector where N is the
number of pulses, numpulses.

Examples
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Compute Steering Vector for Doppler Shift

Calculate the steering vector corresponding to a Doppler frequency of 200 Hz. Assume there are 10
pulses and the PRF is 1 kHz.

dstv = dopsteeringvec(200,10,1000)

dstv = 10×1 complex

   1.0000 + 0.0000i
   0.3090 + 0.9511i
  -0.8090 + 0.5878i
  -0.8090 - 0.5878i
   0.3090 - 0.9511i
   1.0000 - 0.0000i
   0.3090 + 0.9511i
  -0.8090 + 0.5878i
  -0.8090 - 0.5878i
   0.3090 - 0.9511i

More About
Temporal Doppler Steering Vector

The temporal (time-domain) steering vector corresponding to a point scatterer is:

e j2πfdTpn

where n=0,1,2, ..., N-1 are slow-time samples (one sample from each pulse), fd is the Doppler
frequency, and Tp is the pulse repetition interval. The product of the Doppler frequency and the pulse
repetition interval is the normalized Doppler frequency.

Algorithms
Single Precision

This functions supports single and double precision for input arguments. If the input arguments are
single precision, the output is single precision. If the input arguments are double precision, the
output is double precision.

References

[1] Melvin, W. L. “A STAP Overview,” IEEE® Aerospace and Electronic Systems Magazine, Vol. 19,
Number 1, 2004, pp. 19–35.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

 dopsteeringvec

2-121



Usage notes and limitations:

This function supports single and double precision for input data and arguments.

This function does not support variable-size inputs.

See Also
dop2speed | speed2dop

Introduced in R2011a
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effearthradius
Effective earth radius

Syntax
Re = effearthradius
Re = effearthradius(refgrad)

Re = effearthradius(R,ha,ht)
Re = effearthradius(R,ha,ht,'SurfaceRefractivity',ns)
Re = effearthradius(R,ha,ht, ___ ,'BreakPointAltitude',altbp)
Re = effearthradius(R,ha,ht, ___ ,'BreakPointRefractivity',npb)

[Re,k] = effearthradius( ___ )

Description
Re = effearthradius returns the effective radius, Re, of a spherical earth, computed from the
gradient of the index of refraction of the atmosphere. This syntax uses the default value of -39e-9
for the gradient, making the effective radius approximately 4/3 of the actual earth radius. For more
information about the computation, see “Effective Earth Radius from Refractivity Gradient” on page
2-128.

Re = effearthradius(refgrad) computes the effective radius from the specified gradient of the
refractivity, refgrad, of the atmosphere.

Re = effearthradius(R,ha,ht) returns the effective Earth radius, Re, using the average radius
of curvature method (see [1]). R is the line-of-sight range to the target. ha is the radar altitude above
mean sea level (MSL). ht is the target altitude above MSL. See “Effective Earth Radius from Average
Radius of Curvature” on page 2-128.

Re = effearthradius(R,ha,ht,'SurfaceRefractivity',ns) also specifies the scalar surface
refractivity, ns for the average radius of curvature method. See “Effective Earth Radius from Average
Radius of Curvature” on page 2-128.

Re = effearthradius(R,ha,ht, ___ ,'BreakPointAltitude',altbp) also specifies the
altitude of the convergence point, altbp, for the average radius of curvature method.

Re = effearthradius(R,ha,ht, ___ ,'BreakPointRefractivity',npb) also specifies the
refractivity at the convergence point, npb, for the average radius of curvature method.

[Re,k] = effearthradius( ___ ) also outputs the effective radius factor, k. Use this option with
any of the syntaxes described above. See “Effective Earth Radius” on page 2-127.

Examples

Default Value of Effective Earth Radius

Return the default effective earth radius due to atmospheric refraction.

 effearthradius

2-123



re = effearthradius

re = 8.4774e+06

Compute the ratio of the effective earth radius to the actual earth radius.

r = physconst('EarthRadius');
disp(re/r)

    1.3306

Compute Effective Earth Radius from Refractivity Gradient

Compute the effective earth radius from a specified refractivity gradient, -40e-9.

rgrad = -40e-9;
re = effearthradius(rgrad)

re = 8.5498e+06

Compute Effective Earth Radius from Path Length

Calculate the effective Earth radii for a radar positioned at sea level aimed at two targets. The first
target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000 meters
altitude at a range of 200 km.

rng = [100e3,200e3];
ha = [0];
ht = [8.0e3, 9.0e3];
re = effearthradius(rng,ha,ht)

re = 1×2
106 ×

    7.4342    7.3525

Compute Effective Earth Radius from Surface Refractivity

Calculate the effective Earth radii for a radar positioned at sea level and aimed at two targets. The
first target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000
meters altitude at a range of 200 km. Specify the surface refractivity as 100.0 N-units.

rng = [100e3,200e3];
ha = [0,0];
ht = [8.0e3,9.0e3];
re = effearthradius(rng,ha,ht,'SurfaceRefractivity',100)

re = 1×2
106 ×

2 Functions

2-124



    6.3582    6.3582

Compute Effective Earth Radius Using Breakpoint Height

Calculate the effective Earth radii for a radar positioned at sea level aimed at two targets. The first
target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000 meters
altitude at a range of 200 km. The breakpoint altitude is 10000.0 meters and the surface refractivity
is 350 N-units.

rng = [100e3,200e3];
ha = [0,0];
ht = [8.0e3,9.0e3];
re = effearthradius(rng,ha,ht,'SurfaceRefractivity',350.0, ...
    'BreakPointAltitude',10000.0)

re = 1×2
106 ×

    7.5877    7.4917

Compute Effective Earth Radius Using Breakpoint Refractivity and Height

Calculate the effective Earth radii for a radar positioned at sea level and aimed at two targets. The
first target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000
meters altitude at a range of 200 km. The breakpoint altitude is 10000.0 meters, the breakpoint
refractivity is 300 N-units, and the surface refractivity is 375 N-units.

rng = [100e3,200e3];
ha = 0;
ht = [8.0e3, 9.0e3];
re = effearthradius(rng,ha,ht,'SurfaceRefractivity',375, ...
    'BreakPointAltitude',10e3,'BreakPointRefractivity',300)

re = 1×2
106 ×

    6.6962    6.6930

Compute Effective Earth Radius Factor

Calculate the effective Earth radius factors for a radar positioned at sea level aimed at two targets.
The first target is at 8000 meters above sea level at a range of 100 km. The second target is at 9000
meters altitude at a range of 200 km. The break point altitude is one kilometer, the breakpoint
refractivity is 300.0 N-units, and the surface refractivity is 350.0 N-units.
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rng = [100e3,200e3];
ha = [0,0];
ht = [8.0e3,9.0e3];
[re,k] = effearthradius(rng,ha,ht,'SurfaceRefractivity',350.0, ...
    'BreakPointAltitude',1000.0,'BreakPointRefractivity',300.0)

re = 1×2
106 ×

    7.7113    7.5724

k = 1×2

    1.2104    1.1886

Input Arguments
refgrad — Refractivity gradient
-39e-9 (default) | scalar

Refractivity gradient, specified as a scalar. Units are in N-units/meter.
Data Types: double

R — Line-of-sight range to target
positive scalar | 1-by-M vector of positive values

Line-of-sight range to the target from the radar, specified as a positive scalar or a 1-by-M vector of
positive values. M must be the same for R, ha, and ht. However, if one of R, ha, and ht is a scalar and
another is a 1-by-M vector, the scalar is expanded into a 1-by-M vector. Units are in meters.
Data Types: double

ha — Radar altitude above mean sea level
scalar | 1-by-M vector

Radar altitude above mean sea level, specified as a scalar or a 1-by-M vector. M must be the same for
R, ha, and ht. However, if one of R, ha, and ht is a scalar and another is a 1-by-M vector, the scalar is
expanded into a 1-by-M vector. Units are in meters.
Data Types: double

ht — Target altitude above mean sea level
scalar | M-length vector

Target altitude above mean sea level, specified as a scalar or an M-length vector. M must be the same
R, ha, and ht. However, if one of R, ha, and ht is a scalar and another is a 1-by-M vector, the scalar is
expanded into a 1-by-M vector. Units are in meters.
Data Types: double

ns — Scalar surface refractivity
313 (default) | positive scalar

Scalar surface refractivity, specified as a positive scalar. Units are N-units.
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Dependencies

To enable this argument, use the syntax specifying 'SurfaceRefractivity'.
Data Types: double

altbp — Convergence point altitude
12192 or 9144 (default) | scalar

Convergence point altitude, specified as a scalar. The convergence point altitude defaults to 12192
meters when any of the input altitudes specified in ha or ht are greater than 9144 meters.
Otherwise, it defaults to 9144 meters. Setting the 'BreakPointAltitude' and
'BreakPointRefractivity' values can be used to tune the output to measured refraction values.
For more information, see “Effective Earth Radius from Average Radius of Curvature” on page 2-128.
Units are in meters.
Dependencies

To enable this argument, use the syntax specifying 'BreakPointAltitude'.
Data Types: double

npb — Convergence point refractivity
66.65 or 102.9 (default) | scalar

Convergence point refractivity, specified as a scalar. The refractivity defaults to 66.65 N-units when
any of the input altitudes specified in ha or ht are greater than 9144 meters. Otherwise, the default
is 102.9. Setting the 'BreakPointAltitude' and 'BreakPointRefractivity' values can be
used to tune the output to measured refraction values. For more information, see “Effective Earth
Radius from Average Radius of Curvature” on page 2-128. Units are N-units.
Dependencies

To enable this argument, use the syntax specifying 'BreakPointRefractivity'.
Data Types: double

Output Arguments
Re — Effective earth radius
4/3 actual earth radius (default) | positive scalar

Effective earth radius, returned as a positive scalar. Units are in meters.

k — Effective earth radius factor
4/3 (default) | positive scalar

Effective earth radius factor, returned as a positive scalar. The effective earth radius factor is the
ratio of the effective earth radius to the physical earth radius. Units are dimensionless.
Data Types: double

More About
Effective Earth Radius

The effective earth radius method is an approximation used for modelling refraction effects in the
troposphere. Changing the radius of the earth can account for refraction effects. The effective radius
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method ignores other types of propagation phenomena such as ducting. A related quantity, the
effective earth radius factor, is the ratio of the effective earth radius to the actual earth radius.

k =
Re
r

where r is the actual earth radius and Re is the effective earth radius. Commonly, the effective earth
radius factor, k, is chosen as 4/3. However, at long ranges and with shallow angles, k can deviate
greatly from the 4/3. (With no atmospheric refraction, k = 1. An infinite value for k represents a flat
Earth). The effearthradius function provides two methods for calculating the effective earth
radius: the refractivity gradient method and the average radius of curvature method.

Effective Earth Radius from Refractivity Gradient

An estimate of the effective earth radius factor, k, can be derived from the refractivity gradient using

k = 1
1 + r ⋅ refgrad

where r is the actual earth radius in meters. refgrad is the gradient of the index of refraction
specified by the refgrad argument. The index of refraction for a given altitude is the ratio of the
free-space propagation speed of electromagnetic waves to the propagation speed in air at that
altitude. The gradient is the rate of change of the index of refraction with altitude. The value of 4/3
corresponds to an index of refraction gradient of −39 × 10−9 m−1.

Effective Earth Radius from Average Radius of Curvature

Another way of estimating the effective earth radius factor is by using the average radius of
curvature method described in [1]. The first step in the method is to compute the average radius of
curvature over the signal propagation path

ρavg = 1
ha− ht∫ht

ha
ρdh =

Hb

10−6Nscosψg

e
ha− ht

Hb − 1
ha− ht

Hb

where the integral spans the range from the radar altitude (ha) to the target altitude (ht).

The constants in the equation where

• ht is the altitude of the target, specified by the ht argument.
• ha is the altitude of the radar, specified by the ha argument.
• hb is the altitude of the convergence point or breakpoint, specified by the altbp argument.
• Nb is the refractivity measure (in N-units) at the convergence point or breakpoint specified by the

npb argument.
• Ns is the refractivity measure (in N-units) at the surface.

Altitudes are with respect to mean sea level. The constant Hb is computed from

Hb =
hb− ht

ln
Nt
Nb

Then, the effective earth radius factor is computed from the average radius of curvature using
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k = 1
1−

Re
ρavg

Refractivity Measure and N-Units

The refractivity measure, N, is related to the index of refraction, n by:

n = 1 + 10−6N

10-6N represents the deviation of the index of refraction from the index of refraction of free space. N
is expressed in N-units.

References
[1] Doerry, Armin. W. "Earth Curvature and Atmospheric Refraction Effects on Radar Signal

Propagation", Sandia National Laboratories, SAND2012-10690, January 2013.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 2nd Ed. Artech House, 2001.

[3] Mahafza, Bassem R. Radar Signal Analysis and Processing Using MATLAB, CRC Press, 2009.

[4] Skolnik, Merrill I. Introduction to Radar Systems, Third edition, McGraw-Hill, 2001.

[5] Ward, James. "Space-Time Adaptive Processing for Airborne Radar", Lincoln Lab Technical Report,
1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
depressionang | grazingang | horizonrange

Introduced in R2011b
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espritdoa
Direction of arrival using TLS ESPRIT

Syntax
ang = espritdoa(R,nsig)
ang = espritdoa( ___ ,Name,Value)

Description
ang = espritdoa(R,nsig) estimates the directions of arrival, ang, of a set of plane waves
received on a uniform line array (ULA). The estimation employs the TLS ESPRIT, the total least-
squares ESPRIT, algorithm. The input arguments are the estimated spatial covariance matrix between
sensor elements, R, and the number of arriving signals, nsig. In this syntax, sensor elements are
spaced one-half wavelength apart.

ang = espritdoa( ___ ,Name,Value) estimates the directions of arrival with additional options
specified by one or more Name,Value pair arguments. This syntax can use any of the input
arguments in the previous syntax.

Examples

Three Signals Arriving at Half-Wavelength-Spaced ULA

Assume a half-wavelength spaced uniform line array with 10 elements. Three plane waves arrive from
the 0°, –25°, and 30° azimuth directions. Elevation angles are 0°. The noise is spatially and
temporally white. The SNR for each signal is 5 dB. Find the arrival angles.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25 30];
Nsig = 3;
R = sensorcov(elementPos,angles,db2pow(-5));
doa = espritdoa(R,Nsig)

doa = 1×3

   30.0000   -0.0000  -25.0000

The espritdoa function returns the correct angles.

Three Signals Arriving at 0.4-Wavelength-Spaced ULA

Assume a uniform line array with 10 elements. The element spacing is 0.4 wavelength. Three plane
waves arrive from the 0°, –25°, and 30° azimuth directions. Elevation angles are 0°. The noise is
spatially and temporally white. The SNR for each signal is 5 dB. Find the arrival angles.

2 Functions

2-130



N = 10;
d = 0.4;
elementPos = (0:N-1)*d;
angles = [0 -25 30];
Nsig = 3;
R = sensorcov(elementPos,angles,db2pow(-5));
doa = espritdoa(R,Nsig,'ElementSpacing',d)

doa = 1×3

  -25.0000   -0.0000   30.0000

espritdoa returns the correct angles.

Input Arguments
R — Spatial covariance matrix
complex-valued positive-definite N-by-N matrix.

Spatial covariance matrix, specified as a complex-valued, positive-definite, N-by-N matrix. In this
matrix, N represents the number of elements in the ULA array. If R is not Hermitian, a Hermitian
matrix is formed by averaging the matrix and its conjugate transpose, (R+R')/2.
Example: [ 4.3162, –0.2777 – 0.2337i; –0.2777 + 0.2337i , 4.3162]
Data Types: double
Complex Number Support: Yes

nsig — Number of arriving signals
positive integer

Number of arriving signals, specified as a positive integer.
Example: 3
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ‘ElementSpacing’, 0.45

ElementSpacing — ULA element spacing
0.5 (default) | real-valued positive scalar

ULA element spacing, specified as a real-valued, positive scalar. Position units are measured in terms
of signal wavelength.
Example: 0.4
Data Types: double

RowWeighting — Row weights
1 (default) | real-valued positive scalar
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Row weights specified as a real-valued positive scalar. These weights are applied to the selection
matrices which determine the ESPRIT subarrays. A larger value is generally better but the value
must be less than or equal to (Ns–1)/2, where Ns is the number of subarray elements. The number of
subarray elements is Ns = N–1. The value of N is the number of ULA elements, as specified by the
dimensions of the spatial covariance matrix, R. A detailed discussion of selection matrices and row
weighting can be found in Van Trees [1], p. 1178.
Example: 5
Data Types: double

Output Arguments
ang — Directions of arrival angles
real-valued 1-by-M row vector

Directions of arrival angle returned as a real-valued, 1-by-M vector. The dimension M is the number
of arriving signals specified in the argument, nsig. This angle is the broadside angle. Angle units are
degrees and angle values lie between –90° and 90°.

References
[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
aictest | mdltest | phased.ESPRITEstimator | rootmusicdoa | spsmooth

Introduced in R2013a
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fogpl
RF signal attenuation due to fog and clouds

Syntax
L = fogpl(R,freq,T,den)

Description
L = fogpl(R,freq,T,den) returns attenuation, L, when signals propagate in fog or clouds. R
represents the signal path length. freq represents the signal carrier frequency, T is the ambient
temperature, and den specifies the liquid water density in the fog or cloud.

The fogpl function applies the International Telecommunication Union (ITU) cloud and fog
attenuation model to calculate path loss of signals propagating through clouds and fog. See [1]. Fog
and clouds are the same atmospheric phenomenon, differing only by height above ground. Both
environments are parametrized by their liquid water density. Other model parameters include signal
frequency and temperature. This function applies to cases when the signal path is contained entirely
in a uniform fog or cloud environment. The liquid water density does not vary along the signal path.
The attenuation model applies only for frequencies at 10–1000 GHz.

Examples

Attenuation in Cumulus Clouds

Compute the attenuation of signals propagating through a cloud that is 1 km long at 1000 meters
altitude. Compute the attenuation for frequencies from 15 to 1000 GHz. A typical value for the cloud
liquid water density is 0.5 g/m3. Assume the atmospheric temperature at 1000 meters is 20∘C.

R = 1000.0;
freq = [15:5:1000]*1e9;
T = 20.0;
lwd = 0.5;
L = fogpl(R,freq,T,lwd);

Plot the specific attenuation as a function of frequency. Specific attenuation is the attenuation or loss
per kilometer.

loglog(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')
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Input Arguments
R — Signal path length
positive real-valued scalar | M-by-1 nonnegative real-valued vector | 1-by-M nonnegative real-valued
vector

Signal path length, specified as a scalar or as an M-by-1 or 1-by-M vector of nonnegative real-values.
Total attenuation is the specific attenuation multiplied by the path length. Units are meters.
Example: [1300.0,1400.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N nonnegative real-
valued row vector

Signal frequency, specified as a positive real-valued scalar or as an N-by-1 nonnegative real-valued
vector or 1-by-N nonnegative real-valued vector. Frequencies must lie in the range 10–1000 GHz.
Example: [14.0e9,15.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature in fog or cloud, specified as a real-valued scalar. Units are in degrees Celsius.
Example: -10.0
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den — Liquid water density
nonnegative real-valued scalar

Liquid water density, specified as a nonnegative real-valued scalar. Units are g/m3. Typical values for
liquid water density in fog range from approximately 0.05 g/m3 for medium fog to approximately 0.5
g/m3 for thick fog. For medium fog, visibility is about 300 meters. For heavy fog, visibility is about 50
meters. Cumulus cloud liquid water density is typically 0.5 g/m3.
Example: 0.01

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.840-6: Attenuation due to clouds and fog. 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

Does not support variable-size inputs.

See Also
LOSChannel | WidebandLOSChannel | fspl | gaspl | rainpl

Introduced in R2016a
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fspl
Free space path loss

Syntax
L = fspl(R,lambda)

Description
L = fspl(R,lambda) returns the free space path loss in decibels for a waveform with wavelength
lambda propagated over a distance of R meters. The minimum value of L is zero, indicating no path
loss.

Examples

Calculate Free-Space Path Loss

Calculate the free-space path loss (in dB) of a 10 GHz radar signal over a distance of 10 km.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
R = 10e3;
L = fspl(R,lambda)

L = 132.4478

Input Arguments
R — Propagation distance of signal
real-valued 1-by-M or M-by-1 vector

Units are in meters.

lambda — Speed of propagation divided by the signal frequency
real-valued 1-by-N or N-by-1 vector

Wavelength units are meters.

Output Arguments
L — Path loss in decibels
M-by-N non-negative matrix. A value of zero signifies no path loss.

When lambda is a scalar, L has the same dimensions as R.
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More About
Free Space Path Loss

The free-space path loss, L, in decibels is:

L = 20log10(4πR
λ )

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in a loss smaller than 0 dB,
equivalent to a signal gain. For this reason, the loss is set to 0 dB for range values R ≤ λ/4π.

References
[1] Proakis, J. Digital Communications. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
fogpl | gaspl | phased.FreeSpace | rainpl

Introduced in R2011a
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gain2aperture
Convert gain to effective aperture

Syntax
A = gain2aperture(G,lambda)

Description
A = gain2aperture(G,lambda) returns the effective aperture in square meters corresponding to
a gain of G decibels for an incident electromagnetic wave with wavelength lambda meters. G can be a
scalar or vector. If G is a vector, A is a vector of the same size as G. The elements of A represent the
effective apertures for the corresponding elements of G. lambda must be a scalar.

Input Arguments
G

Antenna gain in decibels. G is a scalar or a vector. If G is a vector, each element of G is the gain in
decibels of a single antenna.

lambda

Wavelength of the incident electromagnetic wave. The wavelength of an electromagnetic wave is the
ratio of the wave propagation speed to the frequency. For a fixed effective aperture, the antenna gain
is inversely proportional to the square of the wavelength. lambda must be a scalar.

Output Arguments
A

Antenna effective aperture in square meters. The effective aperture describes how much energy is
captured from an incident electromagnetic plane wave. The argument describes the functional area
of the antenna and is not equivalent to the actual physical area. For a fixed wavelength, the antenna
gain is proportional to the effective aperture. A can be a scalar or vector. If A is a vector, each element
of A is the effective aperture of the corresponding gain in G.

Examples

Compute Effective Aperture

An antenna has a gain of 3 dB. Calculate the antenna's effective aperture when used to capture an
electromagnetic wave with a wavelength of 10 cm.

a = gain2aperture(3,0.1)

a = 0.0016
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More About
Gain and Effective Aperture

The relationship between the gain, G, in decibels of an antenna and the antenna’s effective aperture
is:

Ae = 10G/10 λ2

4π

where λ is the wavelength of the incident electromagnetic wave.

References

[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
aperture2gain

Introduced in R2011a
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gaspl
RF signal attenuation due to atmospheric gases

Syntax
L = gaspl(range,freq,T,P,den)

Description
L = gaspl(range,freq,T,P,den) returns the attenuation, L, when signals propagate through the
atmosphere. range represents the signal path length, and freq represents the signal carrier
frequency. T represents the ambient temperature, P represents the atmospheric pressure, and den
represents the atmospheric water vapor density.

The gaspl function applies the International Telecommunication Union (ITU) atmospheric gas
attenuation model [1] to calculate path loss for signals primarily due to oxygen and water vapor. The
model computes attenuation as a function of ambient temperature, pressure, water vapor density, and
signal frequency. The function requires that the signal path is contained entirely in a uniform
environment. Atmospheric parameters do not vary along the signal path. The attenuation model
applies only for frequencies at 1–1000 GHz.

Examples

Atmospheric Gas Attenuation Spectrum

Compute the attenuation spectrum from 1 to 1000 GHz for an atmospheric pressure of 101.300 kPa
and a temperature of 15∘C. Plot the spectrum for a water vapor density of 7.5 g/m3 and then plot the
spectrum for dry air (zero water vapor density).

Set the attenuation frequencies.

freq = [1:1000]*1e9;

Assume a 1 km path distance.

R = 1000.0;

Compute the attenuation for air containing water vapor.

T = 15;
P = 101300.0;
W = 7.5;
L = gaspl(R,freq,T,P,W);

Compute the attenuation for dry air.

L0 = gaspl(R,freq,T,P,0.0);

Plot the attenuations.
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semilogy(freq/1e9,L)
hold on
semilogy(freq/1e9,L0)
grid
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB)')
hold off

Plot Attenuation Due to Atmospheric Gases and Free Space

First, plot the specific attenuation of atmospheric gases for frequencies from 1 GHz to 1000 GHz.
Assume a sea-level dry air pressure of 101.325e5 kPa and a water vapor density of 7.5 g/m3. The air
temperature is 20∘C. Specific attenuation is defined as dB loss per kilometer. Then, plot the actual
attenuation at 10 GHz for a span of ranges.

Plot Specific Atmospheric Gas Attenuation

Set the atmosphere temperature, pressure, water vapor density.

T = 20.0;
Patm = 101.325e3;
rho_wv = 7.5;

Set the propagation distance, speed of light, and frequencies.
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km = 1000.0;
c = physconst('LightSpeed');
freqs = [1:1000]*1e9;

Compute and plot the atmospheric gas loss.

loss = gaspl(km,freqs,T,Patm,rho_wv);
semilogy(freqs/1e9,loss)
grid on
xlabel('Frequency (GHz)')
ylabel('Specific Attenuation (dB/km)')

Plot Actual Atmospheric and Free Space Attenuation

Compute both free space loss and atmospheric gas loss at 10 GHz for ranges from 1 to 100 km. The
frequency corresponds to an X-band radar. Then, plot the free space loss and the total (atmospheric +
free space) loss.

ranges = [1:100]*1000;
freq_xband = 10e9;
loss_gas = gaspl(ranges,freq_xband,T,Patm,rho_wv);
lambda = c/freq_xband;
loss_fsp = fspl(ranges,lambda);
semilogx(ranges/1000,loss_gas + loss_fsp.',ranges/1000,loss_fsp)
legend('Atmospheric + Free Space Loss','Free Space Loss','Location','SouthEast')
xlabel('Range (km)')
ylabel('Loss (dB)')
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Input Arguments
range — Signal path length
nonnegative real-valued scalar | M-by-1 nonnegative real-valued column vector | 1-by-M nonnegative
real-valued row vector

Signal path length used to compute attenuation, specified as a nonnegative real-valued scalar or
vector. You can specify multiple path lengths simultaneously. Units are in meters.
Example: [13000.0,14000.0]

freq — Signal frequency
positive real-valued scalar | N-by-1 nonnegative real-valued column vector | 1-by-N nonnegative real-
valued row vector

Signal frequency, specified as a positive real-valued scalar, or as an N-by-1 nonnegative real-valued
vector or 1-by-N nonnegative real-valued vector. You can specify multiple frequencies simultaneously.
Frequencies must lie in the range 1–1000 GHz. Units are in hertz.
Example: [1.4e9,2.0e9]

T — Ambient temperature
real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Example: -10.0
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P — Dry air pressure
positive real-valued scalar

Dry air pressure, specified as a positive real-valued scalar. Units are in Pa. One standard atmosphere
at sea level is 101325 Pa.
Example: 101300.0

den — Water vapor density
nonnegative real-valued scalar

Water vapor density or absolute humidity, specified as a nonnegative real-valued scalar. Units are
g/m3. The maximum water vapor density of air at 30° C is approximately 30.0 g/m3. The maximum
water vapor density of air at 0°C is approximately 5.0 g/m3.
Example: 4.0

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix

Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .
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For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.

For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.676-10: Attenuation by atmospheric gases 2013.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
LOSChannel | WidebandLOSChannel | fogpl | fspl | rainpl

Introduced in R2016a
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gccphat
Generalized cross-correlation

Syntax
tau = gccphat(sig,refsig)
tau = gccphat(sig,refsig,fs)
[tau,R,lag] = gccphat( ___ )

[ ___ ] = gccphat(sig)
[ ___ ] = gccphat(sig,fs)

Description
tau = gccphat(sig,refsig) computes the time delay, tau, between the signal, sig, and a
reference signal, refsig. Both sig and refsig can have multiple channels. The function assumes
that the signal and reference signal come from a single source. To estimate the delay, gccphat finds
the location of the peak of the cross-correlation between sig and refsig. The cross-correlation is
computed using the generalized cross-correlation phase transform (GCC-PHAT) algorithm. Time
delays are multiples of the sample interval corresponding to the default sampling frequency of one
hertz.

tau = gccphat(sig,refsig,fs), specifies the sampling frequency of the signal. Time delays are
multiples of the sample interval corresponding to the sampling frequency. All input signals should
have the same sample rate.

[tau,R,lag] = gccphat( ___ ) returns, in addition, the cross-correlation values and correlation
time lags, using any of the arguments from previous syntaxes. The lags are multiples of the sampling
interval. The number of cross-correlation channels equals the number of channels in sig.

[ ___ ] = gccphat(sig) or [ ___ ] = gccphat(sig,fs) returns the estimated delays and cross
correlations between all pairs of channels in sig. If sig has M columns, the resulting tau and R have
M2 columns. In these syntaxes, no reference signal input is used. The first M columns of tau and R
contain the delays and cross correlations that use the first channel as the reference. The second M
columns contain the delays and cross-correlations that use the second channel as the reference, and
so on.

Examples

Cross-Correlation Between Two Signals and Reference Signal

Load a gong sound signal. First, use the gong signal as a reference signal. Then, duplicate the signal
twice, introducing time delays of 5 and 25 seconds. Leave the sampling rate to its default of one
hertz. Use gccphat to estimate the time delays between the delayed signals and the reference
signal.

load gong;
refsig = y;
delay1 = 5;

 gccphat

2-147



delay2 = 25;
sig1 = delayseq(refsig,delay1);
sig2 = delayseq(refsig,delay2);
tau_est = gccphat([sig1,sig2],refsig)

tau_est = 1×2

     5    25

Cross-Correlation Between Signal and Reference Signal

Load a gong sound signal. Use the gong signal as a reference signal. Then, duplicate the signal,
introducing a time delays of 5 milliseconds. Use the sampling rate of 8192 Hz. Use gccphat to
estimate the time delay between the delayed signal and the reference signal.

load gong;
delay = 0.005;
refsig = y;
sig = delayseq(refsig,delay,Fs);
tau_est = gccphat(sig,refsig,Fs)

tau_est = 0.0050

Plot Cross-Correlation of Three Signals with Reference Signal

Load a musical sound signal with a sample rate is 8192 hertz. Then, duplicate the signal three times
and introduce time delays between the signals. Estimate the time delays between the delayed signals
and the reference signals. Plot the correlation values.

load handel;
dt = 1/Fs;
refsig = y;

Create three delayed versions of the signal.

delay1 = -5.2*dt;
delay2 = 10.3*dt;
delay3 = 7*dt;
sig1 = delayseq(refsig,delay1,Fs);
sig2 = delayseq(refsig,delay2,Fs);
sig3 = delayseq(refsig,delay3,Fs);

Cross-correlate the delayed signals with the reference signal.

[tau_est,R,lags] = gccphat([sig1,sig2,sig3],refsig,Fs);

The gccphat functions estimates the delay to the nearest sample interval.

disp(tau_est*Fs)

    -5    10     7

Plot the correlation functions.
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plot(1000*lags,real(R(:,1)))
xlabel('Lag Times (ms)')
ylabel('Cross-correlation')
axis([-5,5,-.4,1.1])
hold on
plot(1000*lags,real(R(:,2)))
plot(1000*lags,real(R(:,3)))
hold off

Plot Cross-Correlation of Several Signals

Load a musical sound signal with a sample rate is 8192 hertz. Then, duplicate the signal two times
and introduce time delays between the two signals and the reference signal. Estimate the time delays
and plot the cross-correlation function between all pairs of signals.

load handel;
dt = 1/Fs;
refsig = y;

Create three delayed versions of the signal.

delay1 = -5.7*dt;
delay2 = 10.2*dt;
sig1 = delayseq(refsig,delay1,Fs);
sig2 = delayseq(refsig,delay2,Fs);
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Cross-correlate all signals with the other signal.

[tau_est,R,lags] = gccphat([refsig,sig1,sig2],Fs);

Show the time delays in units of sample interval. The algorithm estimates time delays quantized to
the nearest sample interval. Cross-correlation of three signals produce 9 possible time delays, one for
each possible signal pair.

disp(tau_est*Fs)

     0    -6    10     6     0    16   -10   -16     0

A signal correlated with itself gives zero lag.

Plot the correlation functions.

for n=1:9
    plot(1000*lags,real(R(:,n)))
    if n==1
        hold on
        xlabel('Lag Times (ms)')
        ylabel('Correlation')
        axis([-5,5,-.4,1.1])
    end
end
hold off
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Input Arguments
sig — Sensor signals
N-by-1 complex-valued column vector | N-by-M complex-valued matrix

Sensor signals, specified as an N-by-1 column vector or an N-by-M matrix. N is the number of time
samples and M is the number of channels. If sig is a matrix, each column is a different channel.
Example: [0,1,2,3,2,1,0]
Data Types: single | double
Complex Number Support: Yes

refsig — Reference sensor signals
N-by-1 complex-valued column vector | N-by-M complex-valued matrix

Reference signals, specified as an N-by-1 complex-valued column vector or an N-by-M complex-valued
matrix. If refsig is a column vector, then all channels in sig use refsig as the reference signal
when computing the cross-correlation.

If refsig is a matrix, then the size of refsig must match the size of sig. The gccphat function
computes the cross-correlation between corresponding channels in sig and refsig. The signals can
come from different sources.
Example: [1,2,3,2,1,0,0]
Data Types: single | double
Complex Number Support: Yes

fs — Signal sample rate
1 (default) | positive real-valued scalar

Signal sample rate, specified as a positive real-valued scalar. All signals should have the same sample
rate. Sample rate units are in hertz.
Example: 8000
Data Types: single | double
Complex Number Support: Yes

Output Arguments
tau — Time delay
1-by-K real-valued row vector

Time delay, returned as a 1-by-K real-valued row vector. The value of K depends upon the input
argument syntax.

• When a reference signal, refsig, is used, the value of K equals the column dimension of sig, M.
Each entry in tau specifies the estimated delay for the corresponding signal pairs in sig and
refsig.

• When no reference signal is used, the value of K equals the square of the column dimension of
sig, M2. Each entry in tau specifies the estimated delay for the corresponding signal pairs in
sig.

Units are seconds.
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R — Cross-correlation between signals
(2N-1)-by-K complex-valued matrix

Cross-correlation between signals at different sensors, returned as a (2N-1)-by-K complex-valued
matrix.

• When a reference signal, refsig, is used, the value of K equals the column dimension of sig, M.
Each column is the cross-correlation between the corresponding signal pairs in sig and refsig.

• When no reference signal is used, the value of K equals the square of the column dimension of
sig, M2. Each column is the cross-correlation between the corresponding signal pairs in sig.

lag — Cross-correlation lag times
(2N-1) real-valued column vector

Correlation lag times, returned as a (2N-1) real-valued column vector. Each row of lag contains the
lag time for the corresponding row of R. Lag values are constrained to be multiples of the sampling
interval. Lag units are in seconds.

More About
Generalized Cross-Correlation

You can use generalized cross-correlation to estimate the time difference of arrival of a signal at two
different sensors.

A model of a signal emitted by a source and received at two sensors is given by:

r1 t = s t + n1 t
r2 t = s t − D + n2 t

where D is the time difference of arrival (TDOA), or time lag, of the signal at one sensor with respect
to the arrival time at a second sensor. You can estimate the time delay by finding the time lag that
maximizes the cross-correlation between the two signals.

From the TDOA, you can estimate the broadside arrival angle of the plane wave with respect to the
line connecting the two sensors. For two sensors separated by distance L, the broadside arrival angle,
“Broadside Angles”, is related to the time lag by

sinβ = cτ
L

where c is the propagation speed in the medium.

A common method of estimating time delay is to compute the cross-correlation between signals
received at two sensors. To identify the time delay, locate the peak in the cross-correlation. When the
signal-to-noise ratio (SNR) is large, the correlation peak, τ, corresponds to the actual time delay D.

R(τ) = E r1(t)r2(t + τ)

D   =  argmax
τ

R(τ)

When the correlation function is more sharply peaked, performance improves. You can sharpen a
cross correlation peak using a weighting function that whitens the input signals. This technique is
called generalized cross-correlation (GCC). One particular weighting function normalizes the signal
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spectral density by the spectrum magnitude, leading to the generalized cross-correlation phase
transform method (GCC-PHAT).

S(f ) =∫−∞
∞

R(τ)e−i2πfτdτ

R(τ) =∫−∞
∞ S(f )

S(f ) e+i2πfτdf

D  =  argmax
τ

 R(τ)

If you use just two sensor pairs, you can only estimate the broadside angle of arrival. However, if you
use multiple pairs of non-collinear sensors, for example, in a URA, you can estimate the arrival
azimuth and elevation angles of the plane wave using least-square estimation. For N sensors, you can
write the delay time τkj of a signal arriving at the kth sensor with respect to the jth sensor by

cτk j = − x k− x j ⋅ u

u = cosαsinθi + sinαsinθ j + cosθk

where u is the unit propagation vector of the plane wave. The angles α and θ are the azimuth and
elevation angles of the propagation vector. All angles and vectors are defined with respect to the local
axes. You can solve the first equation using least-squares to yield the three components of the unit
propagation vector. Then, you can solve the second equation for the azimuth and elevation angles.

References
[1] Knapp, C. H. and G.C. Carter, “The Generalized Correlation Method for Estimation of Time Delay.”

IEEE Transactions on Acoustics, Speech and Signal Processing. Vol. ASSP-24, No. 4, Aug
1976.

[2] G. C. Carter, “Coherence and Time Delay Estimation.” Proceedings of the IEEE. Vol. 75, No. 2, Feb
1987.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.GCCEstimator

Introduced in R2015b
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global2localcoord
Convert global to local coordinates

Syntax
lclCoord = global2localcoord(gCoord, OPTION)
gCoord = global2localcoord( ___ ,localOrigin)
gCoord = global2localcoord( ___ ,localAxes)

Description
lclCoord = global2localcoord(gCoord, OPTION) converts global coordinates gCoord to
local coordinates lclCoord. OPTION determines the type of global-to-local coordinate
transformation. In this syntax, the global coordinate origin is located at (0,0,0) and the coordinate
axes are the unit vectors in the x, y, and z directions.

gCoord = global2localcoord( ___ ,localOrigin) specifies the origin of the local coordinate
system, localOrigin.

gCoord = global2localcoord( ___ ,localAxes) specifies the axes of the local coordinate
system, localAxes.

Input Arguments
gCoord

Global coordinates in rectangular or spherical coordinate, specified as a 3-by-N matrix. Each column
represents one set of global coordinates.

If the coordinates are in rectangular form, each column contains the (x,y,z) components. Units are in
meters.

If the coordinates are in spherical form, each column contains (az,el,r) components. az is the azimuth
angle on page 2-156 in degrees, el is the elevation angle on page 2-156 in degrees, and r is the radius
in meters.

The origin of the global coordinate system is assumed to be located at (0, 0, 0). The global system
axes are the standard unit basis vectors in three-dimensional space, (1, 0, 0), (0, 1, 0), and (0, 0, 1).

OPTION

Type of coordinate transformation, specified as a character vector. Valid types are

OPTION Transformation
'rr' Global rectangular to local rectangular
'rs' Global rectangular to local spherical
'sr' Global spherical to local rectangular

2 Functions

2-154



OPTION Transformation
'ss' Global spherical to local spherical

localOrigin

Origin of local coordinate system, specified as a 3-by-N matrix containing the rectangular coordinates
of the local coordinate system origin with respect to the global coordinate system. N must match the
number of columns of gCoord. Each column represents a separate origin. However, you can specify
localOrigin as a 3-by-1 vector. In this case, localOrigin is expanded into a 3-by-N matrix with
identical columns.

Default: [0;0;0]

localAxes

Axes of local coordinate system, specified as a 3-by-3-by-N array. Each page contains a 3-by-3 matrix
representing a different local coordinate system axes. The columns of the 3-by-3 matrices specify the
local x, y, and z axes in rectangular form with respect to the global coordinate system. However, you
can specify localAxes as a single 3-by-3 matrix. In this case, localAxes is expanded into a 3-by-3-
by-N array with identical 3-by-3 matrices. The default is the identity matrix.

Default: [1 0 0;0 1 0;0 0 1]

Output Arguments
lclCoord

Local coordinates in rectangular or spherical coordinate form, returned as a 3-by-N matrix. The
dimensions of lclCoord match the dimensions of gCoord.

Examples

Convert Global Coordinates to Local Coordinates

Convert global rectangular coordinates, (0,1,0), to local rectangular coordinates. The local coordinate
origin is (1,1,1).

lclCoord = global2localcoord([0;1;0],'rr',[1;1;1])

lclCoord = 3×1

    -1
     0
    -1

Convert global spherical coordinates to local rectangular coordinates.

lclCoord = global2localcoord([45;45;50],'sr',[50;50;50])

lclCoord = 3×1

  -25.0000
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  -25.0000
  -14.6447

More About
Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth and elevation angles of a direction vector.
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References
[1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and Practice

in C, 2nd Ed. Reading, MA: Addison-Wesley, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:
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Does not support variable-size inputs.

See Also
azel2phitheta | azel2uv | local2globalcoord | phitheta2azel | rangeangle | uv2azel

Topics
“Global and Local Coordinate Systems”

Introduced in R2011a
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grazingang
Grazing angle of surface target

Syntax
grazAng = grazingang(H,R)
grazAng = grazingang(H,R,MODEL)
grazAng = grazingang(H,R,MODEL,Re)

Description
grazAng = grazingang(H,R) returns the grazing angle for a sensor H meters above the surface,
to surface targets R meters away. The computation assumes a curved earth model with an effective
earth radius of approximately 4/3 times the actual earth radius.

grazAng = grazingang(H,R,MODEL) specifies the earth model used to compute the grazing
angle. MODEL is either 'Flat' or 'Curved'.

grazAng = grazingang(H,R,MODEL,Re) specifies the effective earth radius. Effective earth
radius applies to a curved earth model. When MODEL is 'Flat', the function ignores Re.

Input Arguments
H

Height of the sensor above the surface, in meters. This argument can be a scalar or a vector. If both H
and R are nonscalar, they must have the same dimensions.

R

Distance in meters from the sensor to the surface target. This argument can be a scalar or a vector. If
both H and R are nonscalar, they must have the same dimensions. R must be between H and the
horizon range determined by H.

MODEL

Earth model, as one of | 'Curved' | 'Flat' |.

Default: 'Curved'

Re

Effective earth radius in meters. This argument requires a positive scalar value.

Default: effearthradius, which is approximately 4/3 times the actual earth radius

 grazingang

2-159



Output Arguments
grazAng

Grazing angle, in degrees. The size of grazAng is the larger of size(H) and size(R).

Examples

Compute Grazing Angle

Determine the grazing angle (in degrees) of a path to a ground target located 1.0 km from a sensor.
The sensor is mounted on a platform that is 300 m above the ground.

grazAng = grazingang(300,1.0e3)

grazAng = 17.4544

More About
Grazing Angle

The grazing angle is the angle between a line from the sensor to a surface target, and a tangent to
the earth at the site of that target.

For the curved earth model with an effective earth radius of Re, the grazing angle is:

sin−1 H2 + 2HRe− R2

2RRe

For the flat earth model, the grazing angle is:

sin−1 H
R

References

[1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.
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[2] Ward, J. “Space-Time Adaptive Processing for Airborne Radar Data Systems,” Technical Report
1015, MIT Lincoln Laboratory, December, 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
depressionang | horizonrange

Introduced in R2011b

 grazingang

2-161



horizonrange
Horizon range

Syntax
Rh = horizonrange(H)
Rh = horizonrange(H,Re)

Description
Rh = horizonrange(H) returns the horizon range of a radar system H meters above the surface.
The computation uses an effective earth radius of approximately 4/3 times the actual earth radius.

Rh = horizonrange(H,Re) specifies the effective earth radius.

Input Arguments
H

Height of radar system above surface, in meters. This argument can be a scalar or a vector.

Re

Effective earth radius in meters. This argument must be a positive scalar.

Default: effearthradius, which is approximately 4/3 times the actual earth radius

Output Arguments
Rh

Horizon range in meters of radar system at altitude H.

Examples

Compute Range to Horizon

Determine the range to horizon for an antenna that is 30 m high.

Rh = horizonrange(30)

Rh = 2.2553e+04
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More About
Horizon Range

The horizon range of a radar system is the distance from the radar system to the earth along a
tangent. Beyond the horizon range, the radar system detects no return from the surface through a
direct path.

The value of the horizon range is:

2ReH + H2

where Re is the effective earth radius and H is the altitude of the radar system.

References

[1] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
depressionang | effearthradius | grazingang

Introduced in R2011b
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lcmvweights
Narrowband linearly constrained minimum variance (LCMV) beamformer weights

Syntax
wt = lcmvweights(constr,resp,cov)

Description
wt = lcmvweights(constr,resp,cov) returns narrowband linearly-constrained minimum
variance (LCMV) beamformer weights, wt, for a phased array. When applied to the elements of the
array, these weights steer the response of the array toward a specific arrival direction or set of
directions. LCMV beamforming requires that the beamformer response to signals from a direction of
interest are passed with specified gain and phase delay. However, power from interfering signals and
noise from all other directions is minimized. Additional constraints may be imposed to specifically
nullify output power coming from known directions. The constraints are contained in the matrix,
constr. Each column of constr represents a separate constraint vector. The desired response to
each constraint is contained in the response vector, resp. The argument cov is the sensor spatial
covariance matrix. All elements in the sensor array are assumed to be isotropic.

Examples

LCMV Beamformer with Nulls at -40 and 20 degrees

Construct a 10-element half-wavelength-spaced line array. Then, compute the LCMV weights for a
desired arrival direction of 0 degrees azimuth. Impose three direction constraints : a null at -40
degrees, a unit desired response in the arrival direction 0 degrees, and another null at 20 degrees.
The sensor spatial covariance matrix includes two signals arriving from -60 and 60 degrees and -10
dB isotropic white noise.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
sv = steervec(elementPos,[-40 0 20]);
resp = [0 1 0]';
Sn  = sensorcov(elementPos,[-60 60],db2pow(-10));

Compute the beamformer weights.

w = lcmvweights(sv,resp,Sn);

Plot the array pattern for the computed weights.

vv = steervec(elementPos,[-90:90]);
plot([-90:90],mag2db(abs(w'*vv)))
grid on
axis([-90,90,-50,10]);
xlabel('Azimuth Angle (degrees)');
ylabel('Normalized Power (dB)');
title('LCMV Array Pattern');
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The above figure shows that maximum gain is attained at 0 degrees as expected. In addition, the
constraints impose nulls at -40 and 20 degrees and these can be seen in the plot. The nulls at -60 and
60 degrees arise from the fundamental property of the LCMV beamformer of suppressing the power
contained in the two plane waves that contributed to the sensor spatial covariance matrix.

Input Arguments
constr — Constraint matrix
N-by-K complex-valued matrix

Constraint matrix specified as a complex-valued, N-by-K, complex-valued matrix. In this matrix N
represents the number of elements in the sensor array while K represents the number of constraints.
Each column of the matrix specifies a constraint on the beamformer weights. The number of K must
be less than or equal to N.
Example: [0, 0, 0; .1, .2, .3; 0,0,0]
Data Types: double
Complex Number Support: Yes

resp — Desired response
K-by-1 complex-valued column vector.

Desired response specified as complex-valued, K-by-1 column vector where K is the number of
constraints. The value of each element in the vector is the desired response to the constraint
specified in the corresponding column of constr.
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Example: [45;0]
Data Types: double
Complex Number Support: Yes

cov — Sensor spatial covariance matrix
N-by-N complex-valued matrix

Sensor spatial covariance matrix specified as a complex-valued, N-by-N matrix. In this matrix, N
represents the number of sensor elements. The covariance matrix consists of the variances of the
element data and the covariance between sensor elements. It contains contributions from all
incoming signals and noise.
Example: [45;0]
Data Types: double
Complex Number Support: Yes

Output Arguments
wt — Beamformer weights
N-by-1 complex-valued vector

Beamformer weights returned as an N-by-1, complex-valued vector. In this vector, N represents the
number of elements in the array.

More About
Linear-Constrained Minimum Variance Beamformers

The LCMV beamformer computes weights that minimize the total output power of an array but that
are subject to some constraints (see Van Trees [1], p. 527). In order to steer the response of the array
to a particular arrival direction, weights are chosen to produce unit gain when applied to the steering
vector for that direction. This requirement can be thought of as a constraint on the weights.
Additional constraints may be applied to nullify the array response to signals from other arrival
directions such as those containing noise sources. Let (az1,el1),(az2,el2),...,(azK,elK) be the set of
directions for which a constraint is to be imposed. Each direction has a corresponding steering
vector, ck, and the response of the array to that steering vector is given by ck

Hw. The transpose
conjugate of a vector is denoted by the superscript symbol H. A constraint is imposed when a desired
response is required when the beamformer weights act on a steering vector, ck,

ck
Hw = rk

This response could be specified as unity to allow the array to pass through the signal from a certain
direction. It could be zero to nullify the response from that direction. All the constraints can be
collected into a single matrix, C, and all the response into a single column vector, R. This allows the
constraints to be represented together in matrix form

CHw = R

The LCMV beamformer chooses weights to minimize the total output power

P = wHSw
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subject to the above constraints. S denotes the sensor spatial correlation matrix. The solution to the
power minimization is

w = S−1C CHS−1C −1R

and its derivation can be found in [2].

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ: Prentice Hall,
1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial filtering”. IEEE
ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
cbfweights | mvdrweights | phased.LCMVBeamformer | sensorcov | steervec

Introduced in R2013a
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local2globalcoord
Convert local to global coordinates

Syntax
gCoord = local2globalcoord(lclCoord,OPTION)
gCoord = local2globalcoord( ___ ,localOrigin)
gCoord = local2globalcoord( ___ ,localAxes)

Description
gCoord = local2globalcoord(lclCoord,OPTION) converts local coordinates lclCoord to
global coordinates gCoord. OPTION determines the type of local-to-global coordinate transformation.

gCoord = local2globalcoord( ___ ,localOrigin) specifies the origin of the local coordinate
system, localOrigin.

gCoord = local2globalcoord( ___ ,localAxes) specifies the axes of the local coordinate
system, localAxes.

Input Arguments
lclCoord

Local coordinates in rectangular or spherical coordinate form, specified as a 3-by-N matrix. Each
column represents one set of local coordinates.

If the coordinates are in rectangular form, each column contains the (x,y,z) components. Units are in
meters.

If the coordinates are in spherical form, each column contains (az,el,r) components. az is the azimuth
angle on page 2-156 in degrees, el is the elevation angle on page 2-156 in degrees, and r is the radius
in meters.

OPTION

Types of coordinate transformations, specified as a character vector. Valid values are

OPTION Transformation
'rr' Local rectangular to global rectangular
'rs' Local rectangular to global spherical
'sr' Local spherical to global rectangular
'ss' Local spherical to global spherical

localOrigin

Origin of local coordinate system, specified as a 3-by-N matrix containing the rectangular coordinates
of the local coordinate system origin with respect to the global coordinate system. N must match the
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number of columns of gCoord. Each column represents a separate origin. However, you can specify
localOrigin as a 3-by-1 vector. In this case, localOrigin is expanded into a 3-by-N matrix with
identical columns.

Default: [0;0;0]

localAxes

Axes of local coordinate system, specified as a 3-by-3-by-N array. Each page contains a 3-by-3 matrix
representing a different local coordinate system axes. The columns of the 3-by-3 matrices specify the
local x, y, and z axes in rectangular form with respect to the global coordinate system. However, you
can specify localAxes as a single 3-by-3 matrix. In this case, localAxes is expanded into a 3-by-3-
by-N array with identical 3-by-3 matrices. The default is the identity matrix.

Default: [1 0 0;0 1 0;0 0 1]

Output Arguments
gCoord

Glabal coordinates in rectangular or spherical coordinate form, returned as a 3-by-N matrix. The
dimensions of gCoord match the dimensions of lclCoord. The origin of the global coordinate system
is assumed to be located at (0, 0, 0). The global system axes are the standard unit basis vectors in
three-dimensional space, (1, 0, 0), (0, 1, 0), and (0, 0, 1).

Examples

Convert Local Rectangular Coordinates to Global Rectangular Coordinates

Convert from local rectangular coordinates to global rectangular coordinates. The local coordinate
origin is a (1,1,1)

globalcoord = local2globalcoord([0;1;0], 'rr',[1;1;1])

globalcoord = 3×1

     1
     2
     1

Convert Local Spherical Coordinates to Global Rectangular Coordinates

Convert local spherical coordinate to global rectangular coordinate.

globalcoord = local2globalcoord([30;45;4],'sr')

globalcoord = 3×1

    2.4495
    1.4142
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    2.8284

Convert Two Vectors Between Local and Global Coordinates

Convert two vectors in global coordinates into two vectors in global coordinates using the
global2local function. Then convert them back to local coordinates using the local2global
function.

Start with two vectors in global coordinates, (0,1,0) and (1,1,1). The local coordinate origins are
(1,5,2) and (-4,5,7).

gCoord = [0 1; 1 1; 0 1]

gCoord = 3×2

     0     1
     1     1
     0     1

lclOrig = [1 -4; 5 5; 2 7];

Construct two rotation matrices using the rotation functions.

lclAxes(:,:,1) = rotz(45)*roty(-15);
lclAxes(:,:,2) = roty(45)*rotx(35);

Convert the vectors in global coordinates into local coordinates.

lclCoord = global2localcoord(gCoord,'rr',lclOrig,lclAxes)

lclCoord = 3×2

   -3.9327    7.7782
   -2.1213   -3.6822
   -1.0168    1.7151

Convert the vectors in local coordinates back into global coordinates.

gCoord1 = local2globalcoord(lclCoord,'rr',lclOrig,lclAxes)

gCoord1 = 3×2

   -0.0000    1.0000
    1.0000    1.0000
         0    1.0000

More About
Azimuth Angle, Elevation Angle

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
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angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth and elevation angles of a direction vector.
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References

[1] Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. Computer Graphics: Principles and Practice
in C, 2nd Ed. Reading, MA: Addison-Wesley, 1995.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
azel2phitheta | azel2uv | global2localcoord | phitheta2azel | rangeangle | uv2azel

Topics
“Global and Local Coordinate Systems”

Introduced in R2011a
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mdltest
Dimension of signal subspace

Syntax
nsig = mdltest(X)
nsig = mdltest(X,'fb')

Description
nsig = mdltest(X) estimates the number of signals, nsig, present in a snapshot of data, X, that
impinges upon the sensors in an array. The estimator uses the Minimum Description Length (MDL)
test. The input argument, X, is a complex-valued matrix containing a time sequence of data samples
for each sensor. Each row corresponds to a single time sample for all sensors.

nsig = mdltest(X,'fb') estimates the number of signals. Before estimating, it performs forward-
backward averaging on the sample covariance matrix constructed from the data snapshot, X. This
syntax can use any of the input arguments in the previous syntax.

Examples

Estimate the Signal Subspace Dimensions for Two Arriving Signals

Construct a data snapshot of two plane waves arriving at a half-wavelength-spaced uniform line array
having 10 elements. The plane waves arrive from 0° and –25° azimuth, both with elevation angles of
0°. Assume the signals arrive in the presence of additive noise that is both temporally and spatially
Gaussian white. For each signal, the SNR is 5 dB. Take 300 samples to build a 300-by-10 data
snapshot. Then, solve for the number of signals using mdltest.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25];
x = sensorsig(elementPos,300,angles,db2pow(-5));
Nsig = mdltest(x)

Nsig = 2

The result shows that the number of signals is two, as expected.

Estimate the Signal Subspace Dimensions Using Forward-Backward Averaging

Construct a data snapshot for two plane waves arriving at a half-wavelength-spaced uniform line
array with 10 elements. Correlated plane waves arrive from 0° and 10° azimuth, both with elevation
angles of 0°. Assume the signals arrive in the presence of additive noise that is both temporally and
spatially Gaussian white noise. For each signal, the SNR is 10 dB. Take 300 samples to build a 300-
by-10 data snapshot. Then, solve for the number of signals using mdltest.
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N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 10];
ncov = db2pow(-10);
scov = [1 .5]'*[1 .5];
x = sensorsig(elementPos,300,angles,ncov,scov);
Nsig = mdltest(x)

Nsig = 1

This result shows that mdltest cannot determine the number of signals correctly when the signals
are correlated.

Now, try the forward-backward smoothing option.

Nsig = mdltest(x,'fb')

Nsig = 2

The addition of forward-backward smoothing yields the correct number of signals.

Input Arguments
X — Data snapshot
complex-valued K-by-N matrix

Data snapshot, specified as a complex-valued, K-by-N matrix. A snapshot is a sequence of time-
samples taken simultaneous at each sensor. In this matrix, K represents the number of time samples
of the data, while N represents the number of sensor elements.
Example: [ –0.1211 + 1.2549i, 0.1415 + 1.6114i, 0.8932 + 0.9765i; ]
Data Types: double
Complex Number Support: Yes

Output Arguments
nsig — Dimension of signal subspace
non-negative integer

Dimension of signal subspace, returned as a non-negative integer. The dimension of the signal
subspace is the number of signals in the data.

More About
Estimating the Number of Sources

AIC and MDL tests

Direction finding algorithms such as MUSIC and ESPRIT require knowledge of the number of sources
of signals impinging on the array or equivalently, the dimension, d, of the signal subspace. The Akaike
Information Criterion (AIC) and the Minimum Description Length (MDL) formulas are two frequently-
used estimators for obtaining that dimension. Both estimators assume that, besides the signals, the
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data contains spatially and temporally white Gaussian random noise. Finding the number of sources
is equivalent to finding the multiplicity of the smallest eigenvalues of the sampled spatial covariance
matrix. The sample spatial covariance matrix constructed from a data snapshot is used in place of the
actual covariance matrix.

A requirement for both estimators is that the dimension of the signal subspace be less than the
number of sensors, N, and that the number of time samples in the snapshot, K, be much greater than
N.

A variant of each estimator exists when forward-backward averaging is employed to construct the
spatial covariance matrix. Forward-backward averaging is useful for the case when some of the
sources are highly correlated with each other. In that case, the spatial covariance matrix may be ill
conditioned. Forward-backward averaging can only be used for certain types of symmetric arrays,
called centro-symmetric arrays. Then the forward-backward covariance matrix can be constructed
from the sample spatial covariance matrix, S, using SFB = S + JS*J where J is the exchange matrix.
The exchange matrix maps array elements into their symmetric counterparts. For a line array, it
would be the identity matrix flipped from left to right.

All the estimators are based on a cost function

Ld(d) = K(N − d)ln

1
N − d ∑

i = d + 1

N
λ i

∏
i = d + 1

N
λ i

1
N − d

plus an added penalty term. The value λi represent the smallest (N–d) eigenvalues of the spatial
covariance matrix. For each specific estimator, the solution for d is given by

• AIC

d AIC = argmin
d

Ld(d) + d(2N − d)

• AIC for forward-backward averaged covariance matrices

d AIC: FB = argmin
d

Ld(d) + 1
2d(2N − d + 1)

• MDL

d MDL = argmin
d

Ld(d) + 1
2(d(2N − d) + 1)lnK

• MDL for forward-backward averaged covariance matrices

d MDL FB = argmin
d

Ld(d) + 1
4d(2N − d + 1)lnK

References
[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
aictest | espritdoa | rootmusicdoa | spsmooth

Introduced in R2013a
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mvdrweights
Minimum variance distortionless response (MVDR) beamformer weights

Syntax
wt = mvdrweights(pos,ang,cov)
wt = mvdrweights(pos,ang,nqbits)

Description
wt = mvdrweights(pos,ang,cov) returns narrowband minimum variance distortionless response
(MVDR) beamformer weights for a phased array. When applied to the elements of an array, the
weights steer the response of a sensor array in a specific arrival direction or set of directions. The
pos argument specifies the sensor positions of the array. The ang argument specifies the azimuth and
elevation angles of the desired response directions. cov is the sensor spatial covariance matrix
between sensor elements. The output argument, wt, is a matrix contains the beamformer weights for
each sensor and each direction. Each column of wt contains the weights for the corresponding
direction specified in ang. All elements in the sensor array are assumed to be isotropic.

wt = mvdrweights(pos,ang,nqbits) returns quantized narrowband MVDR beamformer weights
when the number of phase shifter bits is set to nqbits.

Examples

MVDR Beamformer with Arrival Directions of 30 and 45 Degrees

Construct a 10-element, half-wavelength-spaced line array. Choose two arrival directions of interest -
one at 30° azimuth and the other at 45° azimuth. Assume both directions are at 0° elevation.
Compute the MVDR beamformer weights for each direction. Specify a sensor spatial covariance
matrix that contains signals arriving from -60° and 60° and noise at -10 dB.

Set up the array and sensor spatial covariance matrix.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
Sn  = sensorcov(elementPos,[-60 60],db2pow(-10));

Solve for the MVDR beamformer weights.

w = mvdrweights(elementPos,[30 45],Sn);

Plot the two MVDR array patterns.

plotangl = -90:90;
vv = steervec(elementPos,plotangl);
plot(plotangl,mag2db(abs(w'*vv)))
grid on
xlabel('Azimuth Angle (degrees)');
ylabel('Normalized Power (dB)');
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legend('30 deg','45 deg');
title('MVDR Array Pattern')

The figure shows plots for each beamformer direction. One plot has the expected maximum gain at 30
degrees and the other at 45 degrees. The nulls at -60 and 60 degrees arise from the fundamental
property of the MVDR beamformer of suppressing power in all directions except for the arrival
direction.

Quantized Weights in MVDR Beamformer

Construct a 10-element, half-wavelength-spaced line array. Choose the arrival direction of interest to
be 18.5° azimuth and 10° elevation. Compute the MVDR beamformer weights and then compute the
weights for 3-bit quantization. Specify a sensor spatial covariance matrix that contains signals
arriving from -60° and 60° and noise at -10 dB.

Set up the array and the sensor spatial covariance matrix.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
SN  = sensorcov(elementPos,[-60 60],db2pow(-10));

Solve for the MVDR beamformer weights with and without quantization.
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w = mvdrweights(elementPos,[18.5;10],SN);
wq = mvdrweights(elementPos,[18.5;10],SN,3);

Plot both MVDR array patterns.

plotangl = -90:90;
vv = steervec(elementPos,plotangl);
plot(plotangl,mag2db(abs(w'*vv)))
hold on
plot(plotangl,mag2db(abs(wq'*vv)))
grid on
xlabel('Azimuth Angle (degrees)')
ylabel('Normalized Power (dB)')
legend('Non-Quantized Weights','Quantized Weights','Location','SouthWest');
title('Quantized vs Non-quantized Array Patterns')
hold off

Input Arguments
pos — Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector, a 2-by-N matrix, or a 3-by-N
matrix. In this vector or matrix, N represents the number of elements of the array. Each column of
pos represents the coordinates of an element. You define sensor position units in term of signal
wavelength. If pos is a 1-by-N vector, then it represents the y-coordinate of the sensor elements of a
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line array. The x and z-coordinates are assumed to be zero. When pos is a 2-by-N matrix, it represents
the (y,z)-coordinates of the sensor elements of a planar array. This array is assumed to lie in the yz-
plane. The x-coordinates are assumed to be zero. When pos is a 3-by-N matrix, then the array has
arbitrary shape.
Example: [0,0,0; 0.1,0.4,0.3;1,1,1]
Data Types: double

ang — Beamforming directions
1-by-M real-valued vector | 2-by-M real-valued matrix

Beamforming directions specified as a 1-by-M vector or a 2-by-M matrix. In this vector or matrix, M
represents the number of incoming signals. If ang is a 2-by-M matrix, each column specifies the
direction in azimuth and elevation of the beamforming direction as [az;el]. Angular units are
specified in degrees. The azimuth angle must lie between –180° and 180° and the elevation angle
must lie between –90° and 90°. The azimuth angle is the angle between the x-axis and the projection
of the beamforming direction vector onto the xy plane. The angle is positive when measured from the
x-axis toward the y-axis. The elevation angle is the angle between the beamforming direction vector
and xy-plane. It is positive when measured towards the positive z axis. If ang is a 1-by-M vector, then
it represents a set of azimuth angles with the elevation angles assumed to be zero.
Example: [45;10]
Data Types: double

cov — Sensor spatial covariance matrix
N-by-N complex-valued matrix

Sensor spatial covariance matrix specified as an N-by-N, complex-valued matrix. In this matrix, N
represents the number of sensor elements.
Example: [5,0.1;0.1,2]
Data Types: double
Complex Number Support: Yes

nqbits — Number of phase shifter quantization bits
0 (default) | non-negative integer

Number of bits used to quantize the phase shift in beamformer or steering vector weights, specified
as a non-negative integer. A value of zero indicates that no quantization is performed.
Example: 5

Output Arguments
wt — Beamformer weights
N-by-M complex-valued matrix

Beamformer weights returned as a complex-valued, N-by-M matrix. In this matrix, N represents the
number of sensor elements of the array while M represents the number of beamforming directions.
Each column of wt corresponds to a beamforming direction specified in ang.
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More About
Minimum Variance Distortionless Response

MVDR beamformer weights minimize the total array output power while setting the gain in the
desired response direction to unity (see Van Trees [1], p. 442). MVDR weights are given by

w =
S−1 v0

v0HS−1v0

where v0 is the steering vector corresponding to the desired response direction. S is the spatial
covariance matrix. The covariance matrix consists of the variances of the element data and the
covariances of the data between the sensor elements. The covariance contains contributions from all
incoming signals and noise.

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ: Prentice Hall,
1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial filtering”. IEEE
ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
cbfweights | lcmvweights | phased.MVDRBeamformer | sensorcov | steervec

Introduced in R2013a
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musicdoa
Estimate arrival directions of signals using MUSIC

Syntax
doas = musicdoa(covmat,nsig)
[doas,spec,specang] = musicdoa(covmat,nsig)
[ ___ ] = musicdoa(covmat,nsig, ___ ,'ScanAngles',scanangle)
[ ___ ] = musicdoa(covmat,nsig, ___ ,'ElementSpacing',dist)

Description
doas = musicdoa(covmat,nsig) uses the MUSIC algorithm to estimate the directions of arrival,
doas, of nsig plane waves received on a uniform linear array (ULA). The argument covmat is a
positive-definite Hermitian matrix representing the sensor covariance matrix. Detected sources
appear as peaks in the spatial spectrum. The argument nsig is the number of arriving signals.
Sensor elements are spaced one-half wavelength apart in units of wavelengths. The function forces
exact conjugate symmetry of covmat by averaging the covariance matrix with its conjugate
transpose.

[doas,spec,specang] = musicdoa(covmat,nsig) also returns the spatial spectrum, spec, and
the nsig angles of the spectrum peaks, specang.

[ ___ ] = musicdoa(covmat,nsig, ___ ,'ScanAngles',scanangle) specifies the grid of
broadside angles to search for spectrum peaks.

[ ___ ] = musicdoa(covmat,nsig, ___ ,'ElementSpacing',dist) specifies the spacing
between array elements.

Examples

Estimate DOA of Multiple Signals Using MUSIC

Calculate the directions of arrival of 3 uncorrelated signals arriving at an 11-element ULA with half-
wavelength spacing. Assume the signals are coming from the broadside angles of 0°, –12°, and 85°.
The noise at each element is Gaussian white noise and is uncorrelated between elements. The SNR is
5 dB.

Specify the number of ULA elements and the element spacing (in wavelengths).

nelem = 11;
d = 0.5;
snr = 5.0;
elementPos = (0:nelem-1)*d;

Specify the number of signals and their broadside arrival angles.

nsig = 3;
angles = [0.0 -12.0 85.0];

2 Functions

2-182



Create the sensor covariance matrix.

covmat = sensorcov(elementPos,angles,db2pow(-snr));

Estimate the broadside arrival angles.

doas = musicdoa(covmat,nsig)

doas = 1×3

   -12     0    85

The estimated angles match the specified angles.

Display MUSIC Spectrum of Multiple Signals

Calculate the directions of arrival of 3 uncorrelated signals arriving at an 11-element ULA with half-
wavelength spacing. Assume the signals are coming from the broadside angles of 0°, –12°, and 85°.
The noise at each element is Gaussian white noise and is uncorrelated between elements. The SNR is
2 dB.

Specify the number of ULA elements and the element spacing (in wavelengths).

nelem = 11;
d = 0.5;
snr = 2.0;
elementPos = (0:nelem-1)*d;

Specify the number of signals and their broadside arrival angles.

nsig = 3;
angles = [0.0 -12.0 85.0];

Create the sensor covariance matrix.

covmat = sensorcov(elementPos,angles,db2pow(-snr));

Compute the MUSIC spectrum and estimate the broadside arrival angles.

[doas,spec,specang] = musicdoa(covmat,nsig);

Plot the MUSIC spectrum.

plot(specang,10*log10(spec))
xlabel('Arrival Angle (deg)')
ylabel('Magnitude (dB)')
title('MUSIC Spectrum')
grid
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The estimated angles match the specified angles.

Display MUSIC Spectrum Over Specified Direction Span

Calculate the directions of arrival of 4 uncorrelated signals arriving at an 11-element ULA. The
element spacing is 0.5 wavelengths. Assume the signals are coming from the broadside angles of –
60.2°, –20.7°, 0.5°, and 84.8°. The noise at each element is Gaussian white noise and is uncorrelated
between elements. The SNR is 0 dB.

Specify the number of ULA elements and the element spacing (in wavelengths).

nelem = 11;
d = 0.5;
snr = 5.0;
elementPos = (0:nelem-1)*d;

Specify the number of signals and their broadside arrival angles.

nsig = 4;
angles = [-60.2 -20.7 0.5 84.8];

Create the sensor covariance matrix.

covmat = sensorcov(elementPos,angles,db2pow(-snr));
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Compute the MUSIC spectrum and estimate the broadside arrival angles in the range from -70° to
90° in 0.1° increments.

[doas,spec,specang] = musicdoa(covmat,nsig,'ScanAngles',[-70:.1:90]);

Plot the MUSIC spectrum.

plot(specang,10*log10(spec))
xlabel('Arrival Angle (deg)')
ylabel('Magnitude (dB)')
title('MUSIC Spectrum')
grid

disp(doas)

    0.5000   84.8000  -60.2000  -20.7000

The estimated angles match the specified angles.

Display MUSIC Spectrum with Specified Element Spacing

Calculate the directions of arrival of 4 uncorrelated signals arriving at an 11-element ULA. The
element spacing is 0.4 wavelengths spacing. Assume the signals are coming from the broadside
angles of –60°, –20°, 0°, and 85°. The noise at each element is Gaussian white noise and is
uncorrelated between elements. The SNR is 0 dB.
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Specify the number of ULA elements and the element spacing (in wavelengths).

nelem = 11;
d = 0.4;
snr = 0.0;
elementPos = (0:nelem-1)*d;

Specify the number of signals and their broadside arrival angles.

nsig = 4;
angles = [-60.0 -20.0 0.0 85.0];

Create the sensor covariance matrix.

covmat = sensorcov(elementPos,angles,db2pow(-snr));

Compute the MUSIC spectrum and estimate the broadside arrival angles.

[doas,spec,specang] = musicdoa(covmat,nsig,'ElementSpacing',d);

Plot the MUSIC spectrum.

plot(specang,10*log10(spec))
xlabel('Arrival Angle (deg)')
ylabel('Magnitude (dB)')
title('MUSIC Spectrum')
grid

The estimated angles match the specified angles.
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Input Arguments
covmat — Sensor covariance matrix
(default) | positive-definite complex-valued M-by-M matrix

Sensor covariance matrix, specified as a complex-valued, positive-definite M-by-M matrix. The
quantity M is the number of elements in the ULA array. The function forces Hermiticity property by
averaging the matrix and its conjugate transpose.
Data Types: double
Complex Number Support: Yes

nsig — Number of arriving signals
positive integer

Number of arriving signals, specified as a positive integer. The number of signals must be smaller
than the number of elements in the ULA array.
Example: 2
Data Types: double

scanangle — Broadside search angles
[-90:90] (default) | real-valued vector

Broadside search angles, specified as a real-valued vector. Angles must lie in the range (–90°,90°) and
must be in increasing order.
Example: [-40:0.5:50]
Data Types: double

dist — Distance between array elements
0.5 (default) | real-valued positive scalar

Distance between array elements, specified as a real-valued positive scalar.
Example: 0.45
Data Types: double

Output Arguments
doas — Directions of arrival angles
real-valued vector

Directions of arrival angle, returned as a real-valued 1-by-D vector, where D is the number of arriving
signals specified in nsig. Angle units are in degrees. Angle values lie in the range specified by
scanangle.

spec — Spatial spectrum
positive real-valued vector

Spatial spectrum, returned as a positive real-valued vector. The dimension of spec equals the
dimension of scanangle.
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specang — Broadside angles of spectrum peaks
real-valued vector

Broadside angle of spectrum, returned as a real-valued vector. The dimension of specang equals the
dimension of scanangle.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
Functions
az2broadside | broadside2az | db2pow | espritdoa | rootmusicdoa | sensorcov

System Objects
phased.MUSICEstimator | phased.MUSICEstimator2D

Topics
“Spherical Coordinates”
“MUSIC Super-Resolution DOA Estimation”

Introduced in R2016b
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noisepow
Receiver noise power

Syntax
NPOWER = noisepow(NBW,NF,REFTEMP)

Description
NPOWER = noisepow(NBW,NF,REFTEMP) returns the noise power, NPOWER, in watts for a receiver.
This receiver has a noise bandwidth NBW in hertz, noise figure NF in decibels, and reference
temperature REFTEMP in degrees kelvin.

Input Arguments
NBW

The noise bandwidth of the receiver in hertz. For a superheterodyne receiver, the noise bandwidth is
approximately equal to the bandwidth of the intermediate frequency stages [1].

NF

Noise figure. The noise figure is a dimensionless quantity that indicates how much a receiver deviates
from an ideal receiver in terms of internal noise. An ideal receiver only produces the expected
thermal noise power for a given noise bandwidth and temperature. A noise figure of 1 indicates that
the noise power of a receiver equals the noise power of an ideal receiver. Because an actual receiver
cannot exhibit a noise power value less than an ideal receiver, the noise figure is always greater than
or equal to one.

REFTEMP

Reference temperature in degrees kelvin. The temperature of the receiver. Typical values range from
290–300 degrees kelvin.

Output Arguments
NPOWER

Noise power in watts. The internal noise power contribution of the receiver to the signal-to-noise
ratio.

Examples

Compute Receiver Noise Power with Specified Temperature

Calculate the noise power of a receiver having a noise bandwidth of 10 kHz, a noise figure of 1 dB,
and a reference temperature of 300 K.
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npower = noisepow(10e3,1,300)

npower = 5.2144e-17

References

[1] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.ReceiverPreamp

Introduced in R2011a
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npwgnthresh
Detection SNR threshold for signal in white Gaussian noise

Syntax
snrthresh = npwgnthresh(pfa)
snrthresh = npwgnthresh(pfa,numpulses)
snrthresh = npwgnthresh(pfa,numpulses,dettype)
snrthresh = npwgnthresh(pfa,numpulses,dettype,outscale)

Description
snrthresh = npwgnthresh(pfa) calculates the SNR threshold in decibels for detecting a
deterministic signal in white Gaussian noise. The detection uses the Neyman-Pearson (NP) decision
rule to achieve a specified probability of false alarm, pfa. This function uses a square-law detector.

Note The output of npwgnthresh determines the detection threshold required to achieve a
particular Pfa. The threshold increases when pulse integration is used in the receiver. This threshold
is not the single sample SNR that is used as an input to rocsnr or as the output of rocpfa,
albersheim, and shnidman. For any fixed Pfa, you can decrease the single sample SNR required to
achieve a particular Pd when pulse integration is used in the receiver. See “Signal Detection in White
Gaussian Noise” and “Source Localization Using Generalized Cross Correlation” for examples of how
to use npwgnthresh in a detection system.

snrthresh = npwgnthresh(pfa,numpulses) specifies numpulses as the number of pulses used
in the pulse integration.

snrthresh = npwgnthresh(pfa,numpulses,dettype) specifies dettype as the type of
detection. A square law detector is used in noncoherent detection.

snrthresh = npwgnthresh(pfa,numpulses,dettype,outscale) specifies the output scale.

Input Arguments
pfa

Probability of false alarm.

numpulses

Number of pulses used in the integration.

Default: 1

dettype

Detection type.
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Specifies the type of pulse integration used in the NP decision rule. Valid choices for dettype are
'coherent', 'noncoherent', and 'real'. 'coherent' uses magnitude and phase information of
complex-valued samples. 'noncoherent' uses squared magnitudes. 'real' uses real-valued
samples.

Default: 'noncoherent'

outscale

Output scale.

Specifies the scale of the output value as one of 'db' or 'linear'. When outscale is set to
'linear', the returned threshold represents amplitude.

Default: 'db'

Output Arguments
snrthresh

Detection threshold expressed in signal-to-noise ratio in decibels or linear if outscale is set to
'linear'. The relationship between the linear threshold and the threshold in dB is

TdB = 20log10Tlin

Examples

Compute detection threshold from Pfa

Calculate the detection threshold that achieves a probability of false alarm (pfa) of 0.01. Assume a
single pulse with a real detection type. Then, verify that this threshold produces a pfa of
approximately 0.01. Do this by constructing 10000 real white gaussian noise (wgn) samples and
computing the fraction of samples exceeding the threshold.

Compute the threshold from pfa. The detection threshold is expressed as a signal-to-noise ratio in db.

pfa = 0.01;
numpulses = 1;
snrthreshold = npwgnthresh(pfa,numpulses,'real')

snrthreshold = 7.3335

Compute fraction of simulated noise samples exceeding the threshold. The noise has unit power with
10000 samples.

noisepower = 1;
Ntrial = 10000;
noise = sqrt(noisepower)*randn(1,Ntrial);

Express the threshold in amplitude units.

threshold = sqrt(noisepower*db2pow(snrthreshold));
calculated_Pfa = sum(noise>threshold)/Ntrial

calculated_Pfa = 0.0107
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Detection Threshold Versus Number of Pulses

Plot the SNR detection threshold against the number of pulses, for real and complex noise. In each
case, the SNR detection threshold is set for a probability of false alarm (pfa) of 0.001.

Compute detection threshold for 1 to 10 pulses of real and complex noise.

Npulses = 10;
snrcoh = zeros(1,Npulses);
snrreal = zeros(1,Npulses);
Pfa = 1e-3;
for num = 1:Npulses
    snrreal(num) = npwgnthresh(Pfa,num,'real');
    snrcoh(num)  = npwgnthresh(Pfa,num,'coherent');
end

Plot the detection thresholds against number of pulses.

plot(snrreal,'ko-')
hold on
plot(snrcoh,'b.-')
legend('Real data with integration',...
    'Complex data with coherent integration',...
    'location','southeast')
xlabel('Number of Pulses')
ylabel('SNR Required for Detection')
title('SNR Threshold for P_F_A = 0.001')
hold off
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Linear detection threshold versus number of pulses

Plot the linear detection threshold against the number of pulses, for real and complex data. In each
case, the threshold is set for a probability of false alarm of 0.001.

Compute detection threshold for 1 to 10 pulses of real and complex noise.

Npulses = 10;
snrcoh = zeros(1,Npulses); % preallocate space
snrreal = zeros(1,Npulses);
Pfa = 1e-3;
for num = 1:Npulses
    snrreal(num) = npwgnthresh(Pfa,num,'real','linear');
    snrcoh(num)  = npwgnthresh(Pfa,num,'coherent','linear');
end

Plot the detection thresholds against number of pulses.

plot(snrreal,'ko-')
hold on
plot(snrcoh,'b.-')
legend('Real data with integration',...
    'Complex data with coherent integration',...
    'location','southeast');
xlabel('Number of Pulses')
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ylabel('Detection Threshold')
str = sprintf('Linear Detection Threshold for P_F_A = %4.3f',Pfa);
title(str)
hold off

More About
Detection in Real-Valued White Gaussian Noise

This function is designed for the detection of a nonzero mean in a sequence of Gaussian random
variables. The function assumes that the random variables are independent and identically
distributed, with zero mean. The linear detection threshold λ for an NP detector is

λ
σ = 2N erfc−1(2Pf a)

This threshold can also be expressed as a signal-to-noise ratio in decibels

10log10
λ2

σ2 = 10log10 2N erfc−1(2Pf a) 2

In these equations

• σ2 is the variance of the white Gaussian noise sequence
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• N is the number of samples
• erfc—1 is the inverse of the complementary error function
• Pfa is the probability of false alarm

Note For probabilities of false alarm greater than or equal to 1/2, the formula for detection threshold
as SNR is invalid because erfc-1 is less than or equal to zero for values of its argument greater than or
equal to one. In that case, use the linear output of the function invoked by setting outscale
to'linear'.

Detection in Complex-Valued White Gaussian Noise (Coherent Samples)

The NP detector for complex-valued signals is similar to that discussed in “Source Localization Using
Generalized Cross Correlation”. In addition, the function makes these assumptions:

• The variance of the complex-valued Gaussian random variable is divided equally among the real
and imaginary parts.

• The real and imaginary parts are uncorrelated.

Under these assumptions, the linear detection threshold for an NP detector is

λ
σ = N erfc−1(2Pf a)

and expressed as a signal-to-noise ratio in decibels is:

10log10
λ2

σ2 = 10log10 N erfc−1(2Pf a) 2

Note For probabilities of false alarm greater than or equal to 1/2, the formula for detection threshold
as SNR is invalid because erfc-1 is less than or equal to zero for when its argument is greater than or
equal to one. In that case, select linear output for the function by setting outscale to 'linear'.

Detection of Noncoherent Samples in White Gaussian Noise

For noncoherent samples in white Gaussian noise, detection of a nonzero mean leads to a square-law
detector. For a detailed derivation, see [2], pp. 324–329.

The linear detection threshold for the noncoherent NP detector is:

λ
σ = P−1(N, 1− Pf a)

The threshold expressed as a signal-to-noise ratio in decibels is:

10log10
λ2

σ2 = 10log10P−1(N, 1− Pf a)

where P−1(x, y)is the inverse of the lower incomplete gamma function, Pfa is the probability of false
alarm, and N is the number of pulses.
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References

[1] Kay, S. M. Fundamentals of Statistical Signal Processing: Detection Theory. Upper Saddle River,
NJ: Prentice Hall, 1998.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

References
[1] Kay, S. M. Fundamentals of Statistical Signal Processing: Detection Theory. Upper Saddle River,

NJ: Prentice Hall, 1998.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
albersheim | rocpfa | rocsnr | shnidman

Topics
“Signal Detection in White Gaussian Noise”
“Signal Detection Using Multiple Samples”

Introduced in R2011a
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omphybweights
Compute hybrid beamforming weights using orthogonal matching pursuit

Syntax
[wpbb,wprf] = omphybweights(chanmat,ns,ntrf,at)
[wpbb,wprf,wcbb,wcrf] = omphybweights(chanmat,ns,ntrf,at,nrrf,ar)
[ ___ ] = omphybweights(chanmat,ns,ntrf,at,nrrf,ar,npow)

Description
[wpbb,wprf] = omphybweights(chanmat,ns,ntrf,at) returns the hybrid precoding weights
wpbb and wprf for the channel matrix chanmat. The weights are computed using an orthogonal
matching pursuit algorithm. ns is the number of independent data streams propagated through the
channel. ntrf specifies the number of RF chains in the transmit array. at is a collection of possible
analog weights for wprf. Together, the precoding weights approximate the optimal full digital
precoding weights of chanmat.

[wpbb,wprf,wcbb,wcrf] = omphybweights(chanmat,ns,ntrf,at,nrrf,ar) also returns the
hybrid combining weights wcbb and wcrf. The input nrrf specifies the number of RF chains in the
receive array. ar is a collection of possible analog weights for wcrf.

[ ___ ] = omphybweights(chanmat,ns,ntrf,at,nrrf,ar,npow) also specifies the noise
power npow in each receive antenna element. All subcarriers are assumed to have the same noise
power.

Examples

Calculate Effective Channel Matrix

Assume an 8-by-4 MIMO system with four RF chains in a transmit array and two RF chains in a
receive array. Show that the hybrid weights can support transmitting two data streams
simultaneously.

Specify the positions of the transmitters and receivers in uniform line arrays.

txpos = (0:7)*0.5;
rxpos = (0:3)*0.5;

Construct the channel matrix.

chanmat = scatteringchanmtx(txpos,rxpos,10);

Specify the number of transmit and receive RF chains.

ntrf = 4;
nrrf = 2;

Specify two data streams.
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ns = 2;

Set up the steering vector dictionaries for the transmitting and receiving arrays.

txdict = steervec(txpos,-90:90);
rxdict = steervec(rxpos,-90:90);

Compute the precoding and combining weights.

[Fbb,Frf,Wbb,Wrf] = omphybweights(chanmat,ns,ntrf,txdict,nrrf,rxdict);

Calculate the effective channel matrix from the weights. A diagonal effective channel matrix indicates
the capability of simultaneous transmission of multiple data streams.

chan_eff = Fbb*Frf*chanmat*Wrf*Wbb

chan_eff = 2×2 complex

   1.0000 - 0.0000i   0.0000 - 0.0000i
  -0.0000 + 0.0000i   1.0000 + 0.0000i

Input Arguments
chanmat — Channel response matrix
complex-valued Nt-by-Nr matrix | complex-valued L-by-Nt-by-Nr array

Channel response matrix, specified as an Nt-by-Nr matrix or a complex-valued L-by-Nt-by-Nr array
where

• Nt is the number of elements in the transmitting array.
• Nr is the number of elements in the receiving array.
• L is the number of subcarriers.

Data Types: double
Complex Number Support: Yes

ns — Number of independent data streams
positive integer

Number of independent data streams propagated through the channel, specified as a positive integer.
Data Types: double

ntrf — Number of RF chains in transmit array
positive integer

Number of RF chains in the transmit array, specified as a positive integer.
Data Types: double

at — Collection of possible analog weights
complex-valued Nt-by-P matrix | complex-valued Nt-by-P-by-L array

Collection of possible analog weights for wprf, specified as a complex-valued matrix or array.
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• When chanmat is an Nt-by-Nr matrix, at is a complex-valued Nt-by-P matrix. Each column
represents a vector of analog weights.

• When chanmat is an L-by-Nt-by-Nr array, at is a complex-valued Nt-by-P-by-L array. Each page is
an Nt-by-P matrix. Each column represents a vector of analog weights.

• Nt is the number of elements in the transmitting array.
• Nr is the number of elements in the receiving array.
• L is the number of subcarriers.
• P is the number of vectors of analog weights in the collection.

Data Types: double
Complex Number Support: Yes

nrrf — Number of RF chains in receive array
positive integer

Number of RF chains in the receive array, specified as a positive integer.
Data Types: double

ar — Collection of possible analog weights
complex-valued Nr-by-Q matrix | complex-valued Nr-by-Q-by-L array

Collection of possible analog weights for wprf, specified as a complex-valued matrix or array.

• When chanmat is an Nt-by-Nr matrix, ar is a complex-valued Nr-by-Q matrix. Each column
represents a vector of analog weights.

• When chanmat is an L-by-Nt-by-Nr array, ar is a complex-valued Nr-by-Q-by-L array. Each page is
an Nr-by-Q matrix. Each column represents a vector of analog weights.

• Nt is the number of elements in the transmitting array.
• Nr is the number of elements in the receiving array.
• L is the number of subcarriers.
• Q is the number of vectors of analog weights in the collection.

Data Types: double
Complex Number Support: Yes

npow — Noise power
0 (default) | nonnegative scalar

Noise power in each receive antenna element, specified as a nonnegative scalar. All subcarriers have
the same noise power.
Data Types: double

Output Arguments
wpbb — Hybrid baseband precoding weights
complex-valued Ns-by-Ntrf matrix | complex-valued L-by-Ns-by-Ntrf array

Hybrid baseband precoding weights, returned as a complex-valued matrix or array.
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• When chanmat is an Nt-by-Nr matrix, wpbb is a complex-valued Ns-by-Ntrf matrix.
• When chanmat is an L-by-Nt-by-Nr array, wpbb is a complex-valued L-by-Ns-by-Ntrf array.
• Ns is the number of independent data streams specified by the ns argument.
• Ntrf is the number of RF chains in the transmit array specified by the ntrf argument.
• L is the number of subcarriers.

wprf — Hybrid RF precoding weights
complex-valued Ntrf-by-Nt matrix | complex-valued L-by-Ntrf-by-Nt array

Hybrid RF precoding weights, returned as a complex-valued matrix or array.

• When chanmat is an Nt-by-Nr matrix, wprf is a complex-valued Ntrf-by-Nt matrix.
• When chanmat is an L-by-Nt-by-Nr array, wprf is a complex-valued L-by-Ntrf-by-Nt array.
• Nt is the number of elements in the transmitting array.
• Ntrf is the number of RF chains in the transmit array specified by the ntrf argument.
• L is the number of subcarriers.

wcbb — Hybrid baseband combining weights
complex-valued Nrrf-by-Ns matrix | complex-valued L-by-Nrrf-by-Ns array

Hybrid baseband combining weights, returned as a complex-valued matrix or array.

• When chanmat is an Nt-by-Nr matrix, wcbb is a complex-valued Nrrf-by-Ns matrix.
• When chanmat is an L-by-Nt-by-Nr array, wcbb is a complex-valued L-by-Nrrf-by-Ns array.
• Ns is the number of independent data streams specified by the ns argument.
• Nrrf is the number of RF chains in the receive array specified by the nrrf argument.
• L is the number of subcarriers.

wcrf — Hybrid RF combining weights
complex-valued Nr-by-Nrrf | complex-valued L-by-Nr-by-Nrrf array

Hybrid RF combining weights, returned as a complex-valued matrix or array.

• When chanmat is an Nt-by-Nr matrix, wcrf is a complex-valued Nr-by-Nrrf matrix.
• When chanmat is an L-by-Nt-by-Nr array, wcrf is a complex-valued L-by-Nr-by-Nrrf array.
• Nt is the number of elements in the transmitting array.
• Nrrf is the number of RF chains in the receive array specified by the nrrf argument.
• L is the number of subcarriers.

More About
Precoding Weights

The matrix product of the precoding weights wpbb x wprf approximates the optimal full digital
precoding weights of the channel matrix chanmat.
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Combining Weights

The combining weights wcbb and wcrf, together with the precoding weights, diagonalize the channel
into independent subchannels. The matrix product wpbb x wprf x chanmat x wcrfx wcbb is
approximately diagonal.

References
[1] Ayach, Omar El et al. "Spatially Sparse Precoding in Millimeter Wave MIMO Systems" IEEE Trans

on Wireless Communications. Vol. 13, No. 3, March 2014.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
diagbfweights | ompdecomp | phased.ScatteringMIMOChannel | scatteringchanmtx

Introduced in R2019b
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ompdecomp
Decompose signal using orthogonal matching pursuit

Syntax
[coeff,dictatom,atomidx,errnorm] = ompdecomp(X,dict)
[coeff,dictatom,atomidx,errnorm] = ompdecomp(X,dict,'MaxSparsity',nm)
[coeff,dictatom,atomidx,errnorm] = ompdecomp(X,dict,'NormWeight',wts)

Description
[coeff,dictatom,atomidx,errnorm] = ompdecomp(X,dict) computes the decomposition
matrices coeff and dictatom of the signal X. The product of the decomposition matrices, dictatom
x coeff, approximates X. The atoms in dictatom are selected from dict. atomidx are the indices
in dict corresponding to dictatom. errnorm is the decomposition error. The decomposition is
based on an orthogonal matching pursuit (OMP) algorithm that minimizes the Frobenius norm ||X –
dictatom x coeff||.

[coeff,dictatom,atomidx,errnorm] = ompdecomp(X,dict,'MaxSparsity',nm) also
specifies the maximum sparsity nm.

[coeff,dictatom,atomidx,errnorm] = ompdecomp(X,dict,'NormWeight',wts) minimizes
the weighted Frobenius norm ||wts1/2(X – dictatom x coeff)|| using the weights wts.

Examples

Decompose ULA Beamsteering Weights

Given a set of optimal, full-digital, beamforming weights for an 8-element uniform linear array,
decompose the weights into a product of analog and digital beamforming weights. Assume two RF
chains. Show that the combined weights achieve a performance similar to the optimal weights.

Specify the optimal, full-digital, beamforming weights.

wopt = steervec((0:7)*0.5,[20 -40]);

Create a dictionary of steering vectors.

stvdict = steervec((0:7)*0.5,-90:90);

Perform the decomposition using OMP. Set the maximum sparsity to two.

[wbb,wrf,wdictidx,normerr] = ompdecomp(wopt,stvdict,'MaxSparsity',2);

Compare the beam patterns derived from the optimal weights and the hybrid weights. The plot shows
that the decomposition of wopt into wrf and wbb is almost exact.

plot(-90:90,abs(sum(wopt'*stvdict)),'-', ...
    -90:90,abs(sum((wrf*wbb)'*stvdict)),'--','LineWidth',2)
xlabel('Angles (degrees)')
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ylabel('Amplitude')
legend('Optimal','Hybrid')

Input Arguments
X — Input data
complex-valued N-by-Nc matrix

Input data to be decomposed, specified as a complex-valued N-by-Nc matrix.
Data Types: double
Complex Number Support: Yes

dict — Dictionary of atoms
complex-valued matrix

Dictionary of atoms, specified as a complex-valued matrix. The function uses a subset of atoms from
the dictionary to construct the data.
Data Types: double
Complex Number Support: Yes

nm — Maximum sparsity
1 (default) | positive integer

2 Functions

2-204



Maximum sparsity of the decomposition, specified as a positive integer. The decomposition stops
when the sparsity of nm is achieved.
Example: 5

Dependencies

Use this argument with the syntax specifying 'MaxSparsity'.
Data Types: double

wts — Norm weights
N-by-N identity matrix (default) | complex-valued N-by-N matrix

Norm weights used by OMP to minimize the weighted Frobenius norm of ||wts1/2 x (X – dictatom x
coeff)||, specified as a complex-valued N-by-N matrix.
Example: 5

Dependencies

Use this argument with the syntax specifying 'NormWeight'.
Data Types: double
Complex Number Support: Yes

Output Arguments
coeff — Coefficients of basis atoms
Ns-by-Nc matrix

Coefficients of basis atoms, returned as an Ns-by-Nc matrix. The rows represent the coefficients for
the corresponding atoms in dictatom. Ns represents the number of atoms selected from the
dictionary and is a measure of signal sparsity.
Data Types: double
Complex Number Support: Yes

dictatom — Signal basis atoms
N-by-Ns matrix

Signal basis atoms, returned as an N-by-Ns matrix. The columns are the atoms forming the basis of
the signal. These atoms are a subset of the dictionary specified in dict. Ns represents the number of
selected atoms and is a measure of signal sparsity.
Data Types: double
Complex Number Support: Yes

atomidx — Indices of selected atoms
integer-valued length-Ns row vector

Indices of the atoms selected from the dictionary dict, returned as a length-Ns row vector where
dict(:,atomidx) = dictatom.
Data Types: double

errnorm — Norm of decomposition error
0 (default) | nonnegative scalar
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Norm of the decomposition error, returned as a nonnegative scalar.
Data Types: double

More About
Hybrid Beamforming Weights

In the context of hybrid beamforming, the coeff argument represents digital weights. dictatom
represents analog weights and dict is a collection of steering vectors that can be used as analog
weights.

References
[1] Ayach, Omar El et al. "Spatially Sparse Precoding in Millimeter Wave MIMO Systems" IEEE Trans

on Wireless Communications. Vol. 13, No. 3, March 2014.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
diagbfweights | omphybweights | phased.ScatteringMIMOChannel | scatteringchanmtx

Introduced in R2019b
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pambgfun
Periodic ambiguity function

Syntax
pafmag = pambgfun(X,fs)
[pafmag,delay,doppler] = pambgfun(X,fs)
[pafmag,delay,doppler] = pambgfun(X,fs,P)

[pafmag,delay] = pambgfun( ___ ,'Cut','Doppler')
[pafmag,delay] = pambgfun( ___ ,'Cut','Doppler','CutValue',V)
[pafmag,doppler] = pambgfun( ___ ,'Cut','Delay')
[pafmag,doppler] = pambgfun( ___ ,'Cut','Delay','CutValue',V)
[pafmag,delay,doppler] = pambgfun( ___ ,'Cut','2D')

pambgfun( ___ )

Description
pafmag = pambgfun(X,fs) returns the magnitude of the normalized periodic ambiguity function
(PAF) for one period of the periodic signal X. fs is the sampling rate.

[pafmag,delay,doppler] = pambgfun(X,fs) also returns the time delay vector, delay, and the
Doppler shift vector, doppler. The delay vector is along the zero Doppler cut of the PAF. The Doppler
shift vector is along the zero delay cut.

[pafmag,delay,doppler] = pambgfun(X,fs,P) returns the magnitude of the normalized PAF
for P periods of the periodic signal X.

[pafmag,delay] = pambgfun( ___ ,'Cut','Doppler') returns the PAF, pafmag, along a zero
Doppler cut. The delay argument contains the time delay vector corresponding to the columns of
pafmag.

[pafmag,delay] = pambgfun( ___ ,'Cut','Doppler','CutValue',V) returns the PAF,
pafmag, along a nonzero Doppler cut specified by V. The delay argument contains the time delay
vector corresponding to the columns of pafmag.

[pafmag,doppler] = pambgfun( ___ ,'Cut','Delay') returns the PAF, pafmag, along the zero
delay cut. The doppler argument contains the Doppler shift vector corresponding to the rows of
pafmag.

[pafmag,doppler] = pambgfun( ___ ,'Cut','Delay','CutValue',V) returns the PAF,
pafmag, along a nonzero delay cut specified by V. The doppler argument contains the Doppler shift
vector corresponding to the rows of pafmag.

[pafmag,delay,doppler] = pambgfun( ___ ,'Cut','2D') returns the PAF, pafmag, for all
delays and Doppler shifts. The doppler argument contains the Doppler shift vector corresponding to
the rows of pafmag. The delay argument contains the time delay vector corresponding to the
columns of pafmag. You cannot use 'CutValue' when 'Cut' is set to '2D'.
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pambgfun( ___ ) with no output arguments plots the PAF. When 'Cut' is '2D', the function
produces a contour plot of the PAF function. When 'Cut' is 'Delay' or 'Doppler', the function
produces a line plot of the PAF cut.

Examples

Periodic Ambiguity Function for Rectangular Waveform

Plot the PAF function of a rectangular pulse waveform for one period. Assume the pulse repetition
frequency (PRF) is 10.0 kHz and that the sampling frequency is a multiple of the PRF.

PRF = 10.0e3;
fs = 101*PRF;
waveform = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',1e-5, ...
    'NumPulses',1,'PRF',PRF);
wav = waveform();
pamf = pambgfun(wav,fs);
imagesc(pamf)
axis equal
axis tight
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Periodic Ambiguity Function with Delay and Doppler Output

Plot the periodic ambiguity function of a rectangular pulse waveform for one period. Assume the
pulse repetition frequency (PRF) is 10.0 kHz and that the sampling frequency is a multiple of the PRF.
Return the Doppler and delay values from the pambgfun function.

PRF = 10.0e3;
fs = 101*PRF;
waveform = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',1e-5, ...
    'NumPulses',1,'PRF',PRF);
wav = waveform();
[pamf,delays,doppler] = pambgfun(wav,fs);

Plot the periodic ambiguity function.

imagesc(delays*1e6,doppler/1000,pamf)
axis xy
xlabel('Delay (\musec)')
ylabel('Doppler Shift (kHz)')
colorbar
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Zero Delay Cut of Periodic Ambiguity Function

Plot a cut at zero delay for the periodic ambiguity function of a rectangular pulse waveform for five
periods. Assume the pulse repetition frequency is 10.0 kHz and that the sampling frequency is a
multiple of the PRF. Return the Doppler and delay values from the function.

PRF = 10.0e3;
fs = 101*PRF;
waveform = phased.RectangularWaveform('SampleRate',fs,'PulseWidth',1e-5, ...
    'NumPulses',1,'PRF',PRF);
wav = waveform();

Find the periodic ambiguity functions along a zero delay cut for one and for five periods.

[pamf,delays,doppler] = pambgfun(wav,fs,1);
f1 = pamf(:,101);
[pamf,delays,doppler] = pambgfun(wav,fs,5);
f2 = pamf(:,101);

Plot the periodic ambiguity functions.

plot(doppler/1000,f1)
hold on
plot(doppler/1000,f2)
xlabel('Doppler Shift (kHz)')
legend('One-Period PAF','Five-Period PAF')
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Zero Doppler Cut of LFM Periodic Ambiguity Function

Plot the zero Doppler cut for the five-period periodic ambiguity function of a linear FM pulse
waveform. Assume the pulse repetition frequency (PRF) is 10.0 kHz and that the sampling frequency
is a multiple of the PRF. Return the Doppler and delay values from the pambgfun function.

PRF = 10.0e3;
fs = 200*PRF;
waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',1e-5, ...
    'NumPulses',1,'PRF',PRF);
wav = waveform();

Find the five-period periodic ambiguity function along a zero Doppler cut.

[pamf,delays] = pambgfun(wav,fs,5,'Cut','Doppler');

Plot the periodic ambiguity functions.

plot(delays*1.0e6,pamf)
xlabel('Delay \mus')
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Non-Zero Doppler Cut of LFM Periodic Ambiguity Function

Plot a non-zero Doppler cut for the 5-period periodic ambiguity function of a linear FM pulse
waveform by explicitly specifying the cut value. Assume the pulse repetition frequency is 10.0e3 Hz
and that the sampling frequency is a multiple of the PRF. Return the doppler and delay values from
the function.

PRF = 10.0e3;
fs = 200*PRF;
waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',1e-5,...
    'NumPulses',1,'PRF',PRF);
wav = waveform();

Find the 5-period periodic ambiguity function along a non-zero Doppler cut.

dopval = 20.0;
[pamf,delays] = pambgfun(wav,fs,5,'Cut','Doppler','CutValue',dopval);

Plot the periodic ambiguity functions.

plot(delays*1.0e6,pamf)
xlabel('Delay \mus')
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Zero Delay Cut of FMCW Periodic Ambiguity Function

Plot a zero delay cut for the three-period periodic ambiguity function of an FMCW waveform. Assume
a sweep bandwidth of 100 kHz with a sampling frequency of 1 MHz. Return and plot the Doppler shift
values.

fs = 1.0e6;
waveform = phased.FMCWWaveform('SweepBandwidth',100.0e3,'SampleRate',fs, ...
    'OutputFormat','Sweeps','NumSweeps',1);
wav = waveform();

Find the three-period periodic ambiguity function along a zero delay cut.

[pamf,doppler] = pambgfun(wav,fs,3,'Cut','Delay');

Plot the zero delay cut of the periodic ambiguity function.

plot(doppler/1.0e3,pamf)
xlabel('Doppler Shift (kHz)')

Nonzero Delay Cut of FMCW Periodic Ambiguity Function

Plot a non-zero delay cut of -20 μs for the three-period periodic ambiguity function of an FMCW
waveform. Assume a sweep bandwidth of 100 kHz with a sampling frequency of 1 MHz. Return and
plot the Doppler shift values.
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fs = 1.0e6;
waveform = phased.FMCWWaveform('SweepBandwidth',100.0e3,'SampleRate',fs, ...
    'OutputFormat','Sweeps','NumSweeps',1,'SweepTime',100e-6);
wav = waveform();

Find the three-period periodic ambiguity function along a nonzero Delay cut.

delayval = -20.0e-6;
[pamf,doppler] = pambgfun(wav,fs,3,'Cut','Delay','CutValue',delayval);

Plot the nonzero delay cut of the periodic ambiguity function.

plot(doppler/1.0e3,pamf)
grid
xlabel('Doppler Shift (kHz)')

Linear FM Periodic Ambiguity Diagram Image

Display an image of the 9-period periodic ambiguity function for a linear FM pulse waveform. Assume
the pulse repetition frequency is 10.0e3 Hz and that the sampling frequency is a multiple of the PRF.

PRF = 10.0e3;
fs = 200*PRF;
waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',1e-5,...
    'NumPulses',1,'PRF',PRF);
wav = waveform();
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Compute and display the 9-period periodic ambiguity function for all delays and frequencies.

[pamf,delays,doppler] = pambgfun(wav,fs,9,'Cut','2D');
imagesc(delays*1e6,doppler/1e6,pamf)
title('Periodic Ambiguity Function')
xlabel('Delay \tau ({\mu}s)')
ylabel('Doppler Shift (MHz)')
axis xy

Linear FM Periodic Ambiguity Diagram

Plot the seven-period periodic ambiguity function of a linear FM pulse waveform. Assume the pulse
repetition frequency (PRF) is 10.0 kHz and that the sampling frequency is a multiple of the PRF.

PRF = 10.0e3;
fs = 200*PRF;
waveform = phased.LinearFMWaveform('SampleRate',fs,'PulseWidth',1e-5, ...
    'NumPulses',1,'PRF',PRF);
wav = waveform();

Find the periodic ambiguity function.

pambgfun(wav,fs,7,'Cut','2D')
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Input Arguments
X — Input pulse waveform
complex-valued vector

Input pulse waveform, specified as a complex-valued vector.
Example: [0,.1,.3,.4,.3,.1.0]
Data Types: double
Complex Number Support: Yes

fs — Sampling frequency
positive scalar

Sampling frequency, specified as a positive scalar. Units are in hertz.
Example: 3e3
Data Types: double

P — Number of periods
1 (default) | positive integer

Number of periods, specified as a positive integer.
Example: 5
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Data Types: double

V — Optional time delay or Doppler shift at which ambiguity function cut is taken
0 (default) | real-valued scalar

When you set 'Cut' to 'Delay' or 'Doppler', use V to specify a nonzero cut value. You cannot use
V when you set 'Cut' to '2D'.

When 'Cut' is set to 'Delay', V is the time delay at which the cut is taken. Time delay units are in
seconds.

When 'Cut' is set to 'Doppler', V is the Doppler frequency shift at which the cut is taken. Doppler
units are in hertz.
Example: 10.0
Data Types: double

Output Arguments
pafmag — Normalized PAF function magnitude
real-valued M-by-N matrix | real-valued M-element column vector | real-valued N-element row vector

Normalized PAF function magnitude, returned as a vector or a matrix of nonnegative real values. The
dimensions of pafmag depend on the value of 'Cut'.

'Cut' pafmagdimensions
'2D' M-by-N matrix.
'Delay' M-element column vector.
'Doppler' N-element row vector.

M is the number of Doppler frequencies and N is the number of time delays.

delay — Time delay vector
real-valued N-element vector

Time delay vector, returned as an N-by-1 vector. If N is the length of signal X, then the delay vector
consist of 2N – 1 samples in the range, –(N/2) – 1,...,(N/2) – 1).

doppler — Doppler shift vector
real-valued M vector

Doppler shift vector, returned as an M-by-1 vector of Doppler frequencies. The Doppler frequency
vector consists of M = 2ceil(log2 N) equally-spaced samples. Frequencies are (–(M/2)Fs,...,(M/2–1)Fs).

More About
Periodic Ambiguity Function

The periodic ambiguity function (PAF) is an extension of the ordinary ambiguity function to periodic
waveforms.

Use this function analyze the response of a correlation receiver to a time-delayed or Doppler-shifted
narrowband periodic waveform. Narrowband periodic signals consist of CW tones modulated by a
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periodic complex envelope. These types of signals are commonly used in radar systems to form
transmitted pulse trains.

A time periodic waveform has the property y(t + T) = y(t), where T is the period. The PAF function for
an N-period waveform is defined as

ANT(τ, ν) = 1
NT∫0 NT

y(t + τ
2)y*(t − τ

2)ei2πνtdt

Taking advantage of the periodicity, you can rewrite the function as

ANT(τ, ν) = 1
NT ∑n = 1

N
ei2πν(n− 1)T∫0 T

u(t + τ
2)u*(t − τ

2)ei2πνsds

The last term on the right side is the one-period PAF function, AT(τ,ν). The first term on the right side
is due to Doppler only. The Doppler term is proportional to the periodic sinc() function and you can
rewrite the periodic ambiguity function as

ANT(τ, ν) = sin2πνNT
Nsin2πνT ei2πν(N − 1)TAT(τ, ν)

The Doppler term improves the Doppler resolution by a factor of 1/NT.

The one-period PAF function is not the same as the ordinary ambiguity because the integration limits
are different.

References
[1] Levanon, N. and E. Mozeson. Radar Signals. Hoboken, NJ: John Wiley & Sons, 2004.

[2] Mahafza, B. R., and A. Z. Elsherbeni. MATLAB Simulations for Radar Systems Design. Boca Raton,
FL: CRC Press, 2004.

[3] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.
• Supported only when output arguments are specified.

See Also
Functions
ambgfun | dutycycle

System Objects
phased.LinearFMWaveform | phased.MatchedFilter | phased.PhaseCodedWaveform |
phased.RectangularWaveform | phased.SteppedFMWaveform
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Introduced in R2016b
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phitheta2azel
Convert angles from phi/theta form to azimuth/elevation form

Syntax
AzEl = phitheta2azel(PhiTheta)
AzEl = phitheta2azel(PhiTheta,RotAx)

Description
AzEl = phitheta2azel(PhiTheta) converts the phi/theta angle on page 2-222 pairs to their
corresponding azimuth/elevation angle on page 2-221 pairs.

AzEl = phitheta2azel(PhiTheta,RotAx) also specifies the choice of phi-theta angle convention
using RotAx.

Examples

Convert Phi-Theta Coordinates to Azimuth-Elevation Coordinates

Find the azimuth-elevation representation for φ = 30° and θ = 0°. Use the phi-theta convention with
φ defined from the y-axis to the z-axis, and θ defined from the x-axis toward the yz-plane.

azel = phitheta2azel([30;10])

azel = 2×1

    8.6822
    4.9809

Rotate and Convert Phi-Theta Coordinates to Azimuth-Elevation Coordinates

Find the azimuth-elevation representation for φ = 30° and θ = 0°. Use the phi-theta convention with
φ defined from the x-axis to the y-axis, and θ defined from the z-axis toward the xy-plane.

azel = phitheta2azel([30;10],false)

azel = 2×1

    30
    80

Copyright 2012 The MathWorks, Inc..
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Input Arguments
PhiTheta — Phi-theta angle pairs
two-row matrix

Phi and theta angles, specified as a two-row matrix. Each column of the matrix represents an angle in
degrees, in the form [phi; theta].
Data Types: double

RotAx — Phi-theta angle convention selection
true (default) | false

Phi-theta angle convention selection, specified as true or false.

• If RotAx is true, the phi angle of a direction vector is the angle from the z-axis to the projection
of the vector into the yz-plane. The theta angle is defined from the x-axis to the direction vector.
Positive values are toward the yz-plane.

• If RotAx is false, the phi angle is defined from the x-axis to the projection of the direction vector
in the xy-plane. The angle is positive in the direction of the y-axis. The theta angle is defined from
the z-axis to the direction vector and is positive in the direction of the xy- plane (see “Alternative
Definition of Phi and Theta Angles” on page 2-223 ).

Data Types: logical

Output Arguments
AzEl — Azimuth-elevation angle pairs
two-row matrix

Azimuth and elevation angles, returned as a two-row matrix. Each column of the matrix represents an
angle in degrees, in the form [azimuth; elevation]. The matrix dimensions of AzEl are the same as
those of PhiTheta.

More About
Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.
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Phi and Theta Angles

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.
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The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

Alternative Definition of Phi and Theta Angles

The phi angle (φ) is the angle from the positive x-axis to the vector’s orthogonal projection onto the xy
plane. The angle is positive toward the positive y-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the z-axis to the vector itself. The angle is positive toward the xy
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line.

 phitheta2azel

2-223



ϕ = az
θ = 90− el
az = ϕ
el = 90− θ

This transformation applies when RotAx is false.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
azel2phitheta

Topics
“Spherical Coordinates”

Introduced in R2012a
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phitheta2azelpat
Convert radiation pattern from phi-theta coordinates to azimuth-elevation coordinates

Syntax
pat_azel = phitheta2azelpat(pat_phitheta,phi,theta)
pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el)
pat_azel = phitheta2azelpat( ___ ,'RotateZ2X',rotpatax)
[pat_azel,az_pat,el_pat] = phitheta2azelpat( ___ )

Description
pat_azel = phitheta2azelpat(pat_phitheta,phi,theta) converts the antenna radiation
pattern, pat_phitheta, from phi and theta coordinates to the pattern pat_azel in azimuth and
elevation coordinates. phi and theta are the phi and theta coordinates at which pat_phitheta
values are defined. The pat_azel matrix covers azimuth values from –180 to 180 degrees and
elevation values from –90 to 90 degrees in one degree increments. The function interpolates the
pat_phitheta matrix to estimate the response of the antenna in a given direction.

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el) uses vectors az and el to
specify the grid at which to sample pat_azel. To avoid interpolation errors, az should cover the
range [–180, 180] and el should cover the range [–90, 90].

pat_azel = phitheta2azelpat( ___ ,'RotateZ2X',rotpatax) also specifies rotpatax to
indicate the boresight direction of the pattern: x-axis or z-axis.

[pat_azel,az_pat,el_pat] = phitheta2azelpat( ___ ) also returns vectors az_pat and
el_pat containing the azimuth and elevation angles at which pat_azel is sampled.

Examples

Convert Radiation Pattern to Azimuth and Elevation

Convert a radiation pattern to azimuth/elevation form, with the azimuth and elevation angles spaced
1° apart.

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:180;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to azimuth/elevation space.

pat_azel = phitheta2azelpat(pat_phitheta,phi,theta);
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Plot Converted Radiation Pattern

Convert a radiation pattern from theta/phi coordinates to azimuth/elevation coordinates, with
azimuth and elevation angles spaced 1∘ apart.

Define the pattern in terms of phi, ϕ, and theta, θ, coordinates.

phi = 0:360;
theta = 0:180;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to azimuth/elevation coordinates. Get the azimuth and elevation angles for use in
plotting.

[pat_azel,az,el] = phitheta2azelpat(pat_phitheta,phi,theta);

Plot the radiation pattern.

H = surf(az,el,pat_azel);
H.LineStyle = 'none';
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');
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Convert Radiation Pattern from Alternate Phi-Theta Coordinates to Azimuth and Elevation

Convert a radiation pattern to the azimuth-elevation coordinates from alternative phi-theta
coordinates, with the phi and theta angles spaced one degree apart.

Create a simple radiation pattern in terms of phi and theta. Add an offset to the pattern to suppress
taking the logarithm of zero in mag2db.

phi = 0:360;
theta = 0:180;
pat_phitheta = mag2db(10*sind(theta').^2*cosd(phi).^4 + 1);
imagesc(phi,theta,pat_phitheta)
xlabel('Phi (deg)')
ylabel('Theta (deg)')
colorbar

[pat_azel,az_pat,el_pat] = phitheta2azelpat(pat_phitheta,phi,theta,'RotateZ2X',false);
imagesc(az_pat,el_pat,pat_azel)
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
colorbar
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Convert Radiation Pattern For Specific Azimuth/Elevation Values

Convert a radiation pattern from phi/theta coordinates to azimuth/elevation coordinates, with the
azimuth and elevation angles spaced 5∘ apart.

Define the pattern in terms of phi and theta.

phi = 0:360;
theta = 0:180;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Define the set of azimuth and elevation angles at which to sample the pattern. Then, convert the
pattern.

az = -180:5:180;
el = -90:5:90;
pat_azel = phitheta2azelpat(pat_phitheta,phi,theta,az,el);

Plot the radiation pattern.

H = surf(az,el,pat_azel);
H.LineStyle = 'none';
xlabel('Azimuth (degrees)');
ylabel('Elevation (degrees)');
zlabel('Pattern');

 phitheta2azelpat

2-229



Input Arguments
pat_phitheta — Antenna radiation patter
real-valued Q-by-P matrix

Antenna radiation pattern in phi-theta coordinates, specified as a real-valued Q-by-P matrix.
pat_phitheta contains the magnitude pattern. P is the length of the phi vector, and Q is the length
of the theta vector. Units are in dB.
Data Types: double

phi — Phi angles
real-valued length-P vector

Phi angles at which pat_phitheta is sampled, specified as a vector of real-valued length-P vector.
Phi angles lie between 0 and 360, inclusive. Units are in degrees.
Data Types: double

theta — Theta angles
real-valued length-Q vector

Theta angles at which pat_phitheta is sampled, specified as a vector of real-valued length-Q vector.
Theta angles lie between 0 and 180, inclusive. Units are in degrees.
Data Types: double
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az — Azimuth angles
[-180:180] (default) | real-valued length-L vector

Azimuth angles at which pat_azel samples the pattern, specified as a vector of real-valued length-L
vector. Azimuth angles lie between –180 and 180, inclusive. Units are in degrees.
Data Types: double

el — Elevation angles
[-90:90] (default) | real-valued length-M vector

Elevation angles at which pat_azel samples the pattern, specified as a real-valued length-M vector.
Elevation angle lie between –90 and 90, inclusive. Units are in degrees.
Data Types: double

rotpatax — Pattern boresight direction selector
true (default) | false

Pattern boresight direction selector, specified as true or false.

• If rotpatax is true, the pattern boresight is along the x-axis. In this case, the z-axis of phi-theta
space is aligned with the x-axis of azimuth and elevation space. The phi angle is defined from the
y-axis to the z-axis and the theta angle is defined from the x-axis toward the yz-plane. (See “Phi
and Theta Angles” on page 2-233).

• If rotpatax is false, the phi angle is defined from the x-axis to the y-axis and the theta angle is
defined from the z-axis toward the xy-plane. (See “Alternative Definition of Phi and Theta” on page
2-234).

Data Types: logical

Output Arguments
pat_azel — Antenna radiation pattern in azimuth-elevation coordinates
real-valued M-by-L matrix

Antenna radiation pattern in azimuth-elevation coordinates, returned as a real-valued M-by-L matrix.
pat_azel represents the magnitude pattern. L is the length of the az_pat vector, and M is the
length of the el_pat vector. Units are in dB.

az_pat — Azimuth angles
real-valued length-L vector

Azimuth angles at which the pat_azel output pattern is sampled, returned as a real-valued length-L
vector. Units are in degrees.

el_pat — Elevation angles
real-valued length-M vector

Elevation angles at which the pat_azel output pattern is sampled, returned as a real-valued length-
M vector. Units are in degrees.
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More About
Azimuth and Elevation Angles

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.
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Phi and Theta Angles

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.

The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz
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Alternative Definition of Phi and Theta

The phi angle (φ) is the angle from the positive x-axis to the vector’s orthogonal projection onto the xy
plane. The angle is positive toward the positive y-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the z-axis to the vector itself. The angle is positive toward the xy
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates φ and θ for a vector that appears as a green solid line.
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ϕ = az
θ = 90− el
az = ϕ
el = 90− θ

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
azel2phitheta | azel2phithetapat | phased.CustomAntennaElement | phitheta2azel

Topics
Antenna Array Analysis with Custom Radiation Pattern
“Spherical Coordinates”

Introduced in R2012a
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phitheta2uv
Convert phi/theta angles to u/v coordinates

Syntax
UV = phitheta2uv(PhiTheta)

Description
UV = phitheta2uv(PhiTheta) converts the phi/theta angle on page 2-237 pairs to their
corresponding u/v space on page 2-238 coordinates.

Examples

Conversion of Phi-Theta Pair

Find the corresponding u-v representation for φ = 30° and φ = 0°.

uv = phitheta2uv([30; 0])

uv = 2×1

     0
     0

Input Arguments
PhiTheta — Phi/theta angle pairs
two-row matrix

Phi and theta angles, specified as a two-row matrix. Each column of the matrix represents an angle in
degrees, in the form [phi; theta].
Data Types: double

Output Arguments
UV — Angle in u/v space
two-row matrix

Angle in u/v space, returned as a two-row matrix. Each column of the matrix represents an angle in
the form [u; v]. The matrix dimensions of UV are the same as those of PhiTheta.
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More About
Phi Angle, Theta Angle

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.

The coordinate transformations between φ/θ and az/el are described by the following equations
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sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

U/V Space

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles on page 2-
237.

The relations are

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = coselsinaz
v = sinel

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = u/v

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v

sinel = v

tanaz = u
1− u2− v2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
uv2phitheta
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Topics
“Spherical Coordinates”

Introduced in R2012a
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phitheta2uvpat
Convert radiation pattern from phi/theta form to u/v form

Syntax
pat_uv = phitheta2uvpat(pat_phitheta,phi,theta)
pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v)
[pat_uv,u_pat,v_pat] = phitheta2uvpat( ___ )

Description
pat_uv = phitheta2uvpat(pat_phitheta,phi,theta) expresses the antenna radiation
pattern pat_phitheta in u/v space on page 2-245 coordinates instead of φ/θ angle on page 2-244
coordinates. pat_phitheta samples the pattern at φ angles in phi and θ angles in theta. The
pat_uv matrix uses a default grid that covers u values from –1 to 1 and v values from –1 to 1. In this
grid, pat_uv is uniformly sampled with a step size of 0.01 for u and v. The function interpolates to
estimate the response of the antenna at a given direction. Values in pat_uv are NaN for u and v
values outside the unit circle because u and v are undefined outside the unit circle.

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v) uses vectors u and v to specify
the grid at which to sample pat_uv. To avoid interpolation errors, u should cover the range [–1, 1]
and v should cover the range [–1, 1].

[pat_uv,u_pat,v_pat] = phitheta2uvpat( ___ ) returns vectors containing the u and v
coordinates at which pat_uv samples the pattern, using any of the input arguments in the previous
syntaxes.

Examples

Conversion of Radiation Pattern

Convert a radiation pattern to u-v form, with the u and v coordinates spaced by 0.01.

Define the pattern in terms of φ and θ.

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to u-v form.

pat_uv = phitheta2uvpat(pat_phitheta,phi,theta);

Convert and Plot Radiation Pattern

Convert a radiation pattern to u− v coordinates, with the u and v coordinates spaced by 0.01.
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Define the pattern in terms of ϕ and θ.

phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Convert the pattern to u− v coordinates. Store the u and v coordinates for use in plotting.

[pat_uv,u,v] = phitheta2uvpat(pat_phitheta,phi,theta);

Plot the result.

H = surf(u,v,pat_uv);
H.LineStyle = 'none';
xlabel('u');
ylabel('v');
zlabel('Pattern');

Convert Radiation Pattern For Specific U/V Values

Convert a radiation pattern to u− v coordinates, with the u and v coordinates spaced by 0.05.

Define the pattern in terms of ϕ and θ.
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phi = 0:360;
theta = 0:90;
pat_phitheta = mag2db(repmat(cosd(theta)',1,numel(phi)));

Define the set of u and v coordinates at which to sample the pattern. Then, convert the pattern.

u = -1:0.05:1;
v = -1:0.05:1;
pat_uv = phitheta2uvpat(pat_phitheta,phi,theta,u,v);

Plot the result.

H = surf(u,v,pat_uv);
H.LineStyle = 'none';
xlabel('u');
ylabel('v');
zlabel('Pattern');

Input Arguments
pat_phitheta — Antenna radiation pattern in phi/theta form
Q-by-P matrix

Antenna radiation pattern in phi/theta form, specified as a Q-by-P matrix. pat_phitheta samples
the 3-D magnitude pattern in decibels, in terms of φ and θ angles. P is the length of the phi vector,
and Q is the length of the theta vector.
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Data Types: double

phi — Phi angles
vector of length P

Phi angles at which pat_phitheta samples the pattern, specified as a vector of length P. Each φ
angle is in degrees, between 0 and 180.
Data Types: double

theta — Theta angles
vector of length Q

Theta angles at which pat_phitheta samples the pattern, specified as a vector of length Q. Each θ
angle is in degrees, between 0 and 90. Such angles are in the hemisphere for which u and v are
defined.
Data Types: double

u — u coordinates
[-1:0.01:1] (default) | vector of length L

u coordinates at which pat_uv samples the pattern, specified as a vector of length L. Each u
coordinate is between –1 and 1.
Data Types: double

v — v coordinates
[-1:0.01:1] (default) | vector of length M

v coordinates at which pat_uv samples the pattern, specified as a vector of length M. Each v
coordinate is between –1 and 1.
Data Types: double

Output Arguments
pat_uv — Antenna radiation pattern in u/v form
M-by-L matrix

Antenna radiation pattern in u/v form, returned as an M-by-L matrix. pat_uv samples the 3-D
magnitude pattern in decibels, in terms of u and v coordinates. L is the length of the u vector, and M
is the length of the v vector. Values in pat_uv are NaN for u and v values outside the unit circle
because u and v are undefined outside the unit circle.

u_pat — u coordinates
vector of length L

u coordinates at which pat_uv samples the pattern, returned as a vector of length L.

v_pat — v coordinates
vector of length M

v coordinates at which pat_uv samples the pattern, returned as a vector of length M.

 phitheta2uvpat

2-243



More About
Phi Angle, Theta Angle

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.

The coordinate transformations between φ/θ and az/el are described by the following equations
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sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

U/V Space

The u and v coordinates are the direction cosines of a vector with respect to the y-axis and z-axis,
respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles on page 2-
244, as follows:

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = coselsinaz
v = sinel

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = u/v

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v

sinel = v

tanaz = u
1− u2− v2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.CustomAntennaElement | phitheta2uv | uv2phitheta | uv2phithetapat
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Topics
“Spherical Coordinates”

Introduced in R2012a
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physconst
Physical constants

Syntax
const = physconst(name)

Description
const = physconst(name) returns the value of the physical constant const specified by the name
argument.

Examples

Convert Frequency to Wavelength

Determine the wavelength of a 1 GHz electromagnetic wave.

freq = 1e9;
lambda = physconst('LightSpeed')/freq

lambda = 0.2998

Thermal Noise Power

Determine the thermal noise power per unit bandwidth in the in-phase (I) and quadrature (Q)
channels of a receiver. Specify a receiver temperature of 290 K.

T = 290;
k = physconst('Boltzmann');

Compute the noise power per unit bandwidth, split evenly between the I and Q channels. Units are in
dB.

Noise_power = 10*log10(k*T/2)

Noise_power = -206.9855

Input Arguments
name — Name of physical constant
'Lightspeed' | 'Boltzmann' | 'EarthRadius'

Name of physical constant, specified as 'Lightspeed', 'Boltzmann', or 'EarthRadius'. See
“Physical Constants” on page 2-248 for a list of values for physical constants used in Phased Array
System Toolbox.
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Example: 'Lightspeed'

Output Arguments
const — Value of physical constant
real-valued scalar

Value of physical constant, returned as a real-valued scalar. All values are in SI units.

More About
Physical Constants

This table lists the supported constants and their values in SI units.

Constant Description Value
'LightSpeed' Speed of light in vacuum 299,792,458 m/s. Most

commonly denoted by c.
'Boltzmann' Boltzmann constant relating

kinetic energy to temperature
1.3806504 × 10−23 J/K. 2006
NIST value, most commonly
denoted by k.

'EarthRadius' Mean radius of the Earth 6,371,000 m

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

The function does not support variable-size inputs.

See Also
External Websites
https://physics.nist.gov/cuu/Constants/index.html

Introduced in R2011a
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pilotcalib
Array calibration using pilot sources

Syntax
estpos = pilotcalib(nompos,x,pilotang)
[estpos,esttaper] = pilotcalib(nompos,x,pilotang)
[estpos,esttaper] = pilotcalib(nompos,x,pilotang,nomtaper)
[estpos,esttaper] = pilotcalib(nompos,x,pilotang,nomtaper,uncerts)

Description
estpos = pilotcalib(nompos,x,pilotang) returns the estimated element positions, estpos,
of a sensor array. The argument nompos represents the relative nominal positions of the sensor array
before calibration. The nominal position is relative to the first element of the array. The argument x
represents the signals received by the array coming from the pilot sources. The argument pilotang
contains the known directions of each of the pilot sources. Three or more pilot sources are required
in this case.

[estpos,esttaper] = pilotcalib(nompos,x,pilotang) also returns the estimated array
taper, esttaper. Each element of esttaper contains the estimated taper value of the corresponding
array element. In this case, the prior nominal taper is one for each element. Four or more pilot
sources are required in this case.

[estpos,esttaper] = pilotcalib(nompos,x,pilotang,nomtaper) specifies nomtaper as
the nominal taper of the array. Four or more pilot sources are required in this case.

[estpos,esttaper] = pilotcalib(nompos,x,pilotang,nomtaper,uncerts) specifies
uncerts as the configuration settings to use for calibrating array uncertainties. Configuration
settings determine which parameters to estimate.

Examples

Estimate ULA Element Positions Using Pilot Calibration

Construct a 7-element ULA array of isotropic antenna elements spaced one-half wavelength apart.
Assume the array is geometrically perturbed in three dimensions. Perform pilot calibration on the
array using 4 pilot sources at azimuth and elevation angles of (-60,0), (10,-40), (40,0), and (120,45)
degrees. For the calibration process, pilot signals have an SNR of 30 dB. Each pilot signal contains
10,000 samples. Assume the signals have a frequency of 600 MHz.

Set up the ULA with nominal parameters

fc = 600e6;
c = physconst('LightSpeed');
lam = c/fc;
d = 0.5*lam;
sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);
Nelem = 7;
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NominalTaper = ones(1,Nelem);
sULA = phased.ULA('Element',sIso,'NumElements',Nelem,'ElementSpacing',d,...
    'Taper',NominalTaper);

Create the pilot signals

Randomly perturb the element positions with a gaussian distribution having 0.1 wavelength standard
deviation. Do not perturb the position of the first element or the tapers.

posstd = 0.1;
rng default
NominalElementPositions = getElementPosition(sULA)/lam;
ReferenceElement = NominalElementPositions(:,1);
PositionPert = [zeros(3,1),posstd*randn(3,Nelem-1)];
ActualElementPositions = NominalElementPositions + PositionPert;
ActualTaper = NominalTaper;

Generate the signals using the actual positions and tapers.

Nsamp  = 10000;
ncov = 0.001;
PilotAng = [-60,10,40,120; 0,-40,0,45];
Npilot = size(PilotAng,2);
for n = 1:Npilot
    X(:,:,n) = sensorsig(ActualElementPositions,...
        Nsamp,PilotAng(:,n),ncov,'Taper',ActualTaper.');
end

Perform the pilot calibration

estpos = pilotcalib(NominalElementPositions - ReferenceElement*ones(1,Nelem),...
    X,PilotAng);

Add back the position of the reference sensor

estpos = estpos + NominalElementPositions(:,1)*ones(1,Nelem);

Examine the root mean squared (RMS) error of the calibrated parameters

Compute the RMS value of the initial position error.

numpos = 3*Nelem;
initposRMSE = sqrt(sum(PositionPert(:).^2)/numpos);

Compute the RMS value of the calibrated position error.

solvposErr = ActualElementPositions - estpos;
solvposRMSE = sqrt(sum(solvposErr(:).^2)/(numpos));

Compare the calibrated RMS position error to the initial position RMS error. The calibration reduces
the RMS position error.

disp(solvposRMSE/initposRMSE)

   2.3493e-04

2 Functions

2-250



Estimate ULA Element Position and Taper Errors Using Pilot Calibration

Construct a 7-element ULA array of isotropic antenna elements spaced one-half wavelength apart.
Assume the array is geometrically perturbed in three dimensions. Perform pilot calibration on the
array using 4 pilot sources at azimuth and elevation angles of (-60,0), (10,80), (40,-40), and (-80,0)
degrees. For the calibration process, pilot signals have an SNR of 30 dB. Each pilot signal contains
10,000 samples. Assume the signals have a frequency of 600 MHz.

Set up the ULA with nominal parameters
fc = 600e6;
c = physconst('LightSpeed');
lam = c/fc;
d = 0.5*lam;
sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);
Nelem = 7;
NominalTaper = ones(1,Nelem);
sULA = phased.ULA('Element',sIso,'NumElements',Nelem,'ElementSpacing',d,...
    'Taper',NominalTaper);

Create the pilot signals

Randomly perturb the element positions using a Gaussian distribution that has a standard deviation
of 0.1 wavelength. Do not perturb the position of the first element.

posstd = 0.1;
rng default
NominalElementPositions = getElementPosition(sULA)/lam;
ReferenceElement = NominalElementPositions(:,1);
PositionPert = [zeros(3,1),posstd*randn(3,Nelem-1)];
ActualElementPositions = NominalElementPositions + PositionPert;

Perturb the taper in magnitude and phase. Do not perturb the first taper.

tapermagstd = 0.15;
taperphasestd = 0.15;
tapermagpert = tapermagstd*[0; randn(Nelem-1,1)];
ActualTaper = NominalTaper' + tapermagpert;
taperphasepert = taperphasestd*[0;randn(Nelem-1,1)];
ActualTaper = ActualTaper.*exp(1i*taperphasepert);

Generate the signals using the perturbed positions, tapers and four pilot sources.

Nsamp  = 10000;
ncov = 0.001;
PilotAng = [-60,10,40,-80; 10,80,-40,0];
Npilot = size(PilotAng,2);
for n = 1:Npilot
    X(:,:,n) = sensorsig(ActualElementPositions,Nsamp,...,
        PilotAng(:,n),ncov,'Taper',ActualTaper);
end

Perform the pilot calibration
[estpos,esttaper] = pilotcalib(...
    NominalElementPositions - ReferenceElement*ones(1,Nelem),...
    X,PilotAng);

Add back the position of the reference sensor
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estpos = estpos + NominalElementPositions(:,1)*ones(1,Nelem);

Examine the root mean square (RMS) error of the calibrated parameters

Compute the RMS values of the initial taper perturbations.

tapermagpertRMSE = sqrt(tapermagpert'*tapermagpert/Nelem);
taperphasepertRMSE = sqrt(taperphasepert'*taperphasepert/Nelem);

Compute the RMS value of the calibrated taper magnitude error.

diff = abs(ActualTaper) - abs(esttaper);
diff2 = diff'*diff;
tapermagsolvRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS magnitude error to the initial RMS magnitude error. The calibration
reduces the RMS magnitude error.

disp(tapermagsolvRMSE/tapermagpertRMSE)

   6.7715e-04

Compute the RMS value of the calibrated taper phase error.

diff = unwrap(angle(ActualTaper) - angle(esttaper));
diff2 = diff'*diff;
tapersolvphaseRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS phase error to the initial RMS phase error. The calibration reduces the
RMS phase error.

disp(tapersolvphaseRMSE/taperphasepertRMSE)

    0.0021

% Compute the RMS value of the initial position error.
numpos = 3*Nelem;
initposRMSE = sqrt(sum(PositionPert(:).^2)/numpos);

Compute the RMS value of the calibrated position error.

solvposErr = ActualElementPositions - estpos;
solvposRMSE = sqrt(sum(solvposErr(:).^2)/(numpos));

Compare the calibrated RMS position error to the initial position RMS error. The calibration reduces
the RMS position error.

disp(solvposRMSE/initposRMSE)

   3.6308e-04

Estimate URA Element Position Errors Using Pilot Calibration

Construct a 9-element URA of isotropic antenna elements spaced one-half wavelength apart. Assume
the array has been geometrically perturbed in all directions except for the first element. Perform pilot
calibration on the array using 5 pilot sources at azimuth and elevation angles of (-60,0), (10,-40),
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(40,0), (120,45), and (170,50) degrees. For the calibration process, pilot signals have an SNR of 30
dB. Each pilot signal contains 10,000 samples. Assume the signals have a frequency of 600 MHz.

Create the array

For convenience, use a phased.URA System object� to set the nominal position and taper values.

fc = 300e6;
c = physconst('LightSpeed');
lam = c/fc;
d = 0.5*lam;
sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);
sURA = phased.URA('Element',sIso,'Size',[3,3],...
    'ElementSpacing',d,'Taper',ones(3,3));
Nelem = getNumElements(sURA);
taper = getTaper(sURA);

Create the pilot signals

Randomly perturb the element positions using a Gaussian distribution that has a standard deviation
of 0.1 wavelength. Do not perturb the position of the first element.

posstd = 0.1;
rng default
NominalElementPositions = getElementPosition(sURA)/lam;
ReferenceElement = NominalElementPositions(:,1);
PositionPert = [zeros(3,1),posstd*randn(3,Nelem-1)];
ActualElementPositions = NominalElementPositions + PositionPert;

Perturb the taper in magnitude and phase. Do not perturb the first taper.

NominalTaper = getTaper(sURA);
tapermagstd = 0.1;
taperphasestd = 0.1;
tapermagpert = tapermagstd*[0; randn(Nelem-1,1)];
ActualTaper = NominalTaper + tapermagpert;
taperphasepert = taperphasestd*[0;randn(Nelem-1,1)];
ActualTaper = ActualTaper.*exp(1i*taperphasepert);

Generate the pilot signals using the perturbed positions and tapers.

Nsamp  = 10000;
ncov = 0.001;
PilotAng = [-60,10,40,120,170; 0,-40,0,45,50];
Npilot = size(PilotAng,2);
for n = 1:Npilot
    X(:,:,n) = sensorsig(ActualElementPositions,Nsamp,...
        PilotAng(:,n),ncov,'Taper',ActualTaper);
end

Perform the pilot calibration

[estpos,esttaper] = pilotcalib(NominalElementPositions - ReferenceElement*ones(1,Nelem),...
    X,PilotAng,NominalTaper);

Add back the position of the reference sensor.

estpos = estpos + NominalElementPositions(:,1)*ones(1,Nelem);
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Examine the root mean square (RMS) error of the calibrated parameters

Compute the RMS values of the initial taper perturbations to compare with the RMS values of the
calibrated parameters.

tapermagpertRMSE = sqrt(tapermagpert'*tapermagpert/Nelem);
taperphasepertRMSE = sqrt(taperphasepert'*taperphasepert/Nelem);

Compute the RMS value of the calibrated taper magnitude error.

diff = abs(ActualTaper) - abs(esttaper);
diff2 = diff'*diff;
tapermagsolvRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS magnitude error to the initial RMS error. The calibration reduces the
RMS magnitude error.

disp(tapermagsolvRMSE/tapermagpertRMSE)

    0.0014

Compute the RMS value of the calibrated taper phase error.

diff = unwrap(angle(ActualTaper) - angle(esttaper));
diff2 = diff'*diff;
tapersolvphaseRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS phase error to the initial RMS error. The calibration reduces the RMS
phase error.

disp(tapersolvphaseRMSE/taperphasepertRMSE)

    0.0015

Compute the RMS value of the initial position error.

numpos = 3*Nelem;
initposRMSE = sqrt(sum(PositionPert(:).^2)/numpos);

Compute the RMS value of the calibrated position error.

solvposErr = ActualElementPositions - estpos;
solvposRMSE = sqrt(sum(solvposErr(:).^2)/(numpos));

Compare the calibrated RMS position error to initial position RMS error. The calibration reduces the
RMS position error.

disp(solvposRMSE/initposRMSE)

   7.1582e-04

Estimate Selected ULA Parameters Using Pilot Calibration

Construct a 6-element ULA of isotropic antenna elements that are spaced one-half wavelength apart.
Assume the array has been geometrically perturbed in the x-y plane and contains an unknown taper
error. Perform pilot calibration on the array using four pilot sources at azimuth and elevation angles
of (-60,0), (10,-40), (40,0), and (120,45) degrees. For the calibration process, pilot signals have an
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SNR of 30 dB. Each pilot signal contains 10,000 samples. Assume the signals have a frequency of 600
MHz.

Set up the ULA with nominal parameters

fc = 600e6;
c = physconst('LightSpeed');
lam = c/fc;
d = 0.5*lam;
sIso = phased.IsotropicAntennaElement('FrequencyRange',[100,900]*1e6);
Nelem = 6;
NominalTaper = ones(1,Nelem);
sULA = phased.ULA('Element',sIso,'NumElements',Nelem,'ElementSpacing',d,...
    'Taper',NominalTaper);

Create the pilot signals

Randomly perturb the element positions using a Gaussian distribution that has a standard deviation
of 0.13 wavelength. Do not perturb the position of the first element.

posstd = 0.13;
rng default
NominalElementPositions = getElementPosition(sULA)/lam;
ReferenceElement = NominalElementPositions(:,1);
PositionPert = [zeros(3,1),posstd*randn(3,Nelem-1)];
ActualElementPositions = NominalElementPositions + PositionPert;

Perturb the taper in magnitude and phase. Do not perturb the first taper.

tapermagstd = 0.15;
taperphasestd = 0.15;
tapermagpert = tapermagstd*[0; randn(Nelem-1,1)];
ActualTaper = NominalTaper' + tapermagpert;
taperphasepert = taperphasestd*[0;randn(Nelem-1,1)];
ActualTaper = ActualTaper.*exp(1i*taperphasepert);

Generate the signals using the perturbed positions and tapers.

Nsamp  = 10000;
ncov = 0.001;
PilotAng = [-60,10,40,120; 0,-40,0,45];
Npilot = size(PilotAng,2);
for n = 1:Npilot
    X(:,:,n) = sensorsig(ActualElementPositions,Nsamp,...
        PilotAng(:,n),ncov,'Taper',ActualTaper);
end

Perform the pilot calibration

Turn off estimation of taper weights.

[estpos,esttaper] = pilotcalib(NominalElementPositions - ReferenceElement*ones(1,Nelem),...
    X,PilotAng,NominalTaper.',[1,1,1,0]');

Add back the position of the reference sensor

estpos = estpos + NominalElementPositions(:,1)*ones(1,Nelem);
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Examine the root mean square (RMS) error of the calibrated parameters

Compute the RMS values of the initial taper perturbations to compare with the RMS values of the
calibrated parameters.

tapermagpertRMSE = sqrt(tapermagpert'*tapermagpert/Nelem);
taperphasepertRMSE = sqrt(taperphasepert'*taperphasepert/Nelem);

Compute the RMS value of the calibrated taper magnitude error.

diff = abs(ActualTaper) - abs(esttaper);
diff2 = diff'*diff;
tapermagsolvRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS magnitude error to the initial RMS error. The calibration reduces the
RMS magnitude error.

disp(tapermagsolvRMSE/tapermagpertRMSE)

    1.0000

Compute the RMS value of the calibrated taper phase error

diff = unwrap(angle(ActualTaper) - angle(esttaper));
diff2 = diff'*diff;
tapersolvphaseRMSE = sqrt(diff2/Nelem);

Compare the calibrated RMS phase error to the initial RMS error. The calibration reduces the RMS
phase error.

disp(tapersolvphaseRMSE/taperphasepertRMSE)

     1

Compute the RMS value of the initial position error.

numpos = 3*Nelem;
initposRMSE = sqrt(sum(PositionPert(:).^2)/numpos);

Compute the RMS value of the calibrated position error.

solvposErr = ActualElementPositions - estpos;
solvposRMSE = sqrt(sum(solvposErr(:).^2)/(numpos));

Compare the calibrated RMS position error to initial position RMS error. The calibration reduces the
RMS position error.

disp(solvposRMSE/initposRMSE)

    0.1502

Input Arguments
nompos — Nominal relative element positions
real-valued 3-by-N matrix

Nominal relative element positions, specified as a real-valued 3-by-N matrix. The dimension N is the
number of elements in the sensor array. Elements positions are relative to the first element of the
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array and are specified in units of signal wavelength. Each column of nompos represents the
[x;y;z] coordinates of the corresponding element. The nominal position of all sensors must be
within one-half of a wavelength of their actual positions for successful calibration.
Data Types: double

x — Pilot signals
complex-valued L-by-N-by-M matrix

Pilot signals, specified as a complex-valued L-by-N-by-M matrix. The argument x represents the
signals received by the array when pilot sources are transmitting. The dimension L is the number of
snapshots of each pilot source signal. The dimension N is the number of array elements. The
dimension M is the number of pilot sources.
Data Types: double
Complex Number Support: Yes

pilotang — Pilot angles
real-valued 2-by-M matrix

Pilot angles, specified as a real-valued 2-by-M matrix. The dimension M is the number of pilot
sources. Each column contains the direction of the pilot source in the form [azimuth;
elevation]. Angle units are in degrees. The azimuth angle must lie between -180° and 180° and the
elevation angle must lie between -90° and 90°. The azimuth angle is measured from the x-axis to the
projection of the source direction into the xy plane, positive toward the y-axis. The elevation angle is
defined as the angle from the xy plane to the source direction, positive toward the z-axis. Calibration
source directions must span sufficiently diverse azimuth and elevation angles.
Data Types: double

nomtaper — Nominal taper
1 (default) | complex-valued N-by-1 column vector

Nominal taper of array elements, specified as a complex-valued N-by-1 column vector. The dimension
N is the number of array elements. Each component represents the nominal taper of the
corresponding element.
Data Types: double
Complex Number Support: Yes

uncerts — Uncertainty estimation configuration
[1,1,1,1] (default) | 1-by-4 vector of ones and zeros

Uncertainty estimation configuration, specified as a 1-by-4 vector consisting of 0’s and 1’s. The vector
uncerts determines which uncertainties to estimated. The vector takes the form of [xflag;
yflag; zflag; taperflag]. Set xflag, yflag, or zflag to 1 to estimate uncertainties in the x,
y, or z axes. Set taperflag to 1 to estimate uncertainties in the taper. The number of pilot sources
must greater than or equal to the number of 1’s in the vector.

For example, set uncerts to [0;1;1;1] to estimate uncertainties in the y and z element position
components and the taper simultaneously.
Data Types: double
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Output Arguments
estpos — Estimated positions
real-valued 3-by-N matrix

Estimated element positions, returned as a real-valued 3-by-N matrix. Units are in signal wavelength.
The dimension N is the number of array elements. Each column of estpos represents the [x;y;z]
coordinates of the corresponding element.

esttaper — Estimated taper
complex-valued N-by-1 column vector

Estimated taper values, returned as a complex-valued N-by-1 column vector. The dimension N is the
number of array elements. Each element of esttaper represents the taper of the corresponding
sensor element.

Algorithms
This algorithm requires that the pilot sources be independent narrowband plane-wave signals
incoming from the far field region of the array. In addition, signals must not exhibit multipath
propagation effects or coherence. All elements in the sensor array are assumed to be isotropic.

The algorithm calibrates relative positions of the array sensors with respect to the first sensor. To use
the algorithm, first subtract the position of the first element from each element, then pass the relative
array into the function as the nominal position argument to produced the calibrated relative
positions. Finally, add back the first element position to all the relative positions to create the fully
calibrated array.

References
[1] N. Fistas and A. Manikas, "A New General Global Array Calibration Method", IEEE Proceedings of

ICASSP, Vol. IV, pp. 73-76, April 1994.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also

Introduced in R2015a
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pol2circpol
Convert linear component representation of field to circular component representation

Syntax
cfv = pol2circpol(fv)

Description
cfv = pol2circpol(fv) converts the linear polarization components of the field or fields
contained in fv to their equivalent circular polarization components in cfv. The expression of a field
in terms of a two-row vector of linear polarization components is called the Jones vector formalism.

Examples

Convert Linear To Circular Polarization Components

Express a 45° linear polarized field in terms of right-circular and left-circular components.

fv = [2;2]

fv = 2×1

     2
     2

cfv = pol2circpol(fv)

cfv = 2×1 complex

   1.4142 - 1.4142i
   1.4142 + 1.4142i

Convert Linear Polarization Components to Circular Polarization Components

Specify two input fields [1+1i;-1+1i] and [1;1] in the same matrix. The first field is a linear
representation of a left-circularly polarized field and the second is a linearly polarized field.

fv=[1+1i 1;-1+1i 1]

fv = 2×2 complex

   1.0000 + 1.0000i   1.0000 + 0.0000i
  -1.0000 + 1.0000i   1.0000 + 0.0000i

cfv = pol2circpol(fv)
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cfv = 2×2 complex

   1.4142 + 1.4142i   0.7071 - 0.7071i
   0.0000 + 0.0000i   0.7071 + 0.7071i

Input Arguments
fv — Field vector in linear component representation
1-by-N complex-valued row vector or a 2-by-N complex-valued matrix

Field vector in its linear component representation specified as a 1-by-N complex row vector or a 2-
by-N complex matrix. If fv is a matrix, each column in fv represents a field in the form of [Eh;Ev],
where Eh and Ev are the field’s horizontal and vertical polarization components. If fv is a vector,
each entry in fv is assumed to contain the polarization ratio, Ev/Eh. For a row vector, the value Inf
designates the case when the ratio is computed for a field with Eh = 0.
Example: [1;-i]
Example: 2 + pi/3*i
Data Types: double
Complex Number Support: Yes

Output Arguments
cfv — Field vector in circular component representation
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in circular component representation returned as a 1-by-N complex-valued row vector or
2-by-Ncomplex-valued matrix. cfv has the same dimensions as fv. If fv is a matrix, each column of
cfv contains the circular polarization components, [El;Er], of the field where El and Er are the
left-circular and right-circular polarization components. If fv is a row vector, then cfv is also a row
vector and each entry in cfv contains the circular polarization ratio, defined as Er/El.

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp. 299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge University Press,
1999, pp 25–32.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.
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See Also
circpol2pol | polellip | polratio | stokes

Introduced in R2013a
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polellip
Parameters of ellipse traced out by tip of a polarized field vector

Syntax
tau = polellip(fv)
[tau,epsilon] = polellip(fv)
[tau,epsilon,ar] = polellip(fv)
[tau,epsilon,ar,rs] = polellip(fv)

polellip(fv)

Description
tau = polellip(fv) returns the tilt angle, in degrees, of the polarization ellipse of a field or set of
fields specified in fv. fv contains the linear polarization components of a field in either one of two
forms: (1) each column represents a field in the form of [Eh;Ev], where Eh and Ev are the field’s
horizontal and vertical linear polarization components or (2) each column contains the polarization
ratio, Ev/Eh. The expression of a field in terms of a two-row vector of linear polarization components
is called the Jones vector formalism.

[tau,epsilon] = polellip(fv) returns, in addition, a row vector, epsilon, containing the
ellipticity angle (in degrees) of the polarization ellipses. The ellipticity angle is the angle determined
by the ratio of the length of the semi-minor axis to semi-major axis and lies in the range [-45°,45°].
This syntax can use any of the input arguments in the previous syntax.

[tau,epsilon,ar] = polellip(fv) returns, in addition, a row vector, ar, containing the axial
ratios of the polarization ellipses. The axial ratio is defined as the ratio of the lengths of the semi-
major axis of the ellipse to the semi-minor axis. This syntax can use any of the input arguments in the
previous syntaxes.

[tau,epsilon,ar,rs] = polellip(fv) returns, in addition, a cell array of character vectors,
rs, containing the rotation senses of the polarization ellipses. Each entry in the array is one of
'Linear', 'Left Circular', 'Right Circular', 'Left Elliptical' or 'Right
Elliptical'. This syntax can use any of the input arguments in the previous syntaxes.

polellip(fv) plots the polarization ellipse of the field specified in fv. This syntax requires that fv
have only one column. Unlike the returned arguments, the size of the drawn ellipse depends upon the
magnitude of fv.

Examples

Tilt Angle for Linearly Polarized Field

Create an input field that is linearly polarized by setting both the horizontal and vertical components
to have the same phase. Then, compute the tilt angle.

fv = [2;1];
tau = polellip(fv)
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tau = 26.5651

For linear polarization, tau is computed using tau = atan(fv(2)/fv(1))*180/pi.

Tilt Angle and Ellipticity for Elliptically Polarized Field

Start with an elliptically polarized input field (the horizontal and vertical components differ in
magnitude and in phase). Choose the phase difference to be 90°.

fv = [3*exp(-i*pi/2);1];
[tau,epsilon] = polellip(fv)

tau = 1.3156e-15

epsilon = 18.4349

The tilt vanishes because of the 90° phase difference between the horizontal and vertical components
of the field.

Tilt Angle, Ellipticity and Axial Ratio for Elliptically Polarized Field

Start with an elliptically polarized input field (the horizontal and vertical components differ in
magnitude and in phase). Choose the phase difference to be 60°.

fv = [2*exp(-i*pi/3);1];
[tau,epsilon,ar] = polellip(fv)

tau = 16.8450

epsilon = 21.9269

ar = -2.4842

The nonzero tilt occurs because of the 60° phase difference. The negative value of the axial ratio
indicates left elliptical polarization.

Tilt Angle, Ellipticity, Axial Ratio and Rotation Sense for Elliptically Polarized Field

Start with an elliptically polarized input field (the horizontal and vertical components differ in
magnitude and in phase). Choose the phase difference to be 60°.

fv = [2*exp(-i*pi/3);1];
[tau,epsilon,ar,rs] = polellip(fv)

tau = 16.8450

epsilon = 21.9269

ar = -2.4842
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rs = 1x1 cell array
    {'Left Elliptical'}

A nonzero tilt occurs because of the 60° phase difference. The rotation sense is 'Left Elliptical'
indicating that the tip of the field vector is moving clockwise when looking towards the source of the
field.

Polarization Ellipse

Draw the figure of an elliptically polarized field. Begin with an elliptically polarized input field (the
horizontal and vertical components differ in magnitude and in phase) and choose the phase difference
to be 60 degrees.

fv = [2*exp(-i*pi/3);1];
polellip(fv)

The rotation sense is 'Left Elliptical' as shown by the direction of the arrow on the ellipse. The
filled circle at the origin indicates that the observer is looking towards the source of the field.
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Input Argument
fv — Field vector in linear component representation
1-by-N complex-valued row vector or 2-by-N complex-valued matrix

Field vector in linear component representation specified as a 1-by-N complex-valued row vector or 2-
by-N complex-valued matrix. Each column contains an instance of a field specification. If fv is a
matrix, each column in fv represents a field in the form of [Eh;Ev], where Eh and Ev are the field’s
linear horizontal and vertical polarization components. If fv is a row vector, then the row contains
the ratio of the vertical to horizontal components of the field Ev/Eh. For a row vector, the value Inf
is allowed to designate the case when the ratio is computed for Eh = 0. Eh and Ev cannot both be
set to zero.
Example: [1;-i]
Example: 2 + pi/3*i
Data Types: double
Complex Number Support: Yes

Output Arguments
tau — Tilt angle of polarization ellipse
1-by-N real-valued row vector

Tilt angle of polarization ellipse returned as a 1-by-N real-valued row vector. Each entry in tau
contains the tilt angle of the polarization ellipse associated with each column of the field fv. The tilt
angle is the angle between the semi-major axis of the ellipse and the horizontal axis (i.e. xaxis) and
lies in the range [-90,90]°.

epsilon — Ellipticity angle of the polarization ellipse
1-by-N real-valued row vector

Ellipticity angle of the polarization ellipse returned as 1-by-N real-valued row vector. Each entry in
epsilon contains the ellipticity angle of the polarization ellipse associated with each column of the
field fv. The ellipticity angle describes the shape of the ellipse and lies in the range [-45°,45°].

ar — Axial ratio of the polarization ellipse
1-by-N real-valued row vector

Axial ratio of the polarization ellipse returned as a 1-by-N real-valued row vector. Each entry in ar
contains the axial ratio of the polarization ellipse associated with each column of the field fv. The
axial ratio is the signed ratio of the major-axis length to the minor-axis length of the polarization
ellipse. Its absolute value is always greater than or equal to one. The sign of ar carries the rotational
sense of the vector – a negative sign denotes left-handed rotation and a positive sign denotes right-
handed rotation.

rs — Rotation sense of the polarization ellipse
1-by-N cell array of character vectors

Rotation sense of the polarization ellipse returned as a 1-by-N cell array of character vectors. Each
entry in rs contains the rotation sense of the polarization ellipse associated with each column of the
field fv. The rotation sense can be one of 'Linear', 'Left Circular', 'Right Circular',
'Left Elliptical' or 'Right Elliptical'.
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References
[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp. 299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge University Press,
1999, pp 25–32.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
circpol2pol | pol2circpol | polratio | stokes

Introduced in R2013a
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polloss
Polarization loss

Syntax
rho = polloss(fv_tr,fv_rcv)
rho = polloss(fv_tr,fv_rcv,pos_rcv)
rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv)
rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr)
rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr,axes_tr)

Description
rho = polloss(fv_tr,fv_rcv) returns the loss, in decibels, because of mismatch between the
polarization of a transmitted field, fv_tr, and the polarization of the receiving antenna, fv_rcv. The
field vector lies in a plane orthogonal to the direction of propagation from the transmitter to the
receiver. The transmitted field is represented as a 2-by-1 column vector [Eh;Ev]. In this vector, Eh
and Ev are the field’s horizontal and vertical linear polarization components with respect to the
transmitter’s local coordinate system. The receiving antenna’s polarization is specified by a 2-by-1
column vector, fv_rcv. You can also specify this polarization in the form of [Eh;Ev] with respect to
the receiving antenna’s local coordinate system. In this syntax, both local coordinate axes align with
the global coordinate system.

rho = polloss(fv_tr,fv_rcv,pos_rcv) specifies, in addition, the position of the receiver. The
receiver is defined as a 3-by-1 column vector, [x;y;z], with respect to the global coordinate system
(position units are in meters). This syntax can use any of the input arguments in the previous syntax.

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv) specifies, in addition, the orthonormal
axes, axes_rcv. These axes define the receiver's local coordinate system as a 3-by-3 matrix. The first
column gives the x-axis of the local system with respect to the global coordinate system. The second
and third columns give the y and z axes, respectively. This syntax can use any of the input arguments
in the previous syntaxes.

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr) specifies, in addition, the position
of the transmitter as a 3-by-1 column vector, [x;y;z], with respect to the global coordinate system
(position units are in meters). This syntax can use any of the input arguments in the previous
syntaxes.

rho = polloss(fv_tr,fv_rcv,pos_rcv,axes_rcv,pos_tr,axes_tr) specifies, in addition,
the orthonormal axes, axes_tr. These axes define the transmitter's local coordinate system as a 3-
by-3 matrix. The first column gives the x-axis of the local system with respect to the global coordinate
system. The second and third columns give the y and z axes, respectively. This syntax can use any of
the input arguments in the previous syntaxes.

Examples
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Mismatch Between 45° Polarized Field and Horizontally Polarized Receiver

Begin with a 45° polarized transmitted field and a receiver that is horizontally polarized. By default,
the transmitter and receiver local axes coincide with the global coordinate system. Compute the
polarization loss in dB.

fv_tr = [1;1];
fv_rcv = [1;0];
rho = polloss(fv_tr,fv_rcv)

rho = 3.0103

The loss is 3 dB as expected because only half the power of the field matches to the receive antenna
polarization.

Polarization Loss Unaffected by Receiver Position

Begin with identical transmitter and receiver polarizations. Place the receiver at a position 100
meters along the y-axis. The transmitter is at the origin (its default position) and both local
coordinate axes coincide with the global coordinate system (by default). First, compute the
polarization loss. Then, move the receiver 100 meters along the_x_-axis, and compute the polarization
loss again.

fv_tr = [1;0];
fv_rcv = [1;0];
pos_rcv = [0;100;0];
rho(1) = polloss(fv_tr,fv_rcv,pos_rcv);
pos_rcv = [100;100;0];
rho(2) = polloss(fv_tr,fv_rcv,pos_rcv)

rho = 1×2

     0     0

No polarization loss occurs at either position. The spherical basis vectors of each antenna are parallel
to other antenna and the polarization vectors are the same.

Loss Due to Receiver Axes Rotation

Start with identical transmitter and receiver polarizations. Put the receiver at a position 100 meters
along the y-axis. The transmitter is at the origin (default) and both local coordinate axes coincide with
the global coordinate system (default). Compute the loss, and then rotate the receiver 30° around the
y-axis. This rotation changes the azimuth and elevation of the transmitter with respect to the receiver
and, therefore, the direction of polarization.

fv_tr = [1;0];
fv_rcv = [1;0];
pos_rcv = [0;100;0];
ax_rcv = azelaxes(0,0);
rho(1) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv);
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ax_rcv = roty(30)*ax_rcv;
rho(2) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv)

rho = 1×2

         0    1.2494

The receiver polarization vector remains unchanged. However, rotating the local coordinate system
changes the direction of the field of the receiving antenna polarization with respect to global
coordinates. This change results in a 1.2 dB loss.

Polarization Loss Unaffected by Transmitter Position

Start with identical transmitter and receiver polarizations. Put the receiver at a position 100 meters
along the_y_-axis. The transmitter is at the origin (default) and both local coordinate axes coincide
with the global coordinate system (default). First, compute the polarization loss. Then, move the
transmitter 100 meters along the x-axis and 100 meters along the y-axis, and compute the
polarization loss again.

fv_tr = [1;0];
fv_rcv = [1;0];
pos_rcv = [0;100;0];
ax_rcv = azelaxes(0,0);
pos_tr = [0;0;0];
rho(1) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv,pos_tr);
pos_tr = [100;100;0];
rho(2) = polloss(fv_tr,fv_rcv,pos_rcv,ax_rcv,pos_tr)

rho = 1×2

     0     0

There is no polarization loss at either position because the spherical basis vectors of each antenna
are parallel to their counterparts and the polarization vectors are the same.

Plot Polarization Loss as Receiving Antenna Rotates

Specifying identical transmitter and receiver polarizations, plot the loss as the local receiving
antenna axes rotate around the x-axis.

fv_tr = [1;0];
fv_rcv = [1;0];

The position of the transmitting antenna is at the origin and its local axes align with the global
coordinate system. The position of the receiving antenna is 100 meters along the global x-axis.
However, its local x-axis points towards the transmitting antenna.

pos_tr = [0;0;0];
axes_tr = azelaxes(0,0);
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pos_rcv = [100;0;0];
axes_rcv0 = rotz(180)*azelaxes(0,0);

Rotate the receiving antenna around its local x-axis in one-degree increments. Compute the loss for
each angle.

angles = [0:1:359];
n = size(angles,2);
rho = zeros(1,n); % Initialize space
for k = 1:n
    axes_rcv = rotx(angles(k))*axes_rcv0;
    rho(k) = polloss(fv_tr,fv_rcv,pos_tr,axes_tr,...
        pos_rcv,axes_rcv);
end

Plot the polarization loss.

hp = plot(angles,rho);
hax = hp.Parent;
hax.XLim = [0,360];
xticks = (0:(n-1))*45;
hax.XTick = xticks;
grid;
title('Polarization loss versus receiving antenna rotation')
xlabel('Rotation angle (degrees)');
ylabel('Loss (dB)');
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The angle-loss plot shows nulls (Inf dB) at 90 degrees and 270 degrees where the polarizations are
orthogonal.

Input Arguments
fv_tr — Transmitted field vector in linear component representation
2-by-1 complex-valued column vector

The transmitted field vector in linear component representation specified as a 2-by-1, complex-valued
column vector [Eh;Ev]. In this vector, Eh and Ev are the field’s horizontal and vertical linear
components.
Example: [1;1]
Data Types: double
Complex Number Support: Yes

fv_rcv — Receiver polarization vector in linear component representation
2-by-1 complex-valued column vector

Receiver polarization vector in linear component representation specified as a 2-by-1, complex-valued
column vector [Eh;Ev]. In this vector, Eh and Ev are the polarization vector’s horizontal and vertical
linear components.
Example: [0;1]
Data Types: double
Complex Number Support: Yes

pos_rcv — Receiving antenna position
[0;0;0] (default) | 3-by-1 real-valued column vector

Receiving antenna position specified as a 3-by-1, real-valued column vector. The components of
pos_rcv are specified in the global coordinate system as [x;y;z].
Example: [1000;0;0]
Data Types: double

axes_rcv — Receiving antenna local coordinate axes
3-by-3 identity matrix (default) | 3-by-3 real-valued matrix

Receiving antenna local coordinate axes specified as a 3-by-3, real-valued matrix. Each column is a
unit vector specifying the local coordinate system's orthonormal x, y, and z axes, respectively, with
respect to the global coordinate system. Each column is written in [x;y;z] form. If axes_rcv is
specified as the identity matrix, the local coordinate system is aligned with the global coordinate
system.
Example: [1, 0, 0; 0, 1, 0; 0, 0 ,1]
Data Types: double

pos_tr — Transmitter position
[0;0;0] (default) | 3-by-1 real-valued column vector

Transmitter position specified as a 3-by-1, real-valued column vector. The components of pos_tr are
specified in the global coordinate system as [x;y;z].
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Example: [0;0;0]
Data Types: double

axes_tr — Transmitting antenna local coordinate axes
3-by-3 identity matrix (default) | 3-by-3 real-valued matrix

Transmitting antenna local coordinate axes specified as a 3-by-3, real-valued matrix. Each column is a
unit vector specifying the local coordinate system's orthonormal x, y, and z axes, respectively, with
respect to the global coordinate system. Each column is written in [x;y;z] form. If axes_tr is the
identity matrix, the local coordinate system is aligned with the global coordinate system.
Example: [1, 0, 0; 0, 1, 0; 0, 0 ,1]
Data Types: double

Output Arguments
rho — Polarization loss
scalar

Polarization loss returned as scalar in decibel units. The polarization loss is the projection of the
normalized transmitted field vector into the normalized receiving antenna polarization vector. Its
value lies between zero and unity. When converted into dB, (and a sign changed to show loss as
positive) its value lies between 0 and -Inf.

More About
Polarization Loss Due to Field and Receiver Mismatch

Loss occurs when a receiver is not matched to the polarization of an incident electromagnetic field.

In the case of the polarization of a field emitted by a transmitting antenna, first, look at the far zone
of the transmitting antenna, as shown in the following figure. At this location―which is the location of
the receiving antenna―the electromagnetic field is orthogonal to the direction from transmitter to
receiver.

You can represent the transmitted electromagnetic field, fv_tr, by the components of a vector with
respect to a spherical basis of the transmitter’s local coordinate system. The orientation of this basis
depends on its direction from the origin. The direction is specified by the azimuth and elevation of the
receiving antenna with respect to the transmitter’s local coordinate system. Then, the transmitter’s
polarization, in terms of the spherical basis vectors of the transmitter’s local coordinate system, is

E = EHeaz + EV eel = EmPi

In the same manner, the receiver’s polarization vector, fv_rcv, is defined with respect to a spherical
basis in the receiver’s local coordinate system. Now, the azimuth and elevation specify the
transmitter’s position with respect to the receiver’s local coordinate system. You can write the
receiving antennas polarization in terms of the spherical basis vectors of the receiver’s local
coordinate system:

P = PHe′az + PV e′el

This figure shows the construction of the different transmitter and receiver local coordinate systems.
It also shows the spherical basis vectors with which to write the field components.
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The polarization loss is the projection (or dot product) of the normalized transmitted field vector onto
the normalized receiver polarization vector. Notice that the loss occurs because of the mismatch in
direction of the two vectors not in their magnitudes. Because the vectors are defined in different
coordinate systems, they must be converted to the global coordinate system in order to form the
projection. The polarization loss is defined by:

ρ =
Ei ⋅ P 2

Ei
2 P 2

References
[1] Mott, H. Antennas for Radar and Communications.John Wiley & Sons, 1992.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
polellip | stokes
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polratio
Ratio of vertical to horizontal linear polarization components of a field

Syntax
p = polratio(fv)

Description
p = polratio(fv) returns the ratio of the vertical to horizontal component of the field or set of
fields contained in fv.

Each column of fv contains the linear polarization components of a field in the form [Eh;Ev], where
Eh and Ev are the field’s linear horizontal and vertical polarization components. The expression of a
field in terms of a two-row vector of linear polarization components is called the Jones vector
formalism. The argument fv can refer to either the electric or magnetic part of an electromagnetic
wave.

Each entry in p contains the ratio Ev/Eh of the components of fv.

Examples

Polarization Ratio for 45° Linearly Polarized Field

Determine the polarization ratio for a linearly polarized field (when the horizontal and vertical
components of a field have the same phase).

fv = [2;2];
p = polratio(fv)

p = 1

The polarization ratio is real. Because the components have equal amplitudes, the polarization ratio is
unity.

Polarization Ratios for Two Fields

Compute the polarization ratios for two fields. The first field is (2;i) and the second is (i;1).

fv = [2,1i;1i,1];
p = polratio(fv)

p = 1×2 complex

   0.0000 + 0.5000i   0.0000 - 1.0000i
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Polarization Ratio for Vertically Polarized Field

Determine the polarization ratio for a vertically polarized field (the horizontal component of the field
vanishes).

fv = [0;2];
p = polratio(fv)

p = Inf

The polarization ratio is infinite as expected from the definition,_Ev/Eh_.

Input Arguments
fv — Field vector in linear component representation
2-by-N complex-valued matrix

Field vector in linear component representation specified as a 2-by-N complex-valued matrix. Each
column of fv contains an instance of a field specified by [Eh;Ev], where Eh and Ev are the field's
linear horizontal and vertical polarization components. Two rows of the same column cannot both be
zero.
Example: [2 , i; i, 1]
Data Types: double
Complex Number Support: Yes

Output Arguments
p — Polarization ratio
1-by-N complex-valued row vector

Polarization ratio returned as a 1-by-N complex-valued row vector. p contains the ratio of the
components of the second row of fv to the first row, Ev/Eh.

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp. 299–302

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge University Press,
1999, pp 25–32.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.
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See Also
circpol2pol | pol2circpol | polellip | stokes

Introduced in R2013a
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polsignature
Copolarization and cross-polarization signatures

Syntax
resp = polsignature(rcsmat)
resp = polsignature(rcsmat,type)
resp = polsignature(rcsmat,type,epsilon)
resp = polsignature(rcsmat,type,epsilon,tau)

polsignature( ___ )

Description
resp = polsignature(rcsmat) returns the normalized radar cross-section copolarization (co-pol)
signature, resp (in square meters), determined from the scattering cross section matrix, rcsmat of
an object. The signature is a function of the transmitting antenna polarization, specified by the
ellipticity angle and the tilt angle of the polarization ellipse. In this syntax case, the ellipticity angle
takes the values [-45:45] and the tilt angle takes the values [-90:90]. The output resp is a 181-
by-91 matrix whose elements correspond to the signature at each ellipticity angle-tilt angle pair.

resp = polsignature(rcsmat,type), in addition, specifies the polarization signature type as
one of 'c'|'x', where 'c' creates the copolarization signature and 'x' creates the cross-
polarization (cross-pol) signature. The default value of this parameter is 'c'. The output resp is a
181-by-91 matrix whose elements correspond to the signature at each ellipticity angle-tilt angle pair.
This syntax can use the input arguments in the previous syntax.

resp = polsignature(rcsmat,type,epsilon), in addition, specifies the transmit antenna
polarization's ellipticity angle (in degrees) as a length-M vector. The angle epsilon must lie between
–45° and 45°. The argument resp is a 181-by-M matrix whose elements correspond to the signature
at each ellipticity angle-tilt angle pair. This syntax can use any of the input arguments in the previous
syntaxes.

resp = polsignature(rcsmat,type,epsilon,tau), in addition, specifies the tilt angle of the
polarization ellipse of the transmitted wave (in degrees) as a length-N vector. The angle tau must be
between –90° and 90°. The signature, resp, is represented as a function of the transmitting antenna
polarization. The transmitting antenna polarization is characterized by the ellipticity angle, epsilon,
and the tilt angle, tau. The argument resp is a N-by-M matrix whose elements correspond to the
signature at each ellipticity angle-tilt angle pair. This syntax can use any of the input arguments in
the previous syntaxes.

polsignature( ___ ) plots a three dimensional surface using any of the syntax forms specified
above.

Examples
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Copolarization Signature of a Dihedral

Calculate and plot the copolarization response to the scattering cross-section matrix, rscmat, of a
dihedral object. Specify the ellipticity angle values as [-45:45] and the tilt angle values as
[-90:90]. Display the response matrix as an image.

Calculate the copolarization response.

rscmat = [-1,0;0,1];
resp = polsignature(rscmat);

Plot the copolarization response.

el = [-45:45];
tilt = [-90:90];
imagesc(el,tilt,resp);
ylabel('Tilt (degrees)');
xlabel('Ellipticity Angle (degrees)')
axis image
ax = gca;
ax.XTick = [-45:15:45];
ax.YTick = [-90:15:90];
title('Co-polarization signature of dihedral');
colorbar;
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Cross-Polarization Signature of a Dihedral

Calculate and plot the cross-polarization response to the scattering cross-section matrix, rscmat, of a
dihedral object. Specify the ellipticity angle values as [-45:45] and the tilt angle values as [-90:90].
Display the response matrix as an image.

Calculate the cross-polarization response. To do this, set the type argument to 'x'.

rscmat = [-1,0;0,1];
resp = polsignature(rscmat,'x');

Plot the cross-polarization response.

el = [-45:45];
tilt = [-90:90];
imagesc(el,tilt,resp);
ylabel('Tilt (degrees)');
xlabel('Ellipticity Angle (degrees)');
axis image
ax = gca;
ax.XTick = [-45:15:45];
ax.YTick = [-90:15:90];
title('Cross-polarization signature of dihedral');
colorbar;

2 Functions

2-280



Signatures for Linear Polarization with Varied Tilt Angles

Set the ellipticity angle to zero, and vary the tilt angle from -90 to +90 degrees to generate all
possible linear polarization directions. Then, plot both the copolarization and cross-polarization
signatures.

rscmat = [-1,0;0,1];
el = [0];
respc = polsignature(rscmat,'c',el);
respx = polsignature(rscmat,'x',el);
tilt = [-90:90];
plot(tilt,respc,'b',tilt,respx,'r')
ax = gca;
ax.XLim = [-90,90];
ax.XTick = [-90:15:90];
legend('Co-polarization','Cross-polarization')
title('Signatures for linear polarization')
xlabel('Tilt angle (degrees)')
ylabel('Signature')

Copolarization Signature of Dihedral for Left and Right Circular Polarizations

This example shows how to obtain numerical values for the polarization signatures of a dihedral
target for left and right circularly polarized incident waves.
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Specify the radar cross-section matrix of a dihedral

rscmat = [-1,0;0,1];

Specify a left circularly-polarized wave and obtain its tilt angle and ellipticity.

fv = 1/sqrt(2)*[1;1i];
[tilt_lcp,el_lcp] = polellip(fv);
disp([tilt_lcp,el_lcp])

    45    45

Specify a right circularly-polarized wave by complex conjugation of a left circularly-polarized wave.
Obtain the polarization ellipse tilt angle and ellipticity.

[tilt_rcp,el_rcp] = polellip(conj(fv));
disp([tilt_rcp,el_rcp])

    45   -45

Both tilt angles are 45 degrees. Compute the copolarization and cross-polarization signatures for the
two waves.

el = [el_lcp, el_rcp];
tilt = tilt_rcp;
respc = polsignature(rscmat,'c',el,tilt);
respx = polsignature(rscmat,'x',el,tilt);
disp(respc)

     1     1

disp(respx)

     1     1

Surface Plot of Copolarization Signature of General Target

Use a general RCSM matrix to create a 3-D surface plot.

rscmat = [1i*2,0.5; 0.5, -1i];
el = [-45:45];
tilt = [-90:90];

With no output arguments, polsignature automatically creates a surface plot.

polsignature(rscmat,'c',el,tilt);
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Input Arguments
rcsmat — Radar cross-section scattering matrix
2-by-2 complex-valued matrix

Radar cross-section scattering matrix (RCSM) of an object specified as a 2-by-2, complex-valued
matrix. The radar cross-section scattering matrix describes the polarization of a scattered wave as a
function of the polarization of an incident wave upon a target. The response to an incident wave can
be construct from the individual responses to the incident field’s horizontal and vertical polarization
components. These components are taken with respect to the transmit antenna or array local
coordinate system. The scattered wave can be decomposed into horizontal and vertical polarization
components with respect to the receive antenna or array local coordinate system. The matrix RCSM
contains four components [rcs_hh rcs_hv;rcs_vh rcs_vv] where each component is the radar
cross section defined by the polarization of the transmit and receive antennas.

• rcs_hh – Horizontal response due to horizontal transmit polarization component
• rcs_hv – Horizontal response due to vertical transmit polarization component
• rcs_vh – Vertical response due to horizontal transmit polarization component
• rcs_vv – Vertical response due to vertical transmit polarization component

In the monostatic radar case, when the wave is backscattered, the RCSM matrix is symmetric.
Example: [-1,1i;1i,1]
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Data Types: double
Complex Number Support: Yes

type — Polarization signature type
'c' (default) | single character 'c'|'x'

Polarization signature type of the scattered wave specified by a single character: 'c' denoting the
copolarized signature or 'x' denoting the cross-polarized signature.
Example: 'x'
Data Types: char

epsilon — Ellipticity angle of the polarization ellipse of the transmitted wave
[-45:45] (default) | scalar or 1-by-M real-valued row vector

Ellipticity angle of the polarization ellipse of the transmitted wave specified as a length-M vector.
Units are degrees. The ellipticity angle describes the shape of the ellipse. By definition, the tangent of
the ellipticity angle is the signed ratio of the semiminor axis to semimajor axis of the polarization
ellipse. Since the absolute value of this ratio cannot exceed unity, the ellipticity angle lies between
±45°.
Example: [-45:0.5:45]
Data Types: double

tau — Tilt angle of the polarization ellipse of the transmitted wave
[-90:90] (default) | scalar or 1-by-N real-valued row vector.

Tilt angle of the polarization ellipse of the transmitted wave specified as a length-N vector. Units are
degrees. The tilt angle is defined as the angle between the semimajor axis of the ellipse and the x-
axis. Because the ellipse is symmetrical, an ellipse with a tilt angle of 100° is the same ellipse as one
with a tilt angle of –80°. Therefore, the tilt angle need only be specified between ±90°.
Example: [-30:2:30]
Data Types: double

Output Arguments
resp — Normalized magnitude response
scalar or N-by-M real-valued matrix.

Normalized magnitude response returned as a scalar or N-by-M, real-valued matrix having values
between 0 and 1. resp returns a value for each ellipticity-tilt angle pair.

More About
Scattering Cross-Section Matrix

Scattering cross-section matrix determines response of an object to incident polarized
electromagnetic field.

When a polarized plane wave is incident on an object, the amplitude and polarization of the scattered
wave may change with respect to the incident wave polarization. The polarization may depend upon
the direction from which the scattered wave is observed. The exact way that the polarization changes
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depends upon the properties of the scattering object. The quantity describing the response of an
object to the incident field is called the scattering cross-section matrix, S. The scattering matrix can
be measured as follows: when a unit amplitude horizontally polarized wave is scattered, both a
horizontal and vertical scattered component are produced. Call these two components SHH and SVH.
These are complex numbers containing the amplitude and phase changes from the incident wave.
Similarly, when a unit amplitude vertically polarized wave is scattered, the horizontal and vertical
scattered component produced are SHV and SVV. Because any incident field can be decomposed into
horizontal and vertical components, stack these quantities into a matrix and write the scattered field
in terms of the incident field

EH
(sc)

EV
(sc)

=
SHH SVH
SHV SVV

EH
(inc)

EV
(inc)

= S
EH

(inc)

EV
(inc)

The scattering cross section matrix depends upon the angles that the incident and scattered fields
make with the object. When the incident field is backscattered to the transmitting antenna, the
scattering matrix is symmetric.

Polarization Signature

Polarization signature for visualizing scattering cross-section matrix.

To understand how the scattered wave depends upon the polarization of the incident wave, an
examination of all possible scattered field polarizations for each incident polarization is required.
Because this amount of data is difficult to visualize, you can look at two particular scattered
polarizations:

• Choose one polarization that has the same polarization as the incident field (copolarization)
• Choose a second one that is orthogonal to the polarization of the incident field (cross-polarization)

Both the incident and orthogonal polarization states can be specified in terms of the tilt angle-
ellipticity angle pair τ, ε . From the incident field tilt and ellipticity angles, the unit incident
polarization vector can be expressed as

EH
(inc)

EV
(inc)

=
cosτ −sinτ
sinτ cosτ

cosε
jsinε

while the orthogonal polarization vector is

EH
(inc) ⊥

EV
(inc) ⊥

=
−sinτ −cosτ
cosτ −sinτ

cosε
− jsinε

To form the copolarization signature, use the RCSM matrix, S, to compute:

P(co) = EH
(inc) EV

(inc) *S
EH

(inc)

EV
(inc)

where []* denotes complex conjugation. For the cross-polarization signature, compute

P(cross) = EH
(inc) ⊥ EV

(inc) ⊥ *S
EH

(inc)

EV
(inc)
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The output of this function is the absolute value of each signature normalized by its maximum value.
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[1] Mott, H. Antennas for Radar and Communications.John Wiley & Sons, 1992.

[2] Fawwaz, U. and C. Elachi. Radar Polarimetry for Geoscience Applications. Artech House, 1990.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.
• Supported only when output arguments are specified.

See Also
polellip | polloss | stokes

Introduced in R2013a
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pulsint
Pulse integration

Syntax
Y = pulsint(X)
Y = pulsint(X,METHOD)

Description
Y = pulsint(X) performs video (noncoherent) integration of the pulses in X and returns the
integrated output in Y. Each column of X is one pulse.

Y = pulsint(X,METHOD) performs pulse integration using the specified method. METHOD is
'coherent' or 'noncoherent'.

Input Arguments
X

Pulse input data. Each column of X is one pulse.

METHOD

Pulse integration method. METHOD is the method used to integrate the pulses in the columns of X.
Valid values of METHOD are 'coherent' and 'noncoherent'. The values are not case sensitive.

Default: 'noncoherent'

Output Arguments
Y

Integrated pulse. Y is an N-by-1 column vector where N is the number of rows in the input X.

Examples

Noncoherent Integration of Pulses

Noncoherently integrate 10 pulses of a sinusoid with added gaussian white noise.

npulse = 10;
x = repmat(sin(2*pi*(0:99)'/100),1,npulse) + 0.1*randn(100,npulse);
y = pulsint(x);

Plot a single pulse and then the integrated pulses.

subplot(2,1,1)
plot(abs(x(:,1)))
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ylabel('Magnitude')
title('First Pulse')
subplot(2,1,2)
plot(abs(y))
ylabel('Magnitude')
title('Integrated Pulse')

More About
Coherent Integration

Let Xij denote the (i,j)-th entry of an M-by-N matrix of pulses X.

The coherent integration of the pulses in X is:

Yi = ∑
j = 1

N
Xi j

Noncoherent (video) Integration

Let Xij denote the (i,j)-th entry of an M-by-N matrix of pulses X.

The noncoherent (video) integration of the pulses in X is:
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Yi = ∑
j = 1

N
Xi j

2

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.MatchedFilter

Introduced in R2011a
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radareqpow
Peak power estimate from radar equation

Syntax
Pt = radareqpow(lambda,tgtrng,SNR,Tau)
Pt = radareqpow(...,Name,Value)

Description
Pt = radareqpow(lambda,tgtrng,SNR,Tau) estimates the peak transmit power required for a
radar operating at a wavelength of lambda meters to achieve the specified signal-to-noise ratio SNR
in decibels for a target at a range of tgtrng meters. The target has a nonfluctuating radar cross
section (RCS) of 1 square meter.

Pt = radareqpow(...,Name,Value) estimates the required peak transmit power with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
lambda

Wavelength of radar operating frequency (in meters). The wavelength is the ratio of the wave
propagation speed to frequency. For electromagnetic waves, the speed of propagation is the speed of
light. Denoting the speed of light by c and the frequency (in hertz) of the wave by f, the equation for
wavelength is:

λ = c
f

tgtrng

Target range in meters. When the transmitter and receiver are colocated (monostatic radar), tgtrng
is a real-valued positive scalar. When the transmitter and receiver are not colocated (bistatic radar),
tgtrng is a 1-by-2 row vector with real-valued positive elements. The first element is the target
range from the transmitter, and the second element is the target range from the receiver.

SNR

The minimum output signal-to-noise ratio at the receiver in decibels.

Tau

Single pulse duration in seconds.

Name-Value Pair Arguments

Gain

Transmitter and receiver gain in decibels (dB). When the transmitter and receiver are colocated
(monostatic radar), Gain is a real-valued scalar. The transmit and receive gains are equal. When the
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transmitter and receiver are not colocated (bistatic radar), Gain is a 1-by-2 row vector with real-
valued elements. The first element is the transmitter gain and the second element is the receiver
gain.

Default: 20

Loss

System loss in decibels (dB). Loss represents a general loss factor that comprises losses incurred in
the system components and in the propagation to and from the target.

Default: 0

RCS

Radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

Ts

System noise temperature in kelvin. The system noise temperature is the product of the system
temperature and the noise figure.

Default: 290 kelvin

Output Arguments
Pt

Transmitter peak power in watts.

Examples

Compute Required Transmit Power

Estimate the required peak transmit power required to achieve a minimum SNR of 6 dB for a target
at a range of 50 km. The target has a nonfluctuating RCS of 1 m². The radar operating frequency is 1
GHz. The pulse duration is 1 μs.

fc = 1.0e9;
lambda = physconst('LightSpeed')/fc;
tgtrng = 50e3;
tau = 1e-6;
SNR = 6;
Pt = radareqpow(lambda,tgtrng,SNR,tau)

Pt = 2.1996e+05

Compute Required Transmit Power at Specified System Temperature

Estimate the required peak transmit power required to achieve a minimum SNR of 10 dB for a target
with an RCS of 0.5 m² at a range of 50 km. The radar operating frequency is 10 GHz. The pulse
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duration is 1 μs. Assume a transmit and receive gain of 30 dB and an overall loss factor of 3 dB. The
system temperature is 300 K.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
Pt = radareqpow(lambda,50e3,10,1e-6,'RCS',0.5,...
    'Gain',30,'Ts',300,'Loss',3)

Pt = 2.2809e+06

Compute Required Transmit Power for Bistatic Radar

Estimate the required peak transmit power for a bistatic radar to achieve a minimum SNR of 6 dB for
a target with an RCS of 1 m². The target is 50 km from the transmitter and 75 km from the receiver.
The radar operating frequency is 10 GHz and the pulse duration is 10 μs. The transmitter and
receiver gains are 40 dB and 20 dB, respectively.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
SNR = 6;
tau = 10e-6;
TxRng = 50e3;
RvRng = 75e3;
TxRvRng =[TxRng RvRng];
TxGain = 40;
RvGain = 20;
Gain = [TxGain RvGain];
Pt = radareqpow(lambda,TxRvRng,SNR,tau,'Gain',Gain)

Pt = 4.9492e+04

More About
Point Target Radar Range Equation

The point target radar range equation estimates the power at the input to the receiver for a target of
a given radar cross section at a specified range. The model is deterministic and assumes isotropic
radiators. The equation for the power at the input to the receiver is

Pr =
PtGtGrλ2σ

(4π)3Rt
2Rr

2L

where the terms in the equation are:

• Pt — Peak transmit power in watts
• Gt — Transmitter gain in decibels
• Gr — Receiver gain in decibels. If the radar is monostatic, the transmitter and receiver gains are

identical.
• λ — Radar operating frequency wavelength in meters
• σ — Target's nonfluctuating radar cross section in square meters
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• L — General loss factor in decibels that accounts for both system and propagation loss
• Rt — Range from the transmitter to the target
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter and

receiver ranges are identical.

Terms expressed in decibels such as the loss and gain factors enter the equation in the form 10x/10

where x denotes the variable. For example, the default loss factor of 0 dB results in a loss term of
100/10=1.

Receiver Output Noise Power

The equation for the power at the input to the receiver represents the signal term in the signal-to-
noise ratio. To model the noise term, assume the thermal noise in the receiver has a white noise
power spectral density (PSD) given by:

P(f ) = kT

where k is the Boltzmann constant and T is the effective noise temperature. The receiver acts as a
filter to shape the white noise PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal of the pulse duration, 1/τ.
The total noise power at the output of the receiver is:

N =
kTFn

τ

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise factor is referred to as the
system temperature and is denoted by Ts, so that Ts=TFn .

Receiver Output SNR

Using the equation for the received signal power in “Point Target Radar Range Equation” on page 2-
292 and the output noise power in “Receiver Output Noise Power” on page 2-293, the receiver output
SNR is:

Pr
N =

PtτGtGrλ2σ
(4π)3kTsRt

2Rr
2L

Solving for the peak transmit power

Pt =
Pr(4π)3kTsRt

2Rr
2L

NτGtGrλ2σ
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
noisepow | phased.ReceiverPreamp | phased.Transmitter | radareqrng | radareqsnr |
systemp

Introduced in R2011a
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radareqrng
Maximum theoretical range estimate

Syntax
maxrng = radareqrng(lambda,SNR,Pt,Tau)
maxrng = radareqrng(...,Name,Value)

Description
maxrng = radareqrng(lambda,SNR,Pt,Tau) estimates the theoretical maximum detectable
range maxrng for a radar operating with a wavelength of lambda meters with a pulse duration of
Tau seconds. The signal-to-noise ratio is SNR decibels, and the peak transmit power is Pt watts.

maxrng = radareqrng(...,Name,Value) estimates the theoretical maximum detectable range
with additional options specified by one or more Name,Value pair arguments.

Input Arguments
lambda

Wavelength of radar operating frequency (in meters). The wavelength is the ratio of the wave
propagation speed to frequency. For electromagnetic waves, the speed of propagation is the speed of
light. Denoting the speed of light by c and the frequency (in hertz) of the wave by f, the equation for
wavelength is:

λ = c
f

Pt

Transmitter peak power in watts.

SNR

The minimum output signal-to-noise ratio at the receiver in decibels.

Tau

Single pulse duration in seconds.

Name-Value Pair Arguments

Gain

Transmitter and receiver gain in decibels (dB). When the transmitter and receiver are colocated
(monostatic radar), Gain is a real-valued scalar. The transmit and receive gains are equal. When the
transmitter and receiver are not colocated (bistatic radar), Gain is a 1-by-2 row vector with real-
valued elements. The first element is the transmitter gain, and the second element is the receiver
gain.
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Default: 20

Loss

System loss in decibels (dB). Loss represents a general loss factor that comprises losses incurred in
the system components and in the propagation to and from the target.

Default: 0

RCS

Radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

Ts

System noise temperature in Kelvin. The system noise temperature is the product of the system
temperature and the noise figure.

Default: 290 Kelvin

unitstr

Units of the estimated maximum theoretical range. unitstr takes one of the following values

• 'km' kilometers
• 'm' meters
• 'mi' miles
• 'nmi' nautical miles (U.S.)

Default: 'm'

Output Arguments
maxrng

The estimated theoretical maximum detectable range. The units of maxrng depends on the value of
unitstr. By default maxrng is in meters. For bistatic radars, maxrng is the geometric mean of the
range from the transmitter to the target and the receiver to the target.

Examples

Estimate Maximum Detectable Range

Estimate the theoretical maximum detectable range for a monostatic radar operating at 10 GHz using
a pulse duration of 10 μs. Assume the output SNR of the receiver is 6 dB.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
Pt = 1e6;
maxrng = radareqrng(lambda,SNR,Pt,tau)

2 Functions

2-296



maxrng = 4.1057e+04

Estimate Maximum Detectable Range With Target RCS

Estimate the theoretical maximum detectable range for a monostatic radar operating at 10 GHz using
a pulse duration of 10 μs. The target RCS is 0.1 m². Assume the output SNR of the receiver is 6 dB.
The transmitter-receiver gain is 40 dB. Assume a loss factor of 3 dB.

lambda = physconst('LightSpeed')/10e9;
SNR = 6;
tau = 10e-6;
Pt = 1e6;
RCS = 0.1;
Gain = 40;
Loss = 3;
maxrng2 = radareqrng(lambda,SNR,Pt,tau,'Gain',Gain,...
    'RCS',RCS,'Loss',Loss)

maxrng2 = 1.9426e+05

More About
Point Target Radar Range Equation

The point target radar range equation estimates the power at the input to the receiver for a target of
a given radar cross section at a specified range. The model is deterministic and assumes isotropic
radiators. The equation for the power at the input to the receiver is

Pr =
PtGtGrλ2σ

(4π)3Rt
2Rr

2L

where the terms in the equation are:

• Pt — Peak transmit power in watts
• Gt — Transmitter gain in decibels
• Gr — Receiver gain in decibels. If the radar is monostatic, the transmitter and receiver gains are

identical.
• λ — Radar operating frequency wavelength in meters
• σ — Target's nonfluctuating radar cross section in square meters
• L — General loss factor in decibels that accounts for both system and propagation loss
• Rt — Range from the transmitter to the target
• Rr — Range from the receiver to the target. If the radar is monostatic, the transmitter and

receiver ranges are identical.

Terms expressed in decibels, such as the loss and gain factors, enter the equation in the form 10x/10

where x denotes the variable. For example, the default loss factor of 0 dB results in a loss term of
100/10=1.
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Receiver Output Noise Power

The equation for the power at the input to the receiver represents the signal term in the signal-to-
noise ratio. To model the noise term, assume the thermal noise in the receiver has a white noise
power spectral density (PSD) given by:

P(f ) = kT

where k is the Boltzmann constant and T is the effective noise temperature. The receiver acts as a
filter to shape the white noise PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal of the pulse duration, 1/τ.
The total noise power at the output of the receiver is:

N =
kTFn

τ

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise factor is referred to as the
system temperature. This value is denoted by Ts, so that Ts=TFn .

Receiver Output SNR

The receiver output SNR is:

Pr
N =

PtτGtGrλ2σ
(4π)3kTsRt

2Rr
2L

You can derive this expression using the following equations:

• Received signal power in “Point Target Radar Range Equation” on page 2-297
• Output noise power in “Receiver Output Noise Power” on page 2-298

Theoretical Maximum Detectable Range

For monostatic radars, the range from the target to the transmitter and receiver is identical.
Denoting this range by R, you can express this relationship as R4 = Rt

2Rr
2.

Solving for R

R = (
NPtτGtGrλ2σ
Pr(4π)3kTsL

)
1/4

For bistatic radars, the theoretical maximum detectable range is the geometric mean of the ranges
from the target to the transmitter and receiver:

RtRr = (
NPtτGtGrλ2σ
Pr(4π)3kTsL

)
1/4
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
noisepow | phased.ReceiverPreamp | phased.Transmitter | radareqpow | radareqsnr |
systemp

Introduced in R2011a
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radareqsnr
SNR estimate from radar equation

Syntax
SNR = radareqsnr(lambda,tgtrng,Pt,tau)
SNR = radareqsnr(...,Name,Value)

Description
SNR = radareqsnr(lambda,tgtrng,Pt,tau) estimates the output signal-to-noise ratio (SNR) at
the receiver based on the wavelength lambda in meters, the range tgtrng in meters, the peak
transmit power Pt in watts, and the pulse width tau in seconds.

SNR = radareqsnr(...,Name,Value) estimates the output SNR at the receiver with additional
options specified by one or more Name,Value pair arguments.

Input Arguments
lambda

Wavelength of radar operating frequency in meters. The wavelength is the ratio of the wave
propagation speed to frequency. For electromagnetic waves, the speed of propagation is the speed of
light. Denoting the speed of light by c and the frequency in hertz of the wave by f, the equation for
wavelength is:

λ = c
f

tgtrng

Target range in meters. When the transmitter and receiver are colocated (monostatic radar), tgtrng
is a real-valued positive scalar. When the transmitter and receiver are not colocated (bistatic radar),
tgtrng is a 1-by-2 row vector with real-valued positive elements. The first element is the target
range from the transmitter, and the second element is the target range from the receiver.

Pt

Transmitter peak power in watts.

tau

Single pulse duration in seconds.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
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Gain

Transmitter and receiver gain in decibels (dB). When the transmitter and receiver are colocated
(monostatic radar), Gain is a real-valued scalar. The transmit and receive gains are equal. When the
transmitter and receiver are not colocated (bistatic radar), Gain is a 1-by-2 row vector with real-
valued elements. The first element is the transmitter gain, and the second element is the receiver
gain.

Default: 20

Loss

System loss in decibels (dB). Loss represents a general loss factor that comprises losses incurred in
the system components and in the propagation to and from the target.

Default: 0

RCS

Target radar cross section in square meters. The target RCS is nonfluctuating.

Default: 1

Ts

System noise temperature in kelvin. The system noise temperature is the product of the effective
noise temperature and the noise figure.

Default: 290 kelvin

Output Arguments
SNR

The estimated output signal-to-noise ratio at the receiver in decibels. SNR is 10log10(Pr/N). The ratio
Pr/N is defined in “Receiver Output SNR” on page 2-303.

Examples

Compute SNR Using Radar Equation

Estimate the output SNR for a target with an RCS of 1 m² at a range of 50 km. The system is a
monostatic radar operating at 1 GHz with a peak transmit power of 1 MW and pulse width of 0.2 μs.
The transmitter and receiver gain is 20 dB. The system temperature has the default value of 290 K.

fc = 1.0e9;
lambda = physconst('LightSpeed')/fc;
tgtrng = 50e3;
Pt = 1e6;
tau = 0.2e-6;
snr = radareqsnr(lambda,tgtrng,Pt,tau)

snr = 5.5868
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Compute SNR with Specified System Temperature

Estimate the output SNR for a target with an RCS of 0.5 m² at 100 km. The system is a monostatic
radar operating at 10 GHz with a peak transmit power of 1 MW and pulse width of 1 μs. The
transmitter and receiver gain is 40 dB. The system temperature is 300 K and the loss factor is 3 dB.

fc = 10.0;
T = 300.0;
lambda = physconst('LightSpeed')/10e9;
snr = radareqsnr(lambda,100e3,1e6,1e-6,'RCS',0.5,...
    'Gain',40,'Ts',T,'Loss',3)

snr = 14.3778

Compute SNR for Bistatic Radar

Estimate the output SNR for a target with an RCS of 1 m². The radar is bistatic. The target is located
50 km from the transmitter and 75 km from the receiver. The radar operating frequency is 10.0 GHz.
The transmitter has a peak transmit power of 1 MW with a gain of 40 dB. The pulse width is 1 μs. The
receiver gain is 20 dB.

fc = 10.0e9;
lambda = physconst('LightSpeed')/fc;
tau = 1e-6;
Pt = 1e6;
txrvRng =[50e3 75e3];
Gain = [40 20];
snr = radareqsnr(lambda,txrvRng,Pt,tau,'Gain',Gain)

snr = 9.0547

More About
Point Target Radar Range Equation

The point target radar range equation estimates the power at the input to the receiver for a target of
a given radar cross section at a specified range. The model is deterministic and assumes isotropic
radiators. The equation for the power at the input to the receiver is

Pr =
PtGtGrλ2σ

(4π)3Rt
2Rr

2L

where the terms in the equation are:

• Pt — Peak transmit power in watts
• Gt — Transmitter gain in decibels
• Gr — Receiver gain in decibels. If the radar is monostatic, the transmitter and receiver gains are

identical.
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• λ — Radar operating frequency wavelength in meters
• σ — Nonfluctuating target radar cross section in square meters
• L — General loss factor in decibels that accounts for both system and propagation losses
• Rt — Range from the transmitter to the target in meters
• Rr — Range from the receiver to the target in meters. If the radar is monostatic, the transmitter

and receiver ranges are identical.

Terms expressed in decibels such as the loss and gain factors enter the equation in the form 10x/10

where x denotes the variable value in decibels. For example, the default loss factor of 0 dB results in
a loss term equal to one in the equation (100/10).

Receiver Output Noise Power

The equation for the power at the input to the receiver represents the signal term in the signal-to-
noise ratio. To model the noise term, assume the thermal noise in the receiver has a white noise
power spectral density (PSD) given by:

P(f ) = kT

where k is the Boltzmann constant and T is the effective noise temperature. The receiver acts as a
filter to shape the white noise PSD. Assume that the magnitude squared receiver frequency response
approximates a rectangular filter with bandwidth equal to the reciprocal of the pulse duration, 1/τ.
The total noise power at the output of the receiver is:

N =
kTFn

τ

where Fn is the receiver noise factor.

The product of the effective noise temperature and the receiver noise factor is referred to as the
system temperature and is denoted by Ts, so that Ts=TFn .

Receiver Output SNR

The receiver output SNR is:

Pr
N =

PtτGtGrλ2σ
(4π)3kTsRt

2Rr
2L

You can derive this expression using the following equations:

• Received signal power in “Point Target Radar Range Equation” on page 2-302
• Output noise power in “Receiver Output Noise Power” on page 2-303

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

[2] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

[3] Willis, N. J. Bistatic Radar. Raleigh, NC: SciTech Publishing, 2005.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
noisepow | phased.ReceiverPreamp | phased.Transmitter | radareqpow | radareqrng |
systemp

Introduced in R2011a
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radarvcd
Vertical coverage diagram

Syntax
[vcp,vcpangles] = radarvcd(freq,rfs,anht)
[vcp,vcpangles] = radarvcd( ___ ,Name,Value)

radarvcd( ___ )

Description
[vcp,vcpangles] = radarvcd(freq,rfs,anht) calculates the vertical coverage pattern of a
narrowband radar antenna. The “Vertical Coverage Pattern” on page 2-310 is the radar’s range, vcp,
as a function of elevation angle, vcpangles. The vertical coverage pattern depends upon three
parameters. These parameters are the radar’s maximum free-space detection range, rfs, the radar
frequency, freq, and the antenna height, anht.

[vcp,vcpangles] = radarvcd( ___ ,Name,Value) allows you to specify additional input
parameters as Name-Value pairs. You can specify additional name-value pair arguments in any order
as (Name1,Value1,...,NameN,ValueN). This syntax can use any of the input arguments in the previous
syntax.

radarvcd( ___ ) displays the vertical coverage diagram for a radar system. The plot is the locus of
points of maximum radar range as a function of target elevation. This plot is also known as the Blake
chart. To create this chart, radarvcd invokes the function blakechart using default parameters. To
produce a Blake chart with different parameters, first call radarvcd to obtain vcp and vcpangles.
Then, call blakechart with user-specified parameters. This syntax can use any of the input
arguments in the previous syntaxes.

Examples

Plot Vertical Coverage Pattern Using Default Parameters

Set the frequency to 100 MHz, the antenna height to 10 m, and the free-space range to 200 km. The
antenna pattern, surface roughness, antenna tilt angle, and field polarization assume their default
values as specified in the AntennaPattern, SurfaceRoughness, TiltAngle, and Polarization
properties.

Obtain an array of vertical coverage pattern values and angles.

freq = 100e6;
ant_height = 10;
rng_fs = 200;
[vcp,vcpangles] = radarvcd(freq,rng_fs,ant_height);

To see the vertical coverage pattern, omit the output arguments.

freq = 100e6;
ant_height = 10;
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rng_fs = 200;
radarvcd(freq,rng_fs,ant_height);

Vertical Coverage Pattern with Specified Antenna Pattern

Set the frequency to 100 MHz, the antenna height to 10 m, and the free-space range to 200 km. The
antenna pattern is a sinc function with 45° half-power width. The surface roughness is set to 1 m. The
antenna tilt angle is set to 0°, and the field polarization is horizontal.

pat_angles = linspace(-90,90,361)';
pat_u = 1.39157/sind(45/2)*sind(pat_angles);
pat = sinc(pat_u/pi);
freq = 100e6;
ant_height = 10;
rng_fs = 200;
tilt_ang = 0;
[vcp,vcpangles] = radarvcd(freq,rng_fs,ant_height,...
    'RangeUnit','km','HeightUnit','m',...
    'AntennaPattern',pat,...
    'PatternAngles',pat_angles,...
    'TiltAngle',tilt_ang,'SurfaceRoughness',1);
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Plot Vertical Coverage Diagram For User-Specified Antenna

Plot the range-height-angle curve (Blake Chart) for a radar with a user-specified antenna pattern.

Define a sinc-function antenna pattern with a half-power beamwidth of 90 degrees.

pat_angles = linspace(-90,90,361)';
pat_u = 1.39157/sind(90/2)*sind(pat_angles);
pat = sinc(pat_u/pi);

Specify a radar that transmits at 100 MHz. The free-space range is 200 km, the antenna height is 10
meters, the antenna tilt angle is zero degrees, and the surface roughness is one meter.

freq = 100e6;
ant_height = 10;
rng_fs = 200;
tilt_ang = 0;
surf_roughness = 1;

Create the radar range-height-angle plot.

radarvcd(freq,rng_fs,ant_height,...
    'RangeUnit','km','HeightUnit','m',...
    'AntennaPattern',pat,...
    'PatternAngles',pat_angles,...
    'TiltAngle',tilt_ang,...
    'SurfaceRoughness',surf_roughness);
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Input Arguments
freq — Radar frequency
real-valued scalar less than 10 GHz

Radar frequency specified as a real-valued scalar less than 10 GHz (10e9).
Example: 100e6
Data Types: double

rfs — Free-space range
real-valued scalar

Free-space range specified as a real-valued scalar. Range units are set by the RangeUnit Name-Value
pair.
Example: 100e3
Data Types: double

anht — Radar antenna height
real-valued scalar

Radar antenna height specified as a real-valued scalar. Height units are set by the HeightUnit
Name-Value pair.
Example: 10
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ‘HeightUnit’, k‘m’

RangeUnit — Radar range units
'km' (default) | 'nmi' | 'mi' | 'ft' | 'm'

Radar range units denoting kilometers, nautical miles, miles, feet or meters. This name-value pair
specifies the units for the free-space range argument, rfs, and the output vertical coverage pattern,
vcp.
Example: 'mi'
Data Types: char

HeightUnit — Antenna height units
'm' (default) | 'nmi' | 'mi' | 'km' | 'ft'

Antenna height units denoting meters, nautical miles, miles, kilometers, or feet. This name-value pair
specifies the units for the antenna height, anht, and the 'SurfaceRoughness' name-value pair.
Example: 'm'
Data Types: char
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Polarization — Transmitted wave polarization
'H' (default) | 'H' | 'V'

Transmitted wave polarization specified as 'H' for horizontal polarization and 'V' for vertical
polarization.
Example: 'V'
Data Types: char

SurfaceDielectric — Dielectric constant of reflecting surface
frequency dependent model (default) | complex-valued scalar

Dielectric constant of reflecting surface specified as complex-valued scalar. When omitted, the
dielectric constant is taken from a frequency-dependent seawater dielectric model derived in
Blake[1].
Example: 70
Data Types: double

SurfaceRoughness — Surface roughness
0 (default) | real-valued scalar

Surface roughness specified as a non-negative real scalar. Surface roughness is a measure of the
height variation of the reflecting surface. The roughness is modeled as a sinusoid wave with crest-to-
trough height given by this value. A value of 0 indicates a smooth surface. The units for surface
roughness height is specified by the value of the 'HeightUnit' Name-Value pair.
Example: 2
Data Types: double

AntennaPattern — Antenna elevation pattern
real-valued N-by-1 column vector

Antenna elevation pattern, specified as a real-valued N-by-1 column vector. Values for
'AntennaPattern' must be specified together with values for 'PatternAngles'.
Example: cosd([–90:90])
Data Types: double

PatternAngles — Antenna pattern elevation angles
real-valued N-by-1 column vector

Antenna pattern elevation angles specified as a real-valued N-by-1 column vector. The size of the
vector specified by 'PatternAngles' must be the same as that specified by 'AntennaPattern'.
Angle units are expressed in degrees and must lie between –90° and 90°. In general, to properly
compute the coverage, the antenna pattern should fill the whole range from –90° to 90°.
Example: [-90:90]
Data Types: double

TiltAngle — Antenna tilt angle
real-valued scalar

Antenna tilt angle specified as a real-valued scalar. The tilt angle is the elevation angle of the antenna
with respect to the surface. Angle units are expressed in degrees.
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Example: 10
Data Types: double

MaxElevation — Maximum elevation angle
real-valued scalar

Maximum elevation angle, specified as a real-valued scalar. The maximum elevation angle is the
largest angle for which the vertical coverage pattern is calculated. Angle units are expressed in
degrees.
Example: 70
Data Types: double

Output Arguments
vcp — Vertical coverage pattern
real-valued vector

Vertical coverage pattern returned as a real-valued, K-by-1 column vector. The vertical coverage
pattern is the actual maximum range of the radar. Each entry of the vertical coverage pattern
corresponds to one of the angles returned in vcpangles.

vcpangles — Vertical coverage pattern angles
real-valued vector

Vertical coverage pattern angles returned as a K-by-1 column vector. The angles range from –90° to
90°.

More About
Vertical Coverage Pattern

The maximum detection range of a radar antenna can differ, depending on placement. Suppose you
place a radar antenna near a reflecting surface, such as the earth's land or sea surface and computed
maximum detection range. If you then move the same radar antenna to free space far from any
boundaries, a different maximum detection range would result. This is an effect of multi-path
interference that occurs when waves, reflected from the surface, constructively add to or nullify the
direct path signal from the radar to a target. Multipath interference gives rise to a series of lobes in
the vertical plane. The vertical coverage pattern is the plot of the actual maximum detection range of
the radar versus target elevation and depends upon the maximum free-space detection range and
target elevation angle. See Blake [1].

References
[1] Blake, L.V. Machine Plotting of Radar Vertical-Plane Coverage Diagrams. Naval Research

Laboratory Report 7098, 1970.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

• Does not support variable-size inputs.
• Supported only when output arguments are specified.

See Also
blakechart

Introduced in R2013a
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radialspeed
Relative radial speed

Syntax
Rspeed = radialspeed(Pos,V)
Rspeed = radialspeed(Pos,V,RefPos)
Rspeed = radialspeed(Pos,V,RefPos,RefV)

Description
Rspeed = radialspeed(Pos,V) returns the radial speed of the given platforms relative to a
reference platform. The platforms have positions Pos and velocities V. The reference platform is
stationary and is located at the origin.

Rspeed = radialspeed(Pos,V,RefPos) specifies the position of the reference platform.

Rspeed = radialspeed(Pos,V,RefPos,RefV) specifies the velocity of the reference platform.

Input Arguments
Pos

Positions of platforms, specified as a 3-by-N matrix. Each column specifies a position in the form [x; y;
z], in meters.

V

Velocities of platforms, specified as a 3-by-N matrix. Each column specifies a velocity in the form [x; y;
z], in meters per second.

RefPos

Position of reference platform, specified as a 3-by-1 vector. The vector has the form [x; y; z], in
meters.

Default: [0; 0; 0]

RefV

Velocity of reference platform, specified as a 3-by-1 vector. The vector has the form [x; y; z], in meters
per second.

Default: [0; 0; 0]

Output Arguments
Rspeed

Radial speed in meters per second, as an N-by-1 vector. Each number in the vector represents the
radial speed of the corresponding platform. Positive numbers indicate that the platform is

2 Functions

2-312



approaching the reference platform. Negative numbers indicate that the platform is moving away
from the reference platform.

Examples

Radial Speed of Target Relative to Stationary Platform

Calculate the radial speed of a target relative to a stationary platform. Assume the target is located at
(20,20,0) meters in cartesian coordinates and is moving with velocity (10,10,0) meters per second.
The reference platform is located at (1,1,0).

rspeed = radialspeed([20; 20; 0],[10; 10; 0],[1; 1; 0])

rspeed = -14.1421

Negative radial speed indicates that the target is receding from the platform.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.Platform | speed2dop

Topics
“Doppler Shift and Pulse-Doppler Processing”
“Motion Modeling in Phased Array Systems”

Introduced in R2011a
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rainpl
RF signal attenuation due to rainfall

Syntax
L = rainpl(range,freq,rainrate)
L = rainpl(range,freq,rainrate,elev)
L = rainpl(range,freq,rainrate,elev,tau)
L = rainpl(range,freq,rainrate,elev,tau,pct)

Description
L = rainpl(range,freq,rainrate) returns the signal attenuation, L, due to rainfall. In this
syntax, attenuation is a function of signal path length, range, signal frequency, freq, and rain rate,
rainrate. The path elevation angle and polarization tilt angles are assumed to zero.

The rainpl function applies the International Telecommunication Union (ITU) rainfall attenuation
model to calculate path loss of signals propagating in a region of rainfall [1]. The function applies
when the signal path is contained entirely in a uniform rainfall environment. Rain rate does not vary
along the signal path. The attenuation model applies only for frequencies at 1–1000 GHz.

L = rainpl(range,freq,rainrate,elev) also specifies the elevation angle, elev, of the
propagation path.

L = rainpl(range,freq,rainrate,elev,tau) also specifies the polarization tilt angle, tau, of
the signal.

L = rainpl(range,freq,rainrate,elev,tau,pct) also specifies the specified percentage of
time, pct. pct is a scalar in the range of 0.001–1, inclusive. The attenuation, L, is computed from a
power law using the long-term statistical 0.01% rain rate (in mm/h).

Examples

Signal Attenuation Due to Rainfall

Compute the signal attenuation due to rainfall for a 20 GHz signal over a distance of 10 km in light
and heavy rain.

Propagate the signal in a light rainfall of 1 mm/hr.

rr = 1.0;
L = rainpl(10000,20.0e9,rr)

L = 1.3009

Propagate the signal in a heavy rainfall of 10 mm/hr.

rr = 10.0;
L = rainpl(10000,20.0e9,rr)
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L = 8.1584

Signal Attenuation Due to Rainfall as Function of Frequency

Plot the signal attenuation due to a 20 mm/hr statistical rainfall for signals in the frequency range
from 1 to 1000 GHz. The path distance is 10 km.

rr = 20.0;
freq = [1:1000]*1e9;
L = rainpl(10000,freq,rr);
semilogx(freq/1e9,L)
grid
xlabel('Frequency (GHz)')
ylabel('Attenuation (dB)')

Signal Attenuation Due to Rainfall as Function of Elevation Angle

Compute the signal attenuation due to heavy rain as a function of elevation angle. Elevation angles
vary from 0 to 90 degrees. Assume a path distance of 100 km and a signal frequency of 100 GHz.

Set the rain rate to 10 mm/hr.
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rr = 10.0;

Set the elevation angles, frequency, range.

elev = [0:1:90];
freq = 100.0e9;
rng = 100000.0*ones(size(elev));

Compute and plot the loss.

L = rainpl(rng,freq,rr,elev);
plot(elev,L)
grid
xlabel('Path Elevation (degrees)')
ylabel('Attenuation (dB)')

Signal Attenuation Due to Rainfall as Function of Polarization

Compute the signal attenuation due to heavy rainfall as a function of the polarization tilt angle.
Assume a path distance of 100 km, a signal frequency of 100 GHz, and a path elevation angle of 0
degrees. Set the rainfall rate to 10 mm/hour. Plot the signal attenuation versus polarization tilt angle.

Set the polarization tilt angle to vary from -90 to 90 degrees.

tau = -90:90;
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Set the elevation angle, frequency, path distance, and rain rate.

elev = 0;
freq = 100.0e9;
rng = 100e3*ones(size(tau));
rr = 10.0;

Compute and plot the attenuation.

L = rainpl(rng,freq,rr,elev,tau);
plot(tau,L)
grid
xlabel('Tilt Angle (degrees)')
ylabel('Attenuation (dB)')

Input Arguments
range — Signal path length
nonnegative real-valued scalar | nonnegative real-valued M-by-1 column vector | nonnegative real-
valued 1-by-M row vector

Signal path length, specified as a nonnegative real-valued scalar, or as a M-by-1 or 1-by-M vector.
Units are in meters.
Example: [13000.0,14000.0]
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freq — Signal frequency
positive real-valued scalar | nonnegative real-valued N-by-1 column vector | nonnegative real-valued
1-by-N row vector

Signal frequency, specified as a positive real-valued scalar, or as a nonnegative N-by-1 or 1-by-N
vector. Frequencies must lie in the range 1–1000 GHz.
Example: [1400.0e6,2.0e9]

rainrate — Long-term statistical rain rate
nonnegative real-valued scalar

Long-term statistical rain rate, specified as a nonnegative real-valued scalar. The long-term statistical
rain rate is the rain rate that is exceeded 0.01% of the time. You can adjust the percent of time using
the pct argument. Units are in mm/hr.
Example: 1.5

elev — Signal path elevation angle
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M row vector

Signal path elevation angle, specified as a real-valued scalar, or as an M-by-1 or 1-by- M vector. Units
are in degrees between –90° and 90°. If elev is a scalar, all propagation paths have the same
elevation angle. If elev is a vector, its length must match the dimension of range and each element
in elev corresponds to a propagation range in range.
Example: [0,45]

tau — Tilt angle of polarization ellipse
0.0 (default) | real-valued scalar | real-valued M-by-1 column vector | real-valued 1-by-M row vector

Tilt angle of the signal polarization ellipse, specified as a real-valued scalar, or as an M-by-1 or 1-by-
M vector. Units are in degrees between –90° and 90°. If tau is a scalar, all signals have the same tilt
angle. If tau is a vector, its length must match the dimension of range. In that case, each element in
tau corresponds to a propagation path in range.

The tilt angle is defined as the angle between the semi-major axis of the polarization ellipse and the x-
axis. Because the ellipse is symmetrical, a tilt angle of 100° corresponds to the same polarization
state as a tilt angle of -80°. Thus, the tilt angle need only be specified between ±90°.
Example: [45,30]

pct — Exceedance percentage of rainfall
0.01 (default) | positive scalar between 0.001 and 1

Exceedance percentage of rainfall, specified as a positive scalar between 0.001 and 1. The long-term
statistical rain rate is the rain rate that is exceeded pct of the time. Units are dimensionless.
Data Types: double

Output Arguments
L — Signal attenuation
real-valued M-by-N matrix
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Signal attenuation, returned as a real-valued M-by-N matrix. Each matrix row represents a different
path where M is the number of paths. Each column represents a different frequency where N is the
number of frequencies. Units are in dB.

More About
Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,

where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

References
[1] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R

P.838-3: Specific attenuation model for rain for use in prediction methods. 2005.
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[2] Radiocommunication Sector of International Telecommunication Union. Recommendation ITU-R
P.530-17: Propagation data and prediction methods required for the design of terrestrial line-
of-sight systems. 2017.

[3] Recommendation ITU-R P.837-7: Characteristics of precipitation for propagation modelling

[4] Seybold, J. Introduction to RF Propagation. New York: Wiley & Sons, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
LOSChannel | WidebandLOSChannel | cranerainpl | fogpl | fspl | gaspl

Introduced in R2016a
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range2beat
Convert range to beat frequency

Syntax
fb = range2beat(r,slope)
fb = range2beat(r,slope,c)

Description
fb = range2beat(r,slope) converts the range of a dechirped linear FMCW signal to the
corresponding beat frequency on page 2-322. slope is the slope of the FMCW sweep.

fb = range2beat(r,slope,c) specifies the signal propagation speed.

Examples

Maximum Beat Frequency in FMCW Radar System

Calculate the maximum beat frequency in MHz for an upsweep FMCW waveform. The waveform
sweeps a 300 MHz band in 1 ms. Assume that the waveform can detect a stationary target as far as
18 km.

slope = 300e6/1e-3;
r = 18e3;
fb = range2beat(r,slope)/1e6

fb = 36.0249

Input Arguments
r — Range
array of nonnegative numbers

Range, specified as an array of nonnegative numbers in meters.
Data Types: double

slope — Sweep slope
nonzero scalar

Slope of FMCW sweep, specified as a nonzero scalar in hertz per second.
Data Types: double

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
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Data Types: double

Output Arguments
fb — Beat frequency of dechirped signal
array of nonnegative numbers

Beat frequency of dechirped signal, returned as an array of nonnegative numbers in hertz. Each entry
in fb is the beat frequency corresponding to the corresponding range in r. The dimensions of fb
match the dimensions of r.
Data Types: double

More About
Beat Frequency

For an up-sweep or down-sweep FMCW signal, the beat frequency is Ft – Fr. In this expression, Ft is
the transmitted signal’s carrier frequency, and Fr is the received signal’s carrier frequency.

For an FMCW signal with triangular sweep, the upsweep and downsweep have separate beat
frequencies.

Algorithms
The function computes 2*r*slope/c.

References
[1] Pace, Phillip. Detecting and Classifying Low Probability of Intercept Radar. Artech House, Boston,

2009.

[2] Skolnik, M.I. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
beat2range | dechirp | phased.FMCWWaveform | rdcoupling | stretchfreq2rng

Topics
Automotive Adaptive Cruise Control Using FMCW Technology

Introduced in R2012b
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range2bw
Convert range resolution to required bandwidth

Syntax
bw = range2bw(rngres)
bw = range2bw(rngres,c)

Description
bw = range2bw(rngres) returns the bandwidth needed to distinguish two targets separated by a
given range. Such capability is often referred to as range resolution. The propagation is assumed to
be two-way, as in a monostatic radar system.

bw = range2bw(rngres,c) specifies the signal propagation speed.

Examples

Pulse Width for Specified Range Resolution

Assume you have a monostatic radar system that uses a rectangular waveform. Calculate the
required pulse bandwidth in MHz of the waveform so that the system can achieve a range resolution
of 10 m.

rngres = 10;
c = physconst('LightSpeed');
bw = range2bw(rngres,c)/1e6;

The required bandwidth is approximately 15 MHz.

Input Arguments
rngres — Target range resolution
positive scalar | MATLAB array of positive real values

Target range resolution in meters, specified as a scalar or a MATLAB array of positive real values.
Data Types: double

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second.
Data Types: double
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Output Arguments
bw — Required bandwidth
positive scalar | MATLAB array of positive real values

Required bandwidth in hertz, returned as a MATLAB array of positive real values. The dimensions of
bw are the same as those of rngres.

Tips
• This function assumes two-way propagation. For one-way propagation, you can find the required

bandwidth by multiplying the output of this function by 2.

Algorithms
The function computes c/(2*rngres).

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
Functions
bw2range | range2time | time2range

System Objects
phased.FMCWWaveform

Topics
“Automotive Adaptive Cruise Control Using FMCW Technology”

Introduced in R2012b
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range2time
Convert propagation distance to propagation time

Syntax
t = range2time(r)
t = range2time(r,c)

Description
t = range2time(r) returns the time a signal takes to propagate a given distance. The propagation
is assumed to be two-way, as in a monostatic radar system.

t = range2time(r,c) specifies the signal propagation speed.

Examples

PRF for Specified Unambiguous Range

Calculate the required PRF in Hertz for a monostatic radar system so that it can have a maximum
unambiguous range of 15 km.

r = 15.0e3;
prf = 1/range2time(r)

prf = 9.9931e+03

Input Arguments
r — Signal range
array of nonnegative numbers

Signal range in meters, specified as an array of nonnegative numbers.
Data Types: double

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: double

Output Arguments
t — Propagation time
array of nonnegative numbers
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Propagation time in seconds, returned as an array of nonnegative numbers. The dimensions of t are
the same as those of r.

Algorithms
The function computes 2*r/c.

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.FMCWWaveform | range2bw | time2range

Topics
Automotive Adaptive Cruise Control Using FMCW Technology

Introduced in R2012b
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range2tl
Compute underwater sound transmission loss from range

Syntax
tl = range2tl(rng,freq,depth)

Description
tl = range2tl(rng,freq,depth) returns the transmission loss, tl, for a sound wave of
frequency freq arriving from a source at distance rng. The channel depth is depth. The
transmission loss is due to geometrical spreading and frequency-dependent absorption. This function
is the inverse of tl2range.

Examples

Estimate Transmission Loss from Range

Find the transmission loss (in dB) for a sonar operating at 2 kHz in a channel that is 200 m deep. The
sound path is 1000.0 m long.

rng = 1000.0;
freq = 2000.0;
depth = 200;
tl = range2tl(rng,freq,depth)

tl = 50.1261

Input Arguments
rng — Distance from sound source to receiver
positive scalar

Distance from sound source to receiver, specified as a positive scalar. Units are in meters.
Example: 10e3
Data Types: double

freq — Frequency of sound
positive scalar

Frequency of sound, specified as a positive scalar. Units are in Hz.
Example: 1e3
Data Types: double

depth — Channel depth
positive scalar
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Channel depth, specified as a positive scalar. Units are in meters.
Example: 200
Data Types: double

Output Arguments
tl — Transmission loss
positive scalar

Transmission loss, returned as a positive scalar. Units are in dB.
Data Types: double

Limitations
• The transmission loss model assumes that seawater salinity is 35 ppt, pH is 8, and temperature is

10°C.
• The transmission loss model is valid for frequencies less than or equal to 2.0 MHz.

References
[1] Ainslie M. A. and J.G. McColm. "A simplified formula for viscous and chemical absorption in sea

water." Journal of the Acoustical Society of America, Vol. 103, Number 3, 1998, pp.
1671--1672.

[2] Urick, Robert J. Principles of Underwater Sound, 3rd ed. Los Altos, CA:Peninsula Publishing, 1983.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
sonareqsl | sonareqsnr | sonareqtl | tl2range

Topics
“Transmission Loss (TL)”
“Sonar Equation”

External Websites
http://resource.npl.co.uk/acoustics/techguides/seaabsorption/#content

Introduced in R2017b
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rcscylinder
Radar cross section of cylinder

Syntax
rcspat = rcscylinder(r1,r2,height,c,fc)
rcspat = rcscylinder(r1,r2,height,c,fc,az,el)
[rcspat,azout,elout] = rcscylinder( ___ )

Description
rcspat = rcscylinder(r1,r2,height,c,fc) returns the radar cross section pattern of an
elliptical cylinder having a semi-major axis, r1, a semi-minor axis, r2, and a height, height. The
radar cross section is a function of signal frequency, fc, and signal propagation speed,c. The bottom
of the cylinder lies on the xy-plane. The height of the cylinder points along the positive z-axis.

rcspat = rcscylinder(r1,r2,height,c,fc,az,el) also specifies the azimuth angles, az, and
elevation angles, el, at which to compute the radar cross section.

[rcspat,azout,elout] = rcscylinder( ___ ) also returns the azimuth angles, azout, and
elevation angles, elout, at which the radar cross sections are computed. You can use these output
arguments with any of the previous syntaxes.

Examples

Radar Cross Section of Elliptical Cylinder

Display the radar cross section (RCS) pattern as a function of azimuth and elevation for an elliptical
cylinder whose semi-major axis is 12.5 cm and whose semi-minor axis is 9 cm. The cylinder height is
1 m. The operating frequency is 4.5 GHz.

Specify the cylinder geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
rada = 0.125;
radb = 0.090;
hgt = 1;

Compute the RCS for all directions using the default direction values.

[rcspat,azresp,elresp] = rcscylinder(rada,radb,hgt,c,fc);
imagesc(azresp,elresp,pow2db(rcspat))
colorbar
xlabel('Azimuth Angle (deg)')
ylabel('Elevation Angle (deg)')
title('Elliptic Cylinder RCS')
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Radar Cross Section of Elliptical Cylinder as Function of Elevation

Plot the radar cross section (RCS) pattern of an elliptical cylinder as a function of elevation at a
constant azimuth angle of 5 degrees. The cylinder has a semi-major axis of 12.5 cm and a semi-minor
axis of 9 cm. The cylinder height is 1 m. The operating frequency is 4.5 GHz.

Specify the cylinder geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
rada = 0.125;
radb = 0.090;
hgt = 1;

Compute the RCS for all elevation angles at a fixed azimuth angle of 5 degrees.

el = -90:90;
az = 5;
[rcspat,azresp,elresp] = rcscylinder(rada,radb,hgt,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
ylabel('RCS (dB)')
title('Elliptic Cylinder RCS as Function of Elevation')
grid on
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Radar Cross Section of Elliptical Cylinder as Function of Frequency

Plot the radar cross section (RCS) of an elliptical cylinder as a function of frequency for a fixed
direction. The cylinder has as semi-major axis of 12.5 cm and a semi-minor axis of 9 cm. The cylinder
height is 1 m.

Specify the cylinder geometry and signal parameters.

c = physconst('Lightspeed');
rada = 0.125;
radb = 0.090;
hgt = 1;

Compute radar cross sections as a function of frequency for a fixed azimuth and elevation.

az = 5.0;
el = 20.0;
fc = (100:100:4000)*1e6;
rcspat = rcscylinder(rada,radb,hgt,c,fc,az,el);
plot(fc/1e6,pow2db(squeeze(rcspat)))
xlabel('Frequency (MHz)')
ylabel('RCS (dB)')
title('Cylinder RCS as Function of Frequency')
grid on
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Input Arguments
r1 — Length of semi-major axis of cylinder
positive scalar

Length of semi-major axis of cylinder, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

r2 — Length of semi-minor axis of cylinder
positive scalar

Length of semi-minor axis of cylinder, specified as a positive scalar. Units are in meters.
Example: 3.0
Data Types: double

height — Height of cylinder
positive scalar

Height of cylinder, specified as a positive scalar. Units are in meters.
Example: 3.0
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Data Types: double

c — Signal propagation speed
positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. For the SI
value of the speed of light, use physconst('LightSpeed').
Example: 3e8
Data Types: double

fc — Frequency for computing radar cross section
positive scalar | positive, real-valued, 1-by-L row vector

Frequency for computing radar cross section, specified as a positive scalar or positive, real-valued, 1-
by-L row vector. Frequency units are in Hz.
Example: [100e6 200e6]
Data Types: double

az — Azimuth angles
-180:180 (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a real-valued 1-by-M row vector
where M is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°, inclusive.

The azimuth angle is the angle between the x-axis and the projection of a direction vector onto the xy-
plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Example: -45:2:45
Data Types: double

el — Elevation angles
-90:90 (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a real-valued, 1-by-N row vector
where N is the number of desired elevation directions. Angle units are in degrees. Elevation angles
must lie between –90° and 90°, inclusive.

The elevation angle is the angle between a direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: -75:1:70
Data Types: double

Tip To construct a circular cylinder, set r2 equal to r1.

Output Arguments
rcspat — Radar cross section pattern
real-valued N-by-M-by-L array
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Radar cross section pattern, returned as a real-valued N-by-M-by-L array. N is the length of the vector
returned in the elout argument. M is the length of the vector returned in the azout argument. L is
the length of the fc vector. Units are in meters-squared.
Data Types: double

azout — Azimuth angles
real-valued 1-by-M row vector

Azimuth angles for computing directivity and pattern, returned as a real-valued 1-by-M row vector
where M is the number of azimuth angles specified by the az input argument. Angle units are in
degrees.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy-plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Data Types: double

elout — Elevation angles
real-valued 1-by-N row vector

Elevation angles for computing directivity and pattern, returned as a real-valued 1-by-N row vector
where N is the number of elevation angles specified in el output argument. Angle units are in
degrees.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Data Types: double

More About
Azimuth and Elevation

This section describes the convention used to define azimuth and elevation angles.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.
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References
[1] Mahafza, Bassem. Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Boca Raton, FL:

Chapman & Hall/CRC, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
phased.BackscatterRadarTarget | phased.RadarTarget | rcsdisc | rcssphere |
rcstruncone

Introduced in R2019a
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rcssphere
Radar cross section of sphere

Syntax
rcspat = rcssphere(r,c,fc)
rcspat = rcssphere(r,c,fc,az,el)
[rcspat,azout,elout] = rcssphere( ___ )

Description
rcspat = rcssphere(r,c,fc) returns the radar cross section pattern of a sphere of radius r as a
function of signal frequency, fc, and signal propagation speed, c. The center of the sphere is
assumed to be located at the origin of the local coordinate system.

rcspat = rcssphere(r,c,fc,az,el) also specifies the azimuth angles, az, and elevation angles,
el, at which to compute the radar cross section.

[rcspat,azout,elout] = rcssphere( ___ ) also returns the azimuth angles, azout, and
elevation angles, elout, at which the radar cross sections are computed. You can use these output
arguments with any of the previous syntaxes.

Examples

Radar Cross Section of Sphere

Display the radar cross section (RCS) pattern of a sphere as a function of azimuth and elevation. The
sphere radius is 20.0 cm. The operating frequency is 4.5 GHz.

Define the sphere radius and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
rad = 0.20;

Compute the RCS over all angles. The image shows that the RCS is constant over all directions.

[rcspat,azresp,elresp] = rcssphere(rad,c,fc);
image(azresp,elresp,pow2db(rcspat))
colorbar
ylabel('Elevation angle (deg)')
xlabel('Azimuth Angle (deg)')
title('Sphere RCS (dB)')
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Radar Cross Section of Sphere as Function of Elevation

Plot the radar cross section (RCS) pattern of a sphere as a function of elevation angle for a fixed
azimuth angle of 5 degrees. The sphere radius is 20.0 cm. The operating frequency is 4.5 GHz.

Specify the sphere radius and signal parameters.

c = physconst('LightSpeed');
rad = 0.20;
fc = 4.5e9;

Compute the RCS over a constant azimuth slice. The plot shows that the RCS is constant.

az = 5.0;
el = -90:90;
[rcspat,azresp,elresp] = rcssphere(rad,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
ylabel('RCS (dB)')
title('Sphere RCS as Function of Elevation')
grid on
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Radar Cross Section of Sphere as Function of Frequency

Plot the radar cross section (RCS) pattern of a sphere as a function of frequency for a single azimuth
and elevation. The radius of the sphere is 20.0 cm

Define the sphere radius and signal parameters.

c = physconst('Lightspeed');
rad = 0.20;

Compute the RCS over a range of frequencies for a single direction.

az = 5.0;
el = 20.0;
fc = (100:10:4000)*1e6;
rcspat = rcssphere(rad,c,fc,az,el);
plot(fc/1e6,pow2db(squeeze(rcspat)))
xlabel('Frequency (MHz)')
ylabel('RCS (dB)')
title('Sphere RCS as Function of Frequency')
grid on
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Input Arguments
r — Radius of sphere
positive scalar

Radius of sphere, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

c — Signal propagation speed
positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. For the SI
value of the speed of light, use physconst('LightSpeed').
Example: 3e8
Data Types: double

fc — Frequency for computing radar cross section
positive scalar | positive, real-valued, 1-by-L row vector

Frequency for computing radar cross section, specified as a positive scalar or positive, real-valued, 1-
by-L row vector. Frequency units are in Hz.
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Example: [100e6 200e6]
Data Types: double

az — Azimuth angles
-180:180 (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a real-valued 1-by-M row vector
where M is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°, inclusive.

The azimuth angle is the angle between the x-axis and the projection of a direction vector onto the xy-
plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Example: -45:2:45
Data Types: double

el — Elevation angles
-90:90 (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a real-valued, 1-by-N row vector
where N is the number of desired elevation directions. Angle units are in degrees. Elevation angles
must lie between –90° and 90°, inclusive.

The elevation angle is the angle between a direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: -75:1:70
Data Types: double

Output Arguments
rcspat — Radar cross section pattern
real-valued N-by-M-by-L array

Radar cross section pattern, returned as a real-valued N-by-M-by-L array. N is the length of the vector
returned in the elout argument. M is the length of the vector returned in the azout argument. L is
the length of the fc vector. Units are in meters-squared.
Data Types: double

azout — Azimuth angles
real-valued 1-by-M row vector

Azimuth angles for computing directivity and pattern, returned as a real-valued 1-by-M row vector
where M is the number of azimuth angles specified by the az input argument. Angle units are in
degrees.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy-plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Data Types: double

elout — Elevation angles
real-valued 1-by-N row vector
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Elevation angles for computing directivity and pattern, returned as a real-valued 1-by-N row vector
where N is the number of elevation angles specified in el output argument. Angle units are in
degrees.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Data Types: double

More About
Azimuth and Elevation

This section describes the convention used to define azimuth and elevation angles.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.

References
[1] Mahafza, Bassem. Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Boca Raton, FL:

Chapman & Hall/CRC, 2005.
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See Also
phased.BackscatterRadarTarget | phased.RadarTarget | rcscylinder | rcsdisc |
rcstruncone

Introduced in R2019a
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rcsdisc
Radar cross section of flat circular plate

Syntax
rcspat = rcsdisc(r,c,fc)
rcspat = rcsdisc(r,c,fc,az,el)
[rcspat,azout,elout] = rcsdisc( ___ )

Description
rcspat = rcsdisc(r,c,fc) returns the radar cross section pattern of a flat circular plate of
radius r. The radar cross section is a function of signal frequency, fc, and signal propagation speed,
c. The plate is assumed to lie on the xy-plane. The center of the plate is located at the origin of the
local coordinate system.

rcspat = rcsdisc(r,c,fc,az,el) also specifies the azimuth angles, az, and elevation angles,
el, at which to compute the radar cross section.

[rcspat,azout,elout] = rcsdisc( ___ ) also returns the azimuth angles, azout, and elevation
angles, elout, at which the radar cross sections are computed. You can use these output arguments
with any of the previous syntaxes.

Examples

Radar Cross Section of Circular Plate

Display the radar cross section (RCS) pattern of a circular plate as a function of azimuth and
elevation. The plate radius is 22.5 cm. The operating frequency is 4.5 GHz.

Specify the plate geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
rad = 0.225;

Compute the RCS for all directions using the default direction values.

[rcspat,azresp,elresp] = rcsdisc(rad,c,fc);
imagesc(azresp,elresp,pow2db(rcspat))
colorbar
xlabel('Azimuth Angle (deg)')
ylabel('Elevation Angle (deg)')
title('Circular Plate RCS (dB)')
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Radar Cross Section of Circular Plate as Function of Elevation

Plot the radar cross section (RCS) pattern of a circular plate as a function of elevation angle for a
fixed azimuth angle of 5 degrees. The plate radius is 22.5 cm. The operating frequency is 4.5 GHz.

Define the plate radius and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
rad = 0.225;

Compute the RCS as a function of elevation.

az = 5;
el = -90:90;
[rcspat,azresp,elresp] = rcsdisc(rad,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
ylabel('RCS (dB)')
title('Circular Plate RCS as Function of Elevation')
grid on
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Radar Cross Section of Circular Plate as Function of Frequency

Plot the radar cross section (RCS) pattern of a circular plate as a function of frequency for a single
azimuth and elevation. The plate radius 22.5 cm.

Define the plate radius and signal parameters.

c = physconst('Lightspeed');
rad = 0.225;

Compute the RCS over a range of frequencies for a single direction.

az = 5.0;
el = 20.0;
fc = (100:10:4000)*1e6;
rcspat = rcsdisc(rad,c,fc,az,el);
plot(fc/1e6,pow2db(squeeze(rcspat)))
xlabel('Frequency (MHz)')
ylabel('RCS (dB)')
title('Circular Plate RCS as Function of Frequency')
grid on
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Input Arguments
r — Radius of circular plate
positive scalar

Radius of circular plate, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

c — Signal propagation speed
positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. For the SI
value of the speed of light, use physconst('LightSpeed').
Example: 3e8
Data Types: double

fc — Frequency for computing radar cross section
positive scalar | positive, real-valued, 1-by-L row vector

Frequency for computing radar cross section, specified as a positive scalar or positive, real-valued, 1-
by-L row vector. Frequency units are in Hz.
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Example: [100e6 200e6]
Data Types: double

az — Azimuth angles
-180:180 (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a real-valued 1-by-M row vector
where M is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°, inclusive.

The azimuth angle is the angle between the x-axis and the projection of a direction vector onto the xy-
plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Example: -45:2:45
Data Types: double

el — Elevation angles
-90:90 (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a real-valued, 1-by-N row vector
where N is the number of desired elevation directions. Angle units are in degrees. Elevation angles
must lie between –90° and 90°, inclusive.

The elevation angle is the angle between a direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: -75:1:70
Data Types: double

Output Arguments
rcspat — Radar cross section pattern
real-valued N-by-M-by-L array

Radar cross section pattern, returned as a real-valued N-by-M-by-L array. N is the length of the vector
returned in the elout argument. M is the length of the vector returned in the azout argument. L is
the length of the fc vector. Units are in meters-squared.
Data Types: double

azout — Azimuth angles
real-valued 1-by-M row vector

Azimuth angles for computing directivity and pattern, returned as a real-valued 1-by-M row vector
where M is the number of azimuth angles specified by the az input argument. Angle units are in
degrees.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy-plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Data Types: double

elout — Elevation angles
real-valued 1-by-N row vector
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Elevation angles for computing directivity and pattern, returned as a real-valued 1-by-N row vector
where N is the number of elevation angles specified in el output argument. Angle units are in
degrees.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Data Types: double

More About
Azimuth and Elevation

This section describes the convention used to define azimuth and elevation angles.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.

References
[1] Mahafza, Bassem. Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Boca Raton, FL:

Chapman & Hall/CRC, 2005.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
phased.BackscatterRadarTarget | phased.RadarTarget | rcscylinder | rcssphere |
rcstruncone

Introduced in R2019a
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rcstruncone
Radar cross section of truncated cone

Syntax
rcspat = rcstruncone(r1,r2,height,c,fc)
rcspat = rcstruncone(r1,r2,height,c,fc,az,el)
[rcspat,azout,elout] = rcstruncone( ___ )

Description
rcspat = rcstruncone(r1,r2,height,c,fc) returns the radar cross section pattern of a
truncated cone. r1 is the radius of the small end of the cone, r2 is the radius of the large end, and
height is the cone height. The radar cross section is a function of signal frequency, fc, and signal
propagation speed, c. You can create a non-truncated cone by setting r1 to zero. The cone points
downward towards the xy-plane. The origin is located at the apex of a the non-truncated cone
constructed by extending the truncated cone to an apex.

rcspat = rcstruncone(r1,r2,height,c,fc,az,el) also specifies the azimuth angles, az, and
elevation angles, el, at which to compute the radar cross section.

[rcspat,azout,elout] = rcstruncone( ___ ) also returns the azimuth angles, azout, and
elevation angles, elout, at which the radar cross sections are computed. You can use these output
arguments with any of the previous syntaxes.

Examples

Radar Cross Section of Truncated Cone

Display the radar cross section (RCS) pattern of a truncated cone as a function of azimuth angle and
elevation. The truncated cone has a bottom radius of 9.0 cm and a top radius of 12.5 cm. The cone
height is 1 m. The operating frequency is 4.5 GHz.

Define the truncated cone geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
radbot = 0.090;
radtop = 0.125;
hgt = 1;

Compute the RCS for all directions using the default direction values.

[rcspat,azresp,elresp] = rcstruncone(radbot,radtop,hgt,c,fc);
imagesc(azresp,elresp,pow2db(rcspat))
xlabel('Azimuth Angle (deg)')
ylabel('Elevation Angle (deg)')
title('Truncated Cone RCS (dB)')
colorbar
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Radar Cross Section of Truncated Cone as Function of Elevation

Plot the radar cross section (RCS) pattern of a truncated cone as a function of elevation for a fixed
azimuth angle of 5 degrees. The cone has a bottom radius of 9.0 cm and a top radius of 12.5 cm. The
truncated cone height is 1 m. The operating frequency is 4.5.

Define the truncated cone geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
radbot = 0.090;
radtop = 0.125;
hgt = 1;

Compute the RCS at an azimuth angle of 5 degrees.

az = 5.0;
el = -90:90;
[rcspat,azresp,elresp] = rcstruncone(radbot,radtop,hgt,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
ylabel('RCS (dB)')
title('Truncated Cone RCS as Function of Elevation')
grid on
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Radar Cross Section of Truncated Cone as Function of Frequency

Plot the radar cross section (RCS) pattern of a truncated cone as a function of frequency for a single
direction. The cone has a bottom radius of 9.0 cm and a top radius of 12.5 cm. The truncated cone
height is 1 m.

Specify the truncated cone geometry and signal parameters.

c = physconst('Lightspeed');
radbot = 0.090;
radtop = 0.125;
hgt = 1;

Compute the RCS over a range of frequencies for a single direction.

az = 5.0;
el = 20.0;
fc = (100:100:4000)*1e6;
rcspat = rcstruncone(radbot,radtop,hgt,c,fc,az,el);
plot(fc/1e6,pow2db(squeeze(rcspat)))
xlabel('Frequency (MHz)')
ylabel('RCS (dB)')
title('Truncated Cone RCS as Function of Frequency')
grid on
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Radar Cross Section of Full Cone as Function of Elevation

Plot the radar cross section (RCS) pattern of a full cone as a function of elevation for a fixed azimuth
angle. To define a full cone set the bottom radius to zero. Set the top radius to 20.0 cm and the cone
height to 50 cm. Assume the operating frequency is 4.5 GHz and the azimuth angle is 5 degrees.

Define the cone geometry and signal parameters.

c = physconst('Lightspeed');
fc = 4.5e9;
radsmall = 0.0;
radlarge = 0.20;
hgt = 0.5;

Compute the RCS for a fixed azimuth angle of 5 degrees.

az = 5.0;
el = -89:0.1:89;
[rcspat,azresp,elresp] = rcstruncone(radsmall,radlarge,hgt,c,fc,az,el);
plot(elresp,pow2db(rcspat))
xlabel('Elevation Angle (deg)')
ylabel('RCS (db)')
title('Full Cone RCS as Function of Elevation')
grid on
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Input Arguments
r1 — Radius of small end of truncated cone
nonnegative scalar

Radius of small end of truncated cone, specified as a nonnegative scalar. Units are in meters.
Example: 5.5
Data Types: double

r2 — Radius of large end of truncated cone
positive scalar

Radius of large end of truncated cone, specified as a positive scalar. Units are in meters.
Example: 5.5
Data Types: double

height — Height of truncated cone
positive scalar

Height of truncated cone, specified as a positive scalar. Units are in meters.
Example: 3.0
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Data Types: double

c — Signal propagation speed
positive scalar

Signal propagation speed, specified as a positive scalar. Units are in meters per second. For the SI
value of the speed of light, use physconst('LightSpeed').
Example: 3e8
Data Types: double

fc — Frequency for computing radar cross section
positive scalar | positive, real-valued, 1-by-L row vector

Frequency for computing radar cross section, specified as a positive scalar or positive, real-valued, 1-
by-L row vector. Frequency units are in Hz.
Example: [100e6 200e6]
Data Types: double

az — Azimuth angles
-180:180 (default) | 1-by-M real-valued row vector

Azimuth angles for computing directivity and pattern, specified as a real-valued 1-by-M row vector
where M is the number of azimuth angles. Angle units are in degrees. Azimuth angles must lie
between –180° and 180°, inclusive.

The azimuth angle is the angle between the x-axis and the projection of a direction vector onto the xy-
plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Example: -45:2:45
Data Types: double

el — Elevation angles
-90:90 (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a real-valued, 1-by-N row vector
where N is the number of desired elevation directions. Angle units are in degrees. Elevation angles
must lie between –90° and 90°, inclusive.

The elevation angle is the angle between a direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Example: -75:1:70
Data Types: double

Output Arguments
rcspat — Radar cross section pattern
real-valued N-by-M-by-L array

Radar cross section pattern, returned as a real-valued N-by-M-by-L array. N is the length of the vector
returned in the elout argument. M is the length of the vector returned in the azout argument. L is
the length of the fc vector. Units are in meters-squared.
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Data Types: double

azout — Azimuth angles
real-valued 1-by-M row vector

Azimuth angles for computing directivity and pattern, returned as a real-valued 1-by-M row vector
where M is the number of azimuth angles specified by the az input argument. Angle units are in
degrees.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy-plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
Data Types: double

elout — Elevation angles
real-valued 1-by-N row vector

Elevation angles for computing directivity and pattern, returned as a real-valued 1-by-N row vector
where N is the number of elevation angles specified in el output argument. Angle units are in
degrees.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured towards the z-axis.
Data Types: double

More About
Azimuth and Elevation

This section describes the convention used to define azimuth and elevation angles.

The azimuth angle of a vector is the angle between the x-axis and its orthogonal projection onto the
xy-plane. The angle is positive when going from the x-axis toward the y-axis. Azimuth angles lie
between –180° and 180° degrees, inclusive. The elevation angle is the angle between the vector and
its orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-
axis from the xy-plane. Elevation angles lie between –90° and 90° degrees, inclusive.
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References
[1] Mahafza, Bassem. Radar Systems Analysis and Design Using MATLAB, 2nd Ed. Boca Raton, FL:

Chapman & Hall/CRC, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
phased.BackscatterRadarTarget | phased.RadarTarget | rcscylinder | rcsdisc |
rcssphere

Introduced in R2019a
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rotpat
Rotate radiation pattern

Syntax
rpat = rotpat(pat,az,el,rotax)
rpat = rotpat(pat,az,el,rotax,expval)

Description
rpat = rotpat(pat,az,el,rotax) rotates a radiation pattern, pat, into a new pattern, rpat,
whose boresight is aligned with the x-axis of a new local coordinate system defined by rotax. az and
el specify the azimuth and elevation angles at which the original pattern is sampled.

rpat = rotpat(pat,az,el,rotax,expval) also specifies an extrapolated value to be used when
az and el do not cover the entire 3-D space.

Tip You can use this function to rotate real and complex scalar radiation patterns as well as the
orthogonal components of polarized fields. To rotate polarized fields, rotate the horizontal and
vertical polarization components separately.

Examples

Rotate Pattern of Short-Dipole Antenna

Use a short-dipole antenna to create a polarized radiation pattern. Rotate the pattern and use the
rotated pattern as the radiation pattern of a custom antenna.

Create a phased.ShortDipoleAntennaElement antenna object with default properties. The
short-dipole antenna radiates polarized radiation. Obtain and display the radiation for all directions.

antenna1 = phased.ShortDipoleAntennaElement;
el = -90:90;
az = -180:180;
pat_h = zeros(numel(el),numel(az),'like',1+1i);
pat_v = pat_h;
fc = 3e8;
for m = 1:numel(el)
    temp = antenna1(fc,[az;el(m)*ones(1,numel(az))]);
    pat_h(m,:) = temp.H;
    pat_v(m,:) = temp.V;
end
pattern(antenna1,fc,'Type','Power')
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Rotate the antenna pattern around the y-axis by 135 degrees followed by a rotation around the x-axis
by 65 degrees.

newax = rotx(65)*roty(135);
pat2_h = rotpat(pat_h,az,el,newax);
pat2_v = rotpat(pat_v,az,el,newax);

Insert the rotated pattern into a phased.CustomAntennaElement object. Set the antenna
polarization properties so that the element radiates horizontal and vertical polarized fields. Then
display the rotated pattern in three dimensions.

antenna2 = phased.CustomAntennaElement( ...
    'SpecifyPolarizationPattern',true, ...
    'HorizontalMagnitudePattern',mag2db(abs(pat2_h)), ...
    'HorizontalPhasePattern',rad2deg(angle(pat2_h)), ...
    'VerticalMagnitudePattern',mag2db(abs(pat2_v)), ...
    'VerticalPhasePattern',rad2deg(angle(pat2_v)));
pattern(antenna2,fc,'Type','Power')
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Rotate Pattern of Cosine Antenna

Create a radiation pattern for a cosine antenna using a phased.CosineAntennaElement object.
Rotate the pattern to use in a phased.CustomAntennaElement antenna object.

First obtain the radiation pattern for a phased.CosineAntennaElement object over a limited range
of directions. The field is not polarized.

antenna1 = phased.CosineAntennaElement('CosinePower',[5,5]);
az = -60:65;
el = -60:60;
pat = zeros(numel(el),numel(az),'like',1);
fc = 300e6;
for m = 1:numel(el)
    temp = antenna1(fc,[az;el(m)*ones(1,numel(az))]);
    pat(m,:) = temp;
end

Display the original pattern.

imagesc(az,el,abs(pat))
axis xy
axis equal
axis tight
xlabel('Azimuth (deg)')
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ylabel('Elevation (deg)')
title('Original Radiation Pattern')
colorbar

Rotate the antenna pattern by 20 degrees around the z-axis and 50 degrees around the x-axis. Then
display the rotated pattern.

newax = rotx(50)*rotz(20);
rpat = rotpat(pat,az,el,newax);
imagesc(az,el,abs(rpat))
axis xy
axis equal
axis tight
xlabel('Azimuth (deg)')
ylabel('Elevation (deg)')
title('Rotated Radiation Pattern')
colorbar
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Use the rotated pattern in a custom antenna element and display the pattern in 3-D.

antenna2 = phased.CustomAntennaElement( ...
    'AzimuthAngles',az,'ElevationAngles',el,'SpecifyPolarizationPattern',false, ...
    'MagnitudePattern',mag2db(abs(rpat)), ...
    'PhasePattern',zeros(size(rpat)));
pattern(antenna2,fc,'Type','Power')
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Input Arguments
pat — Radiation pattern
complex-valued N-by-M matrix | complex-valued N-by-M-by-L array

Radiation pattern, specified as a complex-valued N-by-M matrix or complex-valued N-by-M-by-L array.
N is the length of the el vector and M is the length of the az vector. Each column corresponds to one
of the azimuth angles specified in the az argument. Each row corresponds to one of the elevation
angles specified in the el argument. You can specify multiple radiation patterns using L pages. For
example, you can use pages to specify radiation patterns at different frequencies. The main lobe of
each pattern is assumed to point along the x-axis. Units are in meters-squared.
Data Types: double

az — Azimuth angles
-180:180 (default) | 1-by-M real-valued row vector

Azimuth angles for computing 3-D radiation pattern, specified as a 1-by-M real-valued row vector
where M is the number of azimuth angles. Each entry corresponds to one of the columns of the
matrix specified in the pat argument. Angle units are in degrees. Azimuth angles must lie between –
180° and 180°, inclusive.

The azimuth angle is the angle between the x-axis and the projection of the direction vector onto the
xy-plane. The azimuth angle is positive when measured from the x-axis toward the y-axis.
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Example: -45:2:45
Data Types: double

el — Elevation angles
-90:90 (default) | 1-by-N real-valued row vector

Elevation angles for computing directivity and pattern, specified as a 1-by-N real-valued row vector
where N is the number of elevation angles. Each entry corresponds to one of the rows of the matrix
specified in the pat argument. Angle units are in degrees. Elevation angles must lie between –90°
and 90°, inclusive.

The elevation angle is the angle between the direction vector and xy-plane. The elevation angle is
positive when measured toward the z-axis.
Example: -75:1:70
Data Types: double

rotax — Rotation matrix
real-valued orthonormal 3-by-3 matrix | real-valued orthonormal 3-by-3-by-P array of orthonormal
matrices

Rotation matrix, specified as a real-valued orthonormal 3-by-3 matrix or a real-valued 3-by-3-by-P
array. The columns represent the x, y, and z directions of the rotated coordinate system with respect
to the original coordinate system. The P pages specify different rotation matrices.

This table describes how dimensions of the output pattern rpat depend on the dimensions of the pat
and rotax arguments.

Dimensions of rpat

Dimensions of pat Dimensions of rotax
 3-by-3 3-by-3-by-P
M-by-N Rotate a single pattern by a

single rotation matrix. Output
dimensions of rpat are M-by-N.

Rotate a single pattern by P
different rotation matrices.
Output dimensions of rpat are
M-by-N-by-P.

M-by-N-by-L Rotate L patterns by the same
rotation matrix. Output
dimensions of rpat are M-by-N-
by-L.

In this case, P must equal L and
the function rotates each
pattern by the corresponding
rotation matrix. Output
dimensions of rpat are M-by-N-
by-L.

Example: rotx(45)*roty(30)
Data Types: double

expval — Extrapolation value
0 (default) | scalar

Extrapolation value, specified as a scalar. This scalar is the extrapolated value when the rotated
patterns do not fill the entire 3-D space specified by az and el. In general, consider setting expval
to 0 if the pattern is specified in a linear scale or -inf if the pattern is specified in a dB scale.
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Example: -inf
Data Types: double

Output Arguments
rpat — Rotated radiation pattern
complex-valued N-by-M matrix | complex-valued N-by-M-by-P array

Rotated radiation pattern, returned as a complex-valued N-by-M matrix or complex-valued N-by-M-by-
P array. N is the length of the el vector. M is the length of the az vector. The dimensionality of pat
and rotax determine the value of P as discussed in the rotax input argument. Units are in meters-
squared.
Data Types: double

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

See Also
rotx | roty | rotz

Introduced in R2019a
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tl2range
Compute range from underwater transmission loss

Syntax
rng = tl2range(tl,freq,depth)

Description
rng = tl2range(tl,freq,depth) returns the range, rng, to the source of a sound wave with
frequency freq from the transmission loss, tl. The channel depth is depth and the sound frequency
is freq. The transmission loss is due to geometrical spreading and frequency-dependent absorption.
This function is the inverse of range2tl function.

Examples

Estimate Range from Transmission Loss

Find the distance traveled by a sound wave with a transmission loss of 50 dB. The sonar operates at 2
kHz in a channel 200 m deep.

tl = 50.0;
freq = 2000.0;
depth = 200.0;
rng = tl2range(tl,freq,depth)

rng = 972.1666

Input Arguments
tl — Transmission loss from source to receiver
positive scalar

Transmission loss from source to receiver, specified as a positive scalar. Units are in dB.
Data Types: double

freq — Frequency of sound
positive scalar less than or equal to 2 MHz

Frequency of sound, specified as a positive scalar less than or equal to 2 MHz. Units are in Hz.
Example: 1e3
Data Types: double

depth — Depth of sound channel
positive scalar

Depth of sound channel, specified as a positive scalar. Units are in meters.
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Example: 200
Data Types: double

Output Arguments
rng — Distance from source to receiver
positive scalar

Distance from source to receiver, returned as a positive scalar. Units are in meters.
Data Types: double

Limitations
• The transmission loss model assumes that seawater salinity is 35 ppt, pH is 8, and temperature is

10°C.
• The transmission loss model is valid for frequencies less than or equal to 2.0 MHz.

References
[1] Ainslie M. A. and J.G. McColm. "A simplified formula for viscous and chemical absorption in sea

water." Journal of the Acoustical Society of America, Vol. 103, Number 3, 1998, pp.
1671--1672.

[2] Urick, Robert J, Principles of Underwater Sound, 3rd ed. Peninsula Publishing, Los Altos, CA,
1983.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
range2tl | sonareqsl | sonareqsnr | sonareqtl

Topics
“Transmission Loss (TL)”
“Sonar Equation”

External Websites
http://resource.npl.co.uk/acoustics/techguides/seaabsorption/#content

Introduced in R2017b
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rangeangle
Range and angle calculation

Syntax
[rng,ang] = rangeangle(pos)
[rng,ang] = rangeangle(pos,refpos)
[rng,ang] = rangeangle(pos,refpos,refaxes)
[rng,ang] = rangeangle( ___ ,model)

Description
The function rangeangle determines the propagation path length and path direction of a signal from
a source point or set of source points to a reference point. The function supports two propagation
models – the free space model and the two-ray model. The free space model is a single line-of-sight
path from a source point to a reference point. The two-ray multipath model generates two paths. The
first path follows the free-space path. The second path is a reflected path off a boundary plane at z =
0. Path directions are defined with respect to either the global coordinate system at the reference
point or a local coordinate system at the reference point. Distances and angles at the reference point
do not depend upon which direction the signal is travelling along the path.

[rng,ang] = rangeangle(pos) returns the propagation path length, rng, and direction angles,
ang, of a signal path from a source point or set of source points, pos, to the origin of the global
coordinate system. The direction angles are the azimuth and elevation with respect to the global
coordinate axes at the origin. Signals follow a line-of-sight path from the source point to the origin.
The line-of-sight path corresponds to the geometric straight line between the points.

[rng,ang] = rangeangle(pos,refpos) also specifies a reference point or set of reference
points, refpos. rng now contains the propagation path length from the source points to the
reference points. The direction angles are the azimuth and elevation with respect to the global
coordinate axes at the reference points. You can specify multiple points and multiple reference points.

[rng,ang] = rangeangle(pos,refpos,refaxes) also specifies local coordinate system axes,
refaxes, at the reference points. Direction angles are the azimuth and elevation with respect to the
local coordinate axes centered at refpos.

[rng,ang] = rangeangle( ___ ,model), also specifies a propagation model. When model is set
to 'freespace', the signal propagates along a line-of-sight path from source point to reception
point. When model is set to 'two-ray', the signal propagates along two paths from source point to
reception point. The first path is the line-of-sight path. The second path is the reflecting path. In this
case, the function returns the distances and angles for two paths for each source point and
corresponding reference point.

Input Arguments
pos

Source point position, specified as a real-valued 3-by-1 vector or a real-valued 3-by-N matrix. A matrix
represents multiple source points. The columns contain the Cartesian coordinates of N points in the
form [x;y;z].
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When pos is a 3-by-N matrix, you must specify refpos as a 3-by-N matrix for N reference positions.
If all the reference points are identical, you can specify refpos by a single 3-by-1 vector.

Position units are meters.

refpos

Reference point position, specified as a real-valued 3-by-1 vector or a real-valued 3-by-N matrix. A
matrix represents multiple reference points. The columns contain the Cartesian coordinates of N
points ins the form [x;y;z].

When refpos is a 3-by-N matrix, you must specify pos as a 3-by-N matrix for N source positions. If
all the source points are identical, you can specify pos by a single 3-by-1 vector.

Position units are meters.

Default: [0;0;0]

refaxes

Local coordinate system axes, specified as a real-valued 3-by-3 matrix or a 3-by-3-by-N array. For an
array, each page corresponds to a local coordinate axes at each reference point. The columns in
refaxes specify the direction of the coordinate axes for the local coordinate system in Cartesian
coordinates. N must match the number of columns in pos or refpos when these dimensions are
greater than one.

Default: [1 0 0;0 1 0;0 0 1]

model

Propagation model, specified as 'freespace' or 'two-ray'. Choosing 'freespace' invokes the
free space propagation model. Choosing 'two-ray' invokes the two-ray propagation model.

Default: 'freespace'

Output Arguments
rng

Propagation range, returned as a real-valued 1-by-N vector or real-valued 1-by-2N vector.

When model is set to 'freespace', the size of rng is 1-by-N. The propagation range is the length of
the direct path from the position defined in pos to the corresponding reference position defined in
refpos.

When model is set to 'two-ray', rng contains the ranges for the direct path and the reflected path.
Alternate columns of rng refer to the line-of-sight path and reflected path, respectively for the same
source-reference point pair. Position units are meters.

ang

Azimuth and elevation angles, returned as a 2-by-N matrix or 2-by-2N matrix. Each column
represents a direction angle in the form [azimuth;elevation].
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When model is set to 'freespace', ang is a 2-by-N matrix and represents the angle of the path
from a source point to a reference point.

When model is set to 'two-ray', ang is a 2-by-2N matrix. Alternate columns of ang refer to the
line-of-sight path and reflected path, respectively.

Angle units are in degrees.

Examples

Range and Angle Computation

Compute the range and angle of a target located at (1000,2000,50) meters from the origin.

TargetLoc = [1000;2000;50];
[tgtrng,tgtang] = rangeangle(TargetLoc)

tgtrng = 2.2366e+03

tgtang = 2×1

   63.4349
    1.2810

Range and Angle With Respect to Local Origin

Compute the range and angle of a target located at (1000,2000,50) meters with respect to a local
origin at (100,100,10) meters.

TargetLoc = [1000;2000;50];
Origin = [100;100;10];
[tgtrng,tgtang] = rangeangle(TargetLoc,Origin)

tgtrng = 2.1028e+03

tgtang = 2×1

   64.6538
    1.0900

Range and Angle With Respect to Local Coordinates

Compute the range and angle of a target located at (1000,2000,50) meters but with respect to a local
coordinate system origin at (100,100,10) meters. Choose a local coordinate reference frame that is
rotated about the z-axis by 45° from the global coordinate axes.

targetpos = [1000;2000;50];
origin = [100;100;10];
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refaxes = [1/sqrt(2) -1/sqrt(2) 0; 1/sqrt(2) 1/sqrt(2) 0; 0 0 1];
[tgtrng,tgtang] = rangeangle(targetpos,origin,refaxes)

tgtrng = 2.1028e+03

tgtang = 2×1

   19.6538
    1.0900

Two-Ray Range and Angle

Compute the two-ray propagation distances and arrival angles of rays from a source located at
(1000,1000,500) meters from the origin. The receiver is located at (100,100,200) meters from the
origin.

sourceLoc = [1000;1000;500];
receiverLoc = [100;100;200];
[sourcerngs,sourceangs] = rangeangle(sourceLoc,receiverLoc,'two-ray')

sourcerngs = 1×2
103 ×

    1.3077    1.4526

sourceangs = 2×2

   45.0000   45.0000
   13.2627  -28.8096
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Find the range and angle of the same target with the same origin but with respect to a local
coordinate axes. The local coordinate axes are rotated around the z-axis by 45 degrees from the
global coordinate axes.

refaxes = rotz(45);
[sourcerngs,sourceangs] = rangeangle(sourceLoc,receiverLoc,refaxes,'two-ray')

sourcerngs = 1×2
103 ×

    1.3077    1.4526

sourceangs = 2×2

         0         0
   13.2627  -28.8096
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Range and Angle With Respect to Two Origins

Compute the ranges and angles of two targets located at (1000,200,500) and (2500,80,-100) meters
with respect to two local origins at (100,300,-40) and (500,-60,10) meters. Specify two different sets
of local axes.

targetPos = [1000,2500;200,80;500,-100];
origins = [100,500;300,-60;-40,10];
ax(:,:,1) = rotx(40)*rotz(10);
ax(:,:,2) = roty(5)*rotx(10);
[tgtrng,tgtang] = rangeangle(targetPos,origins,ax)

tgtrng = 1×2
103 ×

    1.0543    2.0079

tgtang = 2×2

    6.7285    4.2597
   26.9567    1.1254

More About
Angles in Local and Global Coordinate Systems

The rangeangle function returns the path distance and path angles in either the global or local
coordinate systems. Every antenna or microphone element and array has a gain pattern that is
expressed in local angular coordinates of azimuth and elevation. As the element or array moves or
rotates, the gain pattern is carried with it. To determine the strength of a signal’, you must know the
angle that the signal path makes with respect to the local angular coordinates of the element or array.
By default, the rangeangle function determines the angle a signal path makes with respect to global
coordinates. If you add the refaxes argument, you can compute the angles with respect to local
coordinates. As an illustration, this figure shows a 5-by-5 uniform rectangular array (URA) rotated
from the global coordinates (xyz) using refaxes. The x' axis of the local coordinate system (x'y'z') is
aligned with the main axis of the array and moves as the array moves. The path length is independent
of orientation. The global coordinate system defines the azimuth and elevations angles (Φ,θ) and the
local coordinate system defines the azimuth and elevations angles (Φ',θ').
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Local and Global Coordinate Axes

Free Space Propagation Model

The free-space signal propagation model states that a signal propagating from one point to another in
a homogeneous, isotropic medium travels in a straight line, called the line-of-sight or direct path. The
straight line is defined by the geometric vector from the radiation source to the destination. Similar
assumptions are made for sonar but the term isovelocity channel is used in place of free space.

Two-Ray Propagation Model

A two-ray propagation channel is the next step up in complexity from a free-space channel and is the
simplest case of a multipath propagation environment. The free-space channel models a straight-line
line-of-sight path from point 1 to point 2. In a two-ray channel, the medium is specified as a
homogeneous, isotropic medium with a reflecting planar boundary. The boundary is always set at z =
0. There are at most two rays propagating from point 1 to point 2. The first ray path propagates along
the same line-of-sight path as in the free-space channel (see the phased.FreeSpace System object).
The line-of-sight path is often called the direct path. The second ray reflects off the boundary before
propagating to point 2. According to the Law of Reflection , the angle of reflection equals the angle of
incidence. In short-range simulations such as cellular communications systems and automotive
radars, you can assume that the reflecting surface, the ground or ocean surface, is flat.

The phased.TwoRayChannel and phased.WidebandTwoRayChannel System objects model
propagation time delay, phase shift, Doppler shift, and loss effects for both paths. For the reflected
path, loss effects include reflection loss at the boundary.

The figure illustrates two propagation paths. From the source position, ss, and the receiver position,
sr, you can compute the arrival angles of both paths, θ′los and θ′rp. The arrival angles are the elevation
and azimuth angles of the arriving radiation with respect to a local coordinate system. In this case,
the local coordinate system coincides with the global coordinate system. You can also compute the
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transmitting angles, θlos and θrp. In the global coordinates, the angle of reflection at the boundary is
the same as the angles θrp and θ′rp. The reflection angle is important to know when you use angle-
dependent reflection-loss data. You can determine the reflection angle by using the rangeangle
function and setting the reference axes to the global coordinate system. The total path length for the
line-of-sight path is shown in the figure by Rlos which is equal to the geometric distance between
source and receiver. The total path length for the reflected path is Rrp= R1 + R2. The quantity L is the
ground range between source and receiver.

You can easily derive exact formulas for path lengths and angles in terms of the ground range and
object heights in the global coordinate system.

R = x s− x r

Rlos = R = zr − zs
2 + L2

R1 =
zr

zr + zz
zr + zs

2 + L2

R2 =
zs

zs + zr
zr + zs

2 + L2

Rrp = R1 + R2 = zr + zs
2 + L2

tanθlos =
zs− zr

L

tanθrp = −
zs + zr

L
θ′los = − θlos

θ′rp = θrp
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
azel2phitheta | azel2uv | global2localcoord | local2globalcoord

Topics
“Global and Local Coordinate Systems”

Introduced in R2011a
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rdcoupling
Range Doppler coupling

Syntax
dr = rdcoupling(fd,slope)
dr = rdcoupling(fd,slope,c)

Description
dr = rdcoupling(fd,slope) returns the range offset on page 2-378 due to the Doppler shift in a
linear frequency modulated signal. For example, the signal can be a linear FM pulse or an FMCW
signal. slope is the slope of the linear frequency modulation.

dr = rdcoupling(fd,slope,c) specifies the signal propagation speed.

Examples

Target Range After Correcting for Doppler Shift

Calculate the true range of the target for an FMCW waveform that sweeps a band of 30 MHz in 2 ms.
The dechirped target echo has a beat frequency of 1 kHz. The processing of the target return
indicates a Doppler shift of 100 Hz.

slope = 30e6/2e-3;
fb = 1e3;
fd = 100;
r = beat2range(fb,slope) - rdcoupling(fd,slope)

r = 10.9924

Input Arguments
fd — Doppler shift
array of real numbers

Doppler shift, specified as an array of real numbers.
Data Types: double

slope — Slope of linear frequency modulation
nonzero scalar

Slope of linear frequency modulation, specified as a nonzero scalar in hertz per second.
Data Types: double

c — Signal propagation speed
speed of light (default) | positive scalar
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Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: double

Output Arguments
dr — Range offset due to Doppler shift
real scalar

Range offset due to Doppler shift, returned as an array of real numbers. The dimensions of dr match
the dimensions of fd.

More About
Range Offset

The range offset is the difference between the estimated range and the true range. The difference
arises from coupling between the range and Doppler shift.

Algorithms
The function computes -c*fd/(2*slope).

References
[1] Barton, David K. Radar System Analysis and Modeling. Boston: Artech House, 2005.

[2] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
beat2range | dechirp | phased.FMCWWaveform | phased.LinearFMWaveform | range2beat |
stretchfreq2rng

Topics
Automotive Adaptive Cruise Control Using FMCW Technology

Introduced in R2012b
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rocpfa
Receiver operating characteristic curves by false-alarm probability

Syntax
[Pd,SNR] = rocpfa(Pfa)
[Pd,SNR] = rocpfa(Pfa,Name,Value)
rocpfa(...)

Description
[Pd,SNR] = rocpfa(Pfa) returns the single-pulse detection probabilities, Pd, and required SNR
values, SNR, for the false-alarm probabilities in the row or column vector Pfa. By default, for each
false-alarm probability, the detection probabilities are computed for 101 equally spaced SNR values
between 0 and 20 dB. The ROC curve is constructed assuming a single pulse in coherent receiver
with a nonfluctuating target.

[Pd,SNR] = rocpfa(Pfa,Name,Value) returns detection probabilities and SNR values with
additional options specified by one or more Name,Value pair arguments.

rocpfa(...) plots the ROC curves.

Input Arguments
Pfa

False-alarm probabilities in a row or column vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

MaxSNR

Maximum SNR to include in the ROC calculation.

Default: 20

MinSNR

Minimum SNR to include in the ROC calculation.

Default: 0

NumPoints

Number of SNR values to use when calculating the ROC curves. The actual values are equally spaced
between MinSNR and MaxSNR.
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Default: 101

NumPulses

Number of pulses to integrate when calculating the ROC curves. A value of 1 indicates no pulse
integration.

Default: 1

SignalType

This property specifies the type of received signal or, equivalently, the probability density functions
(PDF) used to compute the ROC. Valid values are: 'Real', 'NonfluctuatingCoherent',
'NonfluctuatingNoncoherent', 'Swerling1', 'Swerling2', 'Swerling3', and
'Swerling4'. Values are not case sensitive.

The 'NonfluctuatingCoherent' signal type assumes that the noise in the received signal is a
complex-valued, Gaussian random variable. This variable has independent zero-mean real and
imaginary parts each with variance σ2/2 under the null hypothesis. In the case of a single pulse in a
coherent receiver with complex white Gaussian noise, the probability of detection, PD, for a given
false-alarm probability, PFA is:

PD = 1
2erfc(erfc−1(2PFA)− χ)

where erfc and erfc-1 are the complementary error function and that function’s inverse, and χ is
the SNR not expressed in decibels.

For details about the other supported signal types, see [1] on page 2-381.

Default: 'NonfluctuatingCoherent'

Output Arguments
Pd

Detection probabilities corresponding to the false-alarm probabilities. For each false-alarm
probability in Pfa, Pd contains one column of detection probabilities.

SNR

Signal-to-noise ratios in a column vector. By default, the SNR values are 101 equally spaced values
between 0 and 20. To change the range of SNR values, use the optional MinSNR or MaxSNR input
argument. To change the number of SNR values, use the optional NumPoints input argument.

Examples

Plot ROC Curves For Different PFAs

Plot ROC curves for false-alarm probabilities of 1e-8, 1e-6, and 1e-3, assuming no pulse integration.

Pfa = [1e-8 1e-6 1e-3];
rocpfa(Pfa,'SignalType','NonfluctuatingCoherent')
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References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005, pp 298–
336.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.
• Supported only when output arguments are specified.
• The NonfluctuatingNoncoherent signal type is not supported.

See Also
npwgnthresh | rocsnr | shnidman

Introduced in R2011a
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rocsnr
Receiver operating characteristic curves by SNR

Syntax
[Pd,Pfa] = rocsnr(SNRdB)
[Pd,Pfa] = rocsnr(SNRdB,Name,Value)
rocsnr(...)

Description
[Pd,Pfa] = rocsnr(SNRdB) returns the single-pulse detection probabilities, Pd, and false-alarm
probabilities, Pfa, for the SNRs in the vector SNRdB. By default, for each SNR, the detection
probabilities are computed for 101 false-alarm probabilities between 1e–10 and 1. The false-alarm
probabilities are logarithmically equally spaced. The ROC curve is constructed assuming a coherent
receiver with a nonfluctuating target.

[Pd,Pfa] = rocsnr(SNRdB,Name,Value) returns detection probabilities and false-alarm
probabilities with additional options specified by one or more Name,Value pair arguments.

rocsnr(...) plots the ROC curves.

Input Arguments
SNRdB

Signal-to-noise ratios in decibels, in a row or column vector.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

MaxPfa

Maximum false-alarm probability to include in the ROC calculation.

Default: 1

MinPfa

Minimum false-alarm probability to include in the ROC calculation.

Default: 1e-10

NumPoints

Number of false-alarm probabilities to use when calculating the ROC curves. The actual probability
values are logarithmically equally spaced between MinPfa and MaxPfa.
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Default: 101

NumPulses

Number of pulses to integrate when calculating the ROC curves. A value of 1 indicates no pulse
integration.

Default: 1

SignalType

This property specifies the type of received signal or, equivalently, the probability density functions
(PDF) used to compute the ROC. Valid values are: 'Real', 'NonfluctuatingCoherent',
'NonfluctuatingNoncoherent', 'Swerling1', 'Swerling2', 'Swerling3', and
'Swerling4'. Values are not case sensitive.

The 'NonfluctuatingCoherent' signal type assumes that the noise in the received signal is a
complex-valued, Gaussian random variable. This variable has independent zero-mean real and
imaginary parts each with variance σ2/2 under the null hypothesis. In the case of a single pulse in a
coherent receiver with complex white Gaussian noise, the probability of detection, PD, for a given
false-alarm probability, PFA is:

PD = 1
2erfc(erfc−1(2PFA)− χ)

where erfc and erfc-1 are the complementary error function and that function’s inverse, and χ is
the SNR not expressed in decibels.

For details about the other supported signal types, see [1].

Default: 'NonfluctuatingCoherent'

Output Arguments
Pd

Detection probabilities corresponding to the false-alarm probabilities. For each SNR in SNRdB, Pd
contains one column of detection probabilities.

Pfa

False-alarm probabilities in a column vector. By default, the false-alarm probabilities are 101
logarithmically equally spaced values between 1e–10 and 1. To change the range of probabilities, use
the optional MinPfa or MaxPfa input argument. To change the number of probabilities, use the
optional NumPoints input argument.

Examples

ROC Curves for Different SNRs

Plot ROC curves for different SNR's for a single pulse.

SNRdB = [3 6 9 12];
[Pd,Pfa] = rocsnr(SNRdB,'SignalType','NonfluctuatingCoherent');
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semilogx(Pfa,Pd)
grid on
xlabel('P_{fa}')
ylabel('P_d')
legend('SNR 3 dB','SNR 6 dB','SNR 9 dB','SNR 12 dB',  'location','northwest')
title('Receiver Operating Characteristic (ROC) Curves')

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005, pp 298–
336.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.
• Supported only when output arguments are specified.
• The NonfluctuatingNoncoherent signal type is not supported.
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See Also
npwgnthresh | rocpfa | shnidman

Introduced in R2011a
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rootmusicdoa
Direction of arrival using Root MUSIC

Syntax
ang = rootmusicdoa(R,nsig)
ang = rootmusicdoa( ___ ,'Name','Value')

Description
ang = rootmusicdoa(R,nsig) estimates the directions of arrival, ang, of a set of plane waves
received on a uniform line array (ULA). The estimation uses the root MUSIC algorithm. The input
arguments are the estimated spatial covariance matrix between sensor elements, R, and the number
of arriving signals, nsig. In this syntax, sensor elements are spaced one-half wavelength apart.

ang = rootmusicdoa( ___ ,'Name','Value') allows you to specify additional input parameters
in the form of Name-Value pairs. This syntax can use any of the input arguments in the previous
syntax.

Examples

Three Signals Arriving at Half-Wavelength-Spaced ULA

Assume a half-wavelength spaced uniform line array with 10 elements. Three plane waves arrive from
the 0°, –25°, and 30° azimuth directions. Elevation angles are 0°. The noise is spatially and
temporally white Gaussian noise.

Set the SNR for each signal to 5 dB. Find the arrival angles.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25 30];
Nsig = 3;
R = sensorcov(elementPos,angles,db2pow(-5));
doa = rootmusicdoa(R,Nsig)

doa = 1×3

   -0.0000  -25.0000   30.0000

These angles agree with the known input angles.

Three Signals Arriving at 0.4-Wavelength-Spaced ULA

Assume a uniform line array 10 elements, as in the previous example. But now the element spacing is
smaller than one-half wavelength. Three plane waves arrive from the 0°, –25°, and 30° azimuth
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directions. Elevation angles are 0°. The noise is spatially and temporally white Gaussian noise. The
SNR for each signal is 5 dB.

Set element spacing to 0.4 wavelengths using the ElementSpacing name-value pair. Then, find the
arrival angles.

N = 10;
d = 0.4;
elementPos = (0:N-1)*d;
angles = [0 -25 30];
Nsig = 3;
R = sensorcov(elementPos,angles,db2pow(-5));
doa = rootmusicdoa(R,Nsig,'ElementSpacing',d)

doa = 1×3

   -0.0000  -25.0000   30.0000

The solution agrees with the known angles.

Input Arguments
R — Spatial covariance matrix
complex-valued positive-definite N-by-N matrix

Spatial covariance matrix, specified as a complex-valued, positive-definite, N-by-N matrix. In this
matrix, N represents the number of elements in the ULA array. If R is not Hermitian, a Hermitian
matrix is formed by averaging the matrix and its conjugate transpose, (R+R')/2.
Example: [ 4.3162, –0.2777 –0.2337i; –0.2777 + 0.2337i , 4.3162]
Data Types: double
Complex Number Support: Yes

nsig — Number of arriving signals
positive integer

Number of arriving signals, specified as a positive integer. The number of signals must be smaller
than the number of elements in the ULA array.
Example: 2
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: ‘ElementSpacing’, 0.4

ElementSpacing — ULA element spacing
0.5 (default) | real-valued positive scalar
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ULA element spacing, specified as a real-valued, positive scalar. Position units are measured in terms
of signal wavelength.
Example: 0.4
Data Types: double

Output Arguments
ang — Directions of arrival angles
real-valued 1-by-M row vector

Directions of arrival angle, returned as a real-valued, 1-by-M vector. The dimension M is the number
of arriving signals specified in the argument nsig. Angle units are degrees and angle values lie
between –90° and 90°.

References
[1] Van Trees, H.L. Optimum Array Processing. New York: Wiley-Interscience, 2002.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
aictest | espritdoa | phased.RootMUSICEstimator | spsmooth

Introduced in R2013a
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rotx
Rotation matrix for rotations around x-axis

Syntax
R = rotx(ang)

Description
R = rotx(ang) creates a 3-by-3 matrix for rotating a 3-by-1 vector or 3-by-N matrix of vectors
around the x-axis by ang degrees. When acting on a matrix, each column of the matrix represents a
different vector. For the rotation matrix R and vector v, the rotated vector is given by R*v.

Examples

Rotation Matrix for 30° Rotation

Construct the matrix for a rotation of a vector around the x-axis by 30°. Then let the matrix operate
on a vector.

R = rotx(30)

R = 3×3

    1.0000         0         0
         0    0.8660   -0.5000
         0    0.5000    0.8660

x = [2;-2;4];
y = R*x

y = 3×1

    2.0000
   -3.7321
    2.4641

Under a rotation around the x-axis, the x-component of a vector is invariant.

Input Arguments
ang — Rotation angle
real-valued scalar

Rotation angle specified as a real-valued scalar. The rotation angle is positive if the rotation is in the
counter-clockwise direction when viewed by an observer looking along the x-axis towards the origin.
Angle units are in degrees.
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Example: 30.0
Data Types: double

Output Arguments
R — Rotation matrix
real-valued orthogonal matrix

3-by-3 rotation matrix returned as

Rx(α) =
1 0 0
0 cosα −sinα
0 sinα cosα

for a rotation angle α.

More About
Rotation Matrices

Rotation matrices are used to rotate a vector into a new direction.

In transforming vectors in three-dimensional space, rotation matrices are often encountered. Rotation
matrices are used in two senses: they can be used to rotate a vector into a new position or they can
be used to rotate a coordinate basis (or coordinate system) into a new one. In this case, the vector is
left alone but its components in the new basis will be different from those in the original basis. In
Euclidean space, there are three basic rotations: one each around the x, y and z axes. Each rotation is
specified by an angle of rotation. The rotation angle is defined to be positive for a rotation that is
counterclockwise when viewed by an observer looking along the rotation axis towards the origin. Any
arbitrary rotation can be composed of a combination of these three (Euler’s rotation theorem). For
example, you can rotate a vector in any direction using a sequence of three rotations:
v′ = Av = Rz(γ)Ry(β)Rx(α)v.

The rotation matrices that rotate a vector around the x, y, and z-axes are given by:

• Counterclockwise rotation around x-axis

Rx(α) =
1 0 0
0 cosα −sinα
0 sinα cosα

• Counterclockwise rotation around y-axis

Ry(β) =
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

• Counterclockwise rotation around z-axis

Rz(γ) =
cosγ −sinγ 0
sinγ cosγ 0

0 0 1
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The following three figures show what positive rotations look like for each rotation axis:
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For any rotation, there is an inverse rotation satisfying A−1A = 1. For example, the inverse of the x-
axis rotation matrix is obtained by changing the sign of the angle:

Rx
−1(α) = Rx(− α) =

1 0 0
0 cosα sinα
0 −sinα cosα

= Rx′ (α)

This example illustrates a basic property: the inverse rotation matrix is the transpose of the original.
Rotation matrices satisfy A’A = 1, and consequently det(A) = 1. Under rotations, vector lengths are
preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors, i, j, k, and rotate
them all using the rotation matrix A. This produces a new set of basis vectors i′, j,′ k′ related to the
original by:

i′ = Ai
j′ = Aj
k′ = Ak

Using the transpose, you can write the new basis vectors as a linear combinations of the old basis
vectors:

i′
j′
k′

= A′
i
j
k

Now any vector can be written as a linear combination of either set of basis vectors:
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v = vxi + vyj + vzk = v′xi′ + v′yj′ + v′zk′

Using algebraic manipulation, you can derive the transformation of components for a fixed vector
when the basis (or coordinate system) rotates. This transformation uses the transpose of the rotation
matrix.

v′x
v′y
v′z

= A−1
vx
vy
vz

= A′
vx
vy
vz

The next figure illustrates how a vector is transformed as the coordinate system rotates around the x-
axis. The figure after shows how this transformation can be interpreted as a rotation of the vector in
the opposite direction.
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References
[1] Goldstein, H., C. Poole and J. Safko, Classical Mechanics, 3rd Edition, San Francisco: Addison

Wesley, 2002, pp. 142–144.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
roty | rotz

Introduced in R2013a
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roty
Rotation matrix for rotations around y-axis

Syntax
R = roty(ang)

Description
R = roty(ang) creates a 3-by-3 matrix used to rotate a 3-by-1 vector or 3-by-N matrix of vectors
around the y-axis by ang degrees. When acting on a matrix, each column of the matrix represents a
different vector. For the rotation matrix R and vector v, the rotated vector is given by R*v.

Examples

Rotation Matrix for 45° Rotation

Construct the matrix for a rotation of a vector around the y-axis by 45°. Then let the matrix operate
on a vector.

R = roty(45)

R = 3×3

    0.7071         0    0.7071
         0    1.0000         0
   -0.7071         0    0.7071

v = [1;-2;4];
y = R*v

y = 3×1

    3.5355
   -2.0000
    2.1213

Under a rotation around the y-axis, the y-component of a vector is invariant.

Input Arguments
ang — Rotation angle
real-valued scalar

Rotation angle specified as a real-valued scalar. The rotation angle is positive if the rotation is in the
counter-clockwise direction when viewed by an observer looking along the y-axis towards the origin.
Angle units are in degrees.

 roty

2-395



Example: 30.0
Data Types: double

Output Arguments
R — Rotation matrix
real-valued orthogonal matrix

3-by-3 rotation matrix returned as

Ry(β) =
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

for a rotation angle β.

More About
Rotation Matrices

Rotation matrices are used to rotate a vector into a new direction.

In transforming vectors in three-dimensional space, rotation matrices are often encountered. Rotation
matrices are used in two senses: they can be used to rotate a vector into a new position or they can
be used to rotate a coordinate basis (or coordinate system) into a new one. In this case, the vector is
left alone but its components in the new basis will be different from those in the original basis. In
Euclidean space, there are three basic rotations: one each around the x, y and z axes. Each rotation is
specified by an angle of rotation. The rotation angle is defined to be positive for a rotation that is
counterclockwise when viewed by an observer looking along the rotation axis towards the origin. Any
arbitrary rotation can be composed of a combination of these three (Euler’s rotation theorem). For
example, you can rotate a vector in any direction using a sequence of three rotations:
v′ = Av = Rz(γ)Ry(β)Rx(α)v.

The rotation matrices that rotate a vector around the x, y, and z-axes are given by:

• Counterclockwise rotation around x-axis

Rx(α) =
1 0 0
0 cosα −sinα
0 sinα cosα

• Counterclockwise rotation around y-axis

Ry(β) =
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

• Counterclockwise rotation around z-axis

Rz(γ) =
cosγ −sinγ 0
sinγ cosγ 0

0 0 1
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The following three figures show what positive rotations look like for each rotation axis:

 roty
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For any rotation, there is an inverse rotation satisfying A−1A = 1. For example, the inverse of the x-
axis rotation matrix is obtained by changing the sign of the angle:

Rx
−1(α) = Rx(− α) =

1 0 0
0 cosα sinα
0 −sinα cosα

= Rx′ (α)

This example illustrates a basic property: the inverse rotation matrix is the transpose of the original.
Rotation matrices satisfy A’A = 1, and consequently det(A) = 1. Under rotations, vector lengths are
preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors, i, j, k, and rotate
them all using the rotation matrix A. This produces a new set of basis vectors i′, j,′ k′ related to the
original by:

i′ = Ai
j′ = Aj
k′ = Ak

Using the transpose, you can write the new basis vectors as a linear combinations of the old basis
vectors:

i′
j′
k′

= A′
i
j
k

Now any vector can be written as a linear combination of either set of basis vectors:
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v = vxi + vyj + vzk = v′xi′ + v′yj′ + v′zk′

Using algebraic manipulation, you can derive the transformation of components for a fixed vector
when the basis (or coordinate system) rotates. This transformation uses the transpose of the rotation
matrix.

v′x
v′y
v′z

= A−1
vx
vy
vz

= A′
vx
vy
vz

The next figure illustrates how a vector is transformed as the coordinate system rotates around the x-
axis. The figure after shows how this transformation can be interpreted as a rotation of the vector in
the opposite direction.
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[1] Goldstein, H., C. Poole and J. Safko, Classical Mechanics, 3rd Edition, San Francisco: Addison
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
rotx | rotz

Introduced in R2013a
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rotz
Rotation matrix for rotations around z-axis

Syntax
R = rotz(ang)

Description
R = rotz(ang) creates a 3-by-3 matrix used to rotate a 3-by-1 vector or 3-by-N matrix of vectors
around the z-axis by ang degrees. When acting on a matrix, each column of the matrix represents a
different vector. For the rotation matrix R and vector v, the rotated vector is given by R*v.

Examples

Rotation Matrix for 45° Rotation

Construct the matrix for the rotation of a vector around the z-axis by 45°. Then let the matrix operate
on a vector.

R = rotz(45)

R = 3×3

    0.7071   -0.7071         0
    0.7071    0.7071         0
         0         0    1.0000

v = [1;-2;4];
y = R*v

y = 3×1

    2.1213
   -0.7071
    4.0000

Under a rotation around the z-axis, the z-component of a vector is invariant.

Input Arguments
ang — Rotation angle
real-valued scalar

Rotation angle specified as a real-valued scalar. The rotation angle is positive if the rotation is in the
counter-clockwise direction when viewed by an observer looking along the z-axis towards the origin.
Angle units are in degrees.
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Example: 45.0
Data Types: double

Output Arguments
R — Rotation matrix
real-valued orthogonal matrix

3-by-3 rotation matrix returned as

Rz(γ) =
cosγ −sinγ 0
sinγ cosγ 0

0 0 1

for a rotation angle γ.

More About
Rotation Matrices

Rotation matrices are used to rotate a vector into a new direction.

In transforming vectors in three-dimensional space, rotation matrices are often encountered. Rotation
matrices are used in two senses: they can be used to rotate a vector into a new position or they can
be used to rotate a coordinate basis (or coordinate system) into a new one. In this case, the vector is
left alone but its components in the new basis will be different from those in the original basis. In
Euclidean space, there are three basic rotations: one each around the x, y and z axes. Each rotation is
specified by an angle of rotation. The rotation angle is defined to be positive for a rotation that is
counterclockwise when viewed by an observer looking along the rotation axis towards the origin. Any
arbitrary rotation can be composed of a combination of these three (Euler’s rotation theorem). For
example, you can rotate a vector in any direction using a sequence of three rotations:
v′ = Av = Rz(γ)Ry(β)Rx(α)v.

The rotation matrices that rotate a vector around the x, y, and z-axes are given by:

• Counterclockwise rotation around x-axis

Rx(α) =
1 0 0
0 cosα −sinα
0 sinα cosα

• Counterclockwise rotation around y-axis

Ry(β) =
cosβ 0 sinβ

0 1 0
−sinβ 0 cosβ

• Counterclockwise rotation around z-axis

Rz(γ) =
cosγ −sinγ 0
sinγ cosγ 0

0 0 1
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The following three figures show what positive rotations look like for each rotation axis:
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For any rotation, there is an inverse rotation satisfying A−1A = 1. For example, the inverse of the x-
axis rotation matrix is obtained by changing the sign of the angle:

Rx
−1(α) = Rx(− α) =

1 0 0
0 cosα sinα
0 −sinα cosα

= Rx′ (α)

This example illustrates a basic property: the inverse rotation matrix is the transpose of the original.
Rotation matrices satisfy A’A = 1, and consequently det(A) = 1. Under rotations, vector lengths are
preserved as well as the angles between vectors.

We can think of rotations in another way. Consider the original set of basis vectors, i, j, k, and rotate
them all using the rotation matrix A. This produces a new set of basis vectors i′, j,′ k′ related to the
original by:

i′ = Ai
j′ = Aj
k′ = Ak

Using the transpose, you can write the new basis vectors as a linear combinations of the old basis
vectors:

i′
j′
k′

= A′
i
j
k

Now any vector can be written as a linear combination of either set of basis vectors:
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v = vxi + vyj + vzk = v′xi′ + v′yj′ + v′zk′

Using algebraic manipulation, you can derive the transformation of components for a fixed vector
when the basis (or coordinate system) rotates. This transformation uses the transpose of the rotation
matrix.

v′x
v′y
v′z

= A−1
vx
vy
vz

= A′
vx
vy
vz

The next figure illustrates how a vector is transformed as the coordinate system rotates around the x-
axis. The figure after shows how this transformation can be interpreted as a rotation of the vector in
the opposite direction.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
rotx | roty

Introduced in R2013a
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sensorcov
Sensor spatial covariance matrix

Syntax
xcov = sensorcov(pos,ang)
xcov = sensorcov(pos,ang,ncov)
xcov = sensorcov(pos,ang,ncov,scov)

Description
xcov = sensorcov(pos,ang) returns the sensor spatial covariance matrix, xcov, for narrowband
plane wave signals arriving at a sensor array. The sensor array is defined by the sensor positions
specified in the pos argument. The signal arrival directions are specified by azimuth and elevation
angles in the ang argument. In this syntax, the noise power is assumed to be zero at all sensors, and
the signal power is assumed to be unity for all signals.

xcov = sensorcov(pos,ang,ncov) specifies, in addition, the spatial noise covariance matrix,
ncov. This value represents the noise power on each sensor as well as the correlation of the noise
between sensors. In this syntax, the signal power is assumed to be unity for all signals. This syntax
can use any of the input arguments in the previous syntax.

xcov = sensorcov(pos,ang,ncov,scov) specifies, in addition, the signal covariance matrix,
scov, which represents the power in each signal and the correlation between signals. This syntax can
use any of the input arguments in the previous syntaxes.

Examples

Covariance Matrix for Two Signals without Noise

Create a covariance matrix for a 3-element, half-wavelength-spaced uniform line array. Use the
default syntax, which assumes no noise power and unit signal power.

N = 3;
d = 0.5;
elementPos = (0:N-1)*d;
xcov = sensorcov(elementPos,[30 60])

xcov = 3×3 complex

   2.0000 + 0.0000i  -0.9127 - 1.4086i  -0.3339 + 0.7458i
  -0.9127 + 1.4086i   2.0000 + 0.0000i  -0.9127 - 1.4086i
  -0.3339 - 0.7458i  -0.9127 + 1.4086i   2.0000 + 0.0000i

The diagonal terms of the matrix represent the sum of the two signal powers.
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Covariance Matrix for Two Independent Signals with 10 dB SNR

Create a spatial covariance matrix for a 3-element, half-wavelength-spaced uniform line array.
Assume there are two incoming signals with unit power and there is additive noise with –10 dB
power.

N = 3;
d = 0.5;
elementPos = (0:N-1)*d;
xcov = sensorcov(elementPos,[30 35],db2pow(-10))

xcov = 3×3 complex

   2.1000 + 0.0000i  -0.2291 - 1.9734i  -1.8950 + 0.4460i
  -0.2291 + 1.9734i   2.1000 + 0.0000i  -0.2291 - 1.9734i
  -1.8950 - 0.4460i  -0.2291 + 1.9734i   2.1000 + 0.0000i

The diagonal terms represent the two signal powers plus noise power at each sensor.

Covariance Matrix for Two Correlated Signals with 10 dB SNR

Compute the covariance matrix for a 3-element half-wavelength spaced line array when there is some
correlation between two signals. The correlation can model, for example, multipath propagation
caused by reflection from a surface. Assume an additive noise power value of –10 dB.

N = 3;
d = 0.5;
elementPos = (0:N-1)*d;
scov = [1, 0.8; 0.8, 1];
xcov = sensorcov(elementPos,[30 35],db2pow(-10),scov)

xcov = 3×3 complex

   3.7000 + 0.0000i  -0.4124 - 3.5521i  -3.4111 + 0.8028i
  -0.4124 + 3.5521i   3.6574 + 0.0000i  -0.4026 - 3.4682i
  -3.4111 - 0.8028i  -0.4026 + 3.4682i   3.5321 + 0.0000i

Input Arguments
pos — Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector, a 2-by-N matrix, or a 3-by-N
matrix. In this vector or matrix, N represents the number of elements of the array. Each column of
pos represents the coordinates of an element. You define sensor position units in term of signal
wavelength. If pos is a 1-by-N vector, then it represents the y-coordinate of the sensor elements of a
line array. The x and z-coordinates are assumed to be zero. When pos is a 2-by-N matrix, it represents
the (y,z)-coordinates of the sensor elements of a planar array. This array is assumed to lie in the yz-
plane. The x-coordinates are assumed to be zero. When pos is a 3-by-N matrix, then the array has
arbitrary shape.
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Example: [0,0,0; 0.1,0.4,0.3;1,1,1]
Data Types: double

ang — Arrival directions of incoming signals
1-by-M real-valued vector | 2-by-M real-valued matrix

Arrival directions of incoming signals specified as a 1-by-M vector or a 2-by-M matrix, where M is the
number of incoming signals. If ang is a 2-by-M matrix, each column specifies the direction in azimuth
and elevation of the incoming signal [az;el]. Angular units are specified in degrees. The azimuth
angle must lie between –180° and 180° and the elevation angle must lie between –90° and 90°. The
azimuth angle is the angle between the x-axis and the projection of the arrival direction vector onto
the xy plane. It is positive when measured from the x-axis toward the y-axis. The elevation angle is
the angle between the arrival direction vector and xy-plane. It is positive when measured towards the
z axis. If ang is a 1-by-M vector, then it represents a set of azimuth angles with the elevation angles
assumed to be zero.
Example: [45;0]
Data Types: double

ncov — Noise spatial covariance matrix
0 (default) | non-negative real-valued scalar | 1-by-N non-negative real-valued vector | N-by-N positive
definite, complex-valued matrix

Noise spatial covariance matrix specified as a non-negative, real-valued scalar, a non-negative, 1-by-N
real-valued vector or an N-by-N, positive definite, complex-valued matrix. In this argument, N is the
number of sensor elements. Using a non-negative scalar results in a noise spatial covariance matrix
that has identical white noise power values (in watts) along its diagonal and has off-diagonal values of
zero. Using a non-negative real-valued vector results in a noise spatial covariance that has diagonal
values corresponding to the entries in ncov and has off-diagonal entries of zero. The diagonal entries
represent the independent white noise power values (in watts) in each sensor. If ncov is N-by-N
matrix, this value represents the full noise spatial covariance matrix between all sensor elements.
Example: [1,1,4,6]
Data Types: double
Complex Number Support: Yes

scov — Signal covariance matrix
1 (default) | non-negative real-valued scalar | 1-by-M non-negative real-valued vector | N-by-M
positive semidefinite, complex-valued matrix

Signal covariance matrix specified as a non-negative, real-valued scalar, a 1-by-M non-negative, real-
valued vector or an M-by-M positive semidefinite, matrix representing the covariance matrix between
M signals. The number of signals is specified in ang. If scov is a nonnegative scalar, it assigns the
same power (in watts) to all incoming signals which are assumed to be uncorrelated. If scov is a 1-
by-M vector, it assigns the separate power values (in watts) to each incoming signal which are also
assumed to be uncorrelated. If scov is an M-by-M matrix, then it represents the full covariance
matrix between all incoming signals.
Example: [1 0 ; 0 2]
Data Types: double
Complex Number Support: Yes
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Output Arguments
xcov — Sensor spatial covariance matrix
complex-valued N-by-N matrix

Sensor spatial covariance matrix returned as a complex-valued, N-by-N matrix. In this matrix, N
represents the number of sensor elements of the array.

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ: Prentice Hall,
1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial filtering”. IEEE
ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
cbfweights | lcmvweights | mvdrweights | phased.SteeringVector | sensorsig | steervec

Introduced in R2013a
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sensorsig
Simulate received signal at sensor array

Syntax
x = sensorsig(pos,ns,ang)
x = sensorsig(pos,ns,ang,ncov)
x = sensorsig(pos,ns,ang,ncov,scov)
x = sensorsig(pos,ns,ang,ncov,scov,'Taper',taper)
[x,rt] = sensorsig( ___ )
[x,rt,r] = sensorsig( ___ )

Description
x = sensorsig(pos,ns,ang) simulates the received narrowband plane wave signals at a sensor
array. pos represents the positions of the array elements, each of which is assumed to be isotropic.
ns indicates the number of snapshots of the simulated signal. ang represents the incoming directions
of each plane wave signal. The plane wave signals are assumed to be constant-modulus signals with
random phases.

x = sensorsig(pos,ns,ang,ncov) describes the noise across all sensor elements. ncov specifies
the noise power or covariance matrix. The noise is a Gaussian distributed signal.

x = sensorsig(pos,ns,ang,ncov,scov) specifies the power or covariance matrix for the
incoming signals.

x = sensorsig(pos,ns,ang,ncov,scov,'Taper',taper) specifies the array taper as a
comma-separated pair consisting of 'Taper' and a scalar or column vector.

[x,rt] = sensorsig( ___ ) also returns the theoretical covariance matrix of the received signal,
using any of the input arguments in the previous syntaxes.

[x,rt,r] = sensorsig( ___ ) also returns the sample covariance matrix of the received signal.

Examples

Received Signal and Direction-of-Arrival Estimation

Simulate the received signal at an array, and use the data to estimate the arrival directions.

Note: This example runs only in R2016b or later. If you are using an earlier release, replace each call
to the function with the equivalent step syntax. For example, replace myObject(x) with
step(myObject,x).

Create an 8-element uniform linear array whose elements are spaced half a wavelength apart.

fc = 3e8;
c = 3e8;
lambda = c/fc;
array = phased.ULA(8,lambda/2);
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Simulate 100 snapshots of the received signal at the array. Assume there are two signals, coming
from azimuth 30° and 60°, respectively. The noise is white across all array elements, and the SNR is
10 dB.

x = sensorsig(getElementPosition(array)/lambda,...
   100,[30 60],db2pow(-10));

Use a beamscan spatial spectrum estimator to estimate the arrival directions, based on the simulated
data.

estimator = phased.BeamscanEstimator('SensorArray',array,...
   'PropagationSpeed',c,'OperatingFrequency',fc,...
   'DOAOutputPort',true,'NumSignals',2);
[~,ang_est] = estimator(x);

Plot the spatial spectrum resulting from the estimation process.

plotSpectrum(estimator)

The plot shows peaks at 30° and 60°.

Signals With Different Power Levels

Simulate receiving two uncorrelated incoming signals that have different power levels. A vector
named scov stores the power levels.
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Create an 8-element uniform linear array whose elements are spaced half a wavelength apart.

fc = 3e8;
c = 3e8;
lambda = c/fc;
ha = phased.ULA(8,lambda/2);

Simulate 100 snapshots of the received signal at the array. Assume that one incoming signal
originates from 30 degrees azimuth and has a power of 3 W. A second incoming signal originates from
60 degrees azimuth and has a power of 1 W. The two signals are not correlated with each other. The
noise is white across all array elements, and the SNR is 10 dB.

ang = [30 60];
scov = [3 1];
x = sensorsig(getElementPosition(ha)/lambda,...
   100,ang,db2pow(-10),scov);

Use a beamscan spatial spectrum estimator to estimate the arrival directions, based on the simulated
data.

hdoa = phased.BeamscanEstimator('SensorArray',ha,...
   'PropagationSpeed',c,'OperatingFrequency',fc,...
   'DOAOutputPort',true,'NumSignals',2);
[~,ang_est] = step(hdoa,x);

Plot the spatial spectrum resulting from the estimation process.

plotSpectrum(hdoa);
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The plot shows a high peak at 30 degrees and a lower peak at 60 degrees.

Reception of Correlated Signals

Simulate the reception of three signals, two of which are correlated.

Create a signal covariance matrix in which the first and third of three signals are correlated with
each other.

scov = [1 0 0.6;...
        0 2 0;...
        0.6 0 1];

Simulate receiving 100 snapshots of three incoming signals from 30°, 40°, and 60° azimuth,
respectively. The array that receives the signals is an 8-element uniform linear array whose elements
are spaced one-half wavelength apart. The noise is white across all array elements, and the SNR is 10
dB.

pos = (0:7)*0.5;
ns = 100;
ang = [30 40 60];
ncov = db2pow(-10);
x = sensorsig(pos,ns,ang,ncov,scov);

Theoretical and Empirical Covariance of Received Signal

Simulate receiving a signal at a URA. Compare the signal theoretical covariance with its sample
covariance.

Create a 2-by-2 uniform rectangular array having elements spaced 1/4-wavelength apart.

pos = 0.25 * [0 0 0 0; -1 1 -1 1; -1 -1 1 1];

Define the noise power independently for each of the four array elements. Each entry in ncov is the
noise power of an array element. This element position is the corresponding column in pos. Assume
the noise is uncorrelated across elements.

ncov = db2pow([-9 -10 -10 -11]);

Simulate 100 snapshots of the received signal at the array, and store the theoretical and empirical
covariance matrices. Assume that one incoming signal originates from 30° azimuth and 10° elevation.
A second incoming signal originates from 50° azimuth and 0° elevation. The signals have a power of 1
W and are uncorrelated.

ns = 100;
ang1 = [30; 10];
ang2 = [50; 0];
ang = [ang1, ang2];
rng default
[x,rt,r] = sensorsig(pos,ns,ang,ncov);

View the magnitudes of the theoretical covariance and sample covariance.
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abs(rt)

ans = 4×4

    2.1259    1.8181    1.9261    1.9754
    1.8181    2.1000    1.5263    1.9261
    1.9261    1.5263    2.1000    1.8181
    1.9754    1.9261    1.8181    2.0794

abs(r)

ans = 4×4

    2.2107    1.7961    2.0205    1.9813
    1.7961    1.9858    1.5163    1.8384
    2.0205    1.5163    2.1762    1.8072
    1.9813    1.8384    1.8072    2.0000

Correlation of Noise Between Sensors

Simulate receiving a signal at a ULA, where the noise between different sensors is correlated.

Create a 4-element uniform linear array whose elements are spaced one-half wavelength apart.

pos = 0.5 * (0:3);

Define the noise covariance matrix. The value in the ( k,_j_) position in the ncov matrix is the
covariance between the k and j array elements listed in array.

ncov = 0.1 * [1 0.1 0 0; 0.1 1 0.1 0; 0 0.1 1 0.1; 0 0 0.1 1];

Simulate 100 snapshots of the received signal at the array. Assume that one incoming signal
originates from 60° azimuth.

ns = 100;
ang = 60;
[x,rt,r] = sensorsig(pos,ns,ang,ncov);

View the theoretical and sample covariance matrices for the received signal.

rt,r

rt = 4×4 complex

   1.1000 + 0.0000i  -0.9027 - 0.4086i   0.6661 + 0.7458i  -0.3033 - 0.9529i
  -0.9027 + 0.4086i   1.1000 + 0.0000i  -0.9027 - 0.4086i   0.6661 + 0.7458i
   0.6661 - 0.7458i  -0.9027 + 0.4086i   1.1000 + 0.0000i  -0.9027 - 0.4086i
  -0.3033 + 0.9529i   0.6661 - 0.7458i  -0.9027 + 0.4086i   1.1000 + 0.0000i

r = 4×4 complex

   1.1059 + 0.0000i  -0.8681 - 0.4116i   0.6550 + 0.7017i  -0.3151 - 0.9363i
  -0.8681 + 0.4116i   1.0037 + 0.0000i  -0.8458 - 0.3456i   0.6578 + 0.6750i
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   0.6550 - 0.7017i  -0.8458 + 0.3456i   1.0260 + 0.0000i  -0.8775 - 0.3753i
  -0.3151 + 0.9363i   0.6578 - 0.6750i  -0.8775 + 0.3753i   1.0606 + 0.0000i

Input Arguments
pos — Positions of elements in sensor array
1-by-N vector | 2-by-N matrix | 3-by-N matrix

Positions of elements in sensor array, specified as an N-column vector or matrix. The values in the
matrix are in units of signal wavelength. For example, [0 1 2] describes three elements that are
spaced one signal wavelength apart. N is the number of elements in the array.

Dimensions of pos:

• For a linear array along the y axis, specify the y coordinates of the elements in a 1-by-N vector.
• For a planar array in the yz plane, specify the y and z coordinates of the elements in columns of a

2-by-N matrix.
• For an array of arbitrary shape, specify the x, y, and z coordinates of the elements in columns of a

3-by-N matrix.

Data Types: double

ns — Number of snapshots of simulated signal
positive integer scalar

Number of snapshots of simulated signal, specified as a positive integer scalar. The function returns
this number of samples per array element.
Data Types: double

ang — Directions of incoming plane wave signals
1-by-M vector | 2-by-M matrix

Directions of incoming plane wave signals, specified as an M-column vector or matrix in degrees. M is
the number of incoming signals.

Dimensions of ang:

• If ang is a 2-by-M matrix, each column specifies a direction. Each column is in the form
[azimuth; elevation]. The azimuth angle on page 2-418 must be between –180 and 180
degrees, inclusive. The elevation angle must be between –90 and 90 degrees, inclusive.

• If ang is a 1-by-M vector, each entry specifies an azimuth angle. In this case, the corresponding
elevation angle is assumed to be 0.

Data Types: double

ncov — Noise characteristics
0 (default) | nonnegative scalar | 1-by-N vector of positive numbers | N-by-N positive definite matrix

Noise characteristics, specified as a nonnegative scalar, 1-by-N vector of positive numbers, or N-by-N
positive definite matrix.

Dimensions of ncov:
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• If ncov is a scalar, it represents the noise power of the white noise across all receiving sensor
elements, in watts. In particular, a value of 0 indicates that there is no noise.

• If ncov is a 1-by-N vector, each entry represents the noise power of one of the sensor elements, in
watts. The noise is uncorrelated across sensors.

• If ncov is an N-by-N matrix, it represents the covariance matrix for the noise across all sensor
elements.

Data Types: double

scov — Incoming signal characteristics
1 (default) | positive scalar | 1-by-M vector of positive numbers | M-by-M positive semidefinite matrix

Incoming signal characteristics, specified as a positive scalar, 1-by-M vector of positive numbers, or
M-by-M positive semidefinite matrix.

Dimensions of scov:

• If scov is a scalar, it represents the power of all incoming signals, in watts. In this case, all
incoming signals are uncorrelated and share the same power level.

• If scov is a 1-by-M vector, each entry represents the power of one of the incoming signals, in
watts. In this case, all incoming signals are uncorrelated with each other.

• If scov is an M-by-M matrix, it represents the covariance matrix for all incoming signals. The
matrix describes the correlation among the incoming signals. In this case, scov can be real or
complex.

Data Types: double

taper — Array element taper
1 (default) | scalar | N-by-1 column vector

Array element taper, specified as a scalar or complex-valued N-by-1 column vector. The dimension N
is the number of array elements. If taper is a scalar, all elements in the array use the same value. If
taper is a vector, each entry specifies the taper applied to the corresponding array element.
Data Types: double
Complex Number Support: Yes

Output Arguments
x — Received signal
complex ns-by-N matrix

Received signal at sensor array, returned as a complex ns-by-N matrix. Each column represents the
received signal at the corresponding element of the array. Each row represents a snapshot.

rt — Theoretical covariance matrix
complex N-by-N matrix

Theoretical covariance matrix of the received signal, returned as a complex N-by-N matrix.

r — Sample covariance matrix
complex N-by-N matrix
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Sample covariance matrix of the received signal, returned as a complex N-by-N matrix. N is the
number of array elements. The function derives this matrix from x.

Note If you specify this output argument, consider making ns greater than or equal to N. Otherwise,
r is rank deficient.

More About
Azimuth Angle, Elevation Angle

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.SteeringVector

Introduced in R2012b
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shnidman
Required SNR using Shnidman’s equation

Syntax
SNR = shnidman(Prob_Detect,Prob_FA)
SNR = shnidman(Prob_Detect,Prob_FA,N)
SNR = shnidman(Prob_Detect,Prob_FA,N, Swerling_Num)

Description
SNR = shnidman(Prob_Detect,Prob_FA) returns the required signal-to-noise ratio in decibels
for the specified detection and false-alarm probabilities using Shnidman's equation. The SNR is
determined for a single pulse and a Swerling case number of 0, a nonfluctuating target.

SNR = shnidman(Prob_Detect,Prob_FA,N) returns the required SNR for a nonfluctuating target
based on the noncoherent integration of N pulses.

SNR = shnidman(Prob_Detect,Prob_FA,N, Swerling_Num) returns the required SNR for the
Swerling case number Swerling_Num.

Examples

Compute Single-Pulse SNR

Find and compare the required single-pulse SNR for Swerling cases I and III. The Swerling case I has
no dominant scatterer while the Swerling case III has a dominant scatterer.

Specify the false-alarm and detection probabilities.

pfa = 1e-6:1e-5:.001;
Pd = 0.9;

Allocate arrays for plotting.

SNR_Sw1 = zeros(1,length(pfa));
SNR_Sw3 = zeros(1,length(pfa));

Loop over PFA's for both scatterer cases.

for j=1:length(pfa)
  
    SNR_Sw1(j) = shnidman(Pd,pfa(j),1,1);
    SNR_Sw3(j) = shnidman(Pd,pfa(j),1,3);
end

Plot the SNR vs PFA.

semilogx(pfa,SNR_Sw1,'k','linewidth',2)
hold on
semilogx(pfa,SNR_Sw3,'b','linewidth',2)
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axis([1e-6 1e-3 5 25])
xlabel('False-Alarm Probability')
ylabel('SNR')
title('Required Single-Pulse SNR for Pd = 0.9')
legend('Swerling Case I','Swerling Case III',...
    'Location','SouthWest')

The presence of a dominant scatterer reduces the required SNR for the specified detection and false-
alarm probabilities.

More About
Shnidman's Equation

Shnidman's equation is a series of equations that yield an estimate of the SNR required for a
specified false-alarm and detection probability. Like Albersheim's equation, Shnidman's equation is
applicable to a single pulse or the noncoherent integration of N pulses. Unlike Albersheim's equation,
Shnidman's equation holds for square-law detectors and is applicable to fluctuating targets. An
important parameter in Shnidman's equation is the Swerling case number.

Swerling Case Number

The Swerling case numbers characterize the detection problem for fluctuating pulses in terms of:

• A decorrelation model for the received pulses
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• The distribution of scatterers affecting the probability density function (PDF) of the target radar
cross section (RCS).

The Swerling case numbers consider all combinations of two decorrelation models (scan-to-scan;
pulse-to-pulse) and two RCS PDFs (based on the presence or absence of a dominant scatterer).

Swerling Case Number Description
0 (alternatively designated as 5) Nonfluctuating pulses.
I Scan-to-scan decorrelation. Rayleigh/exponential

PDF–A number of randomly distributed scatterers
with no dominant scatterer.

II Pulse-to-pulse decorrelation. Rayleigh/
exponential PDF– A number of randomly
distributed scatterers with no dominant scatterer.

III Scan-to-scan decorrelation. Chi-square PDF with
4 degrees of freedom. A number of scatterers
with one dominant.

IV Pulse-to-pulse decorrelation. Chi-square PDF with
4 degrees of freedom. A number of scatterers
with one dominant.

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005, p. 337.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
albersheim

Introduced in R2011a
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sonareqsl
Compute source level using the sonar equation

Syntax
SL = sonareqsl(SNR,NL,DI,TL)
SL = sonareqsl(SNR,NL,DI,TL,TS)

Description
SL = sonareqsl(SNR,NL,DI,TL) returns the source level of a signal, SL, required to achieve a
specified received signal-to-noise ratio, SNR. Source level is computed using the “Sonar Equation”.
Specify the received noise level, NL, receiver directivity index, DI, and the transmission loss, TL. Use
this syntax to evaluate passive sonar system performance.

SL = sonareqsl(SNR,NL,DI,TL,TS) returns the source level taking into account the target
strength TS. Use this syntax to evaluate active sonar system performance, where the transmitted
signal is reflected from a target. TL represents one-way transmission loss.

Examples

Estimate Source Level from Passive Sonar Equation

Estimate the source level of a signal arriving from a source with an SNR of 10 dB. The noise level is
75 dB, the receive array directivity index is 25 dB, and the transmission loss is 140 dB.

SNR = 10;
NL = 75.0;
DI = 25.0;
TL = 140.0;
SL = sonareqsl(SNR,NL,DI,TL)

SL = 200

Estimate Source Level from Active Sonar Equation

Estimate the source level of a signal transmitted by a source with SNR of 15 dB and reflected from a
target with 25 dB//1 m2 target strength. The noise level is 45 dB//1 μPa, the receive array directivity
index is 25 dB, and the one-way transmission loss is 60 dB.

SNR = 15.0;
NL = 45.0;
DI = 25.0;
TL = 60.0;
TS = 25.0;
SL = sonareqsl(SNR,NL,DI,TL,TS)

SL = 130
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Input Arguments
SNR — Received signal-to-noise ratio
scalar

Received signal-to-noise ratio, specified as a scalar. Units are in dB.
Example: 10
Data Types: double

NL — Received noise level
scalar

Received noise level, specified as a scalar. Noise level is the ratio of the noise intensity to a reference
intensity, converted to dB. The reference intensity is the intensity of a sound wave having a root-
mean-square (rms) pressure of 1 μPa. Units are in dB//1 μPa.
Example: 70
Data Types: double

DI — Receiver directivity index
scalar

Receiver directivity index, specified as a scalar. Units are in dB.
Example: 30
Data Types: double

TL — Transmission loss
positive scalar

Transmission loss (TL), specified as a positive scalar. Transmission loss is the attenuation of sound
intensity as the sound propagates through the underwater channel. Transmission loss is defined as
the ratio of sound intensity at 1 m from a source to the sound intensity at distance R. For active sonar,
TL represents one-way transmission loss.

TL = 10log
Is

I(R)

Units are in dB.
Example: 120
Data Types: double

TS — Target strength
scalar

Target strength, specified as a scalar. Target strength is the ratio of the intensity of a reflected signal
at 1 m from a target to the incident intensity. Target strength is the sonar analog to radar cross
section. Units are in dB//1 m2.
Example: 5
Data Types: double
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Output Arguments
SL — Sonar source level
scalar

Sonar source level, returned as a scalar. Source level is the ratio of the source intensity to a reference
intensity, converted to dB. The reference intensity is the intensity of a sound wave having an rms
pressure of 1 μPa. Units are in dB//1 μPa.

References
[1] Ainslie M. A. and J.G. McColm. "A simplified formula for viscous and chemical absorption in sea

water." Journal of the Acoustical Society of America, Vol. 103, Number 3, 1998, pp.
1671--1672.

[2] Urick, Robert J, Principles of Underwater Sound, 3rd ed. Peninsula Publishing, Los Altos, CA,
1983.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
range2tl | sonareqsnr | sonareqtl | tl2range

Topics
“Sonar Equation”
“Element Directivity”

Introduced in R2017b
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sonareqsnr
Compute SNR using the sonar equation

Syntax
SNR = sonareqsnr(SL,NL,DI,TL)
SNR = sonareqsnr(SL,NL,DI,TL,TS)

Description
SNR = sonareqsnr(SL,NL,DI,TL) returns the received signal-to-noise ratio, SNR, from the source
level, SL, received noise level, NL, receiver directivity index, DI, and transmission loss, TL. SNR is
computed using the “Sonar Equation”. Use this syntax to evaluate passive sonar system performance.

SNR = sonareqsnr(SL,NL,DI,TL,TS) returns SNR taking into account the target strength TS.
Use this syntax to evaluate active sonar system performance, where the transmitted signal is
reflected from a target.

Examples

Estimate SNR from Passive Sonar Equation

Estimate the SNR of a signal arriving from a source with a source level of 200 dB. The noise level is
75 dB, the receive array directivity index is 25 dB, and the transmission loss is 140 dB.

SL = 200.0;
NL = 75.0;
DI = 25.0;
TL = 140.0;
SNR = sonareqsnr(SL,NL,DI,TL)

SNR = 10

Estimate SNR from Active Sonar Equation

Estimate the SNR of a signal transmitted by a source with a source level of 130 dB//1 μPa and
reflected from a target with 25 dB//1 m2 target strength. The noise level is 45 dB//1 μPa, the receive
array directivity is 25 dB, and the one-way transmission loss is 60 dB.

SL = 130.0;
NL = 45.0;
DI = 25.0;
TL = 60.0;
TS = 25.0;
SNR = sonareqsnr(SL,NL,DI,TL,TS)

SNR = 15
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Input Arguments
SL — Sonar source level
scalar

Sonar source level, specified as a scalar. Source level is the ratio of the source intensity to a reference
intensity, converted to dB. The reference intensity is the intensity of a sound wave having a root-
mean-square (rms) pressure of 1 μPa. Units are in dB//1 μPa.
Example: 90
Data Types: double

NL — Received noise level
scalar

Received noise level, specified as a scalar. Noise level is the ratio of the noise intensity to a reference
intensity, converted to dB. The reference intensity is the intensity of a sound wave having a root-
mean-square (rms) pressure of 1 μPa. Units are in dB//1 μPa.
Example: 70
Data Types: double

DI — Receiver directivity index
scalar

Receiver directivity index, specified as a scalar. Units are in dB.
Example: 30
Data Types: double

TL — Transmission loss
positive scalar

Transmission loss (TL), specified as a positive scalar. Transmission loss is the attenuation of sound
intensity as the sound propagates through the underwater channel. Transmission loss is defined as
the ratio of sound intensity at 1 m from a source to the sound intensity at distance R. For active sonar,
TL represents one-way transmission loss.

TL = 10log
Is

I(R)

Units are in dB.
Example: 120
Data Types: double

TS — Target strength
scalar

Target strength, specified as a scalar. Target strength is the ratio of the intensity of a reflected signal
at 1 m from a target to the incident intensity. Target strength is the sonar analog to radar cross
section. Units are in dB//1 m2.
Example: 5
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Data Types: double

Output Arguments
SNR — Received signal-to-noise ratio
real scalar

Received signal-to-noise ratio, returned as a scalar.
Data Types: double

References
[1] Ainslie M. A. and J.G. McColm. "A simplified formula for viscous and chemical absorption in sea

water." Journal of the Acoustical Society of America, Vol. 103, Number 3, 1998, pp.
1671--1672.

[2] Urick, Robert J, Principles of Underwater Sound, 3rd ed. Peninsula Publishing, Los Altos, CA,
1983.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
range2tl | sonareqsl | sonareqtl | tl2range

Topics
“Sonar Equation”
“Element Directivity”

Introduced in R2017b

2 Functions

2-428



sonareqtl
Compute transmission loss using the sonar equation

Syntax
TL = sonareqtl(SL,SNR,NL,DI)
TL = sonareqtl(SL,SNR,NL,DI,TS)

Description
TL = sonareqtl(SL,SNR,NL,DI) returns the transmission loss of a signal from source to receiver
that produces the signal-to-noise ratio, SNR. Transmission loss is computed using the “Sonar
Equation”. Required inputs are the source level, SL, received noise level, NL, and receiver directivity
index, DI. Use this syntax to evaluate passive sonar system performance.

TL = sonareqtl(SL,SNR,NL,DI,TS) returns the one-way transmission loss. The signal is
reflected from a target with a target strength, TS. Use this syntax to evaluate active sonar system
performance, where the transmitted signal is reflected from a target.

Examples

Estimate Transmission Loss from Passive Sonar Equation

Estimate the transmission loss of a signal arriving from a source with source level of 200 dB. The
received SNR is 10 dB, the noise level is 75 dB, and the receive array directivity index is 25 dB.

SNR = 10;
SL = 200.0;
NL = 75.0;
DI = 25.0;
TL = sonareqtl(SL,SNR,NL,DI)

TL = 140

Estimate Transmission Loss from Active Sonar Equation

Estimate the one-way transmission loss of a signal transmitted by a source with source level of 130
dB//1 μPa and reflected from a target with 25 dB//1 m2 target strength. The noise level is 45 dB//1
μPa, the receive array directivity is 25 dB.

SL = 130.0;
SNR = 15.0;
NL = 45.0;
DI = 25.0;
TS = 25.0;
TL = sonareqtl(SL,SNR,NL,DI,TS)

TL = 60

 sonareqtl

2-429



Input Arguments
SL — Sonar source level
scalar

Sonar source level, specified as a scalar. Source level is the ratio of the source intensity to a reference
intensity, converted to dB. The reference intensity is the intensity of a sound wave having a root-
mean-square (rms) pressure of 1 μPa. Units are in dB//1 μPa.
Example: 90
Data Types: double

SNR — Received signal-to-noise ratio
scalar

Received signal-to-noise ratio, specified as a scalar. Units are in dB.
Example: 10
Data Types: double

NL — Received noise level
scalar

Received noise level, specified as a scalar. Noise level is the ratio of the noise intensity to a reference
intensity, converted to dB. The reference intensity is the intensity of a sound wave having a root-
mean-square (rms) pressure of 1 μPa. Units are in dB//1 μPa.
Example: 70
Data Types: double

DI — Receiver directivity index
scalar

Receiver directivity index, specified as a scalar. Units are in dB.
Example: 30
Data Types: double

TS — Target strength
scalar

Target strength, specified as a scalar. Target strength is the ratio of the intensity of a reflected signal
at 1 m from a target to the incident intensity. Target strength is the sonar analog to radar cross
section. Units are in dB//1 m2.
Example: 5
Data Types: double

Output Arguments
TL — Transmission loss
positive scalar
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Transmission loss, returned as a positive scalar. Transmission loss is the attenuation of sound
intensity as the sound propagates through the underwater channel. Transmission loss is defined as
the ratio of sound intensity at 1 m from a source to the sound intensity at distance R. When target
strength, TS, is specified, transmission loss is two-way.

References
[1] Ainslie M. A. and J.G. McColm. "A simplified formula for viscous and chemical absorption in sea

water." Journal of the Acoustical Society of America, Vol. 103, Number 3, 1998, pp.
1671--1672.

[2] Urick, Robert J, Principles of Underwater Sound, 3rd ed. Peninsula Publishing, Los Altos, CA,
1983.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
range2tl | sonareqsl | sonareqsnr | tl2range

Topics
“Sonar Equation”
“Element Directivity”

Introduced in R2017b
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scatteringchanmtx
Scattering channel matrix

Syntax
chmat = scatteringchanmtx(txarraypos,rxarraypos,numscat)
chmat = scatteringchanmtx(txarraypos,rxarraypos,numscat,angrange)
chmat = scatteringchanmtx(txarraypos,rxarraypos,txang,rxang,G)

Description
chmat = scatteringchanmtx(txarraypos,rxarraypos,numscat) returns the channel matrix,
chmat, for a MIMO channel consisting of a transmitting array, a receiver array, and multiple
scatterers. The transmitting array is located at txarraypos and the receiving array at rxarraypos.
numscat is the number of point scatterers.

The function generates numscat random transmission directions and numscat random receiving
directions. The channel matrix describes multipath propagation through the numscat paths. By
assumption, all paths arrive at the receiving array simultaneously implying that the channel is
frequency flat. Flat frequency means that the spectrum of the signal is not changed. Path gains are
derived from a zero-mean, unit-variance, complex-valued normal distribution.

chmat = scatteringchanmtx(txarraypos,rxarraypos,numscat,angrange) also specifies
the angular range, angrange, for transmitting and receiving angles.

chmat = scatteringchanmtx(txarraypos,rxarraypos,txang,rxang,G) also specifies
transmitting angles, txang, receiving angles, rxang, and path gains, G.

Examples

Compute Channel Matrix for Random Signal Paths

Compute the channel matrix for a 13-element transmitting array and a 15-element receiving array.
Assume that there are 17 randomly located scatterers. The arrays are uniform linear arrays with
0.45-wavelength spacing. The receiving array is 300 wavelengths away from the transmitting array.
Use the channel matrix to compute a propagated signal from the transmitting array to the receiving
array.

Specify the arrays. Element spacing is in units of wavelength.

numtx = 13;
sp = 0.45;
txpos = (0:numtx-1)*sp;
numrx = 15;
rxpos = 300 + (0:numrx-1)*sp;

Specify the number of scatterers and create the channel matrix.

numscat = 17;
chmat = scatteringchanmtx(txpos,rxpos,numscat);
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Create a signal consisting of zeros and ones. Then, propagate the signal from the transmitter to
receiver.

x = randi(2,[100 numtx])-1;
y = x*chmat;

Compute Channel Matrix for Constrained Random Signal Paths

Compute the channel matrix for a 4-by-4 transmitting URA array and a 5-by-5 receiving URA array.
Assume that 17 scatterers are randomly located within a specified angular range. The element
spacing for both arrays is one-half wavelength. The receive array is 500 wavelengths away from the
transmitting array along the x-axis. Use the channel matrix to compute a propagated signal from the
transmitting array to the receiving array. Constrain the angular span for the transmitting and
receiving directions.

Specify the 4-by-4 transmitting array. Element spacing is in units of wavelength.

Nt = 4;
sp = 0.5;
ygridtx = (0:Nt-1)*sp - (Nt-1)/2*sp;
zgridtx = (0:Nt-1)*sp - (Nt-1)/2*sp;
[ytx,ztx] = meshgrid(ygridtx,zgridtx);
txpos = [zeros(1,Nt*Nt);ytx(:).';ztx(:).'];

Specify the 5-by-5 receiving array. Element spacing is in units of wavelength.

Nr = 5;
sp = 0.5;
ygridrx = (0:Nr-1)*sp - (Nr-1)/2*sp;
zgridrx = (0:Nr-1)*sp - (Nr-1)/2*sp;
[yrx,zrx] = meshgrid(ygridrx,zgridrx);
rxpos = [500*ones(1,Nr*Nr);yrx(:).';zrx(:).'];

Set the angular limits for transmitting and receiving.

• The azimuth angle limits for the transmitter are −45° to +45°.
• The azimuth angle limits for the receiver are −75° to +50°.
• The elevation angle limits for the transmitter are −12° to +12°.
• The elevation angle limits for the receiver are −30° to +30°.

angrange = [-45 45 -75 50; -12 12 -30 30];

Specify the number of scatterers and create the channel matrix.

numscat = 6;
chmat = scatteringchanmtx(txpos,rxpos,numscat,angrange);

Create a 100-sample signal consisting of zeros and ones. Then, propagate the signal from the
transmitting array to the receiving array.

x = randi(2,[100 Nt*Nt])-1;
y = x*chmat;
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Compute Channel Matrix for Specified Signal Paths

Compute the channel matrix for a 4-by-4 transmitting URA array and a 5-by-5 receiving URA array.
Assume there are 3 scatterers with known directions. The element spacings for both arrays is one-
half wavelength. The receive array is 500 wavelengths away from the transmitting array along the x-
axis. Use the channel matrix to compute a propagated signal from the transmitting array to the
receiving array. Specify the transmitting and receiving directions. The number of directions
determines the number of scatterers.

Specify the 4-by-4 transmitting array. Element spacing is in units of wavelength.

Nt = 4;
sp = 0.5;
ygridtx = (0:Nt-1)*sp - (Nt-1)/2*sp;
zgridtx = (0:Nt-1)*sp - (Nt-1)/2*sp;
[ytx,ztx] = meshgrid(ygridtx,zgridtx);
txpos = [zeros(1,Nt*Nt);ytx(:).';ztx(:).'];

Specify the 5-by-5 receiving array. Element spacing is in units of wavelength.

Nr = 5;
sp = 0.5;
ygridrx = (0:Nr-1)*sp - (Nr-1)/2*sp;
zgridrx = (0:Nr-1)*sp - (Nr-1)/2*sp;
[yrx,zrx] = meshgrid(ygridrx,zgridrx);
rxpos = [500*ones(1,Nr*Nr);yrx(:).';zrx(:).'];

Specify the transmitting and receiving angles and the gains. Then, create the channel matrix.

txang = [20 -10 40; 0 12 -12];
rxang = [70 -5.5 27.2; 4 1 -10];
gains = [1 1+1i 2-3*1i];
chmat = scatteringchanmtx(txpos,rxpos,txang,rxang,gains);

Create a 100-sample signal consisting of zeros and ones. Then, propagate the signal from the
transmitting array to the receiving array.

x = randi(2,[100 Nt*Nt])-1;
y = x*chmat;

Input Arguments
txarraypos — Positions of elements in transmitting array
real-valued 1-by-Nt row vector | real-valued 2-by-Nt matrix | real-valued 3-by-Nt matrix

Transmitting array element positions, specified as a real-valued 1-by-Nt row vector, 2-by-Nt matrix, or
3-by-Nt matrix. Nt is the number of elements in the transmitting array.

txarraypos Dimensions of Transmitting Array
1-by-Nt row vector All transmitting array elements lie along the y-

axis. The vector specifies the y-coordinates of the
array elements.
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txarraypos Dimensions of Transmitting Array
2-by-Nt matrix All transmitting array elements lie in the yz-

plane. Each column of the matrix specifies the y
and z coordinates of an array element.

3-by-Nt matrix The transmitting array elements have arbitrary 3-
D coordinates. Each column of the matrix
specifies the x, y, and z coordinates of an array
element.

Units are in wavelengths.
Example: [-2.0,-1.0,0.0,1.0,2.0]
Data Types: double

rxarraypos — Positions of elements in receiving array
real-valued 1-by-Nr row vector | real-valued 2-by-Nr matrix | real-valued 3-by-Nr matrix

Receiving array element positions, specified as a real-valued 1-by-Nr row vector, 2-by-vmatrix, or 3-
by-Nr matrix. Nt is the number of elements in the transmitting array.

rxarraypos Dimensions of Receiving Array
1-by-Nr row vector All receiving array elements lie along the y-axis.

The vector specifies the y-coordinates of the
array elements.

2-by-Nr matrix All receiving array elements lie in the yz-plane.
Each column of the matrix specifies the y and z
coordinates of an array element.

3-by-Nr matrix The receiving array elements have arbitrary 3-D
coordinates. Each column of the matrix specifies
the x, y, and z coordinates of an array element.

Units are in wavelengths.
Example: [-2.0,-1.0,0.0,1.0,2.0]
Data Types: double

numscat — Number of scatterers
positive integer

Number of scatters, specified as a positive integer
Example: 7
Data Types: double

angrange — Angular range of transmission and reception directions
real-valued 1-by-2 row vector | real-valued row 1-by-4 vector | real-valued 2-by-2 matrix | real-valued
2-by-4 matrix

Angular range of transmitting and receiving directions, specified as one of the values in this table.
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Size of angrange Angular range
real-valued 1-by-2 row vector Specify the same azimuth angle direction span

for the transmitting and receiving arrays by using
the minimum and maximum azimuth angles,
[az_min az_max]. The elevation direction span
is –90° to +90°.

real-valued 1-by-4 row vector Specify the azimuth angle direction range for the
transmitting and receiving arrays by using
[tx_az_min tx_az_max rx_az_min
rx_az_max]. The first two values are the
minimum and maximum of the transmitting array
directions. The last two values are the minimum
and maximum of the receiving array directions.
The range of the elevation angles is –90° to +90°.

real-valued 2-by-2 matrix Specify the same azimuth and elevation angle
direction spans for the transmitting and receiving
arrays by using the minimum and maximum
azimuth and elevation angles, [az_min
az_max; el_min el_max].

real-valued 2-by-4 matrix Specify separate azimuth and elevation angle
direction spans by using [tx_az_min
tx_az_max rx_az_min rx_az_max;
tx_el_min tx_el_max rx_el_min
rx_el_max]. The first and second columns form
the transmitting array direction span. The last
two columns form the receiving array direction
span.

Units are in degrees.
Example: [-45 45 -30 30; -10 20 -5 30]
Data Types: double

txang — Transmission path angles
real-valued 1-by-Ns row vector | real-valued 2-by-Ns matrix

Transmission path angles, specified as a real-valued 1-by-Ns row vector or a 2-by-Ns matrix. Ns is the
number of scatterers specified by numscat.

• When txang is a vector, each element specifies the azimuth angle of a path. The elevation angle of
the path is zero degrees.

• When txang is a matrix, each column specifies the azimuth and elevation angles of a path in the
form [az;el].

Example: [4 -2; 0 35]
Data Types: double

rxang — Receiving path angles
real-valued 1-by-Ns row vector | real-valued 2-by-Ns matrix
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Receiving path angles, specified as a real-valued 1-by-Ns row vector or a 2-by-Ns matrix. Ns is the
number of scatterers specified by numscat.

• When rxang is a vector, each element specifies the azimuth angle of a path. The elevation angle of
the path is zero degrees.

• When rxang is a matrix, each column specifies the azimuth and elevation angles of a path in the
form [az;el].

Example: [4 -2; 0 35]
Data Types: double

G — Path gains
1-by-Ns complex-valued row vector

Path gains, specified as a 1-by-Ns complex-valued row vector. Ns is the number of scatterers specified
by numscat. The gains apply to the corresponding paths. Units are dimensionless.
Example: exp(1i*pi/3)
Data Types: double

Output Arguments
chmat — MIMO channel matrix
Nt-by-Nr complex-valued matrix

MIMO channel matrix, returned as an Nt-by-Nr complex-valued matrix. Nt is the number of elements
in the transmitting array. Nr is the number of elements in the receiving array.
Data Types: double

References
[1] Heath, R. Jr. et al. “An Overview of Signal Processing Techniques for Millimeter Wave MIMO

Systems”, arXiv.org:1512.03007 [cs.IT], 2015.

[2] Tse, D. and P. Viswanath, Fundamentals of Wireless Communications, Cambridge: Cambridge
University Press, 2005.

[3] Paulraj, A. Introduction to Space-Time Wireless Communications, Cambridge: Cambridge
University Press, 2003.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.
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See Also
Functions
blkdiagbfweights | diagbfweights | waterfill

System Objects
phased.ScatteringMIMOChannel

Introduced in R2017a
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speed2dop
Convert speed to Doppler shift

Syntax
Doppler_shift = speed2dop(radvel,lambda)

Description
Doppler_shift = speed2dop(radvel,lambda) returns the one-way Doppler shift in hertz
corresponding to the radial velocity, radvel, for the wavelength lambda.

Examples

Calculate Doppler Shift from Speed

Calculate the Doppler shift in hertz for a given carrier wavelength and source speed. The radar
frequency is 24.15 GHz. Assume a radial speed of 35.76 m/s.

radvel = 35.76;
f0 = 24.15e9;
lambda = physconst('LightSpeed')/f0;
doppler_shift = speed2dop(radvel,lambda)

doppler_shift = 2.8807e+03

More About
Doppler-Radial Velocity Relation

The Doppler shift of a source relative to a receiver can be computed from the relative radial velocity
between the source and receiver:

Δf =
Vs, r

λ

where Δf is the Doppler shift in hertz, Vs,r denotes the radial velocity of the source relative to the
receiver, and λ is the carrier frequency wavelength in meters.

References

[1] Rappaport, T. Wireless Communications: Principles & Practices. Upper Saddle River, NJ: Prentice
Hall, 1996.

[2] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

 speed2dop

2-439



Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
dop2speed | dopsteeringvec

Introduced in R2011a
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sph2cartvec
Convert vector from spherical basis components to Cartesian components

Syntax
vr = sph2cartvec(vs,az,el)

Description
vr = sph2cartvec(vs,az,el) converts the components of a vector or set of vectors, vs, from
their spherical basis representation to their representation in a local Cartesian coordinate system. A
spherical basis representation is the set of components of a vector projected into the right-handed
spherical basis given by (eaz, eel, eR). The orientation of a spherical basis depends upon its location
on the sphere as determined by azimuth, az, and elevation, el.

Examples

Cartesian Representation of Azimuthal Vector

Start with a vector in a spherical basis located at 45° azimuth, 45° elevation. The vector points along
the azimuth direction. Compute the vector components with respect to Cartesian coordinates.

vs = [1;0;0];
vr = sph2cartvec(vs,45,45)

vr = 3×1

   -0.7071
    0.7071
         0

Input Arguments
vs — Vector in spherical basis representation
3-by-1 column vector | 3-by-N matrix

Vector in spherical basis representation specified as a 3-by-1 column vector or 3-by-N matrix. Each
column of vs contains the three components of a vector in the right-handed spherical basis
(eaz, eel, eR).

Example: [4.0; -3.5; 6.3]
Data Types: double
Complex Number Support: Yes

az — Azimuth angle
scalar in range [–180,180]
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Azimuth angle specified as a scalar in the closed range [–180,180]. Angle units are in degrees. To
define the azimuth angle of a point on a sphere, construct a vector from the origin to the point. The
azimuth angle is the angle in the xy-plane from the positive x-axis to the vector's orthogonal
projection into the xy-plane. As examples, zero azimuth angle and zero elevation angle specify a point
on the x-axis while an azimuth angle of 90° and an elevation angle of zero specify a point on the y-
axis.
Example: 45
Data Types: double

el — Elevation angle
scalar in range [–90,90]

Elevation angle specified as a scalar in the closed range [–90,90]. Angle units are in degrees. To
define the elevation of a point on the sphere, construct a vector from the origin to the point. The
elevation angle is the angle from its orthogonal projection into the xy-plane to the vector itself. As
examples, zero elevation angle defines the equator of the sphere and ±90° elevation define the north
and south poles, respectively.
Example: 30
Data Types: double

Output Arguments
vr — Vector in Cartesian representation
3-by-1 column vector | 3-by-N matrix

Cartesian vector returned as a 3-by-1 column vector or 3-by-N matrix having the same dimensions as
vs. Each column of vr contains the three components of the vector in the right-handed x,y,z basis.

More About
Spherical basis representation of vectors

Spherical basis vectors are a local set of basis vectors which point along the radial and angular
directions at any point in space.

The spherical basis is a set of three mutually orthogonal unit vectors (eaz, eel, eR) defined at a point
on the sphere. The first unit vector points along lines of azimuth at constant radius and elevation. The
second points along the lines of elevation at constant azimuth and radius. Both are tangent to the
surface of the sphere. The third unit vector points radially outward.

The orientation of the basis changes from point to point on the sphere but is independent of R so as
you move out along the radius, the basis orientation stays the same. The following figure illustrates
the orientation of the spherical basis vectors as a function of azimuth and elevation:
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For any point on the sphere specified by az and el, the basis vectors are given by:

eaz = − sin(az) i + cos(az) j

eel = − sin(el)cos(az) i − sin(el)sin(az) j + cos(el)k

eR = cos(el)cos(az) i + cos(el)sin(az) j + sin(el)k   .

Any vector can be written in terms of components in this basis as v = vazeaz + veleel + vReR. The
transformations between spherical basis components and Cartesian components take the form

vx
vy
vz

=
−sin(az) −sin(el)cos(az) cos(el)cos(az)
cos(az) −sin(el)sin(az) cos(el)sin(az)

0 cos(el) sin(el)

vaz
vel
vR

.

and

vaz
vel
vR

=
−sin(az) cos(az) 0

−sin(el)cos(az) −sin(el)sin(az) cos(el)
cos(el)cos(az) cos(el)sin(az) sin(el)

vx
vy
vz

.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
azelaxes | cart2sphvec

Introduced in R2013a
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spsmooth
Spatial smoothing

Syntax
RSM = spsmooth(R,L)
RSM = spsmooth(R,L,'fb')

Description
RSM = spsmooth(R,L) computes an averaged spatial covariance matrix, RSM, from the full spatial
covariance matrix, R, using spatial smoothing (see Van Trees [1], p. 605). Spatial smoothing creates a
smaller averaged covariance matrix over L maximum overlapped subarrays. L is a positive integer
less than N. The resulting covariance matrix, RSM, has dimensions (N–L+1)-by-(N–L+1). Spatial
smoothing is useful when two or more signals are correlated.

RSM = spsmooth(R,L,'fb') computes an averaged covariance matrix and at the same time
performing forward-backward averaging. This syntax can use any of the input arguments in the
previous syntax.

Examples

Comparison of Smoothed and Nonsmoothed Covariance Matrices

Construct a 10-element half-wavelength-spaced uniform line array receiving two plane waves arriving
from 0° and -25° azimuth. Both elevation angles are 0°. Assume the two signals are partially
correlated. The SNR for each signal is 5 dB. The noise is spatially and temporally Gaussian white
noise. First, create the spatial covariance matrix from the signal and noise. Then, solve for the
number of signals, using rootmusicdoa. Next, perform spatial smoothing on the covariance matrix,
using spsmooth, and solve for the signal arrival angles again using rootmusicdoa.

Set up the array and signals. Then, generate the spatial covariance matrix for the array from the
signals and noise.

N = 10;
d = 0.5;
elementPos = (0:N-1)*d;
angles = [0 -25];
ac = [1 1/5];
scov = ac'*ac;
R = sensorcov(elementPos,angles,db2pow(-5),scov);

Solve for the arrival angles using the original covariance matrix.

Nsig = 2;
doa =  rootmusicdoa(R,Nsig)

doa = 1×2
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    0.2099   41.3166

The solved-for arrival angles are wrong - they do not agree with the known angles of arrival used to
create the covariance matrix.

Next, solve for the arrival angles using a smoothed covariance matrix. Perform spatial smoothing to
detect L-1 coherent signals. Choose L = 3.

Nsig = 2;
L = 2;
RSM = spsmooth(R,L);
doasm = rootmusicdoa(RSM,Nsig)

doasm = 1×2

  -25.0000   -0.0000

In this case, computed angles do agree with the known angles of arrival.

Input Arguments
R — Spatial covariance matrix
complex-valued positive-definite N-by-N matrix.

Spatial covariance matrix, specified as a complex-valued, positive-definite N-by-N matrix. In this
matrix, N represents the number of sensor elements.
Example: [ 4.3162, –0.2777 –0.2337i; –0.2777 + 0.2337i , 4.3162]
Data Types: double
Complex Number Support: Yes

L — Maximum number of overlapped subarrays
positive integer

Maximum number of overlapped subarrays, specified as a positive integer. The value L must be less
than the number of sensors, N.
Example: 2
Data Types: double

Output Arguments
RSM — Smoothed covariance matrix
complex-valued M-by-M matrix

Smoothed covariance matrix, returned as a complex-valued, M-by-M matrix. The dimension M is
given by M = N–L+1.

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
aictest | espritdoa | mdltest | rootmusicdoa

Introduced in R2013a
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steervec
Steering vector

Syntax
sv = steervec(pos,ang)
sv = steervec(pos,ang,nqbits)

Description
sv = steervec(pos,ang) returns the steering vector sv for each incoming plane wave or set of
plane waves impinging on a sensor array. The steering vector represents the set of phase-delays for
an incoming wave at each sensor element. The pos argument specifies the positions of the sensor
array elements. The ang argument specifies the incoming wave arrival directions in terms of azimuth
and elevation angles. The steering vector, sv, is an N-by-M complex-valued matrix. In this matrix, N
represents the number of element positions in the sensor array while M represents the number of
incoming waves. Each column of sv contains the steering vector for the corresponding direction
specified in ang. All elements in the sensor array are assumed to be isotropic.

sv = steervec(pos,ang,nqbits) returns quantized narrowband steering vector when the
number of phase shifter bits is set to nqbits.

Examples

Line Array Steering Vector

Specify a uniform line array of five elements spaced 10 cm apart. Then, specify an incoming plane
wave with a frequency of 1 GHz and an arrival direction of 45° azimuth and 0° elevation. Compute
the steering vector of this wave.

elementPos = (0:.1:.4);
c = physconst('LightSpeed');
fc = 1e9;
lam = c/fc;
ang = [45;0];
sv = steervec(elementPos/lam,ang)

sv = 5×1 complex

   1.0000 + 0.0000i
   0.0887 + 0.9961i
  -0.9843 + 0.1767i
  -0.2633 - 0.9647i
   0.9376 - 0.3478i
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Quantized Line Array Steering Vector

Specify a uniform line array (ULA) containing five isotropic elements spaced 10 cm apart. Then,
specify an incoming plane wave having a frequency of 1 GHz and an arrival direction of 45° azimuth
and 0° elevation. Compute the steering vector of this wave. Quantize the steering vector to three bits.

elementPos = (0:.1:.4);
c = physconst('LightSpeed');
fc = 1e9;
lam = c/fc;
ang = [45;0];
sv = steervec(elementPos/lam,ang,3)

sv = 5×1 complex

   1.0000 + 0.0000i
   0.0000 + 1.0000i
  -1.0000 + 0.0000i
  -0.0000 - 1.0000i
   1.0000 + 0.0000i

Input Arguments
pos — Positions of array sensor elements
1-by-N real-valued vector | 2-by-N real-valued matrix | 3-by-N real-valued matrix

Positions of the elements of a sensor array specified as a 1-by-N vector, a 2-by-N matrix, or a 3-by-N
matrix. In this vector or matrix, N represents the number of elements of the array. Each column of
pos represents the coordinates of an element. You define sensor position units in term of signal
wavelength. If pos is a 1-by-N vector, then it represents the y-coordinate of the sensor elements of a
line array. The x and z-coordinates are assumed to be zero. When pos is a 2-by-N matrix, it represents
the (y,z)-coordinates of the sensor elements of a planar array. This array is assumed to lie in the yz-
plane. The x-coordinates are assumed to be zero. When pos is a 3-by-N matrix, then the array has
arbitrary shape.
Example: [0,0,0; 0.1,0.4,0.3;1,1,1]
Data Types: double

ang — Arrival directions of incoming signals
1-by-M real-valued vector | 2-by-M real-valued matrix

Arrival directions of incoming signals specified as a 1-by-M vector or a 2-by-M matrix, where M is the
number of incoming signals. If ang is a 2-by-M matrix, each column specifies the direction in azimuth
and elevation of the incoming signal [az;el]. Angular units are specified in degrees. The azimuth
angle must lie between –180° and 180° and the elevation angle must lie between –90° and 90°. The
azimuth angle is the angle between the x-axis and the projection of the arrival direction vector onto
the xy plane. It is positive when measured from the x-axis toward the y-axis. The elevation angle is
the angle between the arrival direction vector and xy-plane. It is positive when measured towards the
z axis. If ang is a 1-by-M vector, then it represents a set of azimuth angles with the elevation angles
assumed to be zero.
Example: [45;0]
Data Types: double
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nqbits — Number of phase shifter quantization bits
0 (default) | non-negative integer

Number of bits used to quantize the phase shift in beamformer or steering vector weights, specified
as a non-negative integer. A value of zero indicates that no quantization is performed.
Example: 5

Output Arguments
sv — Steering vector
N-by-M complex-valued matrix

Steering vector returned as an N-by-M complex-valued matrix. In this matrix, N represents the
number of sensor elements of the array and M represents the number of incoming plane waves. Each
column of sv corresponds to the same column in ang.

References
[1] Van Trees, H.L. Optimum Array Processing. New York, NY: Wiley-Interscience, 2002.

[2] Johnson, Don H. and D. Dudgeon. Array Signal Processing. Englewood Cliffs, NJ: Prentice Hall,
1993.

[3] Van Veen, B.D. and K. M. Buckley. “Beamforming: A versatile approach to spatial filtering”. IEEE
ASSP Magazine, Vol. 5 No. 2 pp. 4–24.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
cbfweights | lcmvweights | mvdrweights | phased.SteeringVector | sensorcov

Introduced in R2013a

2 Functions

2-450



stokes
Stokes parameters of polarized field

Syntax
G = stokes(fv)
stokes(fv)

Description
G = stokes(fv) returns the four Stokes parameters G of a polarized field or set of fields specified
in fv. The field should be expressed in terms of linear polarization components. The expression of a
field in terms of a two-row vector of linear polarization components is called the Jones vector
formalism.

stokes(fv) displays the Stokes parameters corresponding to fv as points on the Poincare sphere.

Examples

Stokes Vector

Create a left circularly-polarized field. Convert it to a linear representation and compute the Stokes
vector.

cfv = [2;0];
fv = circpol2pol(cfv);
G = stokes(fv)

G = 4×1

    4.0000
         0
         0
    4.0000

Poincare Sphere

Display points on the Poincare sphere for a left circularly-polarized field and a 45° linear polarized
field.

fv = [sqrt(2)/2, 1; sqrt(2)/2*1i, 1];
G = stokes(fv)

G = 4×2

    1.0000    2.0000
         0         0
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         0    2.0000
    1.0000         0

stokes(fv);

The point at the north pole represents the left circularly-polarized field. The point on the equator
represents the 45° linear polarized field.

Input Arguments
fv — Field vector in linear polarization representation or linear polarization ratio
1-by-N complex-value row vector or 2-by-N complex-value matrix

Field vector in its linear polarization representation specified as a 2-by-N complex-valued matrix or in
its linear polarization ratio representation specified as a 1-by-N complex-valued row vector. If fv is a
matrix, each column of fv represents a field in the form [Eh;Ev], where Eh and Ev are its horizontal
and vertical linear polarization components. The expression of a field in terms of a two-row vector of
linear polarization components is called the Jones vector formalism. If fv is a vector, each entry in fv
is contains the polarization ratio, Ev/Eh.
Example: [sqrt(2)/2*1i; 1]
Data Types: double
Complex Number Support: Yes
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Output Arguments
G — Stokes parameters
4-by-N matrix of Stokes parameters.

G contains the four Stokes parameters for each polarized field specified in fv. The Stokes parameters
are computed from combinations of intensities of the field:

• G0 describes the total intensity of the field.
• G1 describes the preponderance of horizontal linear polarization intensity over vertical linear

polarization intensity.
• G2 describes the preponderance of +45° linear polarization intensity over -45° linear polarization

intensity.
• G3 describes the preponderance of right circular polarization intensity over left circular

polarization intensity.

References
[1] Mott, H., Antennas for Radar and Communications, John Wiley & Sons, 1992.

[2] Jackson, J.D. , Classical Electrodynamics, 3rd Edition, John Wiley & Sons, 1998, pp. 299–302.

[3] Born, M. and E. Wolf, Principles of Optics, 7th Edition, Cambridge: Cambridge University Press,
1999, pp 25–32.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.
• Supported only when output arguments are specified.

See Also
circpol2pol | pol2circpol | polellip | polratio

Introduced in R2013a
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stretchfreq2rng
Convert frequency offset to range

Syntax
R = stretchfreq2rng(FREQ,SLOPE,REFRNG)
R = stretchfreq2rng(FREQ,SLOPE,REFRNG,V)

Description
R = stretchfreq2rng(FREQ,SLOPE,REFRNG) returns the range corresponding to the frequency
offset FREQ. The computation assumes you obtained FREQ through stretch processing with a
reference range of REFRNG. The sweeping slope of the linear FM waveform is SLOPE.

R = stretchfreq2rng(FREQ,SLOPE,REFRNG,V) specifies the propagation speed V.

Input Arguments
FREQ

Frequency offset in hertz, specified as a scalar or vector.

SLOPE

Sweeping slope of the linear FM waveform, in hertz per second, specified as a nonzero scalar.

REFRNG

Reference range, in meters, specified as a scalar.

V

Propagation speed, in meters per second, specified as a positive scalar.

Default: Speed of light

Output Arguments
R

Range in meters. R has the same dimensions as FREQ .

Examples

Range Corresponding to Frequency Offset

Calculate the range corresponding to a frequency offset of 2 kHz obtained from stretch processing.
Assume the reference range is 5000 m and the linear FM waveform has a sweeping slope of 2 GHz/s.
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r = stretchfreq2rng(2e3,2e9,5000)

r = 4.8501e+03

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
ambgfun | beat2range | phased.LinearFMWaveform | phased.StretchProcessor |
range2beat | rdcoupling

Topics
“Range Estimation Using Stretch Processing”
“Stretch Processing”

Introduced in R2012a
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surfacegamma
Gamma value for different terrains

Syntax
G = surfacegamma(TerrainType)
G = surfacegamma(TerrainType,FREQ)
surfacegamma

Description
G = surfacegamma(TerrainType) returns the γ value for the specified terrain. The γ value is for
an operating frequency of 10 GHz.

G = surfacegamma(TerrainType,FREQ) specifies the operating frequency of the system.

surfacegamma displays several terrain types and their corresponding γ values. These γ values are
for an operating frequency of 10 GHz.

Input Arguments
TerrainType

Character vectors that describe the terrain type. Valid values are:

• 'sea state 3'
• 'sea state 5'
• 'woods'
• 'metropolitan'
• 'rugged mountain'
• 'farmland'
• 'wooded hill'
• 'flatland'

FREQ

Operating frequency of radar system in hertz. This value can be a scalar or vector.

Default: 10e9

Output Arguments
G

Value of γ in decibels, for constant γ clutter model.
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Examples

Simulate Constant Gamma Clutter

Determine the γ value for a wooded area, and then simulate the clutter return from that area. Assume
the radar system uses a single cosine pattern antenna element and has an operating frequency of 300
MHz.

fc = 300e6;
g = surfacegamma('woods',fc);
clutter = phased.ConstantGammaClutter('Gamma',g,...
    'Sensor',phased.CosineAntennaElement,...
    'OperatingFrequency',fc);
x = clutter();
r = (0:numel(x)-1)/(2*clutter.SampleRate) * ...
    clutter.PropagationSpeed;
plot(r,abs(x))
xlabel('Range (m)')
ylabel('Clutter Magnitude (V)')
title('Clutter Return vs. Range')
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More About
Gamma

A frequently used model for clutter simulation is the constant gamma model. This model uses a
parameter, γ, to describe clutter characteristics of different types of terrain. Values of γ are derived
from measurements.

Algorithms
The γ values for the terrain types 'sea state 3', 'sea state 5', 'woods', 'metropolitan',
and 'rugged mountain' are from [2].

The γ values for the terrain types 'farmland', 'wooded hill', and 'flatland' are from [3].

Measurements provide values of γ for a system operating at 10 GHz. The γ value for a system
operating at frequency f is:

γ = γ0 + 5log f
f0

where γ0 is the value at frequency f0 = 10 GHz.

References

[1] Barton, David. “Land Clutter Models for Radar Design and Analysis,” Proceedings of the IEEE.
Vol. 73, Number 2, February, 1985, pp. 198–204.

[2] Long, Maurice W. Radar Reflectivity of Land and Sea, 3rd Ed. Boston: Artech House, 2001.

[3] Nathanson, Fred E., J. Patrick Reilly, and Marvin N. Cohen. Radar Design Principles, 2nd Ed.
Mendham, NJ: SciTech Publishing, 1999.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
grazingang | horizonrange | phased.ConstantGammaClutter

Introduced in R2011b
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surfclutterrcs
Surface clutter radar cross section (RCS)

Syntax
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau)
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c)

Description
RCS = surfclutterrcs(NRCS,R,az,el,graz,tau) returns the radar cross section (RCS) of a
clutter patch that is of range R meters away from the radar system. az and el are the radar system
azimuth and elevation beamwidths, respectively, corresponding to the clutter patch. graz is the
grazing angle of the clutter patch relative to the radar. tau is the pulse width of the transmitted
signal. The calculation automatically determines whether the surface clutter area is beam limited or
pulse limited, based on the values of the input arguments.

RCS = surfclutterrcs(NRCS,R,az,el,graz,tau,c) specifies the propagation speed in meters
per second.

Input Arguments
NRCS

Normalized radar cross section of clutter patch in units of square meters/square meters.

R

Range of clutter patch from radar system, in meters.

az

Azimuth beamwidth of radar system corresponding to clutter patch, in degrees.

el

Elevation beamwidth of radar system corresponding to clutter patch, in degrees.

graz

Grazing angle of clutter patch relative to radar system, in degrees.

tau

Pulse width of transmitted signal, in seconds.

c

Propagation speed, in meters per second.

Default: Speed of light
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Output Arguments
RCS

Radar cross section of clutter patch.

Examples

Compute Surface Clutter RCS

Calculate the RCS of a clutter patch and estimate the clutter-to-noise ratio (CNR) at the receiver.
Assume that the patch has a normalized radar cross section (NRCS) of 1 m²/m² and is 1.0 km away
from the radar system. The azimuth and elevation beamwidths are 1° and 3°, respectively. The
grazing angle is 10°. The pulse width is 10μs. The radar operates at a wavelength of 1 cm with a peak
power of 5 kW.

nrcs = 1;
rng = 1.0e3;
az = 1;
el = 3;
graz = 10;
tau = 10e-6;
lambda = 0.01;
ppow = 5000;
rcs = surfclutterrcs(nrcs,rng,az,el,graz,tau)

rcs = 5.2627e+03

cnr = radareqsnr(lambda,rng,ppow,tau,'rcs',rcs)

cnr = 75.2006

Tips
• You can calculate the clutter-to-noise ratio using the output of this function as the RCS input

argument value in radareqsnr.

Algorithms
See [1].

References

[1] Richards, M. A. Fundamentals of Radar Signal Processing. New York: McGraw-Hill, 2005, pp. 57–
63.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

Does not support variable-size inputs.

See Also
grazingang | phitheta2azel | radareqsnr | surfacegamma | uv2azel

Introduced in R2011b
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systemp
Receiver system-noise temperature

Syntax
STEMP = systemp(NF)
STEMP = systemp(NF,REFTEMP)

Description
STEMP = systemp(NF) calculates the effective system-noise temperature, STEMP, in kelvin, based
on the noise figure, NF. The reference temperature is 290 K.

STEMP = systemp(NF,REFTEMP) specifies the reference temperature.

Input Arguments
NF

Noise figure in decibels. The noise figure is the ratio of the actual output noise power in a receiver to
the noise power output of an ideal receiver.

REFTEMP

Reference temperature in kelvin, specified as a nonnegative scalar. The output of an ideal receiver
has a white noise power spectral density that is approximately the Boltzmann constant times the
reference temperature in kelvin.

Default: 290

Output Arguments
STEMP

Effective system-noise temperature in kelvin. The effective system-noise temperature is
REFTEMP*10^(NF/10).

Examples

Compute System Noise Temperature

Calculate the system noise temperature of a receiver with a 300 K reference temperature and a 5 dB
noise figure.

T = systemp(5,300)

T = 948.6833
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References

[1] Skolnik, M. Introduction to Radar Systems. New York: McGraw-Hill, 1980.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
noisepow | phased.ReceiverPreamp

Introduced in R2011a
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taylortaperc
Taylor nbar taper for arrays

Syntax
W = taylortaperc(pos,diam)
W = taylortaperc(pos,diam,nbar)
W = taylortaperc(pos,diam,nbar,sll)
W = taylortaperc(pos,diam,nbar,sll,cpos)

Description
W = taylortaperc(pos,diam) returns the value of a Taylor n-bar taper, W, at sensor element
positions specified by pos in a circular aperture having diameter diam.

W = taylortaperc(pos,diam,nbar) also specifies, nbar, the number of approximately constant-
level sidelobes next to the mainlobe.

W = taylortaperc(pos,diam,nbar,sll) also specifies the maximum sidelobe level, sll,
relative to the mainlobe peak.

W = taylortaperc(pos,diam,nbar,sll,cpos) also specifies the center of the array, cpos.
Without this argument, the function sets the array center to the computed centroid of the array.

Examples

Default Taylor Taper Circular Array

Apply a Taylor nbar taper to a circular aperture array. Obtain the circular aperture by cropping a
square uniform rectangular array into a circle. Let all the parameters remain at their default values:
nbar is 4 and the sidelobe level is –30. Let the center of the array be the centroid of the array
elements. Plot the array power pattern at 300 MHz.

Create a square URA with a side length of 10 m. Set the element spacing to 1/2 m. The spacing is
equal to one-half wavelength at this frequency.

fc = 300.0e6;
diam = 10.0;
d = 0.5;
nelem = ceil(diam/d);
pos = getElementPosition(phased.URA(nelem,d));

Use the phased.ConformalArray System object™ to model a circular array. Create a circular array
by removing all elements outside a radius one-half the side-length of the URA. Then apply the Taylor
nbar tapering to the array.

pos(:,sum(pos.^2) > (diam/2)^2) = [];
antenna = phased.ConformalArray('ElementPosition',pos);
antenna.Taper = taylortaperc(pos,diam);
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View the array.

viewArray(antenna,'ShowTaper',true)

Display the array power pattern as a function of azimuth angle.

pattern(antenna,fc,-90:1:90,0,'CoordinateSystem','rectangular','Type','powerdb')
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Taylor Taper Circular Array Specifying Nbar

Apply a Taylor nbar taper to a circular aperture array. Create the circular aperture by cropping a
square uniform rectangular array into a circle. Set the value of nbar to 2. Let the sidelobe level
assume a default value of –30. Let the center of the array be the centroid of the array elements. Plot
the array power pattern at 300 MHz.

Create a square URA with a side length of 10 m. Set the element spacing to 0.5 m. The spacing is
equal to one-half wavelength at this frequency.

fc = 300.0e6;
diam = 10.0;
d = 0.5;
nbar = 2;
nelem = ceil(diam/d);
pos = getElementPosition(phased.URA(nelem,d));

Use the phased.ConformalArray System object™ to model a circular array. Create a circular array
by removing all elements outside a radius one-half the side-length of the URA. Then apply the Taylor
nbar tapering to the array.

pos(:,sum(pos.^2) > (diam/2)^2) = [];
antenna = phased.ConformalArray('ElementPosition',pos);
antenna.Taper = taylortaperc(pos,diam,nbar);
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View the array.

viewArray(antenna,'ShowTaper',true)

Display the array power pattern as a function of azimuth angle.

pattern(antenna,fc,-90:1:90,0,'CoordinateSystem','rectangular','Type','powerdb')
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Taylor Taper Circular Array Specifying Sidelobe Level

Apply a Taylor nbar taper to a circular aperture array. Create the circular aperture by cropping a
square uniform rectangular array into a circle. Set the value of nbar to 4. Set the sidelobe level to –
25. Let the center of the array be the centroid of the array elements. Plot the array power pattern at
300 MHz.

First, create a square URA with a side length of 10 m. Set the element spacing to 0.5 m. The spacing
is equal to one-half wavelength at this frequency.

fc = 300.0e6;
diam = 10.0;
d = 0.5;
nbar = 2;
sll = -25;
nelem = ceil(diam/d);
pos = getElementPosition(phased.URA(nelem,d));

Use the phased.ConformalArray System object™ to model a circular array. Create a circular array
by removing all elements outside a radius one-half the side-length of the URA. Then apply the Taylor
nbar tapering to the array.

pos(:,sum(pos.^2) > (diam/2)^2) = [];
antenna = phased.ConformalArray('ElementPosition',pos);
antenna.Taper = taylortaperc(pos,diam,nbar,sll);
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View the array.

viewArray(antenna,'ShowTaper',true)

Display the array power pattern as a function of azimuth angle.

pattern(antenna,fc,-90:1:90,0,'CoordinateSystem','rectangular','Type','powerdb')
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Taylor Taper Circular Array Specifying Array Center

Apply a Taylor nbar taper to a circular aperture array. Create the circular aperture by cropping a
square uniform rectangular array into a circle. Set the sidelobe level to –25. Set the center of the
array to the origin. Plot the array power pattern at 300 MHz.

Create a square URA with a side length of 10 m. Set the element spacing to 0.5 m. The spacing is
equal to one-half wavelength at this frequency.

fc = 300.0e6;
diam = 10.0;
d = 0.5;
sll = -25;

Compute nbar from the sidelobe level.

A = acosh(10^(-sll/20))/pi;
nbar = ceil(2*A^2 + 0.5)

nbar = 4

Create the URA element positions.
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cpos = [0;0;0];
nelem = ceil(diam/d);
pos = getElementPosition(phased.URA(nelem,d));

Use the phased.ConformalArray System object™ to model a circular array. Create a circular array
by removing all elements outside a radius one-half the side-length of the URA. Then apply the Taylor
nbar tapering to the array.

pos(:,sum(pos.^2) > (diam/2)^2) = [];
antenna = phased.ConformalArray('ElementPosition',pos);
antenna.Taper = taylortaperc(pos,diam,nbar,sll,cpos);

View the array.

viewArray(antenna,'ShowTaper',true)

Display the array power pattern as a function of azimuth angle.

pattern(antenna,fc,-90:1:90,0,'CoordinateSystem','rectangular','Type','powerdb')
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Input Arguments
pos — Position of array elements
2-by-N real-valued matrix | 3-by-N real-valued matrix

Position of array elements, specified as a 2-by-N or 3-by-N real-valued matrix where N is the number
of elements. If pos is a 2-by-N matrix, then all elements lie in the z = 0 plane. Each column specifies
the position, [x;y], of the element. If pos is a 3-by-N matrix, its columns represent the positions of
array elements in [x;y;z] format. W is an N-by-1 column vector containing the Taylor tapers. The 2-
by-N form is designed for planar arrays although you can use the 3-by-N form and set the third row to
zero. Position units are in meters.
Example: [–5,–5,5,5;-5,5,5,-5]
Data Types: double

diam — Array diameter
positive scalar

Array diameter, specified as a positive scalar. Diameter units are in meters.
Example: 15.5
Data Types: double

nbar — Number of nearly equal sidelobes
4 (default) | positive integer
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Number of nearly equal sidelobes on each side of the mainlobe, specified as a positive integer. Units
are dimensionless.
Example: 3
Data Types: double

sll — Maximum sidelobe level
-30.0 (default) | negative scalar

Maximum sidelobe, specified as a negative scalar. Sidelobe levels are referenced to the mainlobe.
Units are in dB.
Example: -10.0
Data Types: double

cpos — Array center
array centroid (default) | real-valued 2-by-1 vector | real-valued 3-by-1 vector

Array center, specified as a real-valued 2-by-1 or 3-by-1 vector. Units are in meters. Use a 2-by-1
vector when the element positions are specified as a 2-by-N matrix. The default value is the computed
centroid of all the array elements.
Example: [5;-10;3]
Data Types: double

Output Arguments
W — Taylor weights
real-valued N-by-1 column vector

Taylor weights, returned as a real-valued N-by-1 column vector. N is the number of array elements.
Units are dimensionless.

Algorithms
Compute Minimum Value of N-bar

A useful guideline for choosing a value of nbar that meets the required sidelobe level (sll), as
specified in the sll argument, is to satisfy the inequality

n ≥ 2
π2 cosh−1 10−

sll
20

2
+ 0.5

This is a recommendation and you may be able to use a smaller value.

References
[1] Taylor, T. “Design of Circular Aperture for Narrow Beamwidth and Low Sidelobes.” IRE Trans. on

Antennas and Propagation. Vol. 5, No. 1, January 1960, pp. 17-22.

[2] Van Trees, H. L. Optimal Array Processing: Part 4 of Detection, Estimation, and Modulation
Theory. New York: A. J. Wiley & Sons, Inc., 2002.
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[3] Hansen, R. C. “Tables of Taylor Distributions for Circular Aperture Antennas.” IRE Trans. on
Antenna and Propagation.Vol. 8, No. 1, January 1960, pp. 23-26.

[4] Hansen, R. C. “Array Pattern Control and Synthesis.” Proceedings of the IEEE. Vol. 80, No. 1,
January 1992, pp. 141-151.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
taylorwin

Introduced in R2016b
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time2range
Convert propagation time to propagation distance

Syntax
r = time2range(t)
r = time2range(t,c)

Description
r = time2range(t) returns the distance a signal propagates during t seconds. The propagation is
assumed to be two-way, as in a monostatic radar system.

r = time2range(t,c) specifies the signal propagation speed.

Examples

Minimum Detectable Range for Specified Pulse Width

Calculate the minimum detectable range for a monostatic radar system where the pulse width is 2
ms.

t = 2e-3;
r = time2range(t)

r = 2.9979e+05

Input Arguments
t — Propagation time
array of positive numbers

Propagation time in seconds, specified as an array of positive numbers.

c — Signal propagation speed
speed of light (default) | positive scalar

Signal propagation speed, specified as a positive scalar in meters per second.
Data Types: double

Output Arguments
r — Propagation distance
array of positive numbers

Propagation distance in meters, returned as an array of positive numbers. The dimensions of r are
the same as those of t.
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Data Types: double

Algorithms
The function computes c*t/2.

References
[1] Skolnik, M. Introduction to Radar Systems, 3rd Ed. New York: McGraw-Hill, 2001.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
phased.FMCWWaveform | range2bw | range2time

Introduced in R2012b
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unigrid
Uniform grid

Syntax
Grid = unigrid(StartValue,Step,EndValue)
Grid = unigrid(StartValue,Step,EndValue,IntervalType)

Description
Grid = unigrid(StartValue,Step,EndValue) returns a uniformly sampled grid from the
closed interval [StartValue,EndValue], starting from StartValue. Step specifies the step size.
This syntax is the same as calling StartValue:Step:EndValue.

Grid = unigrid(StartValue,Step,EndValue,IntervalType) specifies whether the interval
is closed, or semi-open. Valid values of IntervalType are '[]' (default), and '[)'. Specifying a
closed interval does not always cause Grid to contain the value EndValue. The inclusion of
EndValue in a closed interval also depends on the step size Step.

Examples

Create Uniform Grids

Create a uniform closed interval grid with a positive increment.

grid = unigrid(0,0.1,1);
grid(1)

ans = 0

grid(end)

ans = 1

Note that grid(1) = 0 and grid(end) = 1.

Create a uniform grid with a semi-open interval.

grid = unigrid(0,0.1,1,'[)');
grid(1)

ans = 0

grid(end)

ans = 0.9000

In this case, grid(end) = 0.9

Create a decreasing grid with a semi-open interval.

grid = unigrid(1,-0.2,0,'[)')
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grid = 1×5

    1.0000    0.8000    0.6000    0.4000    0.2000

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
linspace | val2ind

Introduced in R2011a
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uv2azel
Convert u/v coordinates to azimuth/elevation angles

Syntax
AzEl = uv2azel(UV)

Description
AzEl = uv2azel(UV) converts the u/v space on page 2-480 coordinates to their corresponding
azimuth/elevation angle on page 2-481 pairs.

Examples

Conversion of U/V Coordinates to AzEl

Find the corresponding azimuth/elevation representation for u = 0.5 and v = 0.

azel = uv2azel([0.5; 0])

azel = 2×1

   30.0000
         0

Input Arguments
UV — Angle in u/v space
two-row matrix

Angle in u/v space, specified as a two-row matrix. Each column of the matrix represents a pair of
coordinates in the form [u; v]. Each coordinate is between –1 and 1, inclusive. Also, each pair must
satisfy u2 + v2≤ 1.
Data Types: double

Output Arguments
AzEl — Azimuth/elevation angle pairs
two-row matrix

Azimuth and elevation angles, returned as a two-row matrix. Each column of the matrix represents an
angle in degrees, in the form [azimuth; elevation]. The matrix dimensions of AzEl are the same as
those of UV.
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More About
U/V Space

The u/v coordinates for the positive hemisphere x ≥ 0 can be derived from the phi and theta angles
on page 2-480.

The relation between the two coordinates is

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = coselsinaz
v = sinel

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = u/v

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v

sinel = v

tanaz = u
1− u2− v2

Phi Angle, Theta Angle

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.
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The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

Azimuth Angle, Elevation Angle

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.
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Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
azel2uv
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Topics
“Spherical Coordinates”

Introduced in R2012a
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uv2azelpat
Convert radiation pattern from u/v form to azimuth/elevation form

Syntax
pat_azel = uv2azelpat(pat_uv,u,v)
pat_azel = uv2azelpat(pat_uv,u,v,az,el)
[pat_azel,az_pat,el_pat] = uv2azelpat( ___ )

Description
pat_azel = uv2azelpat(pat_uv,u,v) expresses the antenna radiation pattern pat_azel in
azimuth/elevation angle on page 2-489 coordinates instead of u/v space on page 2-488 coordinates.
pat_uv samples the pattern at u angles in u and v angles in v. The pat_azel matrix uses a default
grid that covers azimuth values from –90 to 90 degrees and elevation values from –90 to 90 degrees.
In this grid, pat_azel is uniformly sampled with a step size of 1 for azimuth and elevation. The
function interpolates to estimate the response of the antenna at a given direction.

pat_azel = uv2azelpat(pat_uv,u,v,az,el) uses vectors az and el to specify the grid at
which to sample pat_azel. To avoid interpolation errors, az should cover the range [–90, 90] and el
should cover the range [–90, 90].

[pat_azel,az_pat,el_pat] = uv2azelpat( ___ ) returns vectors containing the azimuth and
elevation angles at which pat_azel samples the pattern, using any of the input arguments in the
previous syntaxes.

Examples

Convert Radiation Pattern

Convert a radiation pattern to azimuth/elevation form with the angles spaced 1° apart.

Define the pattern in terms of u and v. Because u and v values outside the unit circle are not physical,
set the pattern values in this region to zero.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to azimuth/elevation space.

pat_azel = uv2azelpat(pat_uv,u,v);

Plot Converted Radiation Pattern

Convert a radiation pattern to azimuth/elevation form with the angles spaced 1° apart.
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Define the pattern in terms of u and v. Because u and v values outside the unit circle are not physical,
set the pattern values in this region to zero.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to azimuth/elevation space. Store the azimuth and elevation angles for plotting.

[pat_azel,az,el] = uv2azelpat(pat_uv,u,v);

Plot the pattern.

H = surf(az,el,pat_azel);
H.LineStyle = 'none';
xlabel('Azimuth (degrees)')
ylabel('Elevation (degrees)')
zlabel('Pattern')

Convert Radiation Pattern Using Specific Azimuth/Elevation Values

Convert a radiation pattern to azimuth/elevation form, with the angles spaced 5° apart.
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Define the pattern in terms of u and v. Because u and v values outside the unit circle are not physical,
set the pattern values in this region to zero.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Define the set of azimuth and elevation angles at which to sample the pattern. Then convert the
pattern.

az = -90:5:90;
el = -90:5:90;
pat_azel = uv2azelpat(pat_uv,u,v,az,el);

Plot the pattern.

H = surf(az,el,pat_azel);
H.LineStyle = 'none';
xlabel('Azimuth (degrees)')
ylabel('Elevation (degrees)')
zlabel('Pattern')
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Input Arguments
pat_uv — Antenna radiation pattern in u/v form
Q-by-P matrix

Antenna radiation pattern in u/v form, specified as a Q-by-P matrix. pat_uv samples the 3-D
magnitude pattern in decibels in terms of u and v coordinates. P is the length of the u vector and Q is
the length of the v vector.
Data Types: double

u — u coordinates
vector of length P

u coordinates at which pat_uv samples the pattern, specified as a vector of length P. Each coordinate
is between –1 and 1.
Data Types: double

v — v coordinates
vector of length Q

v coordinates at which pat_uv samples the pattern, specified as a vector of length Q. Each
coordinate is between –1 and 1.
Data Types: double

az — Azimuth angles
[-90:90] (default) | vector of length L

Azimuth angles at which pat_azel samples the pattern, specified as a vector of length L. Each
azimuth angle is in degrees, between –90 and 90. Such azimuth angles are in the hemisphere for
which u and v are defined.
Data Types: double

el — Elevation angles
[-90:90] (default) | vector of length M

Elevation angles at which pat_azel samples the pattern, specified as a vector of length M. Each
elevation angle is in degrees, between –90 and 90.
Data Types: double

Output Arguments
pat_azel — Antenna radiation pattern in azimuth-elevation coordinates
real-valued M-by-L matrix

Antenna radiation pattern in azimuth-elevation coordinates, returned as a real-valued M-by-L matrix.
pat_azel represents the magnitude pattern. L is the length of the az_pat vector, and M is the
length of the el_pat vector. Units are in dB.

az_pat — Azimuth angles
real-valued length-L vector
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Azimuth angles at which the pat_azel output pattern is sampled, returned as a real-valued length-L
vector. Units are in degrees.

el_pat — Elevation angles
real-valued length-M vector

Elevation angles at which the pat_azel output pattern is sampled, returned as a real-valued length-
M vector. Units are in degrees.

More About
U/V Space

The u and v coordinates are the direction cosines of a vector with respect to the y-axis and z-axis,
respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles on page 2-
488, as follows:

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = coselsinaz
v = sinel

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = u/v

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v

sinel = v

tanaz = u
1− u2− v2

Phi Angle, Theta Angle

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.
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The figure illustrates phi and theta for a vector that appears as a green solid line.

The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

Azimuth Angle, Elevation Angle

The azimuth angle of a vector is the angle between the x-axis and the orthogonal projection of the
vector onto the xy plane. The angle is positive in going from the x axis toward the y axis. Azimuth
angles lie between –180 and 180 degrees. The elevation angle is the angle between the vector and its
orthogonal projection onto the xy-plane. The angle is positive when going toward the positive z-axis
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from the xy plane. By default, the boresight direction of an element or array is aligned with the
positive x-axis. The boresight direction is the direction of the main lobe of an element or array.

Note The elevation angle is sometimes defined in the literature as the angle a vector makes with the
positive z-axis. The MATLAB and Phased Array System Toolbox products do not use this definition.

This figure illustrates the azimuth angle and elevation angle for a vector shown as a green solid line.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.
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See Also
azel2uv | azel2uvpat | phased.CustomAntennaElement | uv2azel

Topics
“Spherical Coordinates”

Introduced in R2012a
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uv2phitheta
Convert u/v coordinates to phi/theta angles

Syntax
PhiTheta = uv2phitheta(UV)

Description
PhiTheta = uv2phitheta(UV) converts the u/v space on page 2-493 coordinates to their
corresponding phi/theta angle on page 2-493 pairs.

Examples

Conversion of U/V Coordinates

Find the corresponding φ/θ representation for u = 0.5 and v = 0.

PhiTheta = uv2phitheta([0.5; 0])

PhiTheta = 2×1

         0
   30.0000

Input Arguments
UV — Angle in u/v space
two-row matrix

Angle in u/v space, specified as a two-row matrix. Each column of the matrix represents a pair of
coordinates in the form [u; v]. Each coordinate is between –1 and 1, inclusive. Also, each pair must
satisfy u2 + v2≤ 1.
Data Types: double

Output Arguments
PhiTheta — Phi/theta angle pairs
two-row matrix

Phi and theta angles, returned as a two-row matrix. Each column of the matrix represents an angle in
degrees, in the form [phi; theta]. The matrix dimensions of PhiTheta are the same as those of UV.
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More About
U/V Space

The u/v coordinates for the positive hemisphere x ≥ 0 can be derived from the phi and theta angles
on page 2-493.

The relation between the two coordinates is

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = coselsinaz
v = sinel

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = u/v

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v

sinel = v

tanaz = u
1− u2− v2

Phi Angle, Theta Angle

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.
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The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.
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See Also
phitheta2uv

Topics
“Spherical Coordinates”

Introduced in R2012a
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uv2phithetapat
Convert radiation pattern from u/v form to phi/theta form

Syntax
pat_phitheta = uv2phithetapat(pat_uv,u,v)
pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta)
[pat_phitheta,phi_pat,theta_pat] = uv2phithetapat( ___ )

Description
pat_phitheta = uv2phithetapat(pat_uv,u,v) expresses the antenna radiation pattern
pat_phitheta in φ/θ angle on page 2-500 coordinates instead of u/v space on page 2-500
coordinates. pat_uv samples the pattern at u angles in u and v angles in v. The pat_phitheta
matrix uses a default grid that covers φ values from 0 to 360 degrees and θ values from 0 to 90
degrees. In this grid, pat_phitheta is uniformly sampled with a step size of 1 for φ and θ. The
function interpolates to estimate the response of the antenna at a given direction.

pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta) uses vectors phi and theta to
specify the grid at which to sample pat_phitheta. To avoid interpolation errors, phi should cover
the range [0, 360], and theta should cover the range [0, 90].

[pat_phitheta,phi_pat,theta_pat] = uv2phithetapat( ___ ) returns vectors containing
the φ and θ angles at which pat_phitheta samples the pattern, using any of the input arguments in
the previous syntaxes.

Examples

Convert Radiation Pattern to φ-θ

Convert a radiation pattern to φ-θ space with the angles spaced 1° apart.

Define the pattern in terms of u and v. Because u and v values outside the unit circle are not physical,
set the pattern values in this region to zero.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to φ-θ space.

[pat_phitheta,phi,theta] = uv2phithetapat(pat_uv,u,v);

Plot Converted Radiation Pattern

Convert a radiation pattern to ϕ− θ space with the angles spaced one degree apart.
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Define the pattern in terms of u and v. For values outside the unit circle, u and v are undefined, and
the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Convert the pattern to ϕ− θ space. Store the ϕ and θ angles for use in plotting.

[pat_phitheta,phi,theta] = uv2phithetapat(pat_uv,u,v);

Plot the result.

H = surf(phi,theta,pat_phitheta);
H.LineStyle = 'none';
xlabel('Phi (degrees)');
ylabel('Theta (degrees)');
zlabel('Pattern');

Convert Radiation Pattern Using Specific Phi/Theta Values

Convert a radiation pattern to ϕ− θ space with the angles spaced five degrees apart.
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Define the pattern in terms of u and v. For values outside the unit circle, u and v are undefined, and
the pattern value is 0.

u = -1:0.01:1;
v = -1:0.01:1;
[u_grid,v_grid] = meshgrid(u,v);
pat_uv = sqrt(1 - u_grid.^2 - v_grid.^2);
pat_uv(hypot(u_grid,v_grid) >= 1) = 0;

Define the set of ϕ and θ angles at which to sample the pattern. Then, convert the pattern.

phi = 0:5:360;
theta = 0:5:90;
pat_phitheta = uv2phithetapat(pat_uv,u,v,phi,theta);

Plot the result.

H = surf(phi,theta,pat_phitheta);
H.LineStyle = 'none';
xlabel('Phi (degrees)');
ylabel('Theta (degrees)');
zlabel('Pattern');

Input Arguments
pat_uv — Antenna radiation pattern in u/v form
Q-by-P matrix
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Antenna radiation pattern in u/v form, specified as a Q-by-P matrix. pat_uv samples the 3-D
magnitude pattern in decibels, in terms of u and v coordinates. P is the length of the u vector, and Q
is the length of the v vector.
Data Types: double

u — u coordinates
vector of length P

u coordinates at which pat_uv samples the pattern, specified as a vector of length P. Each coordinate
is between –1 and 1.
Data Types: double

v — v coordinates
vector of length Q

v coordinates at which pat_uv samples the pattern, specified as a vector of length Q. Each
coordinate is between –1 and 1.
Data Types: double

phi — Phi angles
[0:360] (default) | vector of length L

Phi angles at which pat_phitheta samples the pattern, specified as a vector of length L. Each φ
angle is in degrees, between 0 and 360.
Data Types: double

theta — Theta angles
[0:90] (default) | vector of length M

Theta angles at which pat_phitheta samples the pattern, specified as a vector of length M. Each θ
angle is in degrees, between 0 and 90. Such θ angles are in the hemisphere for which u and v are
defined.
Data Types: double

Output Arguments
pat_phitheta — Antenna radiation pattern in phi-theta coordinates
real-valued M-by-L matrix

Antenna radiation pattern in phi-theta coordinates, returned as a real-valued M-by-L matrix.
pat_phitheta represents the magnitude pattern. L is the length of the phi_pat vector, and M is
the length of the theta_pat vector. Units are in dB.

phi_pat — Phi angles
real-valued length-L vector

Phi angles at which the pat_phitheta pattern is sampled, returned as a real-valued length L vector.
Units are in degrees.

theta_pat — Theta angles
real-valued length-M vector
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Theta angles at which the pat_phitheta pattern is sampled, returned as a real-valued length-M
vector. Units are in degrees.

More About
U/V Space

The u and v coordinates are the direction cosines of a vector with respect to the y-axis and z-axis,
respectively.

The u/v coordinates for the hemisphere x ≥ 0 are derived from the phi and theta angles on page 2-
500, as follows:

u = sinθcosϕ
v = sinθsinϕ

In these expressions, φ and θ are the phi and theta angles, respectively.

In terms of azimuth and elevation, the u and v coordinates are

u = coselsinaz
v = sinel

The values of u and v satisfy the inequalities

−1 ≤ u ≤ 1
−1 ≤ v ≤ 1
u2 + v2 ≤ 1

Conversely, the phi and theta angles can be written in terms of u and v using

tanϕ = u/v

sinθ = u2 + v2

The azimuth and elevation angles can also be written in terms of u and v

sinel = v

tanaz = u
1− u2− v2

Phi Angle, Theta Angle

The phi angle (φ) is the angle from the positive y-axis to the vector’s orthogonal projection onto the yz
plane. The angle is positive toward the positive z-axis. The phi angle is between 0 and 360 degrees.
The theta angle (θ) is the angle from the x-axis to the vector itself. The angle is positive toward the yz
plane. The theta angle is between 0 and 180 degrees.

The figure illustrates phi and theta for a vector that appears as a green solid line.
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The coordinate transformations between φ/θ and az/el are described by the following equations

sinel = sinϕsinθ
tanaz = cosϕtanθ
cosθ = coselcosaz
tanϕ = tanel/sinaz

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.
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See Also
phased.CustomAntennaElement | phitheta2uv | phitheta2uvpat | uv2phitheta

Topics
“Spherical Coordinates”

Introduced in R2012a
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val2ind
Uniform grid index

Syntax
Ind = val2ind(Value,Delta)
Ind = val2ind(Value,Delta,GridStartValue)

Description
Ind = val2ind(Value,Delta) returns the index of the value Value in a uniform grid with a
spacing between elements of Delta. The first element of the uniform grid is zero. If Value does not
correspond exactly to an element of the grid, the next element is returned. If Value is a row vector,
Ind is a row vector of the same size.

Ind = val2ind(Value,Delta,GridStartValue) specifies the starting value of the uniform grid
as GridStartValue.

Examples

Compute Index of Value in Grid

Find the index corresponding to 0.0001 in a uniform grid with 1 MHz sampling rate.

fs = 1e6;
indx = val2ind(0.0001,1/fs)

indx = 101

Compute Indices of Values in Grid

Find the indices corresponding to a vector of values in a uniform grid with 1 kHz sampling rate.
Values are not divisible by 1/fs.

fs = 1.0e3;
values =[0.0095 0.0125 0.0225]; 
indx = val2ind(values,1/fs)

indx = 1×3

    11    14    24

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
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Usage notes and limitations:

Does not support variable-size inputs.

Introduced in R2011a
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waterfill
Waterfill MIMO power distribution

Syntax
P = waterfill(Pt,Pn)
waterfill(Pt,Pn)

Description
P = waterfill(Pt,Pn) optimally distributes the total transmitted power, Pt, among multiple
channels to maximize channel capacity. The argument Pn represents the noise in each channel. The
function can optimize independent subcarriers simultaneously.

waterfill(Pt,Pn) displays a waterfill diagram.

Examples

Compute Distributed Power Using Waterfill

Using the waterfill algorithm, compute the distributed power per channel for two subcarriers. There
are four channels per subcarrier.

Specify the same total power for both subcarriers using a scalar value.

Pt = 10;

Specify the noise power. The rows correspond to the subcarriers and the columns to the channels.

Pn = [1 4 6 3; 5 4 3 6];
P = waterfill(Pt,Pn)

P = 2×4

     5     2     0     3
     2     3     4     1

Now, specify a different total power for each subcarrier.

Pt = [10,5];
P = waterfill(Pt,Pn)

P = 2×4

    5.0000    2.0000         0    3.0000
    0.6667    1.6667    2.6667         0
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Plot Distributed Power Using Waterfill

Using the waterfill algorithm, plot the distributed power per channel for two subcarriers. There are
four channels per subcarrier.

Specify a different total power for each subcarrier.

Pt = [10,5];

Specify the noise power. The rows correspond to the subcarriers and the columns to the channels.

Pn = [1 4 6 3; 5 4 3 6];

Display the waterfill plot.

waterfill(Pt,Pn)

Input Arguments
Pt — Total transmitted power
positive scalar | positive-valued L-element row or column vector

Total transmitted power per subcarrier, specified as a positive-valued L-element row or column vector
where L is the number of subcarriers. When Pt is a scalar, all subcarriers have the same power. When
Pt is a vector, the total power in a subcarriers is given by the corresponding element in Pt. Units are
arbitrary.
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Example: [20 30]
Data Types: double

Pn — Channel noise power
positive-valued N-element row or column vector | positive-valued L-by-N-element matrix

Channel noise powers, specified as a positive-valued N-element row or column vector or a positive-
valued L-by-N-element matrix. N is the number of channels and L is the number of subcarriers. If Pn
is a vector, each element represents the noise power in the corresponding channel. The noise powers
for each channel is the same for all subcarriers. If Pn is a matrix, an element in the matrix represents
the noise power in the corresponding channel at the corresponding subcarrier. Units are arbitrary but
must match the units for Pt.
Example: [10 20 15]
Data Types: double

Output Arguments
P — Allocated power per channel
positive-valued L-by-N-element matrix

Allocated power per channel, specified as a positive-valued L-by-N-element matrix. N is the number of
channels and L is the number of subcarriers. Units are the same as the transmitted power, Pt. Each
row corresponds to a subcarrier and specifies the distributed power for the channels in the
subcarrier. Units are the same as for Pt and Pn.
Data Types: double

Algorithms
The number of subcarriers is determined by either the dimensions of Pt or Pn.

• When you specify Pt as an L-element vector, there are L subcarriers with different total powers. If
you specify Pn as N-element vector, this noise power vector is the same for all subcarriers. If you
specify Pn as an L-by-N matrix, each row applies to the corresponding subcarrier.

• When you specify Pt as a scalar, Pn determines the number of subcarriers. If you specify Pn as an
N-element vector, each element is the noise power in a channel and there is only one subcarrier. If
you specify Pn as an L-by-N matrix, there are L subcarriers all having the same transmitted power.

References
[1] Heath, R. Jr. et al. “An Overview of Signal Processing Techniques for Millimeter Wave MIMO

Systems”, arXiv.org:1512.03007 [cs.IT], 2015.

[2] Tse, D. and P. Viswanath, Fundamentals of Wireless Communications, Cambridge: Cambridge
University Press, 2005.

[3] Paulraj, A. Introduction to Space-Time Wireless Communications, Cambridge: Cambridge
University Press, 2003.
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Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• Does not support variable-size inputs.
• Supported only when output arguments are specified.

See Also
Functions
diagbfweights | scatteringchanmtx

System Objects
phased.ScatteringMIMOChannel

Introduced in R2017a
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tirempl
Path loss using Terrain Integrated Rough Earth Model (TIREM)

Syntax
pl = tirempl(r,z,f)
pl = tirempl(r,z,f,Name,Value)
[pl,output] = tirempl( ___ )

Description
pl = tirempl(r,z,f) returns the path loss in dB for a signal with frequency f when it is
propagated over terrain. You can specify terrain using numeric vectors for distance r and elevation z
along the great circle path between the transmitter and the receiver. The Terrain Integrated Rough
Earth Model™ (TIREM™) model combines physics with empirical data to provide path loss estimates.
The TIREM model is valid from 1 MHz to 1000 GHz.

Note tirempl requires access to the external TIREM library. Use tiremSetup to set up access.

pl = tirempl(r,z,f,Name,Value) returns the path loss in dB with additional options specified
by name-value pairs.

[pl,output] = tirempl( ___ ) returns the path loss, pl, and the output structure containing the
information on the TIREM analysis.

Examples
Path Loss Over Flat Terrain

Calculate the path loss over flat terrain. Define the terrain profile for distances up to 10 km with step
size of 100 m.

freq = 28e9;
r = 0:100:10000;
z = zeros(1,numel(r));
    Lterrain1 = tirempl(r,z,freq,...
       'TransmitterAntennaHeight',5, ...
       'ReceiverAntennaHeight',5)

Lterrain1 =

  142.6089

Input Arguments
r — Distances
numeric vector
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Distances along the great circle path between the transmitter and the receiver, specified as a numeric
vector with each value in meters. The number of distance values must be equal to the number of
elevation values.
Data Types: double

z — Elevation
numeric vector

Elevation values corresponding to the distance values along the great circle path between the
transmitter and the receiver, specified as a numeric vector with each value in meters. The number of
elevation values must be equal to the number of distance values.
Data Types: double

f — Frequency of propagated signal
scalar | numeric vector

Frequency of the propagated signal, specified as a scalar or numeric vector with each element unit in
Hz.
Data Types: double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: 'TransmitterAntennaHeight',50

TransmitterAntennaHeight — Transmitter antenna height above ground
10 (default) | numeric scalar

Transmitter antenna height above the ground, specified as a numeric scalar in the range of 0 to
30000. The height is measured from ground elevation to the center of the antenna.
Data Types: double

ReceiverAntennaHeight — Receiver antenna height above ground
1 (default) | numeric scalar

Receiver antenna height above the ground, specified as a numeric scalar in the range of 0 to 30000.
The height is measured from ground elevation to the center of the antenna.
Data Types: double

AntennaPolarization — Polarization of transmitter and receiver antennas
'horizontal' (default) | 'vertical'

Polarization of the transmitter and the receiver antennas, specified as 'horizontal' or
'vertical'.
Data Types: string | char

GroundConductivity — Conductivity of ground
0.005 (default) | numeric scalar
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Conductivity of the ground, specified as a numeric scalar in the range of 0.00005 to 100 in Siemens
per meter. This value is used to calculate the path loss due to ground reflection. The default value
corresponds to the average ground conductivity.
Data Types: double

GroundPermittivity — Relative permittivity of ground
15 (default) | numeric scalar

Relative permittivity of the ground, specified as a numeric scalar in the range of 1 to100. Relative
permittivity is the ratio of absolute material permittivity to the permittivity of vacuum. This value is
used to calculate the path loss due to ground reflection. The default value corresponds to the average
ground permittivity.
Data Types: double

AtmosphericRefractivity — Atmospheric refractivity near ground
301 (default) | numeric scalar

Atmospheric refractivity near the ground, specified as a numeric scalar in N-units in the range of 250
to 400. This value is used to calculate the path loss due to atmospheric refraction and tropospheric
scatter. The default value corresponds to average atmospheric conditions.
Data Types: double

Humidity — Absolute air humidity near ground
9 (default) | numeric scalar

Absolute air humidity near the ground, specified as a numeric scalar in g/m^3 in the range of 50 to
110. This value is used to calculate path loss due to atmospheric absorption. The default value
corresponds to the absolute humidity of air at 15 degrees Celsius and 70 percent relative humidity.
Data Types: double

Output Arguments
pl — Path loss
scalar | 1-by-N vector

Path loss, returned as a scalar or 1-by-N vector with each element unit in decibels. N is the number of
frequencies defined in the input f.

Path loss is calculated from free-space loss, terrain diffraction, ground reflection, refraction through
the atmosphere, tropospheric scatter, and atmospheric absorption.

output — Information of TIREM analysis
structure

Information of TIREM analysis, returned as a structure. Each field of the structure represents an
output from TIREM analysis.

See Also
tiremSetup

Topics
“Access TIREM Software”
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Introduced in R2019b
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tiremSetup
Set up access to Terrain Integrated Rough Earth Model (TIREM)

Syntax
tiremSetup
tiremSetup(libfolder)
libfolder = tiremSetup

Description
tiremSetup opens a dialog to select the Terrain Integrated Rough Earth Model (TIREM) library
folder. The TIREM library folder must contain the tirem3 shared library, where the full library name
is platform dependent. For more information, see .“Platform dependent library names” on page 2-
513

tiremSetup(libfolder) sets the TIREM library folder to libfolder.

libfolder = tiremSetup returns the current TIREM library folder.

Input Arguments
libfolder — Name of TIREM library folder
character vector

Name of the TIREM library folder, specified as a character vector.
Data Types: char | string

Output Arguments
libfolder — Current TIREM library folder
character vector | string scalar

Current TIREM library folder, returned as a character vector or a string scalar. If TIREM access has
not been setup, libfolder is empty.

More About
Platform dependent library names

Platform Shared library name
Windows libtirem3.dll or tirem3.dll
Linux libtirem3.so
Mac libtirem3.dylib
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See Also
tirempl

Topics
“Access TIREM Software”

Introduced in R2019b
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ADPCA Canceller
Adaptive displaced phase center array (ADPCA) pulse canceller for a uniform linear array
Library: Phased Array System Toolbox / Space-Time Adaptive

Processing

Description
The ADPCA Canceller block filters clutter impinging on a uniform linear array using a displaced
phase center array pulse canceller.

Ports
Input

X — Input signal
M-by-N-by-P complex-valued matrix

Input signal, specified as an M-by-N-by-P complex-valued array. M is the number of range samples, N
is the number of channels, and P is the number of pulses.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Idx — Index of range cells
positive integer

Index of range cells to compute processing weights.
Example: 1
Data Types: double

PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency of current pulse, specified as a positive scalar.

Dependencies

To enable this port, set the Specify PRF as parameter to Input port.
Data Types: double

Ang — Targeting direction
2-by-1 real-valued vector
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Targeting direction, specified as a 2-by-1 real-valued vector. The vector takes the form of
[AzimuthAngle;ElevationAngle]. Angle units are in degrees. The azimuth angle must lie
between –180° and 180°, inclusive, and the elevation angle must lie between –90° and 90°, inclusive.
Angles are defined with respect to the local coordinate system of the array.

Dependencies

To enable this port, set the Specify direction as parameter to Input port.
Data Types: double

Dop — Targeting Doppler frequency
scalar

Targeting Doppler frequency of current pulse, specified as a scalar.

Dependencies

This port appears when the Output pre-Doppler result check box is cleared and the Specify
targeting Doppler as parameter is set to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-1 complex-valued vector

Processing output, returned as an M-by-1 complex-valued vector. The quantity M is the number of
range samples in the input port X.
Data Types: double

W — Processing weights
length N*P complex-valued vector

Processing weights, returned as Length N*P complex-valued vector. The quantity N is the number of
channels and P is the number of pulses. When the Specify sensor array as parameter is set to
Partitioned array or Replicated subarray, N represents the number of subarrays. L is the
number of desired beamforming directions specified in the Ang input port or by the Beamforming
direction (deg) parameter. There is one set of weights for each beamforming direction.

Dependencies

To enable this port, select the Enable weights output check box.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
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Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Specify PRF as — Source of PRF value
Property (default) | Input port

Source of PRF value, specified as Property or Input port. When set to Property, the Pulse
repetition frequency (Hz) parameter sets the PRF. When set to Input port, pass in the PRF using
the PRF input port.

Pulse repetition frequency (Hz) — Pulse repetition frequency
1 (default) | positive scalar

Pulse repetition frequency, PRF, specified as a positive scalar. Units are in Hertz. Set this parameter
to the same value set in any Waveform library block used in the simulation.

Dependencies

To enable this parameter, set the Specify PRF as parameter to Property.

Specify direction as — Specify source of targeting directions
Property (default) | Input port

Specify whether the targeting direction for the STAP processor block comes from a block parameter
or from the ANG input port. Values of this parameter are

Property • For the ADPCA Canceller and DPCA Canceller blocks, targeting
direction is specified using Receiving mainlobe direction
(deg).

• For the SMI Beamformer block, targeting direction is specified
using Targeting direction.

These parameters appear only when the Specify direction as
parameter is set to Property.

Input port Enter the targeting directions using the Ang input port. This port
appears only when Specify direction as is set to Input port.

Receiving mainlobe direction (deg) — Pointing direction of main lobe of array
[0;0] (default) | real-valued 2-by-1 vector

Specify the direction of the main lobe of the receiving sensor array as a real-valued 2-by-1 vector. The
direction is specified in the format of [AzimuthAngle; ElevationAngle]. The azimuth angle
should be between –180° and 180° and the elevation angle should be between –90° and 90°.
Example: [100;-45]

Dependencies

To enable this parameter, set Specify direction as to Property.
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Number of bits in phase shifters — Number of phase shift quantization bits
0 (default) | nonnegative integer

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Specify targeting Doppler as — Source of targeting Doppler
Property (default) | Input port

Specify whether targeting Doppler values for the STAP processor comes from the Targeting Doppler
(Hz) parameter of this block or using the DOP input port. For the ADPCA Canceller and DPCA
Canceller blocks, the Specify targeting Doppler as parameter appears only when the Output pre-
Doppler result check box is cleared. Values of this parameter are

Property Specify targeting Doppler values using the Targeting Doppler
parameter of the block. The Targeting Doppler parameter appears
only when Specify targeting Doppler as is set to Property.

Input port Specify targeting Doppler values using the Dop input port. This port
appears only when Specify targeting Doppler as is set to Input
port.

Targeting Doppler (Hz) — Targeting Doppler of STAP processor
0 (default) | scalar

Targeting Doppler of STAP processor, specified as a scalar.

Dependencies

• To enable this parameter for the SMI Beamformer block, set Specify targeting Doppler as to
Property.

• To enable this parameter for the ADPCA Canceller and DPCA Canceller blocks, first clear the
Output pre-Doppler result check box. Then set the Specify targeting Doppler as parameter
to Property.

Number of guard cells — Number of guard cells using for training
2 (default) | positive even integer

Number of guard cells used for training, specified as a positive, even integer. Whenever possible, the
set of guard cells is equally divided into regions before and after the test cell.

Number of training cells — Number of cells used for training
2 (default) | positive even integer

Number of cells used for training, specified as a positive even integer. Whenever possible, the set of
training cells is equally divided into regions before and after the test cell.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Output pre-Doppler result — Output results before Doppler filtering
on (default) | off
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Select this check box to output the results before Doppler filtering. Clear this check box to output the
processing result after Doppler filtering. Selecting this check box will remove the Specify targeting
Doppler as and Targeting Doppler (Hz) parameters.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])
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Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.
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Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
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Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array
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Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector
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Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Specify sensor array as — Type of array
Array (no subarrays) (default) | MATLAB expression

Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Number of elements — Number of array elements in U
2 (default) | positive integer greater than or equal to two

The number of array elements for ULA arrays, specified as an integer greater than or equal to two.
Example: 11
Data Types: double

Element spacing — Distance between ULA elements
0.5 (default) | positive scalar

Distance between adjacent ULA elements, specified as a positive scalar. Units are in meters.
Example: 1.5

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.
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Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Taper — ULA array taper
1 (default) | complex-valued vector

Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are used
to modify both the amplitude and phase of the transmitted or received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array. If Taper is a scalar, the same weight is
applied to each element. If Taper is a vector, a weight from the vector is applied to the corresponding
sensor element. A weight must be applied to each element in the sensor array.
Example: [0.5;1;0.5]
Data Types: double

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create a ULA array, specified as a valid Phased Array System Toolbox
array System object.
Example: phased.ULA('NumElements',13)

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

See Also
phased.ADPCACanceller

Introduced in R2014b
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Angle Doppler Response
Angle-Doppler response
Library: Phased Array System Toolbox / Space-Time Adaptive

Processing

Description
The Angle Doppler Response block computes the angle-Doppler response of the input signal. The
output response is a matrix whose rows represent Doppler bins and whose columns represent angle
bins.

Ports
Input

X — Input data
M-by-N complex-valued matrix | M*N-element complex-valued vector

Input signal, specified as an M-by-N complex-valued matrix or an M*N complex-valued vector. M is
the number of array elements or the number of subarrays, if the array supports subarrays, specified
in the Sensor Array panel. N is the number of data samples. N must be greater than or equal to two.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency of current pulse, specified as a positive scalar.

Dependencies

To enable this port, set the Specify PRF as parameter to Input port.
Data Types: double

El — Elevation angle
scalar

Elevation angle, specified as a scalar. Angle units are in degrees. The elevation angle must lie
between –90° and 90°, inclusive.

Dependencies

To enable this port, set Source of elevation angle to Input port.
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Data Types: double

Output

Resp — Angle-Doppler response
P-by-Q complex-valued matrix

Angle Doppler response, returned as a P-by-Q matrix. P is specified by the Number of Doppler bins
parameter and Q is specified by the Number of angle bins parameter.
Data Types: double

Ang — Response-matrix angle values
Q-by-1 real-valued vector

Response-matrix angle values, returned as a Q-by-1 real-valued vector. The angle values correspond
to the columns of the angle-Doppler response matrix. Q is specified by the Number of angle bins
parameter.
Data Types: double

Dop — Response-matrix Doppler values
P-by-1 real-valued vector

Response-matrix Doppler values, returned as a P-by-1 real-valued vector. The Doppler values
correspond to the rows of the angle-Doppler response matrix. P is specified by the Number of
Doppler bins parameter.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Specify PRF as — Source of PRF value
Property (default) | Input port

Source of PRF value, specified as Property or Input port. When specifier as Property, the Pulse
repetition frequency (Hz) parameter sets the PRF. When set to Input port, pass in the PRF using
the PRF input port.
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Pulse repetition frequency (Hz) — Pulse repetition frequency
1 (default) | positive scalar

Pulse repetition frequency, PRF, specified as a positive scalar. Units are in Hertz. Set this parameter
to the same value set in any Waveform library block used in the simulation.

Dependencies

To enable this parameter, set the Specify PRF as parameter to Property.

Source of elevation angle — Elevation angle source
Property (default) | Input port

Elevation angle source, specified as Property or Input port. Values of this parameter are

Property The Elevation angle (deg) parameter of this block specifies
the elevation angle.

Input port The elevation angle is set using the El input port.

Elevation angle (deg) — Elevation angle used to calculate the angle-Doppler response
0 (default) | scalar

Elevation angle used to calculate the angle-Doppler response, specified as a scalar. Units are degrees.
The angle must be between –90° and 90°.
Example: -45

Dependencies

To enable this parameter, set Source of elevation angle to Property
Data Types: double

Number of angle bins — Number of angle samples
256 (default) | positive integer greater than two

The number of samples in the angular domain used to calculate the angle-Doppler response, specified
as a positive integer greater than two.
Example: 600
Data Types: double

Number of Doppler bins — Number of angle samples
256 (default) | positive integer greater than two

The number of samples in the Doppler domain used to calculate the angle-Doppler response,
specified as a positive integer greater than two.
Example: 128
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
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run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.
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Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values
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Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.
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Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.
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• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.
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Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.
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Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.
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Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.
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Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.
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Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.
Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.
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• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

See Also
phased.AngleDopplerResponse

Introduced in R2014b
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Azimuth Broadside Converter
Convert azimuth angle to broadside angle or broadside angle to azimuth angle
Library: Phased Array System Toolbox / Environment and Target

Description
The Azimuth Broadside Converter block converts an angle direction expressed in terms of “Broadside
Angles” into the equivalent azimuth angle or converts from azimuth angle into the equivalent
broadside angle. In both cases, you must specify the elevation angle.

Ports
Input

az — Azimuth angle
scalar | vector of real-values

Azimuth angle of direction, specified as a scalar or vector of real-values. Units are in degrees. When
az is a vector, the dimensions of az and el must match.
Dependencies

To enable this port, set Conversion Mode to azimuth -> broadside.
Data Types: double

bsd — Broadside angle
scalar | vector of real-values

Broadside angle of direction, specified as a scalar or vector of real-values. Units are in degrees. When
bsd is a vector, the dimensions of bsd and el must match.
Dependencies

To enable this port, set Conversion Mode to broadside -> azimuth.
Data Types: double

el — Elevation angle
scalar | vector of real-values

Elevation angle of direction, specified as a scalar or vector of real-values. Units are in degrees. The
dimensions of el must match the dimensions of az and bsd.
Data Types: double

Output

az — Azimuth angle
scalar | vector of real-values
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Azimuth angle of direction, returned as a scalar or vector of real-values. Units are in degrees.

Dependencies

To enable this port, set Conversion Mode to broadside -> azimuth.
Data Types: double

bsd — Broadside angle
scalar | vector of real-values

Broadside angle of direction, returned as a scalar or vector of real-values. Units are in degrees.

Dependencies

To enable this port, set Conversion Mode to azimuth -> broadside.
Data Types: double

Parameters
Conversion mode — Angle conversion type
broadside -> azimuth (default) | azimuth -> broadside

Angle conversion type, specified as

broadside -> azimuth Convert direction expressed in broadside and
elevation angles to azimuth and elevation angles.

azimuth -> broadside Convert direction expressed in azimuth and
elevation angles to broadside and elevation
angles.

See Also
az2broadside | broadside2az

Introduced in R2014b
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Backscatter Bicyclist
Backscatter signals from bicyclist
Library: Phased Array System Toolbox / Environment and Target

Description
The Backscatter Bicyclist block simulates backscattered radar signals reflected from a moving
bicyclist. The bicyclist consists of the bicycle and its rider. The object models the motion of the
bicyclist and computes the sum of all reflected signals from multiple discrete scatterers on the
bicyclist. The model ignores internal occlusions within the bicyclist. The reflected signals are
computed using a multi-scatterer model developed from a 77-GHz radar system.

Scatterers are located on five major bicyclist components:

• bicycle frame and rider
• bicycle pedals
• upper and lower legs of the rider
• front wheel
• back wheel

Excluding the wheels, there are 114 scatterers on the bicyclist. The wheels contain scatterers on the
rim and spokes. The number of scatterers on the wheels depends on the number of spokes per wheel,
which can be specified using the NumWheelSpokes property.

Ports
Input

X — Incident radar signals
complex-valued M-by-N matrix

Incident radar signals on each bicyclist scatterer, specified as a complex-valued M-by-N matrix. M is
the number of samples in the signal. N is the number of point scatterers on the bicyclist and is
determined partly from the number of spokes in each wheel, Nws. See “Bicyclist Scatterer Indices” on
page 3-35 for the column representing the incident signal at each scatterer.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double
Complex Number Support: Yes

AngH — Bicyclist heading
0.0 | scalar
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Heading of the bicyclist, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Units are in degrees.
Example: -34
Data Types: double

Ang — Directions of incident signals
real-valued 2-by-N vector

Directions of incident signals on the scatterers, specified as a real-valued 2-by-N matrix. Each column
of Ang specifies the incident direction of the signal to the corresponding scatterer. Each column takes
the form of an [AzimuthAngle;ElevationAngle] pair. Units are in degrees. See “Bicyclist Scatterer
Indices” on page 3-35 for the column representing the incident arrival angle at each scatterer.
Data Types: double

Speed — Bicyclist speed
nonnegative scalar

Speed of bicyclist, specified as a nonnegative scalar. The motion model limits the speed to 60 m/s.
Units are in meters per second.
Example: 8
Data Types: double

Coast — Bicyclist coasting state
false (default) | true

Bicyclist coasting state, specified as false or true. This property controls the coasting of the
bicyclist. If set to true, the bicyclist does not pedal but the wheels are still rotating (freewheeling). If
set to false, the bicyclist is pedaling and the Gear transmission ratio parameter determines
the ratio of wheel rotations to pedal rotations.

Tunable: Yes
Data Types: Boolean

Output

Y — Combined reflected radar signals
complex-valued M-by-1 column vector

Combined reflected radar signals, returned as a complex-valued M-by-1 column vector. M equals the
number of samples in the input signal, X.
Data Types: double
Complex Number Support: Yes

Pos — Positions of scatterers
real-valued 3-by-N matrix

Positions of scatterers, returned as a real-valued 3-by-N matrix. N is the number of scatterers on the
bicyclist. Each column represents the Cartesian position, [x;y;z], of one of the scatterers. Units are in
meters. See “Bicyclist Scatterer Indices” on page 3-35 for the column representing the position of
each scatterer.
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Data Types: double

Vel — Velocity scatterers
real-valued 3-by-N matrix

Velocity of scatterers, returned as a real-valued 3-by-N matrix. N is the number of scatterers on the
bicyclist. Each column represents the Cartesian velocity, [vx;vy;vz], of one of the scatterers. Units are
in meters per second. See “Bicyclist Scatterer Indices” on page 3-35 for the column representing
the velocity of each scatterer.
Data Types: double

Ax — Orientation of scatterers
real-valued 3-by-3 matrix

Orientation axes of scatterers, returned as a real-valued 3-by-3 matrix.
Data Types: double

Parameters
Number of wheel spokes — Number of spokes per wheel
20 (default) | positive integer

Number of spokes per wheel of the bicycle, specified as a positive integer from 3 through 50,
inclusive. Units are dimensionless.
Data Types: double

Gear transmission ratio — Ratio of wheel rotations to pedal rotations
1.5 (default) | positive scalar

Ratio of wheel rotations to pedal rotations, specified as a positive scalar. The gear ratio must be in the
range 0.5 through 6. Units are dimensionless.
Data Types: double

Signal carrier frequency (Hz) — Carrier frequency
77e9 (default) | positive scalar

Carrier frequency of narrowband incident signals, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

Initial position (m) — Initial position of bicyclist
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the bicyclist, specified as a 3-by-1 real-valued vector in the form of [x;y;z]. Units are
in meters.
Data Types: double

Initial heading direction (deg) — Initial heading of bicyclist
0 (default) | scalar
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Initial heading of the bicyclist, specified as a scalar. Heading is measured in the xy-plane from the x-
axis towards y-axis. Units are in degrees.
Data Types: double

Initial bicyclist speed (m/s) — Initial speed of bicyclist
4 (default) | nonnegative scalar

Initial speed of bicyclist, specified as a nonnegative scalar. The motion model limits the speed to a
maximum of 60 m/s (216 kph). Units are in meters per second.

Tunable: Yes
Data Types: double

Propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed').
Data Types: double

RCS pattern — Source of RCS pattern
Auto (default) | Property

Source of the RCS pattern, specified as either Auto or Property. When you specify Auto, the
pattern is a 1-by-361 matrix containing values derived from radar measurements taken at 77 GHz.

Azimuth angles (deg) — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Azimuth angles used to define the angular coordinates of each column of the matrix specified by the
Radar cross section pattern (square meters) parameter. Specify the azimuth angles as a length P
vector. P must be greater than two. Angle units are in degrees.
Example: [-45:0.1:45]
Dependencies

To enable this parameter, set the RCS pattern parameter to Property.
Data Types: double

Elevation angles (deg) — Elevation angles
[-90:90] (default) | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector

Elevation angles used to define the angular coordinates of each row of the matrix specified by the
Radar cross section pattern (square meters) parameter. Specify the elevation angles as a length
Q vector. Q must be greater than two. Angle units are in degrees.
Dependencies

To enable this parameter, set the RCS pattern parameter to Property.
Data Types: double

Radar cross section pattern (square meters) — Radar cross-section pattern
1-by-361 real-valued matrix (default) | Q-by-P real-valued matrix | 1-by-P real-valued vector
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Radar cross-section (RCS) pattern as a function of elevation and azimuth angle, specified as a Q-by-P
real-valued matrix or a 1-by-P real-valued vector. Q is the length of the vector defined by the
ElevationAngles property. P is the length of the vector defined by the AzimuthAngles property.
Units are in square meters.

You can also specify the pattern as a 1-by-P real-valued vector of azimuth angles for one elevation.

The default value of this property is a 1-by-361 matrix containing values derived from radar
measurements taken at 77 GHz found in backscatterBicyclist.defaultRCSPattern.

Dependencies

To enable this parameter, set the RCS pattern parameter to Property.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
usually run faster as compiled code than interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).
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More About
Bicyclist Scatterer Indices

Bicyclist scatterer indices define which columns in the scatterer position or velocity matrices contain
the position and velocity data for a specific scatterer. For example, column 92 of bpos specifies the 3-
D position of one of the scatterers on a pedal.

The wheel scatterers are equally divided between the wheels. You can determine the total number of
wheel scatterers, N, by subtracting 113 from the output of the getNumScatterers function. The
number of scatterers per wheel is Nsw = N/2.

Bicyclist Scatterer Indices

Bicyclist Component Bicyclist Scatterer Index
Frame and rider 1 … 90
Pedals 91 … 99
Rider legs 100 … 113
Front wheel 114 … 114 + Nsw - 1
Rear wheel 114 + Nsw … 114 + N - 1

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Objects
backscatterBicyclist | phased.BackscatterRadarTarget | phased.RadarTarget

Blocks
Backscatter Radar Target | Radar Target

Introduced in R2019b
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Backscatter Pedestrian
Backscatter signals from pedestrian
Library: Phased Array System Toolbox / Environment and Target

Description
The Backscatter Pedestrian block models the monostatic reflection of non-polarized electromagnetic
signals from a walking pedestrian. The pedestrian walking model coordinates the motion of 16 body
segments to simulate natural motion. The model also simulates the radar reflectivity of each body
segment. From this model, you can obtain the position and velocity of each segment and the total
backscattered radiation as the body moves.

Ports
Input

X — Incident radar signals
complex-valued M-by-16 matrix

Incident radar signals on each body segment, specified as a complex-valued M-by-16 matrix. M is the
number of samples in the signal. See “Body Segment Indices” on page 3-39 for the column
representing the incident signal at each body segment.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double
Complex Number Support: Yes

Ang — Incident signal directions
real-valued 2-by-16 matrix

Incident signal directions on the body segments, specified as a real-valued 2-by-16 matrix. Each
column of ANG specifies the incident direction of the signal to the corresponding body part. Each
column takes the form of an [AzimuthAngle;ElevationAngle] pair. Units are in degrees. See
“Body Segment Indices” on page 3-39 for the column representing the incident direction at each
body segment.
Data Types: double

AngH — Pedestrian heading
scalar

Heading of the pedestrian, specified as a scalar. Heading is measured in the xy-plane from the x-axis
towards the y-axis. Units are in degrees.
Example: -34
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Data Types: double

Output

Y — Combined reflected radar signals
complex-valued M-by-1 column vector

Combined reflected radar signals, returned as a complex-valued M-by-1 column vector. M equals the
same number of samples as in the input signal, X.
Data Types: double
Complex Number Support: Yes

Pos — Positions of body segments
real-valued 3-by-16 matrix

Positions of body segments, returned as a real-valued 3-by-16 matrix. Each column represents the
Cartesian position, [x;y;z], of one of 16 body segments. Units are in meters. See “Body Segment
Indices” on page 3-39 for the column representing the position of each body segment.
Data Types: double

Vel — Velocity of body segments
real-valued 3-by-16 matrix

Velocity of body segments, returned as a real-valued 3-by-16 matrix. Each column represents the
Cartesian velocity, [vx;vy;vz], of one of 16 body segments. Units are in meters per second. See
“Body Segment Indices” on page 3-39 for the column representing the velocity of each body
segment.
Data Types: double

Ax — Orientation of body segments
real-valued 3-by-3-by-16 array

Orientation axes of body segments, returned as a real-valued 3-by-3-by-16 array. Each page
represents the 3-by-3 orientation axes of one of 16 body segments. Units are dimensionless. See
“Body Segment Indices” on page 3-39 for the page representing the orientation of each body
segment.
Data Types: double

Parameters
Height (m) — Height of pedestrian
1.65 (default) | positive scalar

Height of pedestrian, specified as a positive scalar. Units are in meters.
Data Types: double

Walking Speed (m/s) — Walking speed of pedestrian
1.4 times pedestrian height (default) | nonnegative scalar

Walking speed of the pedestrian, specified as a nonnegative scalar. The motion model limits the
walking speed to 1.4 times the pedestrian height set in the Height (m) parameter. Units are in
meters per second.
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Data Types: double

Propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed').
Data Types: double

Operating Frequency (Hz) — Carrier frequency
300e6 (default) | positive scalar

Carrier frequency of narrowband incident signals, specified as a positive scalar. Units are in Hz.
Example: 1e9
Data Types: double

Initial Position (m) — Initial position of pedestrian
[0;0;0] (default) | 3-by-1 real-valued vector

Initial position of the pedestrian, specified as a 3-by-1 real-valued vector in the form of [x;y;z].
Units are in meters.
Data Types: double

Initial Heading (deg) — Initial heading of pedestrian
0 (default) | scalar

Initial heading of the pedestrian, specified as a scalar. Heading is measured in the xy-plane from the
x-axis towards y-axis. Units are in degrees.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster than in interpreted execution. You can run repeated executions without recompiling, but if
you change any block parameters, then the block automatically recompiles before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

More About
Body Segment Indices

Body segment indices define which columns in the X, Ang, BPPOS, and BPVEL ports contain the
data for a specific body segment. Body segment indices define which page in the Ax port contains the
data for a specific body segments. For example, column 3 of X contains sample data for the left lower
leg. Column 3 of Ang contains the arrival angle of the signal at the left lower leg.

Body Segment Indices

Body segment Body segment index
left foot 1
right foot 2
left lower leg 3
right lower leg 4
left upper leg 5
right upper leg 6
left hip 7
right hip 8
left lower arm 9
right lower arm 10
left upper arm 11
right upper arm 12
left shoulder 13
right shoulder 14
neck 15
head 16

See Also
System Objects
phased.BackscatterRadarTarget | phased.RadarTarget
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Blocks
Backscatter Radar Target | Radar Target

Introduced in R2019a
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Backscatter Radar Target
Backscatter radar target

Library
Environment and Target

phasedenvlib

Description
The Backscatter Radar Target block models the monostatic case of reflection of nonpolarized
electromagnetic signals from a radar target. Target model includes all four Swerling target
fluctuation models and non-fluctuating model. You can model several targets simultaneously by
specifying multiple radar cross-section matrices.

Parameters
Azimuth angles (deg)

Azimuth angles used to define the angular coordinates of the RCS pattern (m^2) parameter.
Specify azimuth angles as a length P vector. Units are degrees. P must be greater than two. This
parameter determines the incident azimuthal arrival angle of any element of the cross-section
patterns.

Elevation angles (deg)
Elevation angles used to define the angular coordinates of the RCS pattern (m^2) parameter.
Specify elevation angles as a length Q vector. Units are degrees. Q must be greater than two. This
parameter determines the incident elevation arrival angle of any element of the cross-section
patterns.

RCS pattern (m^2)
Radar cross-section pattern, specified as a Q-by-P real-valued matrix or a Q-by-P-by-M real-valued
array.

• Q is the length of the vector in the Elevation angles (deg) parameter.
• P is the length of the vector in the Azimuth angles (deg) parameter.
• M is the number of target patterns. The number of patterns corresponds to the number of

signals passed into the input port X. You can, however, use a single pattern to model multiple
signals reflecting from a single target.

You can, however, use a single pattern to model multiple signals reflecting from a single target.
Pattern units are square-meters.

Pattern units are square-meters.
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Fluctuation model
Specify the statistical model of the target as either Nonfluctuating, Swerling1, Swerling2,
Swerling3, or Swerling4. When you set this parameter to a value other than
Nonfluctuating, you then set radar cross-sections parameters using the Update input port.

Signal Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the carrier frequency of the signal that reflects from the target, as a positive scalar in
hertz.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.
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Port Description Supported Data Types
X Input signals.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Ang Incident angle Double-precision floating point
Update Update RCS at block execution. Double-precision floating point
Out Scattered signal Double-precision floating point

See Also
phased.BackscatterRadarTarget

Introduced in R2016a
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Barrage Jammer
Barrage jammer interference source

Library
Environment and Target

phasedenvlib

Description
The Barrage Jammer block generates a wideband noise-like jamming signal.

Parameters
Effective radiated power (W)

Specify the effective radiated power (ERP) in watts of the jamming signal as a positive scalar.
Source of number of samples per frame

Specify the source for number of samples per frame as Property or Derive from reference
input port. When you choose Property, the block obtains the number of samples from the
Number of samples per frame parameter. When you choose Derive from reference
input port the block uses the number of samples from a reference signal passed into the Ref
input port.

Number of samples per frame
Specify the number of samples in the jamming signal output as a positive integer. The number of
samples must match the number of samples produced by a signal source. This parameter appears
only when Source of number of samples per frame is set to Property. As an example, if you
use the Rectangular Waveform block as a signal source and set its Output signal format to
Samples, the value of Number of samples per frame should match the Rectangular Waveform
block's Number of samples in output parameter. If you set the Output signal format to
Pulses, the Number of samples per frame should match the product of Sample rate and
Number of pulses in output divided by the Pulse repetition frequency.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
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simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
Ref Reference signal input Double-precision floating point
Out Jammer output Double-precision floating point

See Also
phased.BarrageJammer

Introduced in R2014b
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Beamscan Spectrum
Beamscan spatial spectrum estimator
Library: Phased Array System Toolbox / Direction of Arrival

Description
The Beamscan Spectrum block estimates the 2-D spatial spectrum of incoming narrowband signals by
scanning a range of azimuth and elevation angles using a narrowband conventional beamformer. The
block optionally calculates the direction of arrival of a specified number of signals by locating peaks
of the spectrum.

Ports
Input

X — Received signal
M-by-N complex-valued matrix

Received signal, specified as an M-by-N complex-valued matrix. The quantity M is the length of the
signal, the number of sample values contained in the signal. The quantity N is the number of sensor
elements in the array.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Output

Y — Beamscan 2-D spatial spectrum
non-negative real-valued P-by-Q matrix

2Magnitude of the estimated 2-D spatial spectrum, returned as a non-negative, returned as a real-
valued P-by-Q matrix. Each entry represents the magnitude of the estimated MUSIC spatial spectrum.
Each entry corresponds to an angle specified by the Azimuth scan angles (deg) and Elevation
scan angles (deg) parameters. P equals the length of the vector specified in Azimuth scan angles
(deg) and Q equals the length of the vector specified in Elevation scan angles (deg).
Data Types: double

Ang — Directions of arrival
non-negative, real-valued 2-by-L matrix

Directions of arrival of the signals, returned as a real-valued 2-by-L matrix. L is the number of signals
specified by the Number of signals parameter. The direction of arrival angle is defined by the
azimuth and elevation angles of the source with respect to the array local coordinate system. The first
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row of the matrix contains the azimuth angles and the second row contains the elevation angles. If
the object cannot identify peaks in the spectrum, it will return NaN. Angle units are in degrees.

Dependencies

To enable this output port, select the Enable DOA output check box.
Data Types: double

Parameters
Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Number of bits in phase shifters — Number of phase shift quantization bits
0 (default) | nonnegative integer

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Forward-backward averaging — Enable forward-backward averaging
off (default) | on

Select this parameter to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with a conjugate symmetric array manifold structure.

Azimuth scan angles (deg) — Scan angles in azimuth direction
-180:180 (default) | real-valued vector

Scan angles in azimuthal direction, specified as a real-valued vector. The angles must lie be between –
180° and 180°, inclusive. You must specify the angles in ascending order. Units are in degrees.
Data Types: double

Elevation scan angles (deg) — Scan angles in elevation direction
-90:90 (default) | real-valued vector

Scan angles in elevation direction, specified as a real-valued vector. The angles must lie be between –
90° and 90°, inclusive. You must specify the angles in ascending order. Units are in degrees.
Data Types: double

Enable DOA output — Output directions of arrival through output port
off (default) | on
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Select this parameter to output the signals directions of arrival (DOA) through the Ang output port.

Number of signals — Expected number of arriving signals
1 (default) | positive integer

Specify the expected number of signals for DOA estimation as a positive scalar integer.

Dependencies

To enable this parameter, select the Enable DOA output check box.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Array Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.
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Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])
Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on
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Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector
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Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.
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Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.
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Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
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• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element
spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of elements in each row and column.

For a URA, array elements are indexed from top to bottom along the leftmost array column, and
continued to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.
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Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.
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Dependencies

To enable this parameter set Geometry to Conformal Array.
Data Types: double

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. If the parameter value is a matrix, each
column specifies the normal direction of the corresponding element in the form
[azimuth;elevation] with respect to the local coordinate system. The local coordinate system
aligns the positive x-axis with the direction normal to the conformal array. If the parameter value is a
2-by-1 column vector, the same pointing direction is used for all array elements.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

To enable this parameter, set Geometry to Conformal Array.
Data Types: double

Taper — Array element tapers
1 (default) | complex scalar | complex-valued row vector

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.
Data Types: double

See Also
phased.BeamscanEstimator2D | phased.ConformalArray | phased.UCA | phased.ULA |
phased.URA

Introduced in R2014b
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Beamspace ESPRIT DOA
Beamspace ESPRIT direction of arrival (DOA) estimator for ULA

Library
Direction of Arrival (DOA)

phaseddoalib

Description
The Beamspace ESPRIT DOA block estimates the direction of arrival of a specified number of
narrowband signals incident on a uniform linear array using the estimation of signal parameters via
rotational invariance technique (ESPRIT) algorithm in beamspace.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of signals
Specify the number of signals as a positive integer scalar.

Spatial smoothing
Specify the amount of averaging, L, used by spatial smoothing to estimate the covariance matrix
as a nonnegative integer. Each increase in smoothing handles one extra coherent source, but
reduces the effective number of elements by one. The maximum value of this parameter is N – 2,
where N is the number of sensors.

Type of least squares method
Specify the least squares method used for ESPRIT as one of TLS or LS where TLS refers to total
least squares and LSrefers to least squares.

Beam fan center direction (deg)
Specify the direction of the center of the beam fan, in degrees, as a real scalar value between –
90° and 90°.

Source of number of beams
Specify the source of the number of beams as one of Auto or Property. If you set this parameter
to Auto, the number of beams equals N – L, where N is the number of array elements and L is the
value of Spatial smoothing.
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Number of beams
Specify the number of beams as a positive scalar integer. The lower the number of beams, the
greater the reduction in computational cost. This parameter appears when you set Source of
number of beams to Property.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.
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Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In
this vector, N represents the number of elements in the array. If Taper is a scalar, the same
weight is applied to each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for example,
phased.ULA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
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responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.
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• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.
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Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
In Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point
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Port Description Supported Data Types
Ang Estimated DOA angles. Double-precision floating point

See Also
phased.BeamspaceESPRITEstimator

Introduced in R2014b
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CFAR Detector
Constant false alarm rate (CFAR) detector

Library
Detection

phaseddetectlib

Description
The CA CFAR block implements a constant false-alarm rate detector using an estimate of the noise
power. The CFAR detector estimates noise power from neighboring cells surrounding the cell under
test. There are four methods for estimating noise: cell-averaging (CA), greatest-of cell averaging
(GOCA), smallest-of cell averaging (SOCA), and order statistics (OS).

Parameters
CFAR algorithm

Specify the CFAR detection algorithm using one of the values

CA Cell-averaging
GOCA Greatest-of cell averaging
OS Order statistic
SOCA Smallest-of cell averaging

Number of guard cells
Specify the number of guard cells used in training as an even integer. This parameter specifies
the total number of cells on both sides of the cell under test.

Number of training cells
Specify the number of training cells used in training as an even integer. Whenever possible, the
training cells are equally divided before and after the cell under test.

Rank of order statistic
This parameter appears when CFAR algorithm is set to OS. Specify the rank of the order
statistic as a positive integer scalar. The value must be less than or equal to the value of Number
of training cells.

Threshold factor method
Specify whether the threshold factor comes from an automatic calculation, the Custom
threshold factor parameter, or an input argument. Values of this parameter are:
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Auto The application calculates the threshold factor
automatically based on the desired probability of false
alarm specified in the Probability of false alarm
parameter. The calculation assumes each independent
signal in the input is a single pulse coming out of a
square law detector with no pulse integration. The
calculation also assumes the noise is white Gaussian.

Custom The Custom threshold factor parameter specifies the
threshold factor.

Input port Threshold factor is set using the input port K. This port
appears only when Threshold factor method is set to
Input port.

Probability of false alarm
This parameter appears only when you set Threshold factor method to Auto. Specify the
desired probability of false alarm as a scalar between 0 and 1 (not inclusive).

Custom threshold factor
This parameter appears only when you set Threshold factor method to Custom. Specify the
custom threshold factor as a positive scalar.

Output format
Format of detection results returned in output port Y, by the specified as 'CUT result' or
'Detection index'.

• When set to 'CUT result', the results are logical detection values (1 or 0) for each tested
cell. 1 indicates that the value of the tested cell exceeds a detection threshold.

• When set to 'Detection index', the results form a vector or matrix containing the indices
of tested cells which exceed a detection threshold.

Output detection threshold
Select this check box to create an output port Th containing the detection threshold.

Output estimated noise power
Select this check box to create an output port N containing the estimated noise.

Source of the number of detections
Source of the number of detections, specified as Auto or Property. When you select Auto, the
number of detection indices reported is the total number of cells under test that have detections.
If you select Property, the number of reported detections is determined by the value of the
Maximum number of detections parameter.

To enable this parameter, set the Output format parameter to Detection index.
Maximum number of detections

Maximum number of detection indices to report, specified as a positive integer.

To enable this parameter, set the Output format parameter to Detection index and the
Source of the number of detections parameter to Property.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
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your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Input cell matrix.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Idx Cells under test. Double-precision floating point
K Threshold factor. Double-precision floating point
N Noise power. Double-precision floating point
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Port Description Supported Data Types
Y Detection results. Double-precision floating point

See Also
Functions
npwgnthresh | rocpfa

System Objects
phased.CFARDetector | phased.CFARDetector2D

Blocks
2-D CFAR Detector

Introduced in R2014b
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2-D CFAR Detector
Two-dimensional constant false alarm rate (CFAR) detector
Library: Phased Array System Toolbox / Detection

Description
The 2-D CFAR Detector block implements a constant false-alarm rate detector for two dimensional
image data. A detection is declared when an image cell value exceeds a threshold. To maintain a
constant false alarm-rate, the threshold is set to a multiple of the image noise power. The detector
estimates noise power from neighboring cells surrounding the cell-under-test (CUT) using one of
three cell averaging methods, or an order statistics method. The cell-averaging methods are cell-
averaging (CA), greatest-of cell averaging (GOCA), or smallest-of cell averaging (SOCA).

For each test cell, the detector:

1 estimates the noise statistic from the cell values in the training band surrounding the CUT cell.
2 computes the threshold by multiplying the noise estimate by the threshold factor.
3 compares the CUT cell value to the threshold to determine whether a target is present or absent.

If the value is greater than the threshold, a target is present.

Ports
Input

X — Input image
real M-by-N matrix | real M-by-N-by-P array

Input image, specified as a real M-by-N matrix or real M-by-N-by-P array. M and N represent the rows
and columns of the matrix. Each page is a different 2-D signal.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

idx — Location of test cells
2-by-L matrix of positive integers

Location of test cells, specified as a 2-by-L matrix of positive integers, where L is the number of test
cells. Each column of idx specifies the row and column index of a CUT cell. The locations of CUT
cells are restricted so that their training regions lie completely within the input images.
Data Types: double
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K — Detection threshold factor
positive scalar

Threshold factor used to calculate the detection threshold, specified as a positive scalar.
Dependencies

To enable this port, set the Threshold factor method parameter to 'Input port'
Data Types: double

Output

Y — Detection results
logical matrix (default) | real-valued matrix

Detection results, whose format depends on the Output Format property

• When OutputFormat is 'Cut result', Y is a D-by-P matrix containing logical detection results
for cells under test. D is the length of cutidx and P is the number of pages of X. The rows of Y
correspond to the rows of cutidx. For each row, Y contains 1 in a column if there is a detection in
the corresponding cell in X. Otherwise, Y contains a 0.

• When OutputFormat is Detection index, Y is a K-by-L matrix containing detections indices. K
is the number of dimensions of X. L is the number of detections found in the input data. When X is
a matrix, Y contains the row and column indices of each detection in X in the form
[detrow;detcol]. When X is an array, Y contains the row, column, and page indices of each
detection in X in the form [detrow;detcol;detpage]. When the NumDetectionsSource
property is set to 'Property', L equals the value of the NumDetections property. If the number
of actual detections is less than this value, columns without detections are set to NaN.

Data Types: double

Th — Computed detection threshold
real-valued matrix

Computed detection threshold for each detected cell, returned as a real-valued matrix. Th has the
same dimensions as Y.

• When OutputFormat is 'CUT result', Th returns the detection threshold whenever an element
of Y is 1 and NaN whenever an element of Y is 0.

• When OutputFormat is Detection index, th returns a detection threshold for each
corresponding detection in Y. When the NumDetectionsSource property is set to 'Property',
L equals the value of the NumDetections property. If the number of actual detections is less than
this value, columns without detections are set to NaN.

Dependencies

To enable this port, select the Output detection threshold checkbox.
Data Types: double

N — Estimated noise power
real-valued matrix

Estimated noise power for each detected cell, returned as a real-valued matrix. noise has the same
dimensions as Y.
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• When OutputFormat is 'CUT result', noise returns the noise power whenever an element of
Y is 1 and NaN whenever an element of Y is 0.

• When OutputFormat is 'Detection index', noise returns a noise power for each
corresponding detection in Y. When the NumDetectionsSource property is set to 'Property',
L equals the value of the NumDetections property. If the number of actual detections is less than
this value, columns without detections are set to NaN.

Dependencies

To enable this port, select the Output estimated noise power checkbox.
Data Types: double

Parameters
CFAR algorithm — Noise power estimation algorithm
CA (default) | GOCA | SOCA | OS

Noise power estimation algorithm, specified as CA, GOCA, SOCA, or OS. For CA, GOCA, SOCA, the noise
power is the sample mean derived from the training band. For OS, the noise power is the kth cell
value obtained from a numerical ordering of all training cell values. Set k by the Rank of order
statistic parameter. See “Training cells” on page 3-72.

Averaging Method Description
CA — Cell-averaging algorithm Computes the sample mean of all training cells

surrounding the CUT cell.
GOCA — Greatest-of cell-averaging algorithm Splits the 2-D training window surrounding the

CUT cell into left and right halves. Then, the
algorithm computes the sample mean for each
half and selects the largest mean.

SOCA — Smallest-of cell-averaging algorithm Splits the 2-D training window surrounding the
CUT cell into left and right halves. Then, the
algorithm computes the sample mean for each
half and selects the smallest mean.

OS — Order statistic algorithm Sorts training cells in ascending order of numeric
values. Then the algorithm selects the kth value
from the list. k is the rank specified by the Rank
parameter.

Rank of order statistic — Rank of order statistic
1 (default) | positive integer

Specify the rank of the order statistic used in the 2-D CFAR algorithm as a positive integer. The value
of this parameter must lie between 1 and Ntrain, where Ntrain is the number of training cells. A value of
1 selects the smallest value in the training region.

Dependencies

To enable this parameter, set the CFAR Algorithm parameter to OS.

Size in cells of the guard region band — Widths of guard band
[1,1] (default) | nonnegative integer scalar | 2-element vector of positive integers
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The number of row and column guard cells on each side of the cell under test as nonnegative
integers. The first element specifies the guard band size along the row dimension. The second
element specifies the guard band size along the row dimension. Specifying Size in cells of the
guard region band as a scalar is equivalent to specifying a vector with the same value for both
dimensions. For example, a value of [1 1], indicates that there is a one-guard-cell-wide region
surrounding each CUT cell.

Size in cells of the training region band — Widths of training band
[1,1] (default) | nonnegative integer scalar | 2-element vector of positive integers

Size in cells of the training region band, specified as a nonnegative integer or 1-by-2 matrix of
nonnegative integers. The first element specifies the training band size along the row dimension, and
the second along the column dimension. Specifying Size in cells of the training region band as a
scalar is equivalent to specifying a vector with the same value for both dimensions. For example, a
value of [1 1] indicates that there is a one-training-cell-wide region surrounding the guard region
for each cell under test.

Threshold factor method — Method to determine threshold factor
Auto (default) | Input port | Custom

Method to determine threshold factor, specified as Auto, Input port, or Custom.

• When you choose Auto, the threshold factor is determined from the estimated noise statistic and
the probability of false alarm.

• When you choose Input Port, set the threshold factor using the K input port.
• When you choose Custom, set the threshold factor using the Custom threshold factor

parameter.

Custom threshold factor — Custom threshold factor
1 (default) | positive scalar

Custom threshold factor, specified as a positive scalar.

Dependencies

To enable this parameter, set the Threshold factor method parameter to Custom.

Probability of false alarm — Probability of false alarm
0.1 (default) | real scalar between 0 and 1

Probability of false alarm, specified as a real scalar between 0 and 1. You can calculate the threshold
factor from the required probability of false alarm.

Dependencies

To enable this parameter, set the Threshold factor method property to Auto.

OutputFormat — Format of detection results
CUT result (default) | Detection index

Format of detection results, specified as CUT result or Detection index.

• When set to 'CUT result', the detection results are logical detection values (1 or 0) for each
tested cell.
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• When set to 'Detection index', the results form a vector or matrix containing the indices of
tested cells that exceed a detection threshold.

Output threshold detection — Enable detection threshold output
off (default) | on

Select this check box to enable the output of detection thresholds via the Th output port.

Output estimated noise power — Enable detection threshold output
off (default) | on

Select this check box to enable the output of estimated noise power via the N output port.

Source of the number of detections — Source of the number of detections to report
Auto (default) | Property

Source of the number of detections, specified as Auto or Property. When you select Auto, the
number of detection indices reported is the total number of cells under test that have detections. If
you select Property, the number of reported detections is determined by the value of the Maximum
number of detections parameter.

Dependencies

To enable this parameter, set the Output format parameter to Detection index.
Data Types: char

Maximum number of detections — Maximum number of detection indices to report
1 (default) | positive integer

Maximum number of detection indices to report, specified as a positive integer.

Dependencies

To enable this parameter, set the Output format parameter to Detection index and the Source
of the number of detections parameter to Property.
Data Types: double

Algorithms
CFAR 2-D requires an estimate of the noise power. Noise power is computed from cells that are
assumed not to contain any target signal. These cells are the training cells. Training cells form a band
around the cell-under-test (CUT) cell but may be separated from the CUT cell by a guard band. The
detection threshold is computed by multiplying the noise power by the threshold factor.
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For GOCA and SOCA averaging, the noise power is derived from the mean value of one of the left or
right halves of the training cell region.

Because the number of columns in the training region is odd, the cells in the middle column are
assigned equally to either the left or right half.

When using the order-statistic method, the rank cannot be larger than the number of cells in the
training cell region, Ntrain. You can compute Ntrain.

• NTC is the number of training band columns.
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• NTR is the number of training band rows.
• NGC is the number of guard band columns.
• NGR is the number of guard band rows.

The total number of cells in the combined training region, guard region, and CUT cell is Ntotal = (2NTC
+ 2NGC + 1)(2NTR+ 2NGR + 1).

The total number of cells in the combined guard region and CUT cell is Nguard = (2NGC + 1)(2NGR + 1).

The number of training cells is Ntrain = Ntotal – Nguard.

By construction, the number of training cells is always even. Therefore, to implement a median filter,
you can choose a rank of Ntrain/2 or Ntrain/2 + 1.

See Also
Functions
npwgnthresh | rocpfa

System Objects
phased.CFARDetector | phased.CFARDetector2D

Blocks
CFAR Detector

Introduced in R2016b
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DBSCAN Clusterer
Cluster detections
Library: Phased Array System Toolbox / Detection

Description
Cluster data using the density-based spatial clustering of applications with noise (DBSCAN)
algorithm. The DBSCAN Clusterer block can cluster any type of data. The block can also solve for the
clustering threshold (epsilon) and can perform data disambiguation in two dimensions.

Ports
Input

X — Input data
N-by-P real-valued matrix

Input data, specified as a real-valued N-by-P matrix, where N is the number of data points to cluster.
P is the number of feature dimensions. The DBSCAN algorithm can cluster any type of data with
appropriate Minimum number of points in a cluster and Cluster threshold epsilon settings.
Data Types: double

Update — Enable automatic update of epsilon
false (default) | true

Enable automatic update of the epsilon estimate, specified as false or true.

• When true, the epsilon threshold is first estimated as the average of the knees of the k-NN search
curves. The estimate is then added to a buffer of size L, set by the Length of cluster threshold
epsilon history parameter. The final value of epsilon is calculated as the average of the L-length
epsilon history buffer. If Length of cluster threshold epsilon history is set to one, the estimate
is memory-less. Memory-less means that each epsilon estimate is immediately used and no
moving-average smoothing occurs.

• When false, a previous epsilon estimate is used. Estimating epsilon is computationally intensive
and not recommended for large data sets.

Dependencies

To enable this port, set the Source of cluster threshold epsilon parameter to Auto and set the
Maximum number of points for 'Auto' epsilon parameter.
Data Types: Boolean

AmbLims — Ambiguity limits
1-by-2 real-valued vector (default) | 2-by-2 real-valued matrix

Ambiguity limits, specified as a 1-by-2 real-valued vector or 2-by-2 real-valued matrix. For a single
ambiguity dimension, specify the limits as a 1-by-2 vector
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[MinAmbiguityLimitDimension1,MaxAmbiguityLimitDimension1]. For two ambiguity dimensions,
specify the limits as a 2-by-2 matrix [MinAmbiguityLimitDimension1, MaxAmbiguityLimitDimension1;
MinAmbiguityLimitDimension2,MaxAmbiguityLimitDimension2].

Clustering can occur across boundaries to ensure that ambiguous detections are appropriately
clustered for up to two dimensions. The ambiguous columns of the input port data X are defined using
the Indices of ambiguous dimensions parameter. The AmbLims parameter defines the minimum
and maximum ambiguity limits in the same units as used in the Indices of ambiguous dimensions
columns of the input data X.

Dependencies

To enable this port, select the Enable disambiguation of dimensions check box.
Data Types: double

Output

Idx — Cluster indices
N-by-1 integer-valued column vector

Cluster indices, returned as an N-by-1 integer-valued column vector. Cluster IDs represent the
clustering results of the DBSCAN algorithm. A value equal to '-1' implies a DBSCAN noise point.
Positive Idx values correspond to clusters that satisfy the DBSCAN clustering criteria.

Dependencies

To enable this port, set the Define outputs for Simulink block parameter to Index or Index and
ID.
Data Types: double

Clusters — Alternative cluster IDs
1-by-N integer-valued row vector

Alternative cluster IDs, returned as a 1-by-N row vector of positive integers. Each value is a unique
identifier indicating a hypothetical target cluster. This argument contains unique positive cluster IDs
for all points including noise. In contrast, the Idx output argument labels noise points with '–1'. Use
this output as input to Phased Array System Toolbox blocks such as Range Estimator and Doppler
Estimator.

Dependencies

To enable this port, set the Define outputs for Simulink block parameter to Cluster ID or Index
and ID.
Data Types: double

Parameters
Define outputs for Simulink block — Type of cluster data output
Index and ID (default) | Cluster ID | Index

Type of cluster data output, specified as:.

• Index and ID –- Enables the Idx and Clusters output ports.
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• Cluster ID –- Enables the Clusters output port only.
• Index –- Enables the Idx output port only.

Source of cluster threshold epsilon — Epsilon source
Property (default) | Auto

Epsilon source for cluster threshold:

• Property — Epsilon is obtained from the Cluster threshold epsilon parameter.
• Auto — Epsilon is estimated automatically using a k-nearest neighbor (k-NN) search. The search

is calculated with k ranging from one less than the value of Minimum number of points in a
cluster to one less than the value of Maximum number of points for 'Auto' epsilon. The
subtraction of one is needed because the neighborhood of a point includes the point itself.

Cluster threshold epsilon — Cluster neighborhood size
10.0 (default) | positive scalar | positive real-valued 1-by-P row vector

Cluster neighborhood size for a search query, specified as a positive scalar or real-valued 1-by-P row
vector. P is the number of clustering dimensions in the input data X.

Epsilon defines the radius around a point inside which to count the number of detections. When
epsilon is a scalar, the same value applies to all clustering feature dimensions. You can specify
different epsilon values for different clustering dimensions by specifying a real-valued 1-by-P row
vector. Using a row vector creates a multi-dimensional ellipse search area, which is useful when the
data columns have different physical meanings such as range and Doppler.

Minimum number of points in a cluster — Minimum number of points required for
cluster
3 (default) | positive integer

Minimum number of points required for a cluster, specified as a positive integer. This parameter
defines the minimum number of points in a cluster when determining whether a point is a core point.

Maximum number of points for 'Auto' epsilon — Maximum number of points required
for cluster
10 (default) | positive integer

Maximum number of points in a cluster, specified as a positive integer. This property is used to
estimate epsilon when the object performs a k-NN search.
Dependencies

To enable this parameter, set the Source of cluster threshold epsilon parameter to Auto.

Length of cluster threshold epsilon history — Length of cluster threshold epsilon
history
10 (default) | positive integer

Length of the stored cluster threshold epsilon history, specified as a positive integer. When set to one,
the history is memory-less. Then, each epsilon estimate is immediately used and no moving-average
smoothing occurs. When greater than one, the epsilon value is averaged over the history length
specified.
Example: 5
Data Types: double
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Enable disambiguation of dimensions — Turn on disambiguation
off (default) | on

Check box to enable disambiguation of dimensions, specified as false or true. When checked,
clustering occurs across boundaries defined by the values in the input port AmbLims at execution.
Ambiguous detections are appropriately clustered. Use the Indices of ambiguous dimensions
parameter to specify those column indices of X in which ambiguities can occur. Up to two ambiguous
dimensions are permitted. Turning on disambiguation is not recommended for large data sets.
Data Types: Boolean

Indices of ambiguous dimensions — Indices of ambiguous dimensions
1 (default) | positive integer | 1-by-2 vector of positive integers

Indices of ambiguous dimensions, specified as a positive integer or 1-by-2 vector of positive integers.
This property specifies the column indices of the input port data X in which disambiguation can occur.
A positive integer corresponds to a single ambiguous dimension in the input data matrix X. A 1-by-2
length row vector of indices corresponds to two ambiguous dimensions. The size and order of Indices
of ambiguous dimensions must be consistent with the AmbLims input port value.
Example: [3 4]

Dependencies

To enable this parameter, select the Enable disambiguation of dimensions check box.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

3 Blocks

3-78



Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
clusterDBSCAN | clusterDBSCAN.discoverClusters | clusterDBSCAN.estimateEpsilon

Introduced in R2019b
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Constant Gamma Clutter
Constant gamma clutter simulation
Library: Phased Array System Toolbox / Environment and Target

Description
The Constant Gamma Clutter block generates constant gamma clutter reflected from homogeneous
terrain for a monostatic radar transmitting a narrowband signal into free space. The radar is assumed
to be at constant altitude moving at constant speed.

Ports
Input

PRFIdx — PRF Index
positive integer

Index to select the pulse repetition frequency (PRF), specified as a positive integer. The index selects
the PRF from the predefined vector of values specified by the Pulse repetition frequency (Hz)
parameter.
Example: 4

Dependencies

To enable this port, select Enable PRF selection input.
Data Types: double

WS — Subarray element weights
NE-by-NS complex-valued matrix

Weights applied to each element in a subarray, specified as an NE-by-NS complex-valued matrix.

• When you set Specify sensor array to Replicated Subarray, all subarrays have the same
dimensions. Then, you can specify the subarray element weights as a complex-valued NE-by-NS
matrix. NE is the number of elements in each subarray and NS is the number of subarrays. Each
column of WS specifies the weights for the corresponding subarray.

• When you set Specify sensor array to Partitioned array, subarrays are not required to have
identical dimensions and sizes. You can specify subarray element weights as a complex-valued NE-
by-NS matrix, where NE now is the number of elements in the largest subarray. The first K entries
in each column are the element weights for the corresponding subarray where K is the number of
elements in the subarray.

Dependencies

To enable this port, set Specify sensor array to Partitioned array or Replicated Subarray.
Then, set Subarray steering method to Custom.
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Data Types: double

Steer — Steering angle input
scalar | 2-by-1 real-valued vector

Steering angle, specified as a scalar or a 2-by-1 real-valued vector. As a vector, the steering angle
takes the form of [AzimuthAngle; ElevationAngle]. As a scalar, the steering angle represents
the azimuth angle only. Then the elevation angle is assumed to be zero degrees. Units are in degrees

Dependencies

To enable this port, set Specify sensor array to Partitioned array or Replicated Subarray.
Then, set Subarray steering method to Phase or Time.
Data Types: double

Output

Out — Simulated clutter
N-by-M complex-valued matrix

Simulated clutter, returned as an N-by-M complex-valued matrix.

N is the number of samples output from the block. When you set the Output signal format
parameter to Samples, specify N using the Number of samples in output parameter. When you set
the Output signal format parameter to Pulses, N is the total number of samples in the next P
pulses where P is specified in the Number of pulse in output parameter.

M is either

• the number of subarrays in the sensor array if sensor array contains subarrays.
• the number of radiating or collecting elements if the sensor array does not contain subarrays.

Data Types: double

Parameters
Main Tab

Terrain gamma value (dB) — Clutter model parameter
0 (default) | scalar

Clutter model parameter, specified as a scalar. This parameter contains the γ value used in the
constant γ clutter model. The γ value depends on both terrain type and the operating frequency. Units
are in dB.
Example: -5.0
Data Types: double

Earth model — Earth shape
Flat (default) | Curved

Specify the earth model used in clutter simulation as Flat or Curved. When you set this parameter
to Flat, the earth is assumed to be a plane. When you set this parameter to Curved, the earth is
assumed to be spherical.
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Maximum range (m) — Maximum range of transmitted clutter
5000 (default) | positive scalar

Specify the maximum range for the clutter simulation as a positive scalar. The maximum range must
be greater than the value specified in the Radar height (m) parameter in the Radar panel. Units
are in meters.
Example: 1000.0
Data Types: double

Azimuth coverage (deg) — Angular clutter coverage
60 (default) | positive scalar

Azimuth coverage, specified as a positive scalar. The clutter simulation covers a region having the
specified azimuth span centered on zero-degrees azimuth. Typically, all clutter patches have their
azimuth centers within the region, but by setting the Clutter patch azimuth span (deg) value, you
can cause some patches to extend beyond the region. Units are in degrees.
Example: 40
Data Types: double

Clutter patch azimuth span (deg) — Azimuth span of clutter patches
60 (default) | positive scalar

Azimuth span of each clutter patch, specified as a positive scalar. Units are in degrees.
Example: 10
Data Types: double

Clutter coherence time (s) — Coherence time of clutter simulation
Inf (default) | positive scalar

Coherence time for the clutter simulation, specified as a positive scalar. After the coherence time
elapses, the block updates the random numbers it uses for the clutter simulation at the next pulse.
When you use the default value of Inf, the random numbers are never updated. Units are in seconds.
Example: 4
Data Types: double

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Sample rate (Hz) — Clutter sample rate
1e6 (default) | positive scalar

Clutter sample rate, specified as a positive scalar. Units are in Hertz.
Example: 10e6
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Data Types: double

Pulse repetition frequency (Hz) — Pulse repetition frequency
1e4 (default) | positive scalar | row vector of positive values

Pulse repetition frequency, PRF, specified as a positive scalar or a row vector of positive values. Units
are in Hertz.
Example: [1e4,2e4]
Data Types: double

Enable PRF selection input — Select predefined PRF
off (default) | on

Select this parameter to enable the PRFIdx port.

• When enabled, pass in an index into a vector of predefined PRFs. Set predefined PRFs using the
Pulse repetition frequency (Hz) parameter.

• When not enabled, the block cycles through the vector of PRFs specified by the Pulse repetition
frequency (Hz) parameter. If Pulse repetition frequency (Hz) is a scalar, the PRF is constant.

Source of simulation sample time — Source of simulation sample time
Derive from waveform parameters (default) | Inherit from Simulink engine

Source of simulation sample time, specified as Derive from waveform parameters or Inherit
from Simulink engine. When set to Derive from waveform parameters, the block runs at a
variable rate determined by the PRF of the selected waveform. The elapsed time is variable. When set
to Inherit from Simulink engine, the block runs at a fixed rate so the elapsed time is a
constant.
Dependencies

To enable this parameter, select the Enable PRF selection input parameter.

Output signal format — Format of the output signal
Pulses (default) | Samples

The format of the output signal, specified as Pulses or Samples.

If you set this parameter to Samples, the output of the block consists of multiple samples. The
number of samples is the value of the Number of samples in output parameter.

If you set this parameter to Pulses, the output of the block consists of multiple pulses. The number
of pulses is the value of the Number of pulses in output parameter.

Number of samples in output — Number of samples in output
100 (default) | positive integer

Number of samples in the block output, specified as a positive integer.
Example: 1000
Dependencies

To enable this parameter, set the Output signal format parameter to Samples.
Data Types: double
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Number of pulses in output — Number of pulses in output
1 (default) | positive integer

Number of pulses in the block output, specified as a positive integer.
Example: 2
Dependencies

To enable this parameter, set the Output signal format parameter to Pulses.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes
Block Simulation Simulation Behavior

Normal Accelerator Rapid Accelerator
Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Radar Tab

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Effective transmitted power (W) — radar system effective transmitted power
5000 (default) | positive scalar

Effective radiated power (ERP) of the radar system, specified as a positive scalar. Units are in watts.
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Example: 3500
Data Types: double

Radar height (m) — Height of radar above surface
0 (default) | nonnegative scalar

Height of radar above surface, specified as a nonnegative scalar. Units are in meters.
Example: 50
Data Types: double

Radar speed (m/s) — Radar platform speed
0 (default) | nonnegative scalar

Radar platform speed, specified as a nonnegative scalar. Units are in meters per second.
Example: 5
Data Types: double

Radar motion direction (deg) — Direction of motion of radar platform
[90;0] (default) | 2-by-1 real vector

Specify the direction of radar platform motion as a 2-by-1 real vector in the form
[AzimuthAngle;ElevationAngle]. Units are in degrees. Both azimuth and elevation angle are
measured in the local coordinate system of the radar antenna or antenna array. Azimuth angle must
be between –180° and 180°. Elevation angle must be between –90° and 90°.

The default value of this parameter indicates that the radar platform is moving perpendicular to the
radar antenna array broadside direction.
Example: [25;30]
Data Types: double

Broadside depression angle (deg) — Depression angle of antenna array
0 (default) | scalar

Depression angle of the radar antenna array with respect to broadside, specified as a scalar.
Broadside is defined as zero-degrees azimuth and zero-degrees elevation. The depression angle is
measured downward from the horizontal. Units are in degrees.
Example: -10
Data Types: double

Sensor Array Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
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• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.

Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.
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Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.

Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
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Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).
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• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector
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Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.
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Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.
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Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.
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Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.
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Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.
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Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.
Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.
Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.
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See Also
phased.ConstantGammaClutter

Introduced in R2014b
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GPU Constant Gamma Clutter
Constant gamma clutter simulation using gpu
Library: Phased Array System Toolbox / Environment and Target

Description
The GPU Constant Gamma Clutter block generates, using a graphical processing unit (GPU), constant
gamma clutter reflected from a homogeneous terrain for a monostatic radar transmitting a
narrowband signal into free space. The radar is assumed to be at a constant altitude moving at a
constant speed.

Ports
Input

PRFIdx — PRF Index
positive integer

Index to select the pulse repetition frequency (PRF), specified as a positive integer. The index selects
the PRF from the predefined vector of values specified by the Pulse repetition frequency (Hz)
parameter.
Example: 4
Dependencies

To enable this port, select Enable PRF selection input.
Data Types: double

WS — Subarray element weights
NE-by-NS complex-valued matrix

Weights applied to each element in a subarray, specified as an NE-by-NS complex-valued matrix.

• When you set Specify sensor array to Replicated Subarray, all subarrays have the same
dimensions. Then, you can specify the subarray element weights as a complex-valued NE-by-NS
matrix. NE is the number of elements in each subarray and NS is the number of subarrays. Each
column of WS specifies the weights for the corresponding subarray.

• When you set Specify sensor array to Partitioned array, subarrays are not required to have
identical dimensions and sizes. You can specify subarray element weights as a complex-valued NE-
by-NS matrix, where NE now is the number of elements in the largest subarray. The first K entries
in each column are the element weights for the corresponding subarray where K is the number of
elements in the subarray.

Dependencies

To enable this port, set Specify sensor array to Partitioned array or Replicated Subarray.
Then, set Subarray steering method to Custom.
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Data Types: double

Steer — Steering angle input
scalar | 2-by-1 real-valued vector

Steering angle, specified as a scalar or a 2-by-1 real-valued vector. As a vector, the steering angle
takes the form of [AzimuthAngle; ElevationAngle]. As a scalar, the steering angle represents
the azimuth angle only. Then the elevation angle is assumed to be zero degrees. Units are in degrees

Dependencies

To enable this port, set Specify sensor array to Partitioned array or Replicated Subarray.
Then, set Subarray steering method to Phase or Time.
Data Types: double

Output

Out — Simulated clutter
N-by-M complex-valued matrix

Simulated clutter, returned as an N-by-M complex-valued matrix.

N is the number of samples output from the block. When you set the Output signal format
parameter to Samples, specify N using the Number of samples in output parameter. When you set
the Output signal format parameter to Pulses, N is the total number of samples in the next P
pulses where P is specified in the Number of pulse in output parameter.

M is either

• the number of subarrays in the sensor array if sensor array contains subarrays.
• the number of radiating or collecting elements if the sensor array does not contain subarrays.

Data Types: double

Parameters
Main Tab

Terrain gamma value (dB) — Clutter model parameter
0 (default) | scalar

Clutter model parameter, specified as a scalar. This parameter contains the γ value used in the
constant γ clutter model. The γ value depends on both terrain type and the operating frequency. Units
are in dB.
Example: -5.0
Data Types: double

Earth model — Earth shape
Flat (default) | Curved

Specify the earth model used in clutter simulation as Flat or Curved. When you set this parameter
to Flat, the earth is assumed to be a plane. When you set this parameter to Curved, the earth is
assumed to be spherical.
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Maximum range (m) — Maximum range of transmitted clutter
5000 (default) | positive scalar

Specify the maximum range for the clutter simulation as a positive scalar. The maximum range must
be greater than the value specified in the Radar height (m) parameter in the Radar panel. Units
are in meters.
Example: 1000.0
Data Types: double

Azimuth coverage (deg) — Angular clutter coverage
60 (default) | positive scalar

Azimuth coverage, specified as a positive scalar. The clutter simulation covers a region having the
specified azimuth span centered on zero-degrees azimuth. Typically, all clutter patches have their
azimuth centers within the region, but by setting the Clutter patch azimuth span (deg) value, you
can cause some patches to extend beyond the region. Units are in degrees.
Example: 40
Data Types: double

Clutter patch azimuth span (deg) — Azimuth span of clutter patches
60 (default) | positive scalar

Azimuth span of each clutter patch, specified as a positive scalar. Units are in degrees.
Example: 10
Data Types: double

Clutter coherence time (s) — Coherence time of clutter simulation
Inf (default) | positive scalar

Coherence time for the clutter simulation, specified as a positive scalar. After the coherence time
elapses, the block updates the random numbers it uses for the clutter simulation at the next pulse.
When you use the default value of Inf, the random numbers are never updated. Units are in seconds.
Example: 4
Data Types: double

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Sample rate (Hz) — Clutter sample rate
1e6 (default) | positive scalar

Clutter sample rate, specified as a positive scalar. Units are in Hertz.
Example: 10e6
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Data Types: double

Pulse repetition frequency (Hz) — Pulse repetition frequency
1e4 (default) | positive scalar | row vector of positive values

Pulse repetition frequency, PRF, specified as a positive scalar or a row vector of positive values. Units
are in Hertz.
Example: [1e4,2e4]
Data Types: double

Enable PRF selection input — Select predefined PRF
off (default) | on

Select this parameter to enable the PRFIdx port.

• When enabled, pass in an index into a vector of predefined PRFs. Set predefined PRFs using the
Pulse repetition frequency (Hz) parameter.

• When not enabled, the block cycles through the vector of PRFs specified by the Pulse repetition
frequency (Hz) parameter. If Pulse repetition frequency (Hz) is a scalar, the PRF is constant.

Output signal format — Format of the output signal
Pulses (default) | Samples

The format of the output signal, specified as Pulses or Samples.

If you set this parameter to Samples, the output of the block consists of multiple samples. The
number of samples is the value of the Number of samples in output parameter.

If you set this parameter to Pulses, the output of the block consists of multiple pulses. The number
of pulses is the value of the Number of pulses in output parameter.

Number of samples in output — Number of samples in output
100 (default) | positive integer

Number of samples in the block output, specified as a positive integer.
Example: 1000

Dependencies

To enable this parameter, set the Output signal format parameter to Samples.
Data Types: double

Number of pulses in output — Number of pulses in output
1 (default) | positive integer

Number of pulses in the block output, specified as a positive integer.
Example: 2

Dependencies

To enable this parameter, set the Output signal format parameter to Pulses.
Data Types: double
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Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Radar Tab

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Effective transmitted power (W) — radar system effective transmitted power
5000 (default) | positive scalar

Effective radiated power (ERP) of the radar system, specified as a positive scalar. Units are in watts.
Example: 3500
Data Types: double

Radar height (m) — Height of radar above surface
0 (default) | nonnegative scalar

Height of radar above surface, specified as a nonnegative scalar. Units are in meters.
Example: 50
Data Types: double
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Radar speed (m/s) — Radar platform speed
0 (default) | nonnegative scalar

Radar platform speed, specified as a nonnegative scalar. Units are in meters per second.
Example: 5
Data Types: double

Radar motion direction (deg) — Direction of motion of radar platform
[90;0] (default) | 2-by-1 real vector

Specify the direction of radar platform motion as a 2-by-1 real vector in the form
[AzimuthAngle;ElevationAngle]. Units are in degrees. Both azimuth and elevation angle are
measured in the local coordinate system of the radar antenna or antenna array. Azimuth angle must
be between –180° and 180°. Elevation angle must be between –90° and 90°.

The default value of this parameter indicates that the radar platform is moving perpendicular to the
radar antenna array broadside direction.
Example: [25;30]
Data Types: double

Broadside depression angle (deg) — Depression angle of antenna array
0 (default) | scalar

Depression angle of the radar antenna array with respect to broadside, specified as a scalar.
Broadside is defined as zero-degrees azimuth and zero-degrees elevation. The depression angle is
measured downward from the horizontal. Units are in degrees.
Example: -10
Data Types: double

Sensor Array Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])
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Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.
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Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

 GPU Constant Gamma Clutter

3-105



Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array
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Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector
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Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
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• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element
spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.
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Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.
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Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.
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Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.
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Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.
Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.
Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.
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See Also
phased.gpu.ConstantGammaClutter

Introduced in R2014b
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Data Cube Slicer
Slice a data cube along specified dimensions

Library
Space-Time Adaptive Processing

phasedstaplib

Description
The Data Cube Slicer block slices a data cube along the specified dimensions. The input is a data
cube of dimensions M-by-Q-by-N. The first dimension is range, or fast time. The second dimension is
angle, or channels. The third dimension is Doppler, or slow time. If you set Output Slice to Angle-
Doppler, the output has dimension Q-by-N. If you set Output Slice to Range-Doppler, the output
has dimension M-by-N. If you set Output Slice to Range-angle, the output has dimension M-by-Q.

Parameters
Output slice

Select desired output for a M-by-Q-by-N data cube. Parameter values are

Value Dimension
Angle-Doppler Q-by-N
Range-Doppler M-by-N
Range-angle M-by-Q

Ports
Port Supported Data Types
X Double-precision floating point
Idx Double-precision floating point
Out Double-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
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Introduced in R2014b

 Data Cube Slicer

3-117



Dechirp Mixer
Dechirping operation on input signal

Library
Detection

phaseddetectlib

Description
The Dechirp Mixer block mixes the incoming signal with a reference signal incoming through the Ref
port. The signals can be complex baseband signals. The input signal can be a matrix where each
column is an independent channel. The reference signal is a vector. The reference signal is complex
conjugated and then multiplied with each signal column to compute the output.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Supported Data Types
X Double-precision floating point
RefX Double-precision floating point
Out Double-precision floating point

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

Does not support variable-size inputs.

See Also
dechirp

Introduced in R2014b
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Doppler Estimator
Doppler estimation
Library: Phased Array System Toolbox / Detection

Description
The Doppler Estimator block estimates the Doppler (radial speed) of target detections obtained from
the radar response data.

Ports
Input

Resp — Doppler-processed response data cube
complex-valued P-by-1 column vector | complex-valued M-by-P matrix | complex-valued M-by-N-by-P
array

Doppler-processed response data cube, specified as a complex-valued P-by-1 column vector, a
complex-valued M-by-P matrix, or a complex-valued M-by-N-by-P array.M represents the number of
range samples, N is the number of sensor elements or beams, and P is the number of Doppler bins.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Doppler — Doppler grid values along Doppler dimension
real-valued P-by-1 column vector

Doppler grid values along the Doppler dimension, specified as a real-valued P-by-1 column vector.
Doppler defines the Doppler values corresponding to the Doppler dimension of data input to the
Resp port. Doppler values must be monotonically increasing and equally spaced. Units are in hertz or
meters/sec.
Example: [-0.3,-0.2,-0.1,0,0.1,0.2,0.3]
Data Types: double

DetIdx — Detection indices
real-valued Nd-by-Q matrix

Detection indices, specified as a real-valued Nd-by-Q matrix. Q is the number of detections and Nd is
the number of dimensions in the response data cube, Resp. Each column of DetIdx contains the
indices of a detection in the response data cube.

NoisePower — Noise power at detection locations
positive scalar | real-valued 1-by-Q row vector of positive values
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Noise power at detection locations, specified as a positive scalar or real-valued 1-by-Q row vector
positive values. Q is the number of detections specified in the DetIdx input port.
Dependencies

To enable this port, select the Output variance for parameter estimates parameter, and then set
Source of noise power parameter to Input port.

Clusters — Cluster IDs
real-valued 1-by-Q row vector of positive values

Cluster IDs, specified as a real-valued 1-by-Q row vector, where Q is the number of detections
specified in the DetIdx input port. Each element of Clusters corresponds to an element of DetIdx.
Dependencies

To enable this input port, select the Enable cluster ID input checkbox.

Output

Est — Doppler estimate
real-valued K-by-1 column vector

Doppler estimates, returned as a real-valued K-by-1 column vector.

• When Enable cluster ID input is not selected, each Doppler estimate corresponds to one of the
columns in the DetIdx input port. Then K equals the number of elements, Q, of DetIdx.

• When Enable cluster ID input is selected, each Doppler estimate corresponds to one of the
cluster IDs in the Clustersinput port. Then K equals the number of unique cluster IDs.

Var — Doppler estimation variance
positive, real-valued K-by-1 column vector

Doppler estimation variance, returned as a positive, real-valued K-by-1 column vector, where K is the
dimension of Est. Each element of Var corresponds to an element of Est. The estimator variance is
computed using the Ziv-Zakai bound.
Dependencies

To enable this port, select the Output variance for parameter estimates parameter.

Parameters
Maximum number of estimates — Maximum number of estimates to report
1 (default) | positive integer

The maximum number of estimates to report, specified as a positive integer. When the number of
requested estimates is greater than the number elements in DetIdx, the remainder is filled with NaN.
Data Types: double

Enable cluster ID input — Enable cluster ID input
off (default) | on

Enable the Cluster input port to pass in cluster association information.
Data Types: Boolean
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Output variance for parameter estimates — Enable output variance port
off (default) | on

Enables the output of the parameter estimate variances via the Var port.
Data Types: Boolean

Number of pulses in Doppler processed waveform — Number of pulses
2 (default) | positive integer

Number of pulses in Doppler processed waveform, specified as a positive integer.
Dependencies

To enable this parameter, select the Output variance for parameter estimates Output variance
for parameter estimates parameter.
Data Types: double

Source of noise power — Source of noise power values
Property (default) | Input port

Source of the noise power, specified as Property or Input port. If you set this parameter to
Property, use the Noise power parameter to set the noise power at the detection locations. When
set the parameter to Input port, specify noise power via the NoisePower input port.

Noise power — Noise power values
1.0 (default) | positive scalar

Noise power for detections, specified as a positive scalar. The same noise power value is applied to all
detections. Noise power is in linear units.
Dependencies

To enable this parameter, select the Output variance for parameter estimates checkbox and set
the Source of noise power parameter to Property.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

See Also
Blocks
2-D CFAR Detector | CFAR Detector | Range Doppler Response

System Objects
phased.CFARDetector | phased.CFARDetector2D | phased.DopplerEstimator |
phased.RangeDopplerResponse

Introduced in R2017a
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DPCA Canceller
Displaced phase center array (DPCA) pulse canceller for a uniform linear array
Library: Phased Array System Toolbox / Space-Time Adaptive

Processing

Description
The DPCA Canceller block filters clutter impinging on a uniform linear array using a displaced phase
center array pulse canceller.

Ports
Input

X — Input signal
M-by-N-by-P complex-valued matrix

Input signal, specified as an M-by-N-by-P complex-valued array. M is the number of range samples, N
is the number of channels, and P is the number of pulses.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Idx — Index of range cells
positive integer

Index of range cells to compute processing weights.
Example: 1
Data Types: double

PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency of current pulse, specified as a positive scalar.

Dependencies

To enable this port, set the Specify PRF as parameter to Input port.
Data Types: double

Ang — Targeting direction
2-by-1 real-valued vector

 DPCA Canceller

3-123



Targeting direction, specified as a 2-by-1 real-valued vector. The vector takes the form of
[AzimuthAngle;ElevationAngle]. Angle units are in degrees. The azimuth angle must lie
between –180° and 180°, inclusive, and the elevation angle must lie between –90° and 90°, inclusive.
Angles are defined with respect to the local coordinate system of the array.

Dependencies

To enable this port, set the Specify direction as parameter to Input port.
Data Types: double

Dop — Targeting Doppler frequency
scalar

Targeting Doppler frequency of current pulse, specified as a scalar.

Dependencies

This port appears when the Output pre-Doppler result check box is cleared and the Specify
targeting Doppler as parameter is set to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-1 complex-valued vector

Processing output, returned as an M-by-1 complex-valued vector. The quantity M is the number of
range samples in the input port X.
Data Types: double

W — Processing weights
length N*P complex-valued vector

Processing weights, returned as Length N*P complex-valued vector. The quantity N is the number of
channels and P is the number of pulses. When the Specify sensor array as parameter is set to
Partitioned array or Replicated subarray, N represents the number of subarrays. L is the
number of desired beamforming directions specified in the Ang input port or by the Beamforming
direction (deg) parameter. There is one set of weights for each beamforming direction.

Dependencies

To enable this port, select the Enable weights output check box.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
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Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Specify PRF as — Source of PRF value
Property (default) | Input port

Source of PRF value, specified as Property or Input port. When set to Property, the Pulse
repetition frequency (Hz) parameter sets the PRF. When set to Input port, pass in the PRF using
the PRF input port.

Pulse repetition frequency (Hz) — Pulse repetition frequency
1 (default) | positive scalar

Pulse repetition frequency, PRF, specified as a positive scalar. Units are in Hertz. Set this parameter
to the same value set in any Waveform library block used in the simulation.

Dependencies

To enable this parameter, set the Specify PRF as parameter to Property.

Specify direction as — Specify source of targeting directions
Property (default) | Input port

Specify whether the targeting direction for the STAP processor block comes from a block parameter
or from the ANG input port. Values of this parameter are

Property • For the ADPCA Canceller and DPCA Canceller blocks, targeting
direction is specified using Receiving mainlobe direction
(deg).

• For the SMI Beamformer block, targeting direction is specified
using Targeting direction.

These parameters appear only when the Specify direction as
parameter is set to Property.

Input port Enter the targeting directions using the Ang input port. This port
appears only when Specify direction as is set to Input port.

Receiving mainlobe direction (deg) — Pointing direction of main lobe of array
[0;0] (default) | real-valued 2-by-1 vector

Specify the direction of the main lobe of the receiving sensor array as a real-valued 2-by-1 vector. The
direction is specified in the format of [AzimuthAngle; ElevationAngle]. The azimuth angle
should be between –180° and 180° and the elevation angle should be between –90° and 90°.
Example: [100;-45]

Dependencies

To enable this parameter, set Specify direction as to Property.
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Number of bits in phase shifters — Number of phase shift quantization bits
0 (default) | nonnegative integer

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Specify targeting Doppler as — Source of targeting Doppler
Property (default) | Input port

Specify whether targeting Doppler values for the STAP processor comes from the Targeting Doppler
(Hz) parameter of this block or using the DOP input port. For the ADPCA Canceller and DPCA
Canceller blocks, the Specify targeting Doppler as parameter appears only when the Output pre-
Doppler result check box is cleared. Values of this parameter are

Property Specify targeting Doppler values using the Targeting Doppler
parameter of the block. The Targeting Doppler parameter appears
only when Specify targeting Doppler as is set to Property.

Input port Specify targeting Doppler values using the Dop input port. This port
appears only when Specify targeting Doppler as is set to Input
port.

Targeting Doppler (Hz) — Targeting Doppler of STAP processor
0 (default) | scalar

Targeting Doppler of STAP processor, specified as a scalar.

Dependencies

• To enable this parameter for the SMI Beamformer block, set Specify targeting Doppler as to
Property.

• To enable this parameter for the ADPCA Canceller and DPCA Canceller blocks, first clear the
Output pre-Doppler result check box. Then set the Specify targeting Doppler as parameter
to Property.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Output pre-Doppler result — Output results before Doppler filtering
on (default) | off

Select this check box to output the results before Doppler filtering. Clear this check box to output the
processing result after Doppler filtering. Selecting this check box will remove the Specify targeting
Doppler as and Targeting Doppler (Hz) parameters.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.
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Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
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• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
Dependencies

To enable this parameter, set Element type to Cosine Antenna.
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Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.
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Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (
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Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.
Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.
Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.
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Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Specify sensor array as — Type of array
Array (no subarrays) (default) | MATLAB expression

Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Number of elements — Number of array elements in U
2 (default) | positive integer greater than or equal to two

The number of array elements for ULA arrays, specified as an integer greater than or equal to two.
Example: 11
Data Types: double

Element spacing — Distance between ULA elements
0.5 (default) | positive scalar

Distance between adjacent ULA elements, specified as a positive scalar. Units are in meters.
Example: 1.5

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Taper — ULA array taper
1 (default) | complex-valued vector

Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are used
to modify both the amplitude and phase of the transmitted or received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array. If Taper is a scalar, the same weight is
applied to each element. If Taper is a vector, a weight from the vector is applied to the corresponding
sensor element. A weight must be applied to each element in the sensor array.
Example: [0.5;1;0.5]
Data Types: double
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Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create a ULA array, specified as a valid Phased Array System Toolbox
array System object.
Example: phased.ULA('NumElements',13)

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

See Also
phased.DPCACanceller

Introduced in R2014b
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ESPRIT DOA
ESPRIT direction of arrival (DOA) estimator for ULA

Library
Direction of Arrival (DOA)

phaseddoalib

Description
The ESPRIT DOA block estimates the direction of arrival of a specified number of narrowband signals
incident on a uniform linear array using the ESPRIT algorithm.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of signals
Specify the number of signals as a positive integer scalar.

Spatial smoothing
Specify the amount of averaging, L, used by spatial smoothing to estimate the covariance matrix
as a nonnegative integer. Each increase in smoothing handles one extra coherent source, but
reduces the effective number of elements by one. The maximum value of this parameter is N – 2,
where N is the number of sensors.

Type of least squares method
Specify the least squares method used for ESPRIT as one of TLS or LS where TLS refers to total
least squares and LSrefers to least squares.

Forward-backward averaging
Select this parameter to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with a conjugate symmetric array manifold.

Row weighting factor
Specify the row weighting factor for signal subspace eigenvectors as a positive integer scalar.
This parameter controls the weights applied to the selection matrices. In most cases higher value
are better. However, the value can never be greater than (N-1)/2 where N is the number of
elements of the array.
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Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.
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Taper
Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In
this vector, N represents the number of elements in the array. If Taper is a scalar, the same
weight is applied to each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for example,
phased.ULA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).
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Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.
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• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
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Polar pattern frequencies (Hz)
This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
In Input signals.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point
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Port Description Supported Data Types
Ang Estimated broadside DOA

angles.
Double-precision floating point

See Also
phased.ESPRITEstimator

Introduced in R2014b
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FMCW Waveform
Frequency-modulated continuous (FMCW) waveform source

Library
Waveforms

phasedwavlib

Description
The FMCW Waveform block generates a frequency modulated continuous wave (FMCW) waveform
with a specified sweep time and sweep bandwidth. The block output can be either an integer number
of pulses or samples.

Parameters
Sample rate

Specify the sample rate of the signal as a positive scalar. Units are hertz. The product of Sample
rate and Sweep time must be integers.

Sweep time
Specify the duration, in seconds, of the upsweep or the downsweep of the signal as a scalar or
row vector of positive, real numbers. The product of the Sample rate value and each Sweep
time entry must be an integer.

To implement a varying sweep time, specify Sweep time as a row vector. The waveform uses
successive entries of the vector as the sweep time for successive periods of the waveform. If the
last element of the vector is reached, the process continues cyclically with the first entry of the
vector.

If Sweep time and Sweep bandwidth are both row vectors, the vectors must have the same
length.

If Sweep direction is Up or Down, the sweep period equals the sweep time. If Sweep direction
is Triangle, the sweep period is twice the sweep time because each period consists of an
upsweep segment and a downsweep segment.

Sweep bandwidth
Specify the bandwidth of the linear FM sweeping, in hertz, as a scalar or row vector of positive,
real numbers.

To implement a varying bandwidth, specify Sweep bandwidth as a row vector. The waveform
uses successive entries of the vector as the sweep bandwidth for successive periods of the
waveform. If the waveform reaches the last element of the Sweep bandwidth vector, the process
continues cyclically with the first entry of the vector.
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If Sweep time and Sweep bandwidth are both row vectors, the vectors must have the same
length.

Sweep direction
Specify the direction of the linear FM sweep as one of Up, Down, or Triangle.

Sweep interval
If you set this parameter value to Positive, the waveform sweeps in the interval between 0 and
B, where B is the value of the Sweep bandwidth parameter. If you set this parameter to
Symmetric, the waveform sweeps in the interval between –B/2 and B/2.

Output signal format
Specify the format of the output signal as Sweeps or Samples.

If you set this parameter to Sweeps, the output of the block is in the form of multiple sweeps. The
number of sweeps is the value of the Number of sweeps in output parameter.

If you set this parameter to Samples, the output of the block is in the form of multiple samples.
The number of samples is the value of the Number of samples in output parameter.

If the Sweep direction parameter is set to Triangle, each sweep is one-half of a period.
Number of sweeps in output

Specify the number of sweeps in the block output as a positive integer. This parameter appears
only when you set Output signal format to Sweeps.

Number of samples in output
Number of samples in the block output, specified as a positive integer. This parameter appears
only when you set Output signal format to Samples.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Supported Data Types
Out Double-precision floating point

See Also
phased.FMCWWaveform

Introduced in R2014b
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Free Space
Free space environment

Library
Environment and Target

phasedenvlib

Description
The Free Space Channel block propagates the signal from one point to another in space. The block
models propagation time, free space propagation loss and Doppler shift. The block assumes that the
propagation speed is much greater than the target or array speed in which case the stop-and-hop
model is valid.

When propagating a signal in free-space to an object and back, you have the choice of either using a
single block to compute a two-way free space propagation delay or two blocks to perform one-way
propagation delays in each direction. Because the free-space propagation delay is not necessarily an
integer multiple of the sampling interval, it may turn out that the total round trip delay in samples
when you use a two-way propagation block differs from the delay in samples when you use two one-
way propagation blocks. For this reason, it is recommended that, when possible, you use a single two-
way propagation block.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a positive scalar.

Perform two-way propagation
Select this check box to perform round-trip propagation between the origin and destination.
Otherwise the block performs one-way propagation from the origin to the destination.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.
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Maximum one-way propagation distance (m)
The maximum distance, in meters, between the origin and the destination as a positive scalar.
Amplitudes of any signals that propagate beyond this distance will be set to zero.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.
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Port Description Supported Data Types
X Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Pos1 Signal origin position. Double-precision floating point
Pos2 Signal destination position. Double-precision floating point
Vel1 Signal origin velocity. Double-precision floating point
Vel2 Signal destination velocity. Double-precision floating point
Out Output signal. Double-precision floating point

Algorithms
When the origin and destination are stationary relative to each other, the block output can be written
as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation loss. The delay is computed
from τ = R/c where R is the propagation distance and c is the propagation speed. The free space path
loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in losses smaller than one,
equivalent to a signal gain. For this reason, the loss is set to unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also introduces a
frequency shift. This shift corresponds to the Doppler shift between the origin and destination. The
frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation. The parameter v is
the relative speed of the destination with respect to the origin.

See Also
phased.FreeSpace

Introduced in R2014b
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Frost Beamformer
Frost beamformer
Library: Phased Array System Toolbox / Beamforming

Description
The Frost Beamformer block implements a Frost beamformer. The Frost beamformer consists of a
time-domain MVDR beamformer followed by a bank of FIR filters. The MVDR beamformer steers the
beam towards a given direction while the FIR filters preserve the input signal power.

Ports
Input

X — Input signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

XT — Training signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this port, select the Enable training data input check box.
Data Types: double

Ang — Beamforming direction
2-by-1 real-valued vector | 2-by-L real-valued matrix

Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form of [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°, inclusive, and the elevation
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angle must lie between –90° and 90°, inclusive. Angles are defined with respect to the local
coordinate system of the array.

Dependencies

To enable this port, set the Source of beamforming direction parameter to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-L complex-valued matrix

Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of desired beamforming directions specified by the Beamforming
direction parameter or from the Ang port.
Data Types: double

W — Beamforming weights
N-by-L complex-valued matrix

Beamformed weights, returned as an N-by-L complex-valued matrix. The quantity N is the number of
array elements. When the Specify sensor array as parameter is set to Partitioned array or
Replicated subarray, N represents the number of subarrays. L is the number of desired
beamforming directions specified in the Ang port or by the Beamforming direction (deg)
property. There is one set of weights for each beamforming direction.

Dependencies

To enable this port, select the Enable weights output checkbox.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean
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Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

FIR filter length — FIR filter length
1 (default) | positive integer

The length of the FIR filter used to process each sensor element data, specified as a positive integer.
Data Types: double

Diagonal loading factor — Diagonal loading factor for stability
nonnegative scalar

Specify the diagonal loading factor as a nonnegative scalar. Diagonal loading is a technique used to
achieve robust beamforming performance, especially when the sample support is small.

Enable training data input — Enable the use of training data
off (default) | on

Select this check box to specify additional training data via the input port XT. To use the input signal
as the training data, clear the check box which removes the port.

Source of beamforming direction — Source of beamforming direction
Property (default) | Input port

Source of beamforming direction, specified as Property or Input port. When you set Source of
beamforming direction to Property, you then set the direction using the Beamforming
direction (deg) parameter. When you select Input port, the direction is determined by the input
to the Ang port.

Beamforming direction (deg) — Beamforming directions
2-by-L real-valued matrix

Beamforming directions, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must
lie between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.

Dependencies

To enable this parameter, set the Source of beamforming direction parameter to Property.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation
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Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone
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Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
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Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
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Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).
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• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
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specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

 Frost Beamformer

3-155



Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of elements in each row and column.

For a URA, array elements are indexed from top to bottom along the leftmost array column, and
continued to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.
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Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.
Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.
Dependencies

To enable this parameter set Geometry to Conformal Array.
Data Types: double

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. If the parameter value is a matrix, each
column specifies the normal direction of the corresponding element in the form
[azimuth;elevation] with respect to the local coordinate system. The local coordinate system
aligns the positive x-axis with the direction normal to the conformal array. If the parameter value is a
2-by-1 column vector, the same pointing direction is used for all array elements.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
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combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

To enable this parameter, set Geometry to Conformal Array.
Data Types: double

Taper — Array element tapers
1 (default) | complex scalar | complex-valued row vector

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.
Data Types: double

See Also
phased.FrostBeamformer

Introduced in R2014b
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GCC DOA and TOA
Generalized crosscorrelator with phase transform

Library
Direction of arrival

phaseddoalib

Description
The GCC DOA and TOA block estimates direction of arrival and time of arrival of a signal at an array.
The block uses a generalized crosscorrelation with phased transform (GCC-PHAT) algorithm.

Parameters
Signal propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Source of sensor pairs
Source

Property When you set this parameter to Property, specify the
sensor pairs for computing correlation using the Sensor
pairs parameter.

Auto When you set this parameter to Auto, correlations are
computed between the first element and all other
elements. The first element serves as the reference
channel.

Sensor pairs
Sensor pairs, specified as a 2-by-M matrix of strictly positive integers. This parameter appears
only when you set the Source of sensor pairs parameter to Property.

Enable correlation output
Check this box to output the correlations computed using the GCC-PHAT algorithm as well as the
corresponding lags between sensor pairs. Correlation values are output via the Rxy port. Lag
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values are output via the Lags port. These ports appear only when you check the Enable
correlation output box. Clear this check box to disable output of correlations.

Enable delay output
Select this check box to output the delay corresponding to the arrival angle of a signal between
each sensor pair. The delay is output in the Tau port. This port appears only when you check the
Enable delay output box. Clear this check box to disable output of delays.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Sensor element or sensor array specified. A sensor array can also contain subarrays or as a
partitioned array. This parameter can also be expressed as a MATLAB expression.

Types

Array (no subarrays)
Partitioned array
Replicated subarray
MATLAB expression
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Geometry
Specify the array geometry as one of the following:

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements
Number of array elements.

Number of array elements, specified as a positive integer. This parameter appears when the
Geometry is set to ULA or UCA. If Sensor Array has a Replicated subarray option, this
parameter applies to the subarray.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarrays.

Specify the size of the array as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing to the next
columns from left to right. In this figure, an Array size of [3,2] produces an array of three rows
and two columns.

Element spacing (m)
This parameter appears when Geometry is set to ULA or URA. When Sensor Array has the
Replicated subarray option, this parameter applies to the subarrays.

 GCC DOA and TOA

3-161



• For a ULA, specify the spacing, in meters, between two adjacent elements in the array as a
scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector or a scalar. If
Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of these quantities,
see phased.URA. If Element spacing is a scalar, the spacings between rows and columns are
equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.

Array normal
This parameter appears when you set Geometry to URA or UCA. Specify the Array normal as x,
y, or z. All URA and UCA array elements are placed in the yz, zx, or xy-planes, respectively, of the
array coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

This parameter applies to all array types, but when you set Sensor Array to Replicated
subarray, this parameter applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a complex-valued 1-
by-N row vector. In this vector, N represents the number of elements in the array. If Taper is a
scalar, the same weight is applied to each element. If Taper is a vector, a weight from the
vector is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued M-by-N
matrix. In this matrix, M is the number of elements along the z-axis, and N is the number of
elements along the y-axis. M and N correspond to the values of
[NumberofArrayRows,NumberOfArrayColumns] in the Array size matrix. If Taper is a
scalar, the same weight is applied to each element. If Taper is a matrix, a weight from the
matrix is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a Conformal Array, specify element tapering as a complex-valued scalar or complex-
valued 1-by-N vector. In this vector, N is the number of elements in the array as determined by
the size of the Element positions vector. If Taper is a scalar, the same weight is applied to
each element. If the value of Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarray.

Specify the element lattice as Rectangular or Triangular
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• Rectangular — Aligns all the elements in row and column directions.
• Triangular— Shifts the even-row elements of a rectangular lattice toward the positive-row

axis direction. The displacement is one-half the element spacing along the row dimension.

Element positions (m)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.

Specify the positions of conformal array elements as a 3-by-N matrix, where N is the number of
elements in the conformal array. Each column of Element positions (m) represents the position
of a single element, in the form [x;y;z], in the array’s local coordinate system. The local
coordinate system has its origin at an arbitrary point. Units are in meters.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N matrix or a 2-by-1
column vector in degrees. The variable N indicates the number of elements in the array. If
Element normals (deg) is a matrix, each column specifies the normal direction of the
corresponding element in the form [azimuth;elevation], with respect to the local coordinate
system. The local coordinate system aligns the positive x-axis with the direction normal to the
conformal array. If Element normals (deg) is a 2-by-1 column vector, the vector specifies the
same pointing direction for all elements in the array.

You can use the Element positions (m) and Element normals (deg) parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You can combine
translation, azimuth rotation, and elevation rotation transformations. However, you cannot use
transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Specify sensor array as is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the
total number of elements in the array. Each row of the matrix corresponds to a subarray and each
entry in the row indicates whether or not an element belongs to the subarray. When the entry is
zero, the element does not belong the subarray. A nonzero entry represents a complex-valued
weight applied to the corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray is its geometric center. Subarray definition matrix and
Geometry determine the geometric center.

Subarray steering method
This parameter appears when the Specify sensor array as parameter is set to Partitioned
array or Replicated subarray.

Specify the subarray steering method as either

• None
• Phase
• Time
• Custom
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Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array,
Narrowband Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant
Gamma Clutter, and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma
Clutter, and GPU Constant Gamma Clutter blocks.

Phase shifter frequency (Hz)
This parameter appears when you set Sensor array to Partitioned array or Replicated
subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray steering as a
positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or Replicated
subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Rectangular.

Rectangular subarray grid size, specified as a single positive integer or a positive integer-valued
1-by-2 row vector.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and
column. If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the
first entry is the number of subarrays along each column. The second entry is the number of
subarrays in each row. A row is along the local y-axis, and a column is along the local z-axis. The
figure here shows how you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].
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Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-by-2 row
vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along
a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for
both rows and columns while building the full array. This option is available only when you
specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray, in meters, in the array’s local coordinate system. The coordinates are expressed in the
form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated subarray
and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N
matrix, where N is the number of subarrays in the array. Each column of the matrix specifies the
normal direction of the corresponding subarray, in the form [azimuth; elevation]. Each
angle is in degrees and is defined in the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations
can combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example, phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
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• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.
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Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

 GCC DOA and TOA

3-167



• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.
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Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
In Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Ang Estimated DOA angles. Double-precision floating point
Rxy Estimated crosscorrelation. Double-precision floating point
Lag Time lags. Double-precision floating point
Tau Time delays of arrival. Double-precision floating point

See Also
gccphat | phased.GCCEstimator

Introduced in R2015b
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GSC Beamformer
Generalized sidelobe canceller
Library: Phased Array System Toolbox / Beamforming

Description
The GSC Beamformerblock implements a generalized sidelobe cancellation (GSC) beamformer. A GSC
beamformer splits an arrays incoming signals and sends them through a conventional beamformer
path and a sidelobe canceling path. The algorithm first presteers the array to the beamforming
direction and then adaptively chooses filter weights to minimize power at the output of the sidelobe
canceling path. The algorithm uses least mean squares (LMS) to compute the adaptive weights. The
final beamformed signal is the difference between the outputs of the two paths.

Ports
Input

X — Input signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Ang — Beamforming direction
2-by-L real-valued matrix

Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form of [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°, inclusive, and the elevation
angle must lie between –90° and 90°, inclusive. Angles are defined with respect to the local
coordinate system of the array.

Dependencies

To enable this port, set the Source of beamforming direction parameter to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-L complex-valued matrix
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Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of desired beamforming directions specified in the Ang port.

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

Signal path FIR filter length — Length of the FIR filter along the signal path
1 (default) | positive integer

Length of the signal path FIR filter, specified as a positive integer. The FIR filter is a delta function.

Adaptive filter step size — LMS adaptive filter step size factor
0.1 (default) | positive scalar

The adaptive filter step size factor, specified as a positive scalar. This quantity, when divided by the
total power in the sidelobe canceling path, determines the actual adaptive filter step size used by the
LMS algorithm.

Beamforming direction (deg) — Beamforming directions
2-by-L real-valued matrix

Beamforming directions, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must
lie between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.
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Dependencies

To enable this parameter, set the Source of beamforming direction parameter to Property.

Source of beamforming direction — Source of beamforming direction
Property (default) | Input port

Source of beamforming direction, specified as Property or Input port. When you set Source of
beamforming direction to Property, you then set the direction using the Beamforming
direction (deg) parameter. When you select Input port, the direction is determined by the input
to the Ang port.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.
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Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])
Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on
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Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

3 Blocks

3-174



Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.
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Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.
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Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
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• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element
spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of elements in each row and column.

For a URA, array elements are indexed from top to bottom along the leftmost array column, and
continued to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.
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Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.
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Dependencies

To enable this parameter set Geometry to Conformal Array.
Data Types: double

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. If the parameter value is a matrix, each
column specifies the normal direction of the corresponding element in the form
[azimuth;elevation] with respect to the local coordinate system. The local coordinate system
aligns the positive x-axis with the direction normal to the conformal array. If the parameter value is a
2-by-1 column vector, the same pointing direction is used for all array elements.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

To enable this parameter, set Geometry to Conformal Array.
Data Types: double

Taper — Array element tapers
1 (default) | complex scalar | complex-valued row vector

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.
Data Types: double

More About
Generalized Sidelobe Cancellation

The generalized sidelobe canceller (GSC) is an efficient implementation of a linear constraint
minimum variance (LCMV) beamformer. LCMV beamforming minimizes the output power of an array
while preserving the power in one or more specified directions. This type of beamformer is called a
constrained beamformer. You can compute exact weights for the constrained beamformer but the
computation is costly when the number of elements is large. The computation requires the inversion
of a large spatial covariance matrix. The GSC formulation converts the adaptive constrained
optimization LCMV problem into an adaptive unconstrained problem, which simplifies the
implementation.

In the GSC algorithm, incoming sensor data is split into two signal paths as shown in the block
diagram. The upper path is a conventional beamformer. The lower path is an adaptive unconstrained
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beamformer whose purpose is to minimize the GSC output power. The GSC algorithm consists of
these steps:

1 Presteer the element sensor data by time-shifting the incoming signals. Presteering time-aligns
all sensor element signals. The time shifts depend on the arrival angle of the signal.

2 Pass the presteered signals through the upper path into a conventional beamformer with fixed
weights, wconv.

3 Also pass the presteered signals through the lower path into the blocking matrix, B. The blocking
matrix is orthogonal to the signal and removes the signal from the lower path.

4 Filter the lower path signals through a bank of FIR filters. The FilterLength property sets the
length of the filters. The filter coefficients are the adaptive filter weights, wad.

5 Compute the difference between the upper and lower signal paths. This difference is the
beamformed GSC output.

6 Feed the beamformed output back into the filter. Adapt the filter weights using a least mean-
square (LMS) algorithm. The adaptive LMS step size is the quantity set by the
LMSStepSizeFactor property, divided by the total signal power.

 GSC Beamformer

3-181



See Also
phased.GSCBeamformer

Introduced in R2016b
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LCMV Beamformer
Narrowband linear constraint minimum variance (LCMV) beamformer
Library: Phased Array System Toolbox / Beamforming

Description
The LCMV Beamformer block performs narrowband linear-constraint minimum-variance (LCMV)
beamforming. The number of constraints must be less than the number of elements or subarrays in
the array.

Ports
Input

X — Input signal
M-by-N complex-valued matrix

Input signals to beamformer, specified as an M-by-N complex-valued matrix. M is the number of
signal samples. N is the number of sensor array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

XT — Training signal
P-by-N complex-valued matrix

Training input signal, specified as a P-by-N complex-valued matrix. P is the number of samples in the
training input signal. N is the number of elements of the sensor array. P must be greater than N.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this port, select the Enable training data input checkbox.
Data Types: double

Output

Y — Beamformed output
M-by-1 complex-valued column vector
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Beamformed output, specified as an M-by-1 complex-valued column vector. M is the number of signal
samples.
Data Types: double

W — Beamformer weights output
N-by-1 complex-valued column vector

Beamformer weights output, specified as an N-by-1 complex-valued column vector. N is the number of
array elements.
Dependencies

To enable this port, select the Enable weights output checkbox.
Data Types: double

Parameters
Constraint matrix — LCMV beamformer constraint matrix
complex([1;1]) (default) | N-by-K complex-valued matrix

LCMV beamformer constraint matrix specified as an N-by-K complex-valued matrix. Each column of
the matrix is a constraint. N is the number of elements in the sensor array and K is the number of
constraints. K must be less than or equal to the number of sensors, N,K ≤ N

Desired response vector — Desired response for LCMV beamforming
1 (default) | real-valued K-by-1 column vector

Desired response of the LCMV beamformer, specified as a real-valued K-by-1 column vector. K is the
number of constraints in the Constraint matrix. Each element in the vector defines the desired
response of the constraint specified in the corresponding column of the Constraint matrix
parameter.

Diagonal loading factor — Diagonal loading factor
positive scalar

Diagonal loading factor, specified as a positive scalar. Diagonal loading is a technique used to achieve
robust beamforming performance, especially when the sample support is small.

Enable training data input — Enable training data input port
off (default) | on

Enable training data input port, specified as off or on. To enable the training data input port, XT,
select this checkbox.

Enable weights output — Enable output of beamformer weights
off (default) | on

Enable beamforming weights output port, specified as off or on. To enable the beamforming weights
output port, W, select this checkbox.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
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run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

See Also
phased.LCMVBeamformer

Introduced in R2014b
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Linear FM Waveform
Linear FM (LFM) pulse waveform
Library: Phased Array System Toolbox / Waveforms

Description
The Linear FM Waveform block generates a linear FM pulse waveform with specified pulse width,
pulse repetition frequency (PRF), and sweep bandwidth. The block outputs an integer number of
pulses or samples.

Ports
Input

PRFIdx — PRF Index
positive integer

Index to select the pulse repetition frequency (PRF), specified as a positive integer. The index selects
the PRF from the predefined vector of values specified by the Pulse repetition frequency (Hz)
parameter.
Example: 4

Dependencies

To enable this port, select Enable PRF selection input.
Data Types: double

FreqOffset — Frequency offset
scalar

Frequency offset in Hz, specified as a scalar.
Example: 2e3

Dependencies

To enable this port, set Source of Frequency Offset to Input port.
Data Types: double

Output

Y — Pulse waveform
complex-valued vector

Pulse waveform samples, returned as a complex-valued vector.
Data Types: double
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PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency of current pulse, returned as a positive scalar.

Dependencies

To enable this port, set the Output signal format parameter to Pulses and then select the Enable
PRF output parameter.
Data Types: double

Coeff — Matched filter coefficients
vector | matrix

Matched filter coefficients, returned as a vector or matrix.

Dependencies

To enable this port, select Enable Matched Filter Coefficients Output.
Data Types: double

Parameters
Sample rate (Hz) — Sample rate of the output waveform
1e6 (default) | positive scalar

Sample rate of the output waveform, specified as a positive scalar. The ratio of Sample rate (Hz) to
each element in the Pulse repetition frequency (Hz) vector must be an integer. This restriction is
equivalent to requiring that the pulse repetition interval is an integral multiple of the sample interval.

Method to specify pulse duration — Pulse duration as time or duty cycle
Pulse width (default) | Duty cycle

Method to set the pulse duration, specified as Pulse width or Duty cycle. When you set this
parameter to Pulse width, the pulse duration is set using the Pulse width (s) parameter. When
you set this parameter to Duty cycle, the pulse duration is computed from the values of the Pulse
repetition frequency (Hz) and Duty Cycle parameters.

Pulse width (s) — Time duration of pulse
50e-6 (default) | positive scalar

The duration of each pulse, specified as a positive scalar. Set the product of Pulse width (s) and
Pulse repetition frequency to be less than or equal to one. This restriction ensures that the pulse
width is smaller than the pulse repetition interval. Units are in seconds.
Example: 300e-6

Dependencies

To enable this parameter, set the Method to specify pulse duration parameter to Pulse width.

Duty cycle — Waveform duty cycle
0.5 (default) | scalar in the range [0,1]

Waveform duty cycle, specified as a scalar in the range [0,1].
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Example: 0.7

Dependencies

To enable this parameter, set the Method to specify pulse duration parameter to Duty cycle.

Pulse repetition frequency (Hz) — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. The value of Pulse
repetition frequency (Hz) must satisfy these constraints:

• The product of Pulse width and Pulse repetition frequency (Hz) must be less than or equal to
one. This condition expresses the requirement that the pulse width is less than one pulse
repetition interval. For the phase-coded waveform, the pulse width is the product of the chip width
and number of chips.

• The ratio of sample rate to any element of Pulse repetition frequency must be an integer. This
condition expresses the requirement that the number of samples in one pulse repetition interval is
an integer.

You can select the value of PRF by using block parameter settings alone or in conjunction with the
input port, PRFIdx.

• When the Enable PRF selection input parameter is not selected, set the PRF using block
parameters.

• To implement a constant PRF, specify Pulse repetition frequency (Hz) as a positive scalar.
• To implement a staggered PRF, specify Pulse repetition frequency (Hz) as a row vector with

positive values. After the waveform reaches the last element of the vector, the process
continues cyclically with the first element of the vector. When PRF is staggered, the time
between successive output pulses cycles through the successive values of the PRF vector.

• When the Enable PRF selection input parameter is selected, you can implement a selectable
PRF by specifying Pulse repetition frequency (Hz) as a row vector with positive real-valued
entries. But this time, when you execute the block, select a PRF by passing an index into the PRF
vector into the PRFIdx port.

In all cases, the number of output samples is fixed when you set the Output signal format to
Samples. When you use a varying PRF and set Output signal format to Pulses, the number of
output samples can vary.

Enable PRF selection input — Select predefined PRF
off (default) | on

Select this parameter to enable the PRFIdx port.

• When enabled, pass in an index into a vector of predefined PRFs. Set predefined PRFs using the
Pulse repetition frequency (Hz) parameter.

• When not enabled, the block cycles through the vector of PRFs specified by the Pulse repetition
frequency (Hz) parameter. If Pulse repetition frequency (Hz) is a scalar, the PRF is constant.

Sweep bandwidth (Hz) — Bandwidth of FM sweep
1e5 (default) | positive scalar
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Bandwidth of the linear FM sweep in Hz, specified as a positive scalar.
Example: 1e3

Sweep direction — Direction of FM sweep
Up (default) | Down

Specify the direction of the linear FM sweep as Up (increasing frequency) or Down (decreasing
frequency).

Sweep interval — FM frequency sweep interval
Positive (default) | Symmetric

FM frequency sweep interval, specified as Positive or Symmetric. If you set this parameter to
Positive, the waveform sweeps the frequency interval between 0 and B, where B is the value of the
Sweep bandwidth parameter. If you set this parameter value to Symmetric, the waveform sweeps
the interval between –B/2 and B/2.

Envelope function — FM signal amplitude envelope
Rectangular (default) | Gaussian

FM signal amplitude envelope, specified as Rectangular or Gaussian.

Source of Frequency Offset — Source of frequency offset
Property (default) | Input port

Source of frequency offset, specified as Property or Input port.

• When set to Property, the offset is determined by the value of the Frequency Offset parameter.
• When set to Input port, the offset is determined by the value of the FreqOffset port.

Frequency Offset (Hz) — Frequency offset
0 (default) | scalar

Frequency offset in Hz, specified as a scalar.
Example: 2e3
Dependencies

To enable this parameter set the Source of Frequency Offset parameter to Input port.

Source of simulation sample time — Source of simulation sample time
Derive from waveform parameters (default) | Inherit from Simulink engine

Source of simulation sample time, specified as Derive from waveform parameters or Inherit
from Simulink engine. When set to Derive from waveform parameters, the block runs at a
variable rate determined by the PRF of the selected waveform. The elapsed time is variable. When set
to Inherit from Simulink engine, the block runs at a fixed rate so the elapsed time is a
constant.
Dependencies

To enable this parameter, select the Enable PRF selection input parameter.

Output signal format — Format of the output signal
Pulses (default) | Samples
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The format of the output signal, specified as Pulses or Samples.

If you set this parameter to Samples, the output of the block consists of multiple samples. The
number of samples is the value of the Number of samples in output parameter.

If you set this parameter to Pulses, the output of the block consists of multiple pulses. The number
of pulses is the value of the Number of pulses in output parameter.

Number of samples in output — Number of samples in output
100 (default) | positive integer

Number of samples in the block output, specified as a positive integer.
Example: 1000
Dependencies

To enable this parameter, set the Output signal format parameter to Samples.
Data Types: double

Number of pulses in output — Number of pulses in output
1 (default) | positive integer

Number of pulses in the block output, specified as a positive integer.
Example: 2
Dependencies

To enable this parameter, set the Output signal format parameter to Pulses.
Data Types: double

Enable PRF Output — Enable output of PRF
off (default) | on

Select this parameter to enable the PRF output port.
Dependencies

To enable this parameter, set Output signal format to Pulses.

Enable Matched Filter Coeficients Output — Enable output of matched filter
coefficients
off (default) | on

Select this parameter to enable the Coeff output port.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
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satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

See Also
phased.LinearFMWaveform

Introduced in R2014b
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LOS Channel
Narrowband line-of-sight propagation channel

Library
Environment and Target

phasedenvlib

Description
The LOS Channel block propagates signals from one point in space to multiple points or from multiple
points back to one point via line-of-sight (LOS) channels. The block models propagation time, free-
space propagation loss, Doppler shift, and atmospheric as well as weather loss. The block assumes
that the propagation speed is much greater than the object's speed in which case the stop-and-hop
model is valid.

When propagating a signal in an LOS channel to an object and back, you have the choice of either
using a single block to compute two-way LOS channel propagation delay or two blocks to perform
one-way propagation delays in each direction. Because the LOS channel propagation delay is not
necessarily an integer multiple of the sampling interval, it may turn out that the total round trip delay
in samples when you use a two-way propagation block differs from the delay in samples when you use
two one-way propagation blocks. For this reason, it is recommended that, when possible, you use a
single two-way propagation block.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a positive scalar.

Specify atmospheric parameters
Select this check box to enable atmospheric attenuation modeling.

Temperature (degrees Celsius)
Ambient atmospheric temperature, specified as a real-valued scalar. Units are degrees Celsius.
This parameter appears when you select the Specify atmospheric parameters check box. Units
are degrees Celsius.
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Dry air pressure (Pa)
Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are Pascals (Pa).
The value 101325 for this property corresponds to one standard atmosphere. This parameter
appears when you select the Specify atmospheric parameters check box.

Water vapour density (g/m^3)
Atmospheric water vapor density, specified as a positive real-valued scalar. Units are gm/m3. This
parameter appears when you select the Specify atmospheric parameters check box.

Liquid water density (g/m^3)
Liquid water density of fog or clouds, specified as a non-negative real-valued scalar. Units are
gm/m3. Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog. This
parameter appears when you select the Specify atmospheric parameters check box.

Rain rate (mm/hr)
Rainfall rate, specified as a non-negative real-valued scalar. Units are in mm/hour. This parameter
appears when you select the Specify atmospheric parameters check box.

Perform two-way propagation
Select this check box to perform round-trip propagation between the origin and destination.
Otherwise the block performs one-way propagation from the origin to the destination.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Maximum one-way propagation distance (m)
The maximum distance between the signal origin and the destination, specified as a positive
scalar. Units are in meters. Amplitudes of any signals that propagate beyond this distance will be
set to zero.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Input signal. Double-precision floating point
Pos1 Signal source position. Double-precision floating point
Pos2 Signal destination position. Double-precision floating point
Vel1 Signal source velocity. Double-precision floating point
Vel2 Signal destination velocity. Double-precision floating point
Out Propagated signal. Double-precision floating point

More About
Attenuation and Loss Factors

Attenuation or path loss in the Wideband LOS channel consists of four components. L = LfspLgLcLr,
where

• Lfsp is the free-space path attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each component is in magnitude units, not in dB.

Propagation Delay, Doppler, and Free-Space Path Loss

When the origin and destination are stationary relative to each other, you can write the output signal
of a free-space channel as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal delay and Lfsp is the free-space
path loss. The delay τ is given by R/c, where R is the propagation distance and c is the propagation
speed. The free-space path loss is given by
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Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or array. In the
near field, the free-space path loss formula is not valid and can result in a loss smaller than one,
equivalent to a signal gain. Therefore, the loss is set to unity for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a Doppler
frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
The quantity v is the relative speed of the destination with respect to the origin.

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.
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For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,
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where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

See Also
phased.LOSChannel

Introduced in R2016a
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Matched Filter
Matched filter

Library
Detection

phaseddetectlib

Description
The Matched Filter block implements matched filtering of an input signal. Matched filtering is an FIR
filtering operation with the coefficients equal to the time reversed samples of the transmitted signal.
The filter can improve SNR before detection.

Parameters
Source of coefficients

Specify whether the matched filter coefficients come from Coefficients or from an input port.

Property Matched filter coefficients are specified by Coefficients.
Input port Matched filter coefficients are specified via the input

port Coeff.

Coefficients
Specify the matched filter coefficients as a column vector. This parameter appears when you set
Source of coefficients to Property.

Spectrum window
Specify the window used for spectrum weighting using one of

None
Hamming
Chebyshev
Hann
Kaiser
Taylor

Spectrum weighting is often used with linear FM waveforms to reduce sidelobe levels in the time
domain. The block computes the window length internally to match the FFT length.
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Spectrum window range
This parameter appears when you set the Spectrum window parameter to any value other than
None. Specify the spectrum region, in hertz, on which the spectrum window is applied as a 1-by-2
vector in the form of [StartFrequency,EndFrequency].

Note that both StartFrequency and EndFrequency are measured in baseband. That is, they
are within [-Fs/2,Fs/2], where Fs is the sample rate specified in any of the waveform library
blocks. The parameter StartFrequency must be less than EndFrequency.

Sidelobe attenuation level
This parameter appears when you set Spectrum window to Chebyshev or Taylor. Specify the
sidelobe attenuation level, in dB, of a Chebyshev or Taylor window as a positive scalar.

Kaiser shape parameter
This parameter appears when you set the Spectrum window parameter to Kaiser. Specify the
parameter that affects the Kaiser window sidelobe attenuation as a nonnegative scalar. Please
refer to the function kaiser for more details.

Number of constant level sidelobes
This parameter appears when you set the Spectrum window parameter to Taylor. Specify the
number of nearly-constant-level sidelobes adjacent to the mainlobe in a Taylor window as a
positive integer.

Enable SNR gain output
Select this check this box to obtain the matched filter SNR gain via the output port G. The output
port appears only when this box is selected.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port  Supported Data Types
X Input signal matrix.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Coeff Matched filter coefficients. Double-precision floating point
Y Filter output. Double-precision floating point
G Matched-filter gain. Double-precision floating point

See Also
phased.MatchedFilter

Introduced in R2014b
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MFSK Waveform
Multiple frequency shift keying (MFSK) continuous waveform

Library
Waveforms

phasedwavlib

Description
The MFSK Waveform block generates a multiple frequency- shift keying (MFSK) continuous
waveform with a specified step time, sweep bandwidth, frequency offset, and number of steps. The
block outputs an integer number of samples, steps, or sweeps. For details on the structure of an
MFSK waveform, see phased.MFSKWaveform.

Parameters
Sample rate (Hz)

Sample rate of the signal, specified as a positive scalar. Units are in hertz.
Sweep bandwidth (Hz)

Bandwidth of the MFSK sweep, specified as a positive scalar. Units are in hertz.
Frequency step burst time (s)

Time duration of each frequency step, specified as a positive scalar. Units are in seconds.
Number of steps per sweep

Total number of steps in each sweep, specified as an even positive integer.
Chirp offset frequency (Hz)

Chirp offset frequency, specified as a real scalar. Units are in hertz. The offset determines the
frequency translation between the two sequences.

Output signal format
Format of the output signal, specified as one of the following:

• 'Steps' — The block outputs the number of samples contained in an integer number of
frequency steps, Number of steps in output.

• 'Samples' — The block outputs the number of samples specified in Number of samples in
output.

• 'Sweeps' — The block outputs the number of samples contained in an integer number of
sweeps, Number of sweeps in output.
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Number of sweeps in output
Number of sweeps in the block output, specified as a positive integer. This parameter appears
only when you set Output signal format to Sweeps.

Number of samples in output
Number of samples in the block output, specified as a positive integer. This parameter appears
only when you set Output signal format to Samples.

Number of steps in output
Number of steps in the block output, specified as a positive integer. This parameter appears only
when you set Output signal format to Steps.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Supported Data Types
Out Double-precision floating point
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See Also
phased.MFSKWaveform

Introduced in R2015a
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Monopulse Feed
Create monopulse sum and difference channels
Library: Phased Array System Toolbox / Direction of Arrival

Description
The Monopulse Feed block forms the sum and difference channels used for amplitude monopulse
directing finding. Sum and difference channels are derived from signals received by an array. You can
feed these channels into the Monopulse Estimator block.

Ports
Input

X — Input signal
complex-valued M-by-N matrix

Input signal, specified as a complex-valued M-by-N matrix, where M is the number of samples or
snapshots of data, and N is the number of array elements. If the array contains subarrays, then N is
the number of subarrays.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

STEER — Array steering direction
scalar | real-valued 2-by-1 column vector

Array steering direction, specified as a scalar or real-valued 2-by-1 column vector.

• When you set the Monopulse coverage parameter to Azimuth, the steering direction is a scalar
and represents the azimuth steering angle.

• When you set the Monopulse coverage parameter to 3D, the steering direction vector has the
form [azimuthAngle; elevationAngle], where azimuthAngle is the azimuth steering
angle, and elevationAngle is the elevation steering angle.

Units are in degrees. Azimuth angles lie between –180° and 180°, inclusive, and elevation angles lie
between –90° and 90°, inclusive.
Example: [40;10]
Data Types: double

Output

SIGMA — Sum-channel signal
complex-valued M-by-1 column vector
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Sum-channel signal, returned as a complex-valued M-by-1 column vector, where M is the number of
rows of X.
Data Types: double
Complex Number Support: Yes

DeltaAz — Azimuth-difference channel signal
complex-valued M-by-1 column vector

Azimuth-difference channel signal, returned as a complex-valued M-by-1 column vector, where M is
the number of rows of X.
Data Types: double
Complex Number Support: Yes

DeltaEl — Elevation-difference channel signal
complex-valued M-by-1 vector

Elevation difference-channel signal, returned as a complex-valued M-by-1 column vector, where M is
the number of rows of X.

Dependencies

To enable this output port, set the Monopulse coverage parameter to 3D.
Data Types: double
Complex Number Support: Yes

ANG — Estimated direction of target
real-valued 2-by-1 vector

Estimated direction of target, returned as a real-valued 2-by-1 vector in the form
[azimuth,elevation]. Units are in degrees.

Dependencies

To enable this output port, select the Output angle estimate check box.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.
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Monopulse coverage — Monopulse coverage directions
3D (default) | Azimuth

Coverage directions of monopulse feed, specified as 3D or Azimuth. When you set this parameter to
3D, the monopulse feed forms the sum channel and both azimuth and elevation difference channels.
When you set this parameter to Azimuth, the monopulse feed forms the sum channel and the
azimuth difference channel.

Squint angle (degrees) — Squint angle
10 (default) | scalar | real-valued 2-by-1 vector

Squint angle, specified as a scalar or real-valued 2-by-1 vector. The squint angle is the separation
angle between the sum beam and the beams along the azimuth and elevation directions.

• When you set the Monopulse coverage parameter to Azimuth, set the Squint angle
parameter to a scalar.

• When you set the Monopulse coverage parameter to 3D, you can specify the squint angle as
either a scalar or vector. If you set the Squint angle parameter to a scalar, the squint angle is
the same along both the azimuth and elevation directions. If you set the Squint angle
parameter to a 2-by-1 vector, its elements specify the squint angle along the azimuth and elevation
directions.

Example: [20;5]

Output angle estimate — Enable angle estimate output
off (default) | on

Select this check box to output an estimate of the target direction angle using the ANG output port.

Generate Monopulse Tracker — Create Monopulse estimator block
button

Click this button to create a Monopulse Estimate block based on the parameters in this block.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone
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Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.

Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.

Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector
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Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector
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Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.
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MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.
Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.
Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.
Dependencies

To enable this parameter, set Element type to Custom Microphone.
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Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.
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Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y
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Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.
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You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.
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Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.
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Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

See Also
phased.MonopulseFeed

Introduced in R2018b
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Monopulse Estimator
Estimate target direction from sum and difference channels
Library: Phased Array System Toolbox / Direction of Arrival

Description
The Monopulse Estimator estimates the direction of arrival of a narrowband signal based on an initial
guess by applying amplitude monopulse processing on sum and difference channel signals received
by an array. You can create these channels using the Monopulse Feed block.

Ports
Input

SIGMA — Sum-channel signal
complex-valued N-by-1 column vector

Sum-channel signal, specified as a complex-valued N-by-1 column vector. N is the number of
snapshots in the signal.
Data Types: double
Complex Number Support: Yes

DeltaAz — Azimuth difference-channel signal
complex-valued N-by-1 column vector

Azimuth difference-channel signal, specified as a complex-valued N-by-1 column vector. N is the
number of snapshots in the signal.
Data Types: double
Complex Number Support: Yes

DeltaEl — Elevation difference-channel signal
complex-valued M-by-1

Elevation difference-channel signal, specified as a complex-valued N-by-1 column vector. N is the
number of snapshots in the signal.

Dependencies

To enable this output port, set the Monopulse coverage parameter to 3D.
Data Types: double
Complex Number Support: Yes

STEER — Array steering direction
scalar | real-valued 2-by-1 column vector

Array steering direction, specified as a scalar or real-valued 2-by-1 column vector.
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• When you set the Monopulse coverage parameter to Azimuth, the steering direction is a scalar
and represents the azimuth steering angle.

• When you set the Monopulse coverage parameter to 3D, the steering direction vector has the
form [azimuthAngle; elevationAngle], where azimuthAngle is the azimuth steering
angle, and elevationAngle is the elevation steering angle.

Units are in degrees. Azimuth angles lie between –180° and 180°, inclusive, and elevation angles lie
between –90° and 90°, inclusive.
Example: [40;10]
Data Types: double

Output

Az — Estimated azimuth direction of target
real-valued 1-by-N vector

Estimated azimuth direction of target, returned as a real-valued 1-by-N. The vector elements contain
the estimated target direction azimuth angle at each signal snapshot. Units are in degrees.

Dependencies

To enable this output port, set the Monopulse coverage to Azimuth and the OutputFormat to
Angle.
Data Types: double

dAz — Estimated offset of azimuth direction of target
real-valued 1-by-N vector

Estimated offset of azimuth direction of target, returned as a real-valued 1-by-N vector. The vector
elements contain the offset of the estimated target direction azimuth angle from the azimuth steering
direction at each signal snapshot. Units are in degrees.

Dependencies

To enable this output port, set the Monopulse coverage to Azimuth and the OutputFormat to
Angle offset.
Data Types: double

AzEl — Estimated direction of target
real-valued 2-by-N matrix

Estimated direction of target, returned as a real-valued 2-by-N matrix. Each column contains the
estimated target direction in the form [azimuthAngle; elevationAngle] ,where azimuthAngle
is the estimated azimuth angle, and elevationAngle is estimated elevation angle. Units are in
degrees.

Dependencies

To enable this output port, set the Monopulse coverage to 3D and the OutputFormat to Angle.
Data Types: double

dAzEl — Estimated offset of direction of target
real-valued 2-by-N matrix
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Estimated offset of direction of target, returned as a real-valued 2-by-N matrix. The offset is the
difference between the target direction and the steering vector. Each column contains the estimated
offset of the target direction in the form [dazimuthAngle; delevationAngle], where
dazimuthAngle is the estimated azimuth angle offset, and delevationAngle is estimated
elevation angle offset. Units are in degrees.

Dependencies

To enable this output port, set the Monopulse coverage to 3D and the OutputFormat to Angle
offset.
Data Types: double

AzRatio — Ratio of sum and azimuth difference channels
real-valued 1-by-N vector

Ratio of sum and azimuth difference channels, returned as a real-valued 1-by-N vector. The elements
contain the ratio of the sum to azimuth difference channel at each signal snapshot.

Dependencies

To enable this output port, set the Monopulse coverage to Azimuth and select the Output sum
difference ratio check box.
Data Types: double

AzElRatio — Ratio of sum channel to azimuth and elevation difference channels
real-valued 2-by-N matrix

Ratio of sum and azimuth and elevation difference channels, returned as a real-valued 2-by-N matrix.
The elements of the first row contain the ratio of the sum to azimuth difference channel at each signal
snapshot. The elements of the second row contain the ratio of the sum to elevation difference channel
at each signal snapshot.

Dependencies

To enable this output port, set the Monopulse coverage to 3D and select the Output sum
difference ratio check box.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

 Monopulse Estimator

3-221



System operating frequency, specified as a positive scalar. Units are in Hz.

Monopulse coverage — Monopulse coverage directions
3D (default) | Azimuth

Monopulse coverage directions, specified as 3D or Azimuth. When you set this parameter to 3D, the
monopulse estimator uses the sum channel and both azimuth and elevation difference channels.
When you set this parameter to Azimuth, the monopulse estimator uses the sum channel and the
azimuth difference channel.

Squint angle (degrees) — Squint angle
10 (default) | scalar | real-valued 2-by-1 vector

Squint angle, specified as a scalar or real-valued 2-by-1 vector. The squint angle is the separation
angle between the sum beam and the beams along the azimuth and elevation directions.

• When you set the Monopulse coverage parameter to Azimuth, set the Squint angle
parameter to a scalar.

• When you set the Monopulse coverage parameter to 3D, you can specify the squint angle as
either a scalar or vector. If you set the Squint angle parameter to a scalar, the squint angle is
the same along both the azimuth and elevation directions. If you set the Squint angle
parameter to a 2-by-1 vector, its elements specify the squint angle along the azimuth and elevation
directions.

Example: [20;5]

Output format — Output direction format
Angle (default) | Angle offset

Format of direction output, specified Angle or Angle offset. When you set this parameter to
Angle, the output port is labeled AzEl or Az and is the actual direction of the target. When you set
this property to Angle offset, the output port is labeled dAzEl or dAz and is the angle offset of the
target from the array steering direction.

Output sum difference ratio — Enable sum-difference ratio output port
off (default) | on

Select this check box to output the ratio of the sum and difference channels in the azimuth and
elevation directions. When you set the Monopulse coverage to Azimuth, the block outputs the sum-
azimuth difference ratio using the AzRatio port. When you set the Monopulse coverage to 3D, the
block outputs the sum-azimuth difference and sum-elevation difference channels ratio using the
AzElRatio port.

Generate Monopulse Feed — Create monopulse feed block
button

Click this button to create a Monopulse Feed block based on the parameters in this block.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.
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Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone
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Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
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Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
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Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).
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• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
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specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.
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Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.
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• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix
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Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of
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• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.
Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

3 Blocks

3-232



Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
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subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

See Also
phased.MonopulseEstimator

Introduced in R2018b
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MVDR Beamformer
Narrowband MVDR (Capon) beamformer
Library: Phased Array System Toolbox / Beamforming

Description
The MVDR Beamformer block performs minimum variance distortionless response (MVDR)
beamforming. The block preserves the signal power in the given direction while suppressing
interference and noise from other directions. The MVDR beamformer is also called the Capon
beamformer.

Ports
Input

X — Input signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

XT — Training signal
M-by-N complex-valued matrix

Training signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N
is the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this port, select the Enable training data input check box.
Data Types: double

Ang — Beamforming direction
2-by-1 real-valued vector | 2-by-L real-valued matrix

Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form of [AzimuthAngle;ElevationAngle]. Angle
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units are in degrees. The azimuth angle must lie between –180° and 180°, inclusive, and the elevation
angle must lie between –90° and 90°, inclusive. Angles are defined with respect to the local
coordinate system of the array.

Dependencies

To enable this port, set the Source of beamforming direction parameter to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-L complex-valued matrix

Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of desired beamforming directions specified by the Beamforming
direction parameter or from the Ang port.
Data Types: double

W — Beamforming weights
N-by-L complex-valued matrix

Beamformed weights, returned as an N-by-L complex-valued matrix. The quantity N is the number of
array elements. When the Specify sensor array as parameter is set to Partitioned array or
Replicated subarray, N represents the number of subarrays. L is the number of desired
beamforming directions specified in the Ang port or by the Beamforming direction (deg)
property. There is one set of weights for each beamforming direction.

Dependencies

To enable this port, select the Enable weights output checkbox.
Data Types: double

Parameters
Main tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Diagonal loading factor — Diagonal loading factor for stability
nonnegative scalar
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Specify the diagonal loading factor as a nonnegative scalar. Diagonal loading is a technique used to
achieve robust beamforming performance, especially when the sample support is small.

Enable training data input — Enable the use of training data
off (default) | on

Select this check box to specify additional training data via the input port XT. To use the input signal
as the training data, clear the check box which removes the port.

Source of beamforming direction — Source of beamforming direction
Property (default) | Input port

Source of beamforming direction, specified as Property or Input port. When you set Source of
beamforming direction to Property, you then set the direction using the Beamforming
direction (deg) parameter. When you select Input port, the direction is determined by the input
to the Ang port.

Beamforming direction (deg) — Beamforming directions
2-by-L real-valued matrix

Beamforming directions, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must
lie between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.

Dependencies

To enable this parameter, set the Source of beamforming direction parameter to Property.

Number of bits in phase shifters — Number of phase shift quantization bits
0 (default) | nonnegative integer

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.
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This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
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• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector
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Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector
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Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.
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MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.
Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.
Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.
Dependencies

To enable this parameter, set Element type to Custom Microphone.
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Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.
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Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y
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Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.
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You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.
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Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.
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Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

See Also
phased.MVDRBeamformer

Introduced in R2014b
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MUSIC Spectrum
MUSIC 2D spatial spectrum estimator
Library: Phased Array System Toolbox / Direction of Arrival

Description
The MUSIC Spectrum block uses the MUltiple SIgnal Classification (MUSIC) algorithm to estimate
the spatial spectrum of incoming narrowband signals. The block optionally calculates the direction of
arrival of a specified number of signals by finding the peaks of the spectrum.

Ports
Input

Port 1 — Received signal
M-by-N complex-valued matrix

Received signal, specified as an M-by-N complex-valued matrix. The quantity M is the length of the
signal, the number of sample values contained in the signal. The quantity N is the number of sensor
elements in the array.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Output

Y — MUSIC 2-D spatial spectrum
non-negative real-valued P-by-Q matrix

2-D MUSIC spatial spectrum, returned as a non-negative, returned as a real-valued P-by-Q matrix.
Each entry represents the magnitude of the estimated MUSIC spatial spectrum. Each entry
corresponds to an angle specified by the Azimuth scan angles (deg) and Elevation scan angles
(deg) parameters. P equals the length of the vector specified in Azimuth scan angles (deg) and Q
equals the length of the vector specified in Elevation scan angles (deg).
Data Types: double

Ang — Directions of arrival
non-negative, real-valued 2-by-L matrix

Directions of arrival of the signals, returned as a real-valued 2-by-L matrix. L is the number of signals
specified by the Number of signals parameter. The direction of arrival angle is defined by the
azimuth and elevation angles of the source with respect to the array local coordinate system. The first
row of the matrix contains the azimuth angles and the second row contains the elevation angles. If
the object cannot identify peaks in the spectrum, it will return NaN. Angle units are in degrees.
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Dependencies

Select the Enable DOA output parameter to enable this output port.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Forward-backward averaging — Enable forward-backward averaging
off (default) | on

Select this parameter to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with a conjugate symmetric array manifold structure.

Azimuth scan angles (deg) — Azimuth scan angles
-90:90 (default) | real-valued scalar | real-valued row vector

Azimuth scan angles, specified as a real-valued row vector. The angle values must lie between –180°
and 180°, inclusive, and specified in ascending order. Angle units are in degrees.

Elevation scan angles (deg) — Elevation scan angles
0 (default) | real-valued scalar | real-valued row vector

Elevation scan angles, specified as a scalar or real-valued row vector. The angle values must lie
between –90° and 90°, inclusive, and specified in ascending order. Angle units are in degrees.

Enable DOA output — Output directions of arrival through output port
off (default) | on

Select this parameter to output the signals directions of arrival (DOA) through the Ang output port.

Number of signals — Expected number of arriving signals
1 (default) | positive integer

Specify the expected number of signals for DOA estimation as a positive scalar integer.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation
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Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Array Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.
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Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values
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Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.
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Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.
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• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.
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Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

Dependencies

To enable this parameter, set Geometry to ULA or URA.
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Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of elements in each row and column.

For a URA, array elements are indexed from top to bottom along the leftmost array column, and
continued to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
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• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis
direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

Dependencies

To enable this parameter set Geometry to Conformal Array.
Data Types: double

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. If the parameter value is a matrix, each
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column specifies the normal direction of the corresponding element in the form
[azimuth;elevation] with respect to the local coordinate system. The local coordinate system
aligns the positive x-axis with the direction normal to the conformal array. If the parameter value is a
2-by-1 column vector, the same pointing direction is used for all array elements.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

To enable this parameter, set Geometry to Conformal Array.
Data Types: double

Taper — Array element tapers
1 (default) | complex scalar | complex-valued row vector

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.
Data Types: double

See Also
Blocks
ULA MUSIC Spectrum

System Objects
phased.ConformalArray | phased.MUSICEstimator | phased.MUSICEstimator2D |
phased.UCA | phased.ULA | phased.URA

Functions
musicdoa

Topics
“MUSIC Super-Resolution DOA Estimation”

Introduced in R2016b
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MVDR Spectrum
Minimum variation distortionless response (MVDR) spatial spectrum estimator

Library
Direction of Arrival (DOA)

phaseddoalib

Description
The narrowband MVDR Spectrum block estimates the spatial spectrum of incoming narrowband
signals by scanning a range of azimuth and elevation angles using an MVDR conventional
beamformer. The block optionally calculate the direction of arrival of a specified number of signals by
estimating the peaks of the spectrum. This estimator is also referred to as a Capon estimator.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Forward-backward averaging
Select this parameter to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with a conjugate symmetric array manifold.

Azimuth scan angles (deg)
Specify the azimuth scan angles, in degrees, as a real vector. The angles must be between –180°
and 180°, inclusive. You must specify the angles in ascending order.

Elevation scan angles (deg)
Specify the elevation scan angles, in degrees, as a real vector or scalar. The angles must be
between –90° and 90°, inclusive. You must specify the angles in an ascending order.

Enable DOA output
Select this parameter to output the signals directions of arrival (DOA) through the Ang output
port. Selecting this parameter enables the Number of signals parameter.
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Number of signals
Specify the number of signals for DOA estimation as a positive scalar integer. This parameter
appears when you select the Enable DOA output check box.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify a sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Geometry
Specify the array geometry as one of the following:

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
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• Conformal Array — arbitrary element positions

Number of elements
Number of array elements.

Number of array elements, specified as a positive integer. This parameter appears when the
Geometry is set to ULA or UCA. If Sensor Array has a Replicated subarray option, this
parameter applies to the subarray.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarrays.

Specify the size of the array as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing to the next
columns from left to right. In this figure, an Array size of [3,2] produces an array of three rows
and two columns.

Element spacing (m)
This parameter appears when Geometry is set to ULA or URA. When Sensor Array has the
Replicated subarray option, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the array as a
scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector or a scalar. If
Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of these quantities,
see phased.URA. If Element spacing is a scalar, the spacings between rows and columns are
equal.
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Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.

Array normal
This parameter appears when you set Geometry to URA or UCA. Specify the Array normal as x,
y, or z. All URA and UCA array elements are placed in the yz, zx, or xy-planes, respectively, of the
array coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

This parameter applies to all array types, but when you set Sensor Array to Replicated
subarray, this parameter applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a complex-valued 1-
by-N row vector. In this vector, N represents the number of elements in the array. If Taper is a
scalar, the same weight is applied to each element. If Taper is a vector, a weight from the
vector is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued M-by-N
matrix. In this matrix, M is the number of elements along the z-axis, and N is the number of
elements along the y-axis. M and N correspond to the values of
[NumberofArrayRows,NumberOfArrayColumns] in the Array size matrix. If Taper is a
scalar, the same weight is applied to each element. If Taper is a matrix, a weight from the
matrix is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a Conformal Array, specify element tapering as a complex-valued scalar or complex-
valued 1-by-N vector. In this vector, N is the number of elements in the array as determined by
the size of the Element positions vector. If Taper is a scalar, the same weight is applied to
each element. If the value of Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarray.

Specify the element lattice as Rectangular or Triangular

• Rectangular — Aligns all the elements in row and column directions.
• Triangular— Shifts the even-row elements of a rectangular lattice toward the positive-row

axis direction. The displacement is one-half the element spacing along the row dimension.

Element positions (m)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.
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Specify the positions of conformal array elements as a 3-by-N matrix, where N is the number of
elements in the conformal array. Each column of Element positions (m) represents the position
of a single element, in the form [x;y;z], in the array’s local coordinate system. The local
coordinate system has its origin at an arbitrary point. Units are in meters.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N matrix or a 2-by-1
column vector in degrees. The variable N indicates the number of elements in the array. If
Element normals (deg) is a matrix, each column specifies the normal direction of the
corresponding element in the form [azimuth;elevation], with respect to the local coordinate
system. The local coordinate system aligns the positive x-axis with the direction normal to the
conformal array. If Element normals (deg) is a 2-by-1 column vector, the vector specifies the
same pointing direction for all elements in the array.

You can use the Element positions (m) and Element normals (deg) parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You can combine
translation, azimuth rotation, and elevation rotation transformations. However, you cannot use
transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example, phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.
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Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.
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Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
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coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.
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Port Description Supported Data Types
In Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Y Spatial spectrum. Double-precision floating point
Ang Estimated DOA angle. Double-precision floating point

See Also
phased.MVDREstimator2D

Introduced in R2014b
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Narrowband Receive Array
Receive narrowband radiation using phased array
Library: Phased Array System Toolbox / Transmitters and Receivers

Description
The Narrowband Receive Array block implements a narrowband receive array collecting incoming
radiation. The array processes narrowband plane waves incident on the sensor elements of the array.
The delay at each element is approximated using the corresponding phase shift in the time domain.

Ports
Input

X — Incident signals
complex-valued M-by-Lmatrix

Incident signals, specified as a complex-valued M-by-L matrix, where M is the number of samples in
the data, and L is the number of incident signals. Each column of X is a far field signal.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double | single

Ang — Incident signal directions
2-by-1 real-valued vector | 2-by-L real-valued matrix

Incident directions of signals, specified as a real-valued 2-by-L matrix. Each column specifies the
incident direction of the corresponding column of X and takes the form [azimuth; elevation]. Units are
in degrees. The azimuth angle must lie in the range from –180° to 180°, inclusive. The elevation angle
must lie in the range from –90° to 90°, inclusive.
Data Types: single | double

W — Element or subarray weights
complex-valued P-by-1 vector

Element or subarray weights, specified as a complex-valued P-by-1 column vector where P is the
number of array elements (or subarrays when the array supports subarrays).

Dependencies

To enable this port, select the Enable weights input check box.
Data Types: single | double
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WS — Subarray element weights
complex-valued NSE-by-L matrix

Subarray element weights, specified as a complex-valued NSE-by-L matrix. NSE is the number of
subarrays. L is the number of incident signals. The same weight is applied to the individual elements
within a subarray.

Subarray Element Weights

Specify sensor array as: Subarray Weights
Replicated subarray All subarrays have the same dimensions and

sizes. Then, the subarray weights form an NSE-by-
N matrix. NSE is the number of elements in each
subarray and N is the number of subarrays. Each
column of WS specifies the weights for the
corresponding subarray.

Partitioned array Subarrays can have different dimensions and
sizes. In this case, you can specify subarray
weights as

• an NSE-by-N matrix, where NSE is now the
number of elements in the largest subarray.
The first Q entries in each column are the
element weights for the subarray where Q is
the number of elements in the subarray. If all
the subarrays have the same size, Q = NSE.

• a 1-by-N cell array. Each cell contains a
column vector of weights for the
corresponding subarray. The column vectors
have lengths equal to the number of elements
in the corresponding subarray.

Dependencies

To enable this port, set the Specify sensor array as parameter to Partitioned array or
Replicated subarray and set the Subarray steering method to Custom.
Data Types: double | single

Steer — Subarray steering angle
real-valued length-2 column vector

Subarray steering angle, specified as a real-valued length-2 column vector. The vector has the form
[azimuth; elevation], in degrees. Units are in degrees. The azimuth angle must lie in the range from –
180° to 180°, inclusive. The elevation angle must lie in the range from –90° to 90°, inclusive.

Dependencies

To enable this port, set the Specify sensor array as parameter to Partitioned array or
Replicated subarray and set the Subarray steering method to Phase or Time.
Data Types: single | double
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Output

Y — Collected signals
complex-valued M-by-P matrix

Collected signals, returned as a complex-valued M-by-P matrix. M is the length of the input signal. P
is the number of array elements (or subarrays when subarrays are supported). Each column
corresponds to the signal collected by the corresponding array element (or corresponding subarrays
when subarrays are supported).
Data Types: double | single

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Sensor gain measure — Sensor gain measure
dB (default) | dBi

Sensor gain measure, specified as dB or dBi.

• When you set this parameter to dB, the input signal power is scaled by the sensor power pattern
(in dB) in the corresponding direction and then combined.

• When you set this parameter to dBi, the input signal power is scaled by the directivity pattern (in
dBi) in the corresponding direction and then combined. This option is useful when you want to
compare results with the values computed by the radar equation that uses dBi to specify the
antenna gain. The computation using the dBi option is costly as it requires an integration over all
directions to compute the total radiated power of the sensor.

Data Types: char | string

Enable weights input — Option to input weights
off (default) | on

Select this check box to specify array weights via the input port W. The input port appears only when
this box is selected.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
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run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Clicking the Analyze button opens the Sensor Array Analyzer app. The app lets you examine
important array properties such as array response and array geometry.

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
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• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector
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Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector
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Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.
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MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.
Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.
Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.
Dependencies

To enable this parameter, set Element type to Custom Microphone.
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Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.
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Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y
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Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.
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You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.
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Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.
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Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

See Also
phased.Collector

Introduced in R2014a
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Narrowband Transmit Array
Narrowband transmit array

Library
Transmitters and Receivers

phasedtxrxlib

Description
The Narrowband Transmit Array block generates narrowband plane waves in the far field of the array
by adding the far-field radiated signals of each element. Think of the block output as the field at a
reference distance from the element or from the center of the array.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Sensor gain measure
Sensor gain measure, specified as dB or dBi.

• When you set this parameter to dB, the input signal power is scaled by the sensor power
pattern (in dB) at the corresponding direction and then combined.

• When you set this parameter to dBi, the input signal power is scaled by the directivity pattern
(in dBi) at the corresponding direction and then combined. This option is useful when you
want to compare results with the values computed by the radar equation that uses dBi to
specify the antenna gain. The computation using the dBi option is expensive as it requires an
integration over all directions to compute the total radiated power of the sensor. The default
value is dB.

Enable weights input
Select this check box to specify array weights using the input port W. The input port appears only
when this box is checked.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.
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Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Clicking the Analyze button launches the Sensor Array Analyzer app. The app lets you examine
important array properties such as array response and array geometry.

Array Parameters

Specify sensor array as
Specify sensor element or sensor array. A sensor array can also contain subarrays or be a
partitioned array. This parameter can also be expressed as a MATLAB expression.

Types

Single element
Array (no subarrays)
Partitioned array
Replicated subarray
MATLAB expression

Geometry
Specify the array geometry as one of the following:

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions
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Number of elements
Number of array elements.

Number of array elements, specified as a positive integer. This parameter appears when the
Geometry is set to ULA or UCA. If Sensor Array has a Replicated subarray option, this
parameter applies to the subarray.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarrays.

Specify the size of the array as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing to the next
columns from left to right. In this figure, an Array size of [3,2] produces an array of three rows
and two columns.

Element spacing (m)
This parameter appears when Geometry is set to ULA or URA. When Sensor Array has the
Replicated subarray option, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the array as a
scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector or a scalar. If
Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of these quantities,
see phased.URA. If Element spacing is a scalar, the spacings between rows and columns are
equal.
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Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.

Array normal
This parameter appears when you set Geometry to URA or UCA. Specify the Array normal as x,
y, or z. All URA and UCA array elements are placed in the yz, zx, or xy-planes, respectively, of the
array coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

This parameter applies to all array types, but when you set Sensor Array to Replicated
subarray, this parameter applies to subarrays.

• For a ULA or UCA, specify element tapering as a complex-valued scalar or a complex-valued 1-
by-N row vector. In this vector, N represents the number of elements in the array. If Taper is a
scalar, the same weight is applied to each element. If Taper is a vector, a weight from the
vector is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued M-by-N
matrix. In this matrix, M is the number of elements along the z-axis, and N is the number of
elements along the y-axis. M and N correspond to the values of
[NumberofArrayRows,NumberOfArrayColumns] in the Array size matrix. If Taper is a
scalar, the same weight is applied to each element. If Taper is a matrix, a weight from the
matrix is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a Conformal Array, specify element tapering as a complex-valued scalar or complex-
valued 1-by-N vector. In this vector, N is the number of elements in the array as determined by
the size of the Element positions vector. If Taper is a scalar, the same weight is applied to
each element. If the value of Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarray.

Specify the element lattice as Rectangular or Triangular

• Rectangular — Aligns all the elements in row and column directions.
• Triangular— Shifts the even-row elements of a rectangular lattice toward the positive-row

axis direction. The displacement is one-half the element spacing along the row dimension.

Element positions (m)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.
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Specify the positions of conformal array elements as a 3-by-N matrix, where N is the number of
elements in the conformal array. Each column of Element positions (m) represents the position
of a single element, in the form [x;y;z], in the array’s local coordinate system. The local
coordinate system has its origin at an arbitrary point. Units are in meters.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N matrix or a 2-by-1
column vector in degrees. The variable N indicates the number of elements in the array. If
Element normals (deg) is a matrix, each column specifies the normal direction of the
corresponding element in the form [azimuth;elevation], with respect to the local coordinate
system. The local coordinate system aligns the positive x-axis with the direction normal to the
conformal array. If Element normals (deg) is a 2-by-1 column vector, the vector specifies the
same pointing direction for all elements in the array.

You can use the Element positions (m) and Element normals (deg) parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You can combine
translation, azimuth rotation, and elevation rotation transformations. However, you cannot use
transformations that require rotation about the normal.

Subarray definition matrix
This parameter appears when Specify sensor array as is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the
total number of elements in the array. Each row of the matrix corresponds to a subarray and each
entry in the row indicates whether or not an element belongs to the subarray. When the entry is
zero, the element does not belong the subarray. A nonzero entry represents a complex-valued
weight applied to the corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray is its geometric center. Subarray definition matrix and
Geometry determine the geometric center.

Subarray steering method
This parameter appears when the Specify sensor array as parameter is set to Partitioned
array or Replicated subarray.

Specify the subarray steering method as either

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array,
Narrowband Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant
Gamma Clutter, and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma
Clutter, and GPU Constant Gamma Clutter blocks.
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Phase shifter frequency (Hz)
This parameter appears when you set Sensor array to Partitioned array or Replicated
subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray steering as a
positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or Replicated
subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Rectangular.

Rectangular subarray grid size, specified as a single positive integer or a positive integer-valued
1-by-2 row vector.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and
column. If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the
first entry is the number of subarrays along each column. The second entry is the number of
subarrays in each row. A row is along the local y-axis, and a column is along the local z-axis. The
figure here shows how you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-by-2 row
vector, or Auto. Grid spacing units are expressed in meters.
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• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along
a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for
both rows and columns while building the full array. This option is available only when you
specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray, in meters, in the array’s local coordinate system. The coordinates are expressed in the
form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated subarray
and the Subarrays layout to Custom.

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N
matrix, where N is the number of subarrays in the array. Each column of the matrix specifies the
normal direction of the corresponding subarray, in the form [azimuth; elevation]. Each
angle is in degrees and is defined in the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations
can combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example, phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both

 Narrowband Transmit Array

3-291



the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.
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Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.
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• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.
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Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Radiated signals input port

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Ang Radiating directions of signals
input port.

Double-precision floating point

W Array or subarray weights input
port. To enable this port, select
the Enable weights input
check box.

Double-precision floating point

WS Subarray element weights input
port. To enable this port select
Custom from the Subarray
steering method pull down
menu.

 

Steer Steering angle input port. To
enable this port, select Phase
or Time from the Subarray
steering method pull down
menu.

Double-precision floating point

Out Radiated signals. Double-precision floating point

See Also
phased.Radiator

Introduced in R2014b
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Phase Coded Waveform
Phase-coded pulse waveform
Library: Phased Array System Toolbox / Waveforms

Description
The Phase-Coded Waveform block generates samples of a phase-coded pulse waveform with specified
chip width, pulse repetition frequency (PRF), and phase code. The block outputs an integer number of
pulses or samples.

Ports
Input

PRFIdx — PRF Index
positive integer

Index to select the pulse repetition frequency (PRF), specified as a positive integer. The index selects
the PRF from the predefined vector of values specified by the Pulse repetition frequency (Hz)
parameter.
Example: 4

Dependencies

To enable this port, select Enable PRF selection input.
Data Types: double

FreqOffset — Frequency offset
scalar

Frequency offset in Hz, specified as a scalar.
Example: 2e3

Dependencies

To enable this port, set Source of Frequency Offset to Input port.
Data Types: double

Output

Y — Pulse waveform
complex-valued vector

Pulse waveform samples, returned as a complex-valued vector.
Data Types: double
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PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency of current pulse, returned as a positive scalar.

Dependencies

To enable this port, set the Output signal format parameter to Pulses and then select the Enable
PRF output parameter.
Data Types: double

Coeff — Matched filter coefficients
vector

Matched filter coefficients, returned as a vector.

Dependencies

To enable this port, select Enable Matched Filter Coefficients Output.
Data Types: double

Parameters
Sample rate (Hz) — Sample rate of the output waveform
1e6 (default) | positive scalar

Sample rate of the output waveform, specified as a positive scalar. Set the ratio of the Sample rate
(Hz) parameter to the Pulse repetition frequency (Hz) parameter to an integer.

• The ratio of Sample rate (Hz) to each element in the Pulse repetition frequency (Hz) vector
must be an integer. This restriction is equivalent to requiring that the pulse repetition interval is
an integral multiple of the sample interval.

• The product of Sample rate (Hz) and Chip width (s) must be an integer. This restriction is
equivalent to requiring that the chip width is an integer multiple of the sample interval.

Units are in Hz.
Example: 5e3

Phase code — Code type used for phase modulation
Frank (default)

Code type used for phase modulation, specified as one of

• Barker
• Frank
• P1
• P2
• P3
• P4
• Px
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• Zadoff-Chu

Example: P2

Chip width (s) — Chip time duration
1e-5 (default) | positive scalar

Duration of every chip in a phase-coded waveform, specified as a positive scalar. The value of this
parameter must satisfy these constraints:

• The product of Chip width (s), Number of chips, and Pulse repetition frequency (Hz) must
be less than or equal to one. This restriction is equivalent to requiring that the pulse length is less
than the pulse repetition interval.

• The product of Sample rate (Hz) and Chip width (s) must be an integer. This restriction is
equivalent to requiring that the chip width is an integer multiple of the sample interval.

Units are in seconds.
Example: 2e-4

Number of chips — Number of chips in waveform
4 (default) | positive integer

Number of chips in a phase-coded waveform, specified as a positive integer. The product of the Chip
width (s), Number of chips, and Pulse repetition frequency (Hz) parameters must be less than
or equal to one. This restriction is equivalent to requiring that the chip width is an integer multiple of
the sample interval.

The table shows additional constraints on the number of chips for different code types.

If the Phase code parameter is... Then the Number of chips parameter must
be...

Frank, P1, or Px A perfect square
P2 An even number that is a perfect square
Barker 2, 3, 4, 5, 7, 11, or 13

Example: 9

Zadoff-Chu sequence index — Sequence index for Zadoff-Chu code type
1 (default) | positive integer

Sequence index for Zadoff-Chu code type, specified as a positive integer. The values of the Zadoff-
Chu sequence index and the Number of chips parameters must be relatively prime.
Example: 2

Dependencies

To enable this parameter, set Phase Code to Zadoff-Chu.

Pulse repetition frequency (Hz) — Pulse repetition frequency
1e4 (default) | positive scalar
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Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. The value of Pulse
repetition frequency (Hz) must satisfy these constraints:

• The product of Pulse width and Pulse repetition frequency (Hz) must be less than or equal to
one. This condition expresses the requirement that the pulse width is less than one pulse
repetition interval. For the phase-coded waveform, the pulse width is the product of the chip width
and number of chips.

• The ratio of sample rate to any element of Pulse repetition frequency must be an integer. This
condition expresses the requirement that the number of samples in one pulse repetition interval is
an integer.

You can select the value of PRF by using block parameter settings alone or in conjunction with the
input port, PRFIdx.

• When the Enable PRF selection input parameter is not selected, set the PRF using block
parameters.

• To implement a constant PRF, specify Pulse repetition frequency (Hz) as a positive scalar.
• To implement a staggered PRF, specify Pulse repetition frequency (Hz) as a row vector with

positive values. After the waveform reaches the last element of the vector, the process
continues cyclically with the first element of the vector. When PRF is staggered, the time
between successive output pulses cycles through the successive values of the PRF vector.

• When the Enable PRF selection input parameter is selected, you can implement a selectable
PRF by specifying Pulse repetition frequency (Hz) as a row vector with positive real-valued
entries. But this time, when you execute the block, select a PRF by passing an index into the PRF
vector into the PRFIdx port.

In all cases, the number of output samples is fixed when you set the Output signal format to
Samples. When you use a varying PRF and set Output signal format to Pulses, the number of
output samples can vary.

Enable PRF selection input — Select predefined PRF
off (default) | on

Select this parameter to enable the PRFIdx port.

• When enabled, pass in an index into a vector of predefined PRFs. Set predefined PRFs using the
Pulse repetition frequency (Hz) parameter.

• When not enabled, the block cycles through the vector of PRFs specified by the Pulse repetition
frequency (Hz) parameter. If Pulse repetition frequency (Hz) is a scalar, the PRF is constant.

Source of Frequency Offset — Source of frequency offset
Property (default) | Input port

Source of frequency offset, specified as Property or Input port.

• When set to Property, the offset is determined by the value of the Frequency Offset parameter.
• When set to Input port, the offset is determined by the value of the FreqOffset port.

Frequency Offset (Hz) — Frequency offset
0 (default) | scalar

Frequency offset in Hz, specified as a scalar.
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Example: 2e3

Dependencies

To enable this parameter set the Source of Frequency Offset parameter to Input port.

Source of simulation sample time — Source of simulation sample time
Derive from waveform parameters (default) | Inherit from Simulink engine

Source of simulation sample time, specified as Derive from waveform parameters or Inherit
from Simulink engine. When set to Derive from waveform parameters, the block runs at a
variable rate determined by the PRF of the selected waveform. The elapsed time is variable. When set
to Inherit from Simulink engine, the block runs at a fixed rate so the elapsed time is a
constant.

Dependencies

To enable this parameter, select the Enable PRF selection input parameter.

Output signal format — Format of the output signal
Pulses (default) | Samples

The format of the output signal, specified as Pulses or Samples.

If you set this parameter to Samples, the output of the block consists of multiple samples. The
number of samples is the value of the Number of samples in output parameter.

If you set this parameter to Pulses, the output of the block consists of multiple pulses. The number
of pulses is the value of the Number of pulses in output parameter.

Number of samples in output — Number of samples in output
100 (default) | positive integer

Number of samples in the block output, specified as a positive integer.
Example: 1000

Dependencies

To enable this parameter, set the Output signal format parameter to Samples.
Data Types: double

Number of pulses in output — Number of pulses in output
1 (default) | positive integer

Number of pulses in the block output, specified as a positive integer.
Example: 2

Dependencies

To enable this parameter, set the Output signal format parameter to Pulses.
Data Types: double

Enable PRF Output — Enable output of PRF
off (default) | on
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Select this parameter to enable the PRF output port.

Dependencies

To enable this parameter, set Output signal format to Pulses.

Enable Matched Filter Coeficients Output — Enable output of matched filter
coefficients
off (default) | on

Select this parameter to enable the Coeff output port.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

See Also
phased.PhaseCodedWaveform

Introduced in R2014b
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Phase Shift Beamformer
Narrowband phase-shift beamformer
Library: Phased Array System Toolbox / Beamforming

Description
The Phase Shift Beamformer block performs delay-and-sum beamforming. The delay is approximated
using the phase-shift approximation in the time domain.

Ports
Input

X — Input signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Ang — Beamforming direction
2-by-1 real-valued vector | 2-by-L real-valued matrix

Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form of [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°, inclusive, and the elevation
angle must lie between –90° and 90°, inclusive. Angles are defined with respect to the local
coordinate system of the array.

Dependencies

To enable this port, set the Source of beamforming direction parameter to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-L complex-valued matrix

Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of desired beamforming directions specified by the Beamforming
direction parameter or from the Ang port.
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Data Types: double

W — Beamforming weights
N-by-L complex-valued matrix

Beamformed weights, returned as an N-by-L complex-valued matrix. The quantity N is the number of
array elements. When the Specify sensor array as parameter is set to Partitioned array or
Replicated subarray, N represents the number of subarrays. L is the number of desired
beamforming directions specified in the Ang port or by the Beamforming direction (deg)
property. There is one set of weights for each beamforming direction.

Dependencies

To enable this port, select the Enable weights output checkbox.
Data Types: double

Parameters
Main tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Source of beamforming direction — Source of beamforming direction
Property (default) | Input port

Source of beamforming direction, specified as Property or Input port. When you set Source of
beamforming direction to Property, you then set the direction using the Beamforming
direction (deg) parameter. When you select Input port, the direction is determined by the input
to the Ang port.

Beamforming direction (deg) — Beamforming directions
2-by-L real-valued matrix

Beamforming directions, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must
lie between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.

Dependencies

To enable this parameter, set the Source of beamforming direction parameter to Property.
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Number of bits in phase shifters — Number of phase shift quantization bits
0 (default) | nonnegative integer

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Weights normalizing method — Specify weights normalization method
Distortionless (default) | Preserve power

Specify this parameter to set the weights normalizing method. Choose Distortionless to set the
gain in the beamforming direction to zero dB. Choose Preserve power to set the norm of the
weights to one.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).
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Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])
Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector
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Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.

Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.
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Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.
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• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

3 Blocks

3-308



Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2
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The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.
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Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.
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Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.
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Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.

 Phase Shift Beamformer

3-313



Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.
Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.
Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.
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See Also
phased.PhaseShiftBeamformer

Introduced in R2014b
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Motion Platform
Motion platform

Library
Environment and Target

phasedenvlib

Description
The Motion Platform block models the motion of multiple platforms such as airplanes, ground
vehicles, and/or receiving and transmitting sensors arrays, determining their positions and velocities.
The platforms move along trajectories determined by initial positions and velocities, according to
which motion model you choose — the velocity or acceleration model. The platform positions and
velocities are updated at each simulation step. In addition, you can specify initial orientations for the
platforms and obtain orientation updates.

Parameters
Model of object motion

Object motion model, specified as Velocity, Acceleration, or Custom. When you set this
parameter to Velocity, the platform follows a constant velocity trajectory during each
simulation step. When you set this parameter to Acceleration, the platform follows a constant
acceleration trajectory during each simulation step. When you set the parameter to Custom, the
platform motion follows a sequence of waypoints specified by the Custom trajectory waypoints
parameter. The object performs a piecewise cubic interpolation on the waypoints to derive the
position and velocity at each time step.

Initial position (m)
Specify the initial position of the platform in meters as a 3-by-N matrix where each column
represents the initial position of a platform in the form [x;y;z]. The quantity N is the number of
platforms.

Initial velocity (m/s)
Specify the initial velocity of the platform in m/s as a 3-by-N matrix where each column
represents the initial velocity of a platform in the form [vx;vy;vz]. The quantity N is the
number of platforms. This parameter appears only when you set the Source of velocity or the
Source of acceleration parameters to Input port.

Source of velocity
This parameter appears only when you set the Model of object motion parameter to Velocity.
Then, you must supply velocity data for the model. Specify the Source of velocity data as either
coming from a Property or an Input port.
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Source of velocity Use these model parameters or ports
Property Initial position (m) parameter

Velocity (m/s) parameter
Input port Initial position (m) parameter

Initial velocity (m/s) parameter

Vel input port

Velocity (m/s)
Specify the current velocity of the platforms in m/s as a 3-by-N matrix where each column
represents the current velocity of a platform in the form [vx;vy;vz]. This parameter appears
only when you set the Model of object motion parameter to Velocity and set the Source of
velocity parameter to Property.

Source of acceleration
This parameter appears only when you set the Model of object motion parameter to
Acceleration. Then, you must supply acceleration values for the model. Specify the Source of
acceleration data as either coming from a Property or an Input port.

Source of acceleration Use these model parameters or ports
Property Initial Position (m) parameter

Initial Velocity (m/s) parameter

Acceleration (m/s^2) parameter
Input port Initial Position (m) parameter

Initial Velocity (m/s) parameter

Acl input port

Acceleration (m/s^2)
Specify the current acceleration of the platforms in m/s^2 as a 3-by-N matrix where each column
represents the current acceleration of a platform in the form [ax;ay;az]. This parameter
appears when you set the Model of object motion parameter to Acceleration and set the
Source of acceleration parameter to Property.

Custom trajectory waypoints
Custom trajectory waypoints, specified as a real-valued M-by-L matrix, or M-by-L-by-N array. M is
the number of waypoints. L is either 4 or 7.

• When L is 4, the first column indicates the times at which the platform position is measured.
The 2nd through 4th columns are position measurements in x, y, and z coordinates. The velocity
is derived from the position measurements.

• When L is 7, the 5th through seventh columns in the matrix are velocity measurements in x, y,
and z coordinates.

When you set the Custom trajectory waypoints parameter to a three-dimensional array, the
number of pages, N, represent the number of platforms. Time units are in seconds, position units
are in meters, and velocity units are in meters per second.
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To enable this property, set the Model of object motion property to Custom.
Mechanical scanning mode

Mechanical scan mode for platform, specified as None, Circular, or Sector, where None is the
default. When you set the Mechanical scanning mode parameter to Circular, the platform
scan clockwise 360 degrees continuously in the azimuthal direction of the platform orientation
axes. When you set the Mechanical scanning mode parameter to Sector, the platform scans
clockwise in the azimuthal direction in the platform orientation axes within a range specified by
the Azimuth scan angle span (deg) parameter. When the platform scan reaches the span
limits, the scan reverses direction and scans back to the other scan limit. Scanning happens
within the orientation axes of the platform.

Initial scan angle (deg)
Initial scan angle of platform, specified as a 1-by-N vector where N is the number of platforms.
The scanning occurs in the local coordinate system of the platform. The Initial orientation axes
parameter specifies the original local coordinate system. At the start of the simulation, the
orientation axes specified by the Initial orientation axes are rotated by the angle specified in
the InitialScanAngle Initial scan angle (deg) parameter. The default value is zero. Units
are in degrees. This parameter applies when you set the Mechanical scanning mode parameter
to Circular or Sector.

Azimuth scan angle span (deg)
The azimuth angle span, specified as an N-by-2 matrix where N is the number of platforms. Each
row of the matrix specifies the scan range of the corresponding platform in the form
[ScanAngleLowerBound ScanAngleHigherBound]. The default value is [-60 60]. Units are
in degrees. To enable this parameter, set the Mechanical scanning mode parameter to Sector.

Azimuth scan rate (deg/s)
Azimuth scan rate, specified as a 1-by-N vector where N is the number of platforms. Each entry in
the vector is the azimuth scan rate for the corresponding platform. The default value is 10
degrees/second. Units are in degrees/second. To enable this parameter, set the Mechanical
scanning mode parameter to Circular or Sector.

Initial orientation axes
Specify the three axes that define the initial local (x,y,z) coordinate system at the platform as a 3-
by-3-by-N matrix. Each column of the matrix represents an axis of the local coordinate system.
The three axes must be orthonormal.

Enable orientation axes output
Select this check box to obtain the instantaneous orientation axes of the platform via the output
port LAxes. The port appears only when the check box is selected.

Source of elapsed simulation time
Specify the source for elapsed simulation time as Auto or Derive from reference input
port. When you choose Auto, the block computes the elapsed time. When you choose Derive
from reference input port, the block uses the time duration of a reference signal passed
into the Ref input port.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.
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Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
Vel Platform velocity input Double-precision floating point
Acl Platform acceleration input Double-precision floating point
Ref Reference signal input Double-precision floating point
Pos Platform position output Double-precision floating point
Vel Platform velocity output Double-precision floating point
LAxes Platform orientation output Double-precision floating point

See Also
phased.Platform
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Introduced in R2014b
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Pulse Integrator
Coherent or noncoherent pulse integration

Library
Detection

phaseddetectlib

Description
The Pulse Integrator block performs coherent or noncoherent integration of successive pulses of a
signal and puts out an integrated output. You can specify how many pulses to integrate and the
number of overlapped pulses in successive integrations.

Parameters
Integration method

Specify the integration method as Coherent or Noncoherent.
Number of pulses to integrate

Specify the number of pulses to integrate as an integer.
Integration overlap (in pulses)

Specify the number of overlapped pulses in successive integrations as an integer. This number
must be less than the value specified in Number of pulses to integrate.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Supported Data Types
X Double-precision floating point
∑ X Double-precision floating point

See Also
pulsint
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Introduced in R2014b
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Pulse Compression Library
Library of pulse compression specifications
Library: Phased Array System Toolbox / Detection

Description
The Pulse Compression Library block performs range processing using pulse compression. Pulse
compression techniques include matched filtering and stretch processing. The block lets you create a
library of different pulse compression specifications. The output is the filter response consisting of a
matrix or a three-dimensional array with rows representing range gates.

Ports
Input

X — Input signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Input signal, specified as a complex-valued K-by-L matrix, complex-valued K-by-N matrix, or a
complex-valued K-by-N-by-L array. K denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams.
Data Types: double

Idx — Index of processing specification
positive integer

Index of the processing specification in the pulse compression library, specified as a positive integer.
Data Types: double

Output

Y — Output signal
complex-valued K-by-L matrix | complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Output signal, returned as a complex-valued M-by-L matrix, complex-valued M-by-N matrix, or a
complex-valued M-by-N-by-L array. M denotes the number of fast time samples, L the number of
pulses, and N is the number of channels. Channels can be array elements or beams. The number of
dimensions of Y matches the number of dimensions of X.

When matched filtering is performed, M is equal to the number of rows in X. When stretch processing
is performed and you specify a value for the RangeFFTLength name-value pair, M is set to the value
of RangeFFTLength. When you do not specify RangeFFTLength, M is equal to the number of rows
in X.
Data Types: double
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Range — Sample range
real-valued length-M vector

Sample ranges, returned as a real-valued length-M vector where M is the number of rows of Y.
Elements of this vector denote the ranges corresponding to the rows of Y.
Data Types: double

Parameters
Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Specification of each waveform in the library — Specification of pulse waveforms in
the library
{{'Rectangular','PRF',1e4,'PulseWidth',50e-6},
{'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,'SweepDirection
','Up','SweepInterval','Positive'}} (default) | cell array

Pulse waveforms, specified as a cell array. Each cell of the array contains the specification of one
waveform. Each waveform specification is also a cell array containing the parameters of the
waveform.
{{Waveform 1 Specification},{Waveform 2 Specification},{Waveform 3 Specification}, ...}

This block supports four built-in waveforms and also lets you specify custom waveforms. Each built-in
waveform specifier consists of a waveform identifier followed by several name-value pairs that set the
properties of the waveform.

Built-in Waveforms
Waveform type Waveform identifier Waveform name-value pair

arguments
Linear FM 'LinearFM' See “Linear FM Waveform

Arguments” on page 1-1272
Phase coded 'PhaseCoded' See “Phase-Coded Waveform

Arguments” on page 1-1274
Rectangular 'Rectangular' See “Rectangular Waveform

Arguments” on page 1-1275
Stepped FM 'SteppedFM' See “Stepped FM Waveform

Arguments” on page 1-1292

You can create a custom waveform with a user-defined function. The first input argument of the
function must be the sample rate. Use a function handle instead of the waveform identifier in the first
cell of a waveform specification. The remaining cells contain all function input arguments except the
sample rate. Specify all input arguments in the order they are passed into the function. The function
must have at least one output argument to return the samples of each pulse in a column vector. You
can only create custom waveforms when you set Simulate using to Interpreted Execution.
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Pulse compression specifications — Specify type of pulse compression
{{'MatchedFilter','SpectrumWindow','None'},
{'StretchProcessor','RangeSpan',200,'ReferenceRange',5e3,'RangeWindow','None'
}} (default) | cell array

Waveform processing type and parameters, specified as a cell array of processing specifications. Each
processing specification is itself a cell array containing the processing type and processing
arguments.
{{Processing 1 Specification},{Processing 2 Specification},{Processing 3 Specification}, ...}

Each processing specification indicates which type of processing to apply to a waveform and the
arguments needed for processing.
{processtype,Name,Value,...}

The value of processtype is either 'MatchedFilter' or 'StretchProcessor'.

• 'MatchedFilter' – The name-value pair arguments are

• 'Coefficients',coeff – specifies the matched filter coefficients, coeff, as a column vector.
When not specified, the coefficients are calculated from the WaveformSpecification
property. For the Stepped FM waveform containing multiple pulses, coeff corresponds to
each pulse until the pulse index, idx changes.

• 'SpectrumWindow',sw – specifies the spectrum weighting window, sw, applied to the
waveform. Window values are one of 'None', 'Hamming', 'Chebyshev', 'Hann', 'Kaiser',
and 'Taylor'. The default value is 'None'.

• 'SidelobeAttenuation',slb – specifies the sidelobe attenuation window, slb, of the
Chebyshev or Taylor window as a positive scalar. The default value is 30. This parameter
applies when you set 'SpectrumWindow' to 'Chebyshev' or 'Taylor'.

• 'Beta',beta – specifies the parameter, beta, that determines the Kaiser window sidelobe
attenuation as a nonnegative scalar. The default value is 0.5. This parameter applies when you
set 'SpectrumWindow' to 'Kaiser'.

• 'Nbar',nbar – specifies the number of nearly constant level sidelobes, nbar, adjacent to the
main lobe in a Taylor window as a positive integer. The default value is 4. This parameter
applies when you set 'SpectrumWindow' to 'Taylor'.

• 'SpectrumRange',sr – specifies the spectrum region, sr, on which the spectrum window is
applied as a 1-by-2 vector having the form [StartFrequency EndFrequency]. The default
value is [0 1.0e5]. This parameter applies when you set the 'SpectrumWindow' to any value
other than 'None'. Units are in Hz.

Both StartFrequency and EndFrequency are measured in the baseband region [-Fs/2 Fs/2].
Fs is the sample rate specified by the SampleRate property. StartFrequency cannot be
larger than EndFrequency.

• 'StretchProcessor' – The name-value pair arguments are

• 'ReferenceRange',refrng – specifies the center of ranges of interest, refrng, as a positive
scalar. The refrng must be within the unambiguous range of one pulse. The default value is
5000. Units are in meters.

• 'RangeSpan',rngspan – specifies the span of the ranges of interest. rngspan, as a positive
scalar. The range span is centered at the range value specified in the 'ReferenceRange'
parameter. The default value is 500. Units are in meters.

• 'RangeFFTLength',len – specifies the FFT length in the range domain, len, as a positive
integer. If not specified, the default value is same as the input data length.
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• 'RangeWindow',rw specifies the window used for range processing, rw, as one of 'None',
'Hamming', 'Chebyshev', 'Hann', 'Kaiser', and 'Taylor'. The default value is 'None'.

Data Types: cell

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).
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See Also
phased.PulseCompressionLibrary

Introduced in R2018b
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Pulse Waveform Library
Library of pulse waveforms
Library: Phased Array System Toolbox / Waveforms

Description
The Pulse Waveform Library generates different types of pulse waveforms from a library of
waveforms.

Ports
Input

Idx — Waveform index
positive integer

Index to select the waveform, specified as a positive integer. The index selects the waveform from the
set of waveforms defined by the Specification of each waveform in the library parameter.
Data Types: double

Output

Y — Pulse waveform samples
complex-valued column vector | complex-valued matrix

Pulse waveform samples, returned as a complex-valued vector or complex-valued matrix.
Data Types: double

Parameters
Sample rate (Hz) — Sample rate of the output waveform
1e6 (default) | positive scalar

Sample rate of the output waveform, specified as a positive scalar. The ratio of Sample rate (Hz) to
each element in the Pulse repetition frequency (Hz) vector must be an integer. This restriction is
equivalent to requiring that the pulse repetition interval is an integral multiple of the sample interval.

Specification of each waveform in the library — Pulse waveforms in the library
{{'Rectangular','PRF',1e4,'PulseWidth',50e-6},
{'LinearFM','PRF',1e4,'PulseWidth',50e-6,'SweepBandwidth',1e5,'SweepDirection
','Up','SweepInterval','Positive'}} (default) | cell array

Pulse waveforms, specified as a cell array. Each cell of the array contains the specification of one
waveform. Each waveform is also a cell array containing the parameters of the waveform.
{{Waveform 1 Specification},{Waveform 2 Specification},{Waveform 3 Specification}, ...}
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This block supports four built-in waveforms and also lets you specify custom waveforms. Each built-in
waveform specifier consists of a waveform identifier followed by several name-value pairs that set the
properties of the waveform.

Built-in Waveforms

Waveform type Waveform identifier Waveform name-value pair
arguments

Linear FM 'LinearFM' See “Linear FM Waveform
Arguments” on page 1-1289

Phase coded 'PhaseCoded' See “Phase-Coded Waveform
Arguments” on page 1-1290

Rectangular 'Rectangular' See “Rectangular Waveform
Arguments” on page 1-1291

Stepped FM 'SteppedFM' See “Stepped FM Waveform
Arguments” on page 1-1292

You can create a custom waveform with a user-defined function. The first input argument of the
function must be the sample rate. Use a function handle instead of the waveform identifier in the first
cell of a waveform specification. The remaining cells contain all function input arguments except the
sample rate. Specify all input arguments in the order they are passed into the function. The function
must have at least one output argument to return the samples of each pulse in a column vector. You
can only create custom waveforms when you set Simulate using to Interpreted Execution.

Source of simulation sample time — Source of simulation sample time
Derive from waveform parameters (default) | Inherit from Simulink engine

Source of simulation sample time, specified as Derive from waveform parameters or Inherit
from Simulink engine. When set to Derive from waveform parameters, the block runs at a
variable rate determined by the PRF of the selected waveform. The elapsed time is variable. When set
to Inherit from Simulink engine, the block runs at a fixed rate so the elapsed time is a
constant.
Dependencies

To enable this parameter, select the Enable PRF selection input parameter.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.
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When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

See Also
phased.PulseWaveformLibrary

Introduced in R2018a
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Radar Target
Radar target

Library
Environment and Target

phasedenvlib

Description
The Radar Target block models a radar target that reflects the signal according to the specified radar
cross section (RCS). The block supports all four Swerling models.

Parameters
Source of mean radar cross section

Specify whether the target’s mean radar cross-section (RCS) value comes from the Mean radar
cross section parameter of this block or from an input port. Values of this parameter are

Property The Mean radar cross section parameter for this block
specifies the mean RCS value.

Input port Choosing this value creates the RCS input port to specify
the mean radar cross-section.

Mean radar cross section (m^2)
Specify the mean value of the target's radar cross section, in square meters, as a nonnegative
scalar. This parameter appears only when the Source of mean radar cross section parameter
is set to Property.

Fluctuation model
Specify the statistical model of the target as one of Nonfluctuating, Swerling1, Swerling2,
Swerling3, or Swerling4. Setting this parameter to a value other than Nonfluctuating,
allows setting cross-sections parameters via an input port, Update.

Signal Propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the carrier frequency of the signal that reflects from the target, as a positive scalar in
hertz.

3 Blocks

3-332



Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Incident signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

RCS Mean radar cross-section. Double-precision floating point
Update Update RCS at block execution. Double-precision floating point
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Port Description Supported Data Types
Out Scattered signal. Double-precision floating point

See Also
phased.RadarTarget

Introduced in R2014b
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Range Angle Calculator
Range and angle calculations

Library
Environment and Target

phasedenvlib

Description
The Range Angle Calculator block calculates the ranges and/or the azimuth and elevation angles of
several positions with respect to a reference position and with respect to a reference axes
orientation. The reference position and reference axes can be specified in the block dialog or using
input ports.

Parameters
Propagation model

Specify the propagation model by setting this parameter to Free space or Two-ray.
Reference position source

Specify the reference position source by setting this parameter to Property or Input port. If
Reference position source is set to Property, set the position using the Reference position
parameter. If Reference position source is set to Input port, use the input port labeled
RefPos.

Reference position
Specify the reference position as a 3-by-1 vector of rectangular coordinates in meters in the form
[x;y;z]. The reference position serves as the origin of the local coordinate system. Ranges and
angles of the input positions are measured with respect to the reference position. This parameter
appears only when Reference position source is set to Property.

Reference axes source
Specify the reference axes source by setting this parameter to Property or Input port. If
Reference axes source is set to Property, set the axes using the Reference axes parameter. If
Reference axes source is set to Input port, use the input port labeled RefAxes.

Reference axes
Specify the reference axes of the local coordinate system with which to calculate range and
angles in the form of a 3-by-3 orthonormal matrix. Each column of the matrix specifies the
direction of an axis for the local coordinate system in the form of [x; y; z] with origin at the
reference position. This parameter appears only when Reference axes source is set to
Property.
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Output(s)
Specify the desired output(s) of the block. Each type of output is sent to a different port
depending on the parameter value.

Value Port
Angle Ang
Range Range
Range and Angle Ang and Range

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Supported Data Types
Pos Double-precision floating point
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Port Supported Data Types
RefPos Double-precision floating point
RefAxes Double-precision floating point
Range Double-precision floating point
Ang Double-precision floating point

See Also
rangeangle

Introduced in R2014b
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Range-Angle Response
Obtain range-angle response map for array
Library: Phased Array System Toolbox / Detection

Description
The Range-Angle Response block computes the range-angle map of an input signal. The output
response is a matrix or a three-dimensional array whose rows represent range gates and columns
represent angles. Pages represent

Ports
Input

X — Input signal data cube
complex-valued K-by-N matrix | complex-valued K-by-N-by-L array

Input signal cube, specified as a complex-valued K-by-N matrix or complex-valued K-by-N-by-L array.
The contents of the data cube depend on the type of range-angle processing specified by the different
syntaxes.

• K is the number of fast-time or range samples.
• N is the number of independent spatial channels such as sensors or directions.
• L is the slow-time dimension that corresponds to the number of pulses or sweeps in the input

signal.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency

Dependencies

To enable this input argument, set the value of Range processing method to FFT and do not select
the Dechirp input signal check box.
Data Types: double

Xref — Reference signal used for dechirping
complex-valued K-by-1 column vector

Reference signal used for dechirping, specified as a complex-valued K-by-1 column vector. The
number of rows must equal the length of the fast-time dimension of X.
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Dependencies

To enable this input argument, set the value of Range processing method to FFT and select the
Dechirp input signal check box.
Data Types: double

Coeff — Matched filter coefficients
complex-valued P-by-1 column vector

Matched filter coefficients, specified as a complex-valued P-by-1 column vector. P must be less than or
equal to K. K is the number of fast-time or range sample.

Dependencies

To enable this input argument, set the value of Range processing method to Matched filter.
Data Types: double

El — Elevation angle
scalar

Elevation angle of response, specified as a scalar between –90° and +90°. The range-angle response
is computed for this elevation. Units are in degrees.

Dependencies

To enable this argument, set the Source of elevation angle parameter to Input port.
Data Types: double

Output

Resp — Range response data cube
complex-valued M-element column vector | complex-valued M-by-L matrix | complex-valued M-by-N
by-L array

Range response data cube, returned as one of the following:

• Complex-valued M-element column vector
• Complex-valued M-by-L matrix
• Complex-valued M-by-N by-L array

The value of M depends on the type of processing

Range Processing Method Value of M
FFT If you set the Source of FFT length in range

processing parameter to Auto, then M = K, the
length of the fast-time dimension of X. Otherwise,
M equals the value of the FFT length in range
processing parameter.

Matched filter M = K, the length of the fast-time dimension of X.

Data Types: double
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Range — Range values along range dimension
real-valued M-by-1 column vector

Range values along range dimension, returned as a real-valued M-by-1 column vector. This vector
defines the ranges that correspond to the fast-time dimension of the RESP output data cube. M is the
length of the fast-time dimension of RESP. Range values are monotonically increasing and equally
spaced. Units are in meters.
Data Types: double

Ang — Angle values along angle direction
P-by-1 real-valued vector

Angle values corresponding to the samples along angle direction, returned as a P-by-1 real-valued
vector. Units are in degrees.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Range processing method — Range processing method
Matched filter (default) | FFT

Range processing method, specified as Matched filter or FFT.

• Matched filter — The object match-filters the incoming signal. This approach is commonly
used for pulsed signals, where the matched filter is the time reverse of the transmitted signal.

• FFT — The object applies an FFT to the input signal. This approach is commonly used for chirped
signals such as FMCW and linear FM pulsed signals.

Data Types: char

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean
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Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

FM sweep slope (Hz/s) — Linear FM sweep slope
1.0e9 (default) | scalar

Linear FM sweep slope, specified as a scalar. The fast-time dimension of the X input port must
correspond to sweeps having this slope.
Example: 1.5e9

Dependencies

To enable this parameter, set the Range processing method parameter to FFT.
Data Types: double

Dechirp input signal — Enable dechirping of input signals
on (default) | off

Option to enable dechirping of input signals, specified as on or off. Not selecting this check box
indicates that the input signal is already dechirped and no dechirp operation is necessary. Select this
check box when the input signal requires dechirping.

Dependencies

To enable this parameter, set the Range processing method parameter to FFT.
Data Types: Boolean

Source of FFT length in range — Source of FFT length for range processing of
dechirped signals
Auto (default) | Property

Source of the FFT length used for the range processing of dechirped signals, specified as Auto or
Property.

• Auto — The FFT length equals the length of the fast-time dimension of the input data cube.
• Property — Specify the FFT length by using the FFT length in range processing parameter.

Dependencies

To enable this parameter, set the Range processing method parameter to FFT.
Data Types: char

FFT length in range processing — FFT length used for range processing
1024 (default) | positive integer

FFT length used for range processing, specified as a positive integer.
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Dependencies

To enable this parameter, set the Range processing method parameter to FFT and the Source of
FFT length in range processing parameter to Property.
Data Types: double

Range processing window — FFT weighting window for range processing
None (default) | Hamming | Chebyshev | Hann | Kaiser | Taylor

FFT weighting window for range processing, specified as None, Hamming, Chebyshev, Hann,
Kaiser, or Taylor.

If you set this parameter to Taylor, the generated Taylor window has four nearly constant sidelobes
next to the mainlobe.
Dependencies

To enable this parameter, set the Range processing method parameter to FFT.
Data Types: char

Range sidelobe attenuation level — Sidelobe attenuation for range processing
30 (default) | scalar

Sidelobe attenuation for range processing, specified as a positive scalar. This attenuation applies only
to Kaiser, Chebyshev, or Taylor windows. Units are in dB.
Dependencies

To enable this parameter, set the Range processing method parameter to FFT and the Range
processing window parameter to Kaiser, Chebyshev, or Kaiser.

Set reference range at center — Set reference range at center of range grid
on (default) | off

Set reference range at center of range grid, specified as on or off. Selecting this check box enables
you to set the reference range at the center of the range grid. Otherwise, the reference range
corresponds to the beginning of the range grid.
Dependencies

To enable this parameter, set the Range processing method to FFT.
Data Types: Boolean

Reference range (m) — Reference range of range grid
0.0 (default) | nonnegative scalar

Reference range of the range grid, specified as a nonnegative scalar.

• If you set the Range processing method parameter to 'Matched filter', the reference range
is set to the start of the range grid.

• If you set the Range processing method parameter to FFT, the reference range is determined
by the Set reference range at center parameter.

• When you select the Set reference range at center check box, the reference range is set to
the center of the range grid.
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• Otherwise, the reference range is set to the start of the range grid.

Units are in meters.

Example: 1000.0
Data Types: double

Source of elevation angle — Source of elevation angle
Property (default) | Input port

Source of elevation angle, specified as Property or Input port.

Property The elevation angle comes from the Elevation angle (deg)
parameter.

Input port The elevation angle comes from an input port.

Elevation angle (deg) — Elevation angle used to calculate range-angle response
0 (default) | scalar

Elevation angle used to calculate range-angle response, specified as a scalar. The angle must be
between --90 and 90 degrees. This property applies when you set the ElevationAngleSource property
to 'Property'. The default value of this property is 0.

Angle span (deg) — Angle response span
[-90 90] (default) | real-valued 1-by-2 vector

Angle response span, specified as a real-valued 2-by-1 vector. The object calculates the range-angle
response within the angle range, [min_angle max_angle].
Example: [-45 45]
Data Types: 12wqqqq` | qdouble

Number of angle bins — Number of samples in angle span
positive integer greater than two

Number of samples in angle span used to calculate range-angle response, specified as a positive
integer greater than two.
Example: [256]
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
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without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
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• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
Dependencies

To enable this parameter, set Element type to Cosine Antenna.
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Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.
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Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (
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Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.
Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.
Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.
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Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.
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Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.
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Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.
Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.
Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
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normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
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• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.

Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.
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If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

See Also
phased.RangeAngleResponse

Introduced in R2018b
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Range Doppler Response
Range-Doppler response

Library
Detection

phaseddetectlib

Description
The Range-Doppler Response block computes the range-Doppler map of an input signal. The output
response is a matrix whose rows represent range gates and whose columns represent Doppler bins.

Parameters
Range processing method

Specify the method of range processing as Matched filter or FFT

Matched filter Applies a matched filter to the incoming signal. This technique
is commonly used for pulsed signals, where the matched filter
is the time reverse of the transmitted signal. Choosing this
option creates the Coeff input port.

FFT Performs range processing by applying an FFT to the input
signal. This approach is commonly used with FMCW and linear
FM pulsed signals.

Signal propagation speed (m/s)
Specify the propagation speed of the signal, in meters per second, as a positive scalar.

Source of pulse repetition frequency
Source of pulse repetition frequency, specified as

• Auto — automatically compute the pulse repetition frequency (PRF). The PRF is the sample
rate of the signal divided by the number of rows in the input port signal, X.

• Property— specify the pulse repetition frequency using the PRF parameter.
• Input port— specify the PRF using the PRF input port.

Use the Property or Input port option when the pulse repetition frequency cannot be
determined by the signal duration, as is the case with range-gated data.
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Pulse repetition frequency of the input signal (Hz)
Pulse repetition frequency of the input signal, specified as a positive scalar. PRF must be less than
or equal to the sample rate divided by the number of rows of the input signal. When the signal
length is variable, use the maximum possible number of rows of the input signal instead.

To enable this parameter, set the Source of pulse repetition frequency parameter to
Property.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Source of FFT length in Doppler processing
Specify how the block determines the length of the FFT used in Doppler processing. Values of this
parameter are

Auto The FFT length equals the number of rows of the input signal.
Property The FFT length in Doppler processing parameter of this

block specifies the FFT length.

FFT length in Doppler processing
This parameter appears only when you set Source of FFT length in Doppler processing to
Property. Specify the length of the FFT used in Doppler processing as a positive integer.

Doppler processing window
Specify the window used for Doppler processing using one of

None
Hamming
Chebyshev
Hann
Kaiser
Taylor

If you set this parameter to Taylor, the generated Taylor window has four nearly-constant
sidelobes adjacent to the mainlobe.

Doppler sidelobe attenuation level
This parameter appears only when Doppler processing window is set to Kaiser, Chebyshev,
or Taylor. Specify the sidelobe attenuation level as a positive scalar, in decibels.

Doppler output
Specify the Doppler domain output as Frequency or Speed

Frequency Doppler shift, in hertz.
Speed Radial speed corresponding to Doppler shift, in meters per

second.
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Signal carrier frequency (Hz)
This parameter appears only when you set Doppler output to Speed. Specify the carrier
frequency, in hertz, as a scalar.

FM sweep slope (Hz/s)
This parameter appears only when you set Range processing method to FFT. Specify the slope
of the linear FM sweeping, in hertz per second, as a scalar.

Dechirp input signal
This check box appears only when you set Range processing method to FFT. Select this check
box to make the block perform the dechirp operation on the input signal. Clear this check box to
indicate that the input signal is already dechirped and no dechirp operation is necessary.

Source of FFT length in range processing
Specify how the block determines the FFT length in range processing. Values of this parameter
are

Auto The FFT length equals the number of rows of the input signal.
Property The FFT length is specified by FFT length in range

processing.

This parameter appears only when you set Range processing method to FFT.
FFT length in range processing

This parameter appears only when you set Range processing method to FFT and Source of
FFT length in range processing to Property. Specify the FFT length in the range domain as a
positive integer.

Range processing window
This parameter appears only when you set Range processing method to FFT. Specify the
window used for range processing using one of

None
Hamming
Chebyshev
Hann
Kaiser
Taylor

If you set this parameter to Taylor, the generated Taylor window has four nearly-constant
sidelobes adjacent to the mainlobe.

Set reference range at center
Set reference range at the center of range grid, specified as on or off. Selecting this check box,
enables you to set the reference range at the center of the range grid. Otherwise, the reference
range is set to the beginning of the range grid.

Reference range (m)
Reference range of the range grid, specified as a nonnegative scalar.

• If you set the Range processing method parameter to Matched filter, the reference
range is set to the start of the range grid.
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• If you set the Range processing method property to FFT, the reference range depends on
the Set reference range at center check box.

• When you select the Set reference range at center check box, the reference range is set
to the center of the range grid.

• If you do not select the Set reference range at center check box, the reference range is
set to the start of the range grid.

Units are in meters.

Range sidelobe attenuation level
This parameter appears only when you set Range processing method to FFT and Range
processing window to Kaiser, Chebyshev, or Taylor. Specify the sidelobe attenuation level
as a positive scalar, in decibels.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.
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Port Description Supported Data Types
X Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Signal lengths can vary when
you use pulse waveforms. Then
you can only apply the Matched
filter option of the Range
processing method parameter.

Double-precision floating point

Coeff Matched-filter coefficients. Double-precision floating point
XRef Reference signal Double-precision floating point
PRF Pulse repetition frequency Double-precision floating point
Resp Range-Doppler response. Double-precision floating point
Range Range grid. Double-precision floating point
Dop Doppler grid. Double-precision floating point

See Also
phased.RangeDopplerResponse

Introduced in R2014b
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Range Estimator
Range estimation
Library: Phased Array System Toolbox / Detection

Description
The Range Estimator block estimates the range of target detections obtained from the radar response
data.

Ports
Input

Resp — Range-processed response data cube
complex-valued P-by-1 column vector | complex-valued M-by-P matrix | complex-valued M-by-N-by-P
matrix

Range-processed response data cube, specified as a complex-valued P-by-1 column vector, a complex-
valued M-by-P matrix, or a complex-valued M-by-N-by-P array. M represents the number of range
samples, N is the number of sensor elements or beams, and P is the number of Doppler bins.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Range — Range grid values along range dimension
real-valued M-by-1 column vector

Range grid values along the range dimension of the data cube input, Resp, specified as a real-valued
M-by-1 column vector. Range values must be monotonically increasing and equally spaced. Units are
in meters.
Example: [-0.3,-0.2,-0.1,0,0.1,0.2,0.3]
Data Types: double

DetIdx — Detection indices
real-valued Nd-by-Q matrix

Detection indices, specified as a real-valued Nd-by-Q matrix. Q is the number of detections and Nd is
the number of dimensions in the response data cube, Resp. Each column of DetIdx contains the
indices of a detection in the response data cube.

NoisePower — Noise power at detection locations
positive scalar | real-valued 1-by-Q row vector of positive values
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Noise power at detection locations, specified as a positive scalar or real-valued 1-by-Q row vector
positive values. Q is the number of detections specified in the DetIdx input port.
Dependencies

To enable this port, select the Output variance for parameter estimates parameter, and then set
Source of noise power parameter to Input port.

Clusters — Cluster IDs
real-valued 1-by-Q row vector of positive values

Cluster IDs, specified as a real-valued 1-by-Q row vector, where Q is the number of detections
specified in the DetIdx input port. Each element of Clusters corresponds to an element of DetIdx.
Dependencies

To enable this input port, select the Enable cluster ID input checkbox.

Output

Est — Range estimate
real-valued K-by-1 column vector

Range estimates, specified as a real-valued K-by-1 column vector.

• When Enable cluster ID input is not selected, each range estimate corresponds to one of the
columns of the DetIdx input port. Then K equals the column dimension, Q, of DetIdx.

• When Enable cluster ID input is selected, each range estimate corresponds to one of the cluster
IDs in the Clusters input port. Then K equals the number of unique cluster IDs.

Var — Range estimation variance
positive, real-valued K-by-1 column vector

Range estimation variance, returned as a positive, real-valued K-by-1 column vector, where K is the
dimension of Est. Each element of Var corresponds to an element of Est. The estimator variance is
computed using the Ziv-Zakai bound.
Dependencies

To enable this output port, select the Output variance for parameter estimates parameter.

Parameters
Maximum number of estimates — Maximum number of estimates to report
1 (default) | positive integer

The maximum number of estimates to report, specified as a positive integer. When the number of
requested estimates is greater than the number elements in DetIdx, the remainder is filled with NaN.
Data Types: double

Enable cluster ID input — Enable cluster ID input
off (default) | on

Enable the Cluster input port to pass in cluster association information.
Data Types: Boolean
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Output variance for parameter estimates — Enable output variance port
off (default) | on

Enables the output of the parameter estimate variances via the Var port.
Data Types: Boolean

Root-mean-square range resolution — Range resolution
2 (default) | positive scalar

Root-mean-square range resolution of the detection, specified as a positive scalar. This parameter
must have the same units as the Range input port.
Dependencies

To enable this parameter, select the Output variance for parameter estimates parameter.
Data Types: double

Source of noise power — Source of noise power values
Property (default) | Input port

Source of the noise power, specified as Property or Input port. If you set this parameter to
Property, use the Noise power parameter to set the noise power at the detection locations. When
set the parameter to Input port, specify noise power via the NoisePower input port.

Noise power — Noise power values
1.0 (default) | positive scalar

Noise power for detections, specified as a positive scalar. The same noise power value is applied to all
detections. Noise power is in linear units.
Dependencies

To enable this parameter, select the Output variance for parameter estimates checkbox and set
the Source of noise power parameter to Property.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

See Also
Blocks
2-D CFAR Detector | CFAR Detector | Range Doppler Response | Range Response

System Objects
phased.CFARDetector | phased.CFARDetector2D | phased.RangeDopplerResponse |
phased.RangeEstimator | phased.RangeResponse

Introduced in R2017a
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Range Response
Range response
Library: Phased Array System Toolbox / Detection

Description
The Range Response block performs range filtering on fast-time (range) data, using either a matched
filter or an FFT-based algorithm. The output is typically used as input to a detector. Matched filtering
improves the SNR of pulsed waveforms. For continuous FM signals, FFT processing extracts the beat
frequency of FMCW waveforms. Beat frequency is directly related to range.

The input to the block is a radar data cube. The organization of the data cube follows the Phased
Array System Toolbox convention. The first dimension of the cube represents the fast time samples or
ranges of the received signals. The second dimension represents multiple spatial channels such as
different sensors or beams. The third dimension, slow time, represent pulses. Range filtering
operates along the fast-time dimension of the cube. Processing along the other dimensions is not
performed. If the data contains only one channel or pulse, the data cube can contain fewer than three
dimensions. Because this object performs no Doppler processing, you can use it to process
noncoherent radar pulses.

The output of the block is also a data cube with the same number of dimensions as the input. Its first
dimension contains range-processed data but its length can differ from the first dimension of the
input data cube.

Ports
Input

X — Input data cube
complex-valued K-by-1 column vector | complex-valued K-by-L matrix | complex-valued K-by-N-by-L
array

Input data cube, specified as a complex-valued K-by-1 column vector, a complex-valued K-by-L matrix,
or a complex-valued K-by-N-by-L array.

• K is the number of range or time samples.
• N is the number of independent channels such as sensors or directions.
• L is the number of pulses or sweeps in the input signal.

See “Radar Data Cube Concept”.

Each K-element column vector is processed independently.

For an FMCW waveform, with a triangle sweep, the sweeps alternate between positive and negative
slopes. However, Range Response is designed to process consecutive sweeps of the same slope. To
apply the Range Response block for a triangle-sweep system, use one of the following approaches:
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• Specify a positive Sweep slope parameter value, with X corresponding to upsweeps only. After
obtaining the Doppler or speed values, divide them by 2.

• Specify a negative Sweep slope parameter value, with X corresponding to downsweeps only. After
obtaining the Doppler or speed values, divide them by 2.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Coeff — Matched filter coefficients
complex-valued column vector

Matched filter coefficients, specified as a complex-valued column vector. The length of the vector
must be less than or equal to the number of rows in the input data, K.

Dependencies

To enable this port, set Range processing method to Matched filter.
Data Types: double

XRef — Reference signal
complex-valued K-by-1 column vector

Reference signal used for dechirping the input signal, specified as a complex-valued K-by-1 column
vector. The number of rows must equal the length of the first dimension of X.

Dependencies

To enable this port, set Range processing method to FFT and select the Dechirp input signal
parameter.
Data Types: double

Output

Resp — Range response data cube
complex-valued M-element column vector | complex-valued M-by-L matrix | complex-valued M-by-N
by-L array

Range response data cube, returned as a

• Complex-valued M-element column vector
• Complex-valued M-by-L matrix
• Complex-valued M-by-N by-L array

See “Radar Data Cube Concept”. The value of M depends on the type of processing
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Range processing method Dechirp input signal Value of M
FFT off If you set the Source of FFT

length in range processing to
Auto,M = K, the length of the
first dimension of x. Otherwise,
M equals the value of the FFT
length in range processing
parameter.

on M equals the number of rows, K,
of the input signal.

Matched filter N/A M equals the number of rows, K,
of the input signal.

Data Types: double

Range — Range values along range dimension
real-valued M-by-1 column vector

Range values along the first dimension of the Resp output data port, specified as a real-valued M-
by-1 column vector. This quantity defines the range values along the first dimension of the Resp
output port data. Units are in meters.
Data Types: double

Parameters
Range processing method — Range processing method
Matched filter (default) | FFT

Range processing method, specified as Matched filter or FFT.

Matched filter The block applies a matched filter to the incoming signal. This
approach is commonly used for pulsed signals, where the matched
filter is the time reverse of the transmitted signal.

FFT The block applies an FFT to the input signal. This approach is
commonly used for FMCW and linear FM pulsed signals.

Data Types: char

Propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed').
Data Types: double

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.

 Range Response

3-367



Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

FM sweep slope (Hz/s) — FM sweep slope
1e9 (default) | scalar

Specify the slope of the linear FM sweep as a scalar. This parameter must match the actual sweep of
the input data in port X.

Dependencies

To enable this parameter, set Range processing method to FFT.
Data Types: double

Dechirp input signal — Enable dechirping of input signal
on (default) | off

Select this parameter to enable dechirping of input signal.

Dependencies

To enable this parameter, set Range processing method to FFT.
Data Types: Boolean

Source of FFT length in range processing — Source of FFT length for range
processing
Auto (default) | Property

Source of FFT length for range processing, specified as Auto or Property

Auto The FFT length equals the number of rows of the input data cube.
Property Specify FFT length in the FFT length in range processing

parameter.

Dependencies

To enable this parameter, set Range processing method to FFT.
Data Types: char

FFT length in range processing — Range processing FFT length
1024 (default) | positive integer

FFT length for range processing, specified as a positive integer.
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Dependencies

To enable this parameter, set Range processing method to FFT and Source of FFT length in
range processing to Property.
Data Types: double

Range processing window — Range FFT weighting window
None (default) | Hamming | Chebyshev | Hann | Kaiser | Taylor

Range FFT weighting window, specified as None, Hamming, Chebyshev, Hann, Kaiser, or Taylor.

If you set this property to Taylor, the generated Taylor window has four nearly constant sidelobes
next to the mainlobe.
Dependencies

To enable this parameter, set Range processing method to FFT.
Data Types: char

Range sidelobe attenuation level — Sidelobe attenuation for range processing
30 (default) | positive scalar

Sidelobe attenuation for range processing, specified as a positive scalar. Units are in dB.
Dependencies

To enable this parameter, set Range processing method to FFT and Range processing window to
Kaiser, Chebyshev, or Taylor.
Data Types: double

Set reference range at center — Set reference range at center of range grid
on (default) | off

Set reference range at the center of range grid, specified as on or off. Selecting this check box,
enables you to set the reference range at the center of the range grid. Otherwise, the reference range
is set to the beginning of the range grid.
Dependencies

To enable this property, set the Range processing method to FFT.

Reference range (m) — Reference range of range grid
0.0 (default) | nonnegative scalar

Reference range of the range grid, specified as a nonnegative scalar.

• If you set the Range processing method parameter to Matched filter, the reference range is
set to the start of the range grid.

• If you set the Range processing method property to FFT, the reference range depends on the
Set reference range at center check box.

• When you select the Set reference range at center check box, the reference range is set to
the center of the range grid.

• If you do not select the Set reference range at center check box, the reference range is set
to the start of the range grid.
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Units are in meters.

Example: 1000.0
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

References
[1] Richards, M. Fundamentals of Radar Signal Processing, 2nd ed. McGraw-Hill Professional

Engineering, 2014.

[2] Richards, M., J. Scheer, and W. Holm, Principles of Modern Radar: Basic Principles. SciTech
Publishing, 2010.

See Also
Blocks
Range Doppler Response

Functions
chebwin | dechirp | hamming | hann | kaiser | taylorwin
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System Objects
phased.CFARDetector | phased.CFARDetector2D | phased.RangeDopplerResponse |
phased.RangeResponse

Introduced in R2017a
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Receiver Preamp
Receiver preamplifier

Library
Transmitters and Receivers

phasedtxrxlib

Description
The Receiver Preamp block implements a receiver preamplifier that amplifies an input signal and
adds thermal noise. In addition, you can add phase noise using an input port.

Parameters
Gain (dB)

Specify a scalar containing the gain in dB of the receiver preamplifier.
Loss factor (dB)

Specify a scalar containing the loss factor in dB of the receiver preamplifier.
Noise specification method

Specify the receiver noise as Noise power or Noise temperature.
Noise power

Specify a scalar containing the noise power in watts at the receiver preamplifier. If the receiver
has multiple channels or sensors, the noise bandwidth applies to each channel or sensor. This
parameter appears only when you set Noise specification method to Noise power.

Noise figure (dB)
Specify a scalar containing the noise figure of the receiver preamplifier. Units are in dB. If the
receiver has multiple channels or sensors, the noise figure applies to each channel or sensor. This
parameter appears only when you set Noise specification method to Noise temperature.

Reference temperature (K)
A scalar containing the reference temperature in degrees kelvin of the receiver preamplifier. If
the receiver has multiple channels or sensors, the reference temperature applies to each channel
or sensor. This parameter appears only when you set Noise specification method to Noise
temperature.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate parameter. This parameter appears only when Noise
specification method is set to Noise temperature.
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Sample rate
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Enable enabling signal input
Select this check box to allow input of the receiver-enabling signal via the input port TR. This
parameter appears only when Noise specification method is set to Noise temperature.

Enable phase noise input
Select this check box to allow input of phase noise for each incoming sample using the input port
Ph. You can use this information to emulate coherent-on-receive systems. This parameter appears
only when you set Noise specification method to Noise temperature.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

 Receiver Preamp

3-373



Port Description Supported Data Types
X Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

TR Enabling signal input

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.
.

Double-precision floating point

Ph Phase noise input.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Out Output signal. Double-precision floating point

See Also
phased.ReceiverPreamp

Introduced in R2014b
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Rectangular Waveform
Rectangular pulse waveform
Library: Phased Array System Toolbox / Detection

Description
The Rectangular Waveform block generates a rectangular pulse waveform with a specified pulse
width and pulse repetition frequency (PRF). The block outputs an integral number of pulses or
samples.

Ports
Input

PRFIdx — PRF Index
positive integer

Index to select the pulse repetition frequency (PRF), specified as a positive integer. The index selects
the PRF from the predefined vector of values specified by the Pulse repetition frequency (Hz)
parameter.
Example: 4

Dependencies

To enable this port, select Enable PRF selection input.
Data Types: double

FreqOffset — Frequency offset
scalar

Frequency offset in Hz, specified as a scalar.
Example: 2e3

Dependencies

To enable this port, set Source of Frequency Offset to Input port.
Data Types: double

Output

Y — Pulse waveform
complex-valued vector

Pulse waveform samples, returned as a complex-valued vector.
Data Types: double
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PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency of current pulse, returned as a positive scalar.

Dependencies

To enable this port, set the Output signal format parameter to Pulses and then select the Enable
PRF output parameter.
Data Types: double

Coeff — Matched filter coefficients
vector | matrix

Matched filter coefficients, returned as a vector or matrix.

Dependencies

To enable this port, select Enable Matched Filter Coefficients Output.
Data Types: double

Parameters
Sample rate (Hz) — Sample rate of the output waveform
1e6 (default) | positive scalar

Sample rate of the output waveform, specified as a positive scalar. The ratio of Sample rate (Hz) to
each element in the Pulse repetition frequency (Hz) vector must be an integer. This restriction is
equivalent to requiring that the pulse repetition interval is an integral multiple of the sample interval.

Method to specify pulse duration — Pulse duration as time or duty cycle
Pulse width (default) | Duty cycle

Method to set the pulse duration, specified as Pulse width or Duty cycle. When you set this
parameter to Pulse width, the pulse duration is set using the Pulse width (s) parameter. When
you set this parameter to Duty cycle, the pulse duration is computed from the values of the Pulse
repetition frequency (Hz) and Duty Cycle parameters.

Pulse width (s) — Time duration of pulse
50e-6 (default) | positive scalar

The duration of each pulse, specified as a positive scalar. Set the product of Pulse width (s) and
Pulse repetition frequency to be less than or equal to one. This restriction ensures that the pulse
width is smaller than the pulse repetition interval. Units are in seconds.
Example: 300e-6

Dependencies

To enable this parameter, set the Method to specify pulse duration parameter to Pulse width.

Duty cycle — Waveform duty cycle
0.5 (default) | scalar in the range [0,1]

Waveform duty cycle, specified as a scalar in the range [0,1].
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Example: 0.7

Dependencies

To enable this parameter, set the Method to specify pulse duration parameter to Duty cycle.

Pulse repetition frequency (Hz) — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. The value of Pulse
repetition frequency (Hz) must satisfy these constraints:

• The product of Pulse width and Pulse repetition frequency (Hz) must be less than or equal to
one. This condition expresses the requirement that the pulse width is less than one pulse
repetition interval. For the phase-coded waveform, the pulse width is the product of the chip width
and number of chips.

• The ratio of sample rate to any element of Pulse repetition frequency must be an integer. This
condition expresses the requirement that the number of samples in one pulse repetition interval is
an integer.

You can select the value of PRF by using block parameter settings alone or in conjunction with the
input port, PRFIdx.

• When the Enable PRF selection input parameter is not selected, set the PRF using block
parameters.

• To implement a constant PRF, specify Pulse repetition frequency (Hz) as a positive scalar.
• To implement a staggered PRF, specify Pulse repetition frequency (Hz) as a row vector with

positive values. After the waveform reaches the last element of the vector, the process
continues cyclically with the first element of the vector. When PRF is staggered, the time
between successive output pulses cycles through the successive values of the PRF vector.

• When the Enable PRF selection input parameter is selected, you can implement a selectable
PRF by specifying Pulse repetition frequency (Hz) as a row vector with positive real-valued
entries. But this time, when you execute the block, select a PRF by passing an index into the PRF
vector into the PRFIdx port.

In all cases, the number of output samples is fixed when you set the Output signal format to
Samples. When you use a varying PRF and set Output signal format to Pulses, the number of
output samples can vary.

Enable PRF selection input — Select predefined PRF
off (default) | on

Select this parameter to enable the PRFIdx port.

• When enabled, pass in an index into a vector of predefined PRFs. Set predefined PRFs using the
Pulse repetition frequency (Hz) parameter.

• When not enabled, the block cycles through the vector of PRFs specified by the Pulse repetition
frequency (Hz) parameter. If Pulse repetition frequency (Hz) is a scalar, the PRF is constant.

Source of Frequency Offset — Source of frequency offset
Property (default) | Input port
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Source of frequency offset, specified as Property or Input port.

• When set to Property, the offset is determined by the value of the Frequency Offset parameter.
• When set to Input port, the offset is determined by the value of the FreqOffset port.

Frequency Offset (Hz) — Frequency offset
0 (default) | scalar

Frequency offset in Hz, specified as a scalar.
Example: 2e3

Dependencies

To enable this parameter set the Source of Frequency Offset parameter to Input port.

Source of simulation sample time — Source of simulation sample time
Derive from waveform parameters (default) | Inherit from Simulink engine

Source of simulation sample time, specified as Derive from waveform parameters or Inherit
from Simulink engine. When set to Derive from waveform parameters, the block runs at a
variable rate determined by the PRF of the selected waveform. The elapsed time is variable. When set
to Inherit from Simulink engine, the block runs at a fixed rate so the elapsed time is a
constant.

Dependencies

To enable this parameter, select the Enable PRF selection input parameter.

Output signal format — Format of the output signal
Pulses (default) | Samples

The format of the output signal, specified as Pulses or Samples.

If you set this parameter to Samples, the output of the block consists of multiple samples. The
number of samples is the value of the Number of samples in output parameter.

If you set this parameter to Pulses, the output of the block consists of multiple pulses. The number
of pulses is the value of the Number of pulses in output parameter.

Number of samples in output — Number of samples in output
100 (default) | positive integer

Number of samples in the block output, specified as a positive integer.
Example: 1000

Dependencies

To enable this parameter, set the Output signal format parameter to Samples.
Data Types: double

Number of pulses in output — Number of pulses in output
1 (default) | positive integer

Number of pulses in the block output, specified as a positive integer.
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Example: 2

Dependencies

To enable this parameter, set the Output signal format parameter to Pulses.
Data Types: double

Enable PRF Output — Enable output of PRF
off (default) | on

Select this parameter to enable the PRF output port.

Dependencies

To enable this parameter, set Output signal format to Pulses.

Enable Matched Filter Coeficients Output — Enable output of matched filter
coefficients
off (default) | on

Select this parameter to enable the Coeff output port.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).
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See Also
phased.RectangularWaveform

Introduced in R2014b
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Root MUSIC DOA
Root multiple signal classification (MUSIC) direction of arrival (DOA) estimator for ULA

Library
Direction of Arrival (DOA)

phaseddoalib

Description
The Root MUSIC DOA block estimates the direction of arrival of a specified number of narrowband
signals incident on a uniform linear array using the root multiple signal classification (Root MUSIC)
algorithm.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of signals
Specify the number of signals as a positive integer scalar.

Forward-backward averaging
Select this parameter to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with a conjugate symmetric array manifold.

Spatial smoothing
Specify the amount of averaging, L, used by spatial smoothing to estimate the covariance matrix
as a nonnegative integer. Each increase in smoothing handles one extra coherent source, but
reduces the effective number of elements by one. The maximum value of this parameter is N – 2,
where N is the number of sensors.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
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simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Geometry
Specify the array geometry as one of the following

• ULA — Uniform Line Array
• UCA — Uniform Circular Array

Number of elements
Number of array elements.

Number of array elements, specified as a positive integer. This parameter appears when the
Geometry is set to ULA or UCA. If Sensor Array has a Replicated subarray option, this
parameter applies to the subarray.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.
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Array normal
This parameter appears when you set Geometry to URA or UCA. Specify the Array normal as x,
y, or z. All URA and UCA array elements are placed in the yz, zx, or xy-planes, respectively, of the
array coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In
this vector, N represents the number of elements in the array. If Taper is a scalar, the same
weight is applied to each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for example,
phased.ULA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.
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Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.
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Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
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coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.
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Port Description Supported Data Types
In Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Ang Estimated broadside DOA
angles.

Double-precision floating point

See Also
phased.RootMUSICEstimator

Introduced in R2014b
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Root WSF DOA
Root weighted subspace fitting (WSF) direction of arrival (DOA) estimator for ULA

Library
Direction of Arrival (DOA)

phaseddoalib

Description
The Root WSF DOA block estimates the direction of arrival of a specified number of narrowband
signals incident on a uniform linear array using the Root weighted subspace fitting (RootWSF)
algorithm.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of signals
Specify the number of signals as a positive integer.

Iterative method
Specify the iterative method as one of IMODE or IQML.

Maximum number of iterations
Specify the maximum number of iterations as a positive integer or Inf.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

3 Blocks

3-388



When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In
this vector, N represents the number of elements in the array. If Taper is a scalar, the same
weight is applied to each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for example,
phased.ULA.
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Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
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Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.
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Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.
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Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
In Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Ang Estimated broadside DOA
angles.

Double-precision floating point

See Also
phased.RootWSFEstimator

Introduced in R2014b
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SMI Beamformer
Sample matrix inversion (SMI) beamformer
Library: Phased Array System Toolbox / Space-Time Adaptive

Processing

Description
The SMI Beamformer block implements a sample matrix inversion (SMI) space-time adaptive
beamformer employing the sample space-time covariance matrix.

Ports
Input

X — Input signal
M-by-N-by-P complex-valued matrix

Input signal, specified as an M-by-N-by-P complex-valued array. M is the number of range samples, N
is the number of channels, and P is the number of pulses.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Idx — Index of range cells
positive integer

Index of range cells to compute processing weights.
Example: 1
Data Types: double

PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency of current pulse, specified as a positive scalar.

Dependencies

To enable this port, set the Specify PRF as parameter to Input port.
Data Types: double

Ang — Targeting direction
2-by-1 real-valued vector
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Targeting direction, specified as a 2-by-1 real-valued vector. The vector takes the form of
[AzimuthAngle;ElevationAngle]. Angle units are in degrees. The azimuth angle must lie
between –180° and 180°, inclusive, and the elevation angle must lie between –90° and 90°, inclusive.
Angles are defined with respect to the local coordinate system of the array.

Dependencies

To enable this port, set the Specify direction as parameter to Input port.
Data Types: double

Dop — Targeting Doppler frequency
scalar

Targeting Doppler frequency of current pulse, specified as a scalar.

Dependencies

To enable this port, set the Specify targeting Doppler as parameter to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-1 complex-valued vector

Processing output, returned as an M-by-1 complex-valued vector. The quantity M is the number of
range samples in the input port X.
Data Types: double

W — Processing weights
length N*P complex-valued vector

Processing weights, returned as Length N*P complex-valued vector. The quantity N is the number of
channels and P is the number of pulses. When the Specify sensor array as parameter is set to
Partitioned array or Replicated subarray, N represents the number of subarrays. L is the
number of desired beamforming directions specified in the Ang input port or by the Beamforming
direction (deg) parameter. There is one set of weights for each beamforming direction.

Dependencies

To enable this port, select the Enable weights output check box.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
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Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Specify PRF as — Source of PRF value
Property (default) | Input port

Source of PRF value, specified as Property or Input port. When set to Property, the Pulse
repetition frequency (Hz) parameter sets the PRF. When set to Input port, pass in the PRF using
the PRF input port.

Pulse repetition frequency (Hz) — Pulse repetition frequency
1 (default) | positive scalar

Pulse repetition frequency, PRF, specified as a positive scalar. Units are in Hertz. Set this parameter
to the same value set in any Waveform library block used in the simulation.

Dependencies

To enable this parameter, set the Specify PRF as parameter to Property.

Specify direction as — Specify source of targeting directions
Property (default) | Input port

Specify whether the targeting direction for the STAP processor block comes from a block parameter
or from the ANG input port. Values of this parameter are

Property • For the ADPCA Canceller and DPCA Canceller blocks, targeting
direction is specified using Receiving mainlobe direction
(deg).

• For the SMI Beamformer block, targeting direction is specified
using Targeting direction.

These parameters appear only when the Specify direction as
parameter is set to Property.

Input port Enter the targeting directions using the Ang input port. This port
appears only when Specify direction as is set to Input port.

Targeting direction (deg) — Processor targeting direction
[0;0] (default) | real-valued length-2 column vector

Processor targeting direction, specified as a real-valued length-2 column vector of azimuth and
elevation angles, [AzimuthAngle;ElevationAngle]. The azimuth angle is between –180° and
180° and the elevation angle is between –90° and 90°. Units are in degrees.

Dependencies

To enable this parameter, set Specify direction as to Property.

Number of bits in phase shifters — Number of phase shift quantization bits
0 (default) | nonnegative integer
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The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Specify targeting Doppler as — Source of targeting Doppler
Property (default) | Input port

Specify whether targeting Doppler values for the STAP processor comes from the Targeting Doppler
(Hz) parameter of this block or using the DOP input port. For the ADPCA Canceller and DPCA
Canceller blocks, the Specify targeting Doppler as parameter appears only when the Output pre-
Doppler result check box is cleared. Values of this parameter are

Property Specify targeting Doppler values using the Targeting Doppler
parameter of the block. The Targeting Doppler parameter appears
only when Specify targeting Doppler as is set to Property.

Input port Specify targeting Doppler values using the Dop input port. This port
appears only when Specify targeting Doppler as is set to Input
port.

Targeting Doppler (Hz) — Targeting Doppler of STAP processor
0 (default) | scalar

Targeting Doppler of STAP processor, specified as a scalar.

Dependencies

• To enable this parameter for the SMI Beamformer block, set Specify targeting Doppler as to
Property.

• To enable this parameter for the ADPCA Canceller and DPCA Canceller blocks, first clear the
Output pre-Doppler result check box. Then set the Specify targeting Doppler as parameter
to Property.

Number of guard cells — Number of guard cells using for training
2 (default) | positive even integer

Number of guard cells used for training, specified as a positive, even integer. Whenever possible, the
set of guard cells is equally divided into regions before and after the test cell.

Number of training cells — Number of cells used for training
2 (default) | positive even integer

Number of cells used for training, specified as a positive even integer. Whenever possible, the set of
training cells is equally divided into regions before and after the test cell.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
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run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.
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Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values
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Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.
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Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.
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• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.
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Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

 SMI Beamformer

3-403



Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.
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Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.
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Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.
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Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.
Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.
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• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

See Also
phased.STAPSMIBeamformer

Introduced in R2014b
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Scattering MIMO Channel
Scattering MIMO propagation channel
Library: Phased Array System Toolbox / Environment and Target

Description
The Scattering MIMO Channel models a 3-D multipath propagation channel in which radiated signals
from a transmitting array are reflected from multiple scatters back towards a receiving array. In this
channel, propagation paths are direct paths (line-of-sight) from point to point. The block models
range-dependent time delay, gain, Doppler shift, phase change, and atmospheric loss due to gases,
rain, fog, and clouds. You can optionally propagate a signal via a direct path from transmitter to
receiver.

The attenuation models for atmospheric gases and rain are valid for electromagnetic signals in the
frequency range 1–1000 GHz but the attenuation model for fog and clouds is valid for only 10–1000
GHz. Outside these frequency ranges, the object uses the nearest valid value.

Ports
Input

X — Transmitted narrowband signal
M-by-Nt complex-valued matrix

The transmitted narrowband signal, specified as an M-by-Nt complex-valued matrix. The quantity M is
the number of samples in the signal, and Nt is the number of transmitting array elements. Each
column represents the signal transmitted by the corresponding array element.
Example: [1,1;j,1;0.5,0]

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this port, set the Polarization configuration parameter to None or Combined.
Data Types: double
Complex Number Support: Yes

XH — Transmitted narrowband H-polarization signal
M-by-Nt complex-valued matrix

Transmitted narrowband H-polarization signal, specified as an M-by-Nt complex-valued matrix. The
quantity M is the number of samples in the signal, and Nt is the number of transmitting array
elements. Each column represents the signal transmitted by the corresponding array element.
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The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1,1;j,1;0.5,0]
Dependencies

To enable this port, set the Polarization configuration parameter to Dual.
Data Types: double
Complex Number Support: Yes

XV — Transmitted narrowband V-polarization signal
M-by-Nt complex-valued matrix

Transmitted narrowband V-polarization signal, specified as an M-by-Nt complex-valued matrix. The
quantity M is the number of samples in the signal, and Nt is the number of transmitting array
elements. Each column represents the signal transmitted by the corresponding array element.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Dependencies

To enable this port, set the Polarization configuration parameter to Dual.
Data Types: double
Complex Number Support: Yes

TxPos — Position of transmitting antenna array
3-by-1 real-valued column vector

Position of transmitting antenna array, specified as a 3-by-1 real-valued column vector taking the form
[x;y;z]. The vector elements correspond to the x, y, and z positions of the array. Units are in
meters.
Dependencies

To enable this port, set the Source of transmit array motion parameter to Input port.
Data Types: double

TxVel — Velocity of transmitting antenna array
3-by-1 real-valued column vector

Velocity of transmitting antenna array, specified as a 3-by-1 real-valued column vector taking the form
[vx;vy;vz]. The vector elements correspond to the x, y, and z velocities of the array. Units are in
meters per second.
Dependencies

To enable this port, set the Source of transmit array motion parameter to Input port.
Data Types: double

TxAxes — Axes orientation of transmitting antenna array
3-by-3 real orthonormal matrix
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Axes orientation of transmitting antenna array, specified as a 3-by-3 real orthonormal matrix. The
matrix defines the orientation of the array local coordinate system with respect to the global
coordinates. Matrix columns correspond to the directions of the x, y, and z axes of the local
coordinate system. Units are dimensionless.

Dependencies

To enable this port, set the Source of transmit array motion parameter to Input port.
Data Types: double

RxPos — Position of receiving antenna array
3-by-1 real-valued column vector

Position of receiving antenna array, specified as a 3-by-1 real-valued column vector taking the form
[x;y;z]. The vector elements correspond to the x, y, and z positions of the array. Units are in
meters.

Dependencies

To enable this port, set the Source of receive array motion parameter to Input port.
Data Types: double

RxVel — Velocity of receiving antenna array
3-by-1 real-valued column vector

Velocity of receiving antenna array, specified as a 3-by-1 real-valued column vector taking the form
[vx;vy;vz]. The vector elements correspond to the x, y, and z velocities of the array. Units are in
meters per second.

Dependencies

To enable this port, set the Source of receive array motion parameter to Input port.
Data Types: double

RxAxes — Axes orientation of receiving antenna array
3-by-3 real orthonormal matrix

Axes orientation of receiving antenna array, specified as a 3-by-3 real orthonormal matrix. The matrix
defines the orientation of the array local coordinate system with respect to the global coordinates.
Matrix columns correspond to the directions of the x, y, and z axes of the local coordinate system.
Units are dimensionless.

Dependencies

To enable this port, set the Source of receive array motion parameter to Input port.
Data Types: double

ScatPos — Positions of scatterers
3-by-Ns real-valued matrix

Position of scatterers, specified as a 3-by-Ns real-valued matrix. Each column of the matrix takes the
form [x;y;z], containing the x, y, and z positions of a scatterer. Units are in meters.
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Dependencies

To enable this port, set the Scatterer specification parameter to Input port.
Data Types: double

ScatVel — Velocities of scatterers
3-by-Ns real-valued matrix

Velocities of scatterers, specified as a 3-by-Ns real-valued matrix. Each matrix column has the form
[vx;vy;vz], containing the x, y, and z velocities of a scatterer. Units are in meters per second.

Dependencies

To enable this port, set the Scatterer specification parameter to Input port.
Data Types: double

ScatCoef — Scattering coefficients
1-by-Ns complex-valued row vector

Scattering coefficients, specified as a 1-by-Ns complex-valued row vector. Each vector element
specifies the scattering coefficient of the corresponding scatterer. Units are dimensionless.

Dependencies

To enable this port, set the Scatterer specification parameter to Input port.
Data Types: double

Output

Y — Received narrowband signal
M-by-Nr complex-valued matrix

Received narrowband signal, returned as an M-by-Nr complex-valued matrix. The quantity M is the
number of samples in the signal, and Nr is the number of receiving array elements. Each column
represents the signal received by the corresponding array element.

Dependencies

To enable this port, set the Polarization configuration parameter to None or Combined.
Data Types: double
Complex Number Support: Yes

YH — Received narrowband H-polarization signal
complex-valued M-by-Nr matrix

Received narrowband H-polarization signal, returned as a complex-valued M-by-Nr matrix. M is the
number of samples in the signal, and Nr is the number of receiving array elements. Each column
represents the signal received by the corresponding array element.

Dependencies

To enable this port, set the Polarization configuration parameter to Dual.
Data Types: double
Complex Number Support: Yes
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YV — Received narrowband V-polarization signal
complex-valued M-by-Nr matrix

Received narrowband V-polarization signal, returned as a complex-valued M-by-Nr matrix. M is the
number of samples in the signal, and Nr is the number of receiving array elements. Each column
represents the signal received by the corresponding array element.

Dependencies

To enable this port, set the Polarization configuration parameter to Dual.
Data Types: double
Complex Number Support: Yes

CS — Channel response
Nt-by-Nr-by-Ns complex-valued MATLAB array

Channel response, returned as an Nt-by-Nr-by-Ns complex-valued MATLAB array. Nt is the number of
transmitting array elements. Nr is the number of receiving array elements. Ns is the number of
scatterers. Each page of the array corresponds to the channel response matrix for a specific scatterer.

Dependencies

To enable this port, select the Output channel response check box.
Data Types: double
Complex Number Support: Yes

Tau — Path delays
1-by-Ns real-valued vector

Path delays, returned as a 1-by-Ns real-valued vector. Ns is the number of scatterers. Each element
corresponds to the path time delay from the transmitting array phase center to the scatterer and then
to the receiving array phase center.

Dependencies

To enable this port, select the Output channel response checkbox.
Data Types: double

Parameters
Main Tab

Propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed').
Data Types: double

Signal carrier frequency (Hz) — Signal carrier frequency
300e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in hertz.
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Data Types: double

Polarization configuration — Polarization configuration
None (default) | Combined | Dual

Polarization configuration, specified as None, Combined, or Dual. When you set this parameter to
None, the output field is considered a scalar field. When you set this parameter to None, the radiated
fields are polarized and are interpreted as a single signal in the sensor's inherent polarization. When
you set this parameter to Dual, the H and V polarization components of the radiated field are
independent signals.
Data Types: char

Specify atmospheric parameters — Enable atmospheric attenuation model
off (default) | on

Select this parameter to enable to add signal attenuation caused by atmospheric gases, rain, fog, or
clouds. When you select this parameter, the Temperature (degrees Celsius), Dry air pressure
(Pa), Water vapour density (g/m^3), Liquid water density (g/m^3), and Rain rate (mm/hr)
parameters appear in the dialog box.
Data Types: Boolean

Temperature (degrees Celsius) — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: double

Dry air pressure (Pa) — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar

Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this parameter corresponds to one standard atmosphere.
Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: double

Water vapour density (g/m^3) — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.
Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: datetime

Liquid water density (g/m^3) — Liquid water density
0.0 (default) | nonnegative real-valued scalar
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Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.
Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: double

Rain rate (mm/hr) — Rainfall rate
0.0 (default) | non-negative real-valued scalar

Rainfall rate, specified as a nonnegative real-valued scalar. Units are in mm/hr.
Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: double

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.
Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

Simulate direct path propagation — Enable propagation along direct path
off (default) | on

Select this check box to enable signal propagation along the line-of-sight direct path from the
transmitting array to the receiving array with no scattering.
Data Types: Boolean

Maximum delay (s) — Maximum signal delay
10e-6 (default) | positive scalar

The maximum signal delay, specified as a positive scalar. Delays greater than this value are ignored.
Data Types: double

Output channel response — Enable output of channel response
off (default) | on

Select this checkbox to output the channel response and time delay via the output ports CS and Tau.
Data Types: Boolean
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Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Transmit and Receive Array Tabs

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.
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Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values
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Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.
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Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.
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• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.
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Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

Dependencies

To enable this parameter, set Geometry to ULA or URA.
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Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of elements in each row and column.

For a URA, array elements are indexed from top to bottom along the leftmost array column, and
continued to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
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• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis
direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

Dependencies

To enable this parameter set Geometry to Conformal Array.
Data Types: double

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. If the parameter value is a matrix, each
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column specifies the normal direction of the corresponding element in the form
[azimuth;elevation] with respect to the local coordinate system. The local coordinate system
aligns the positive x-axis with the direction normal to the conformal array. If the parameter value is a
2-by-1 column vector, the same pointing direction is used for all array elements.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

To enable this parameter, set Geometry to Conformal Array.
Data Types: double

Taper — Array element tapers
1 (default) | complex scalar | complex-valued row vector

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.
Data Types: double

Motion Tab

Source of transmit array motion — Specify the source of the transmitting array motion
parameters
Property (default) | Input port

Source of transmitting array motion parameters, specified as Property or Input port.

• When you select Property, specify the array location and orientation using the Position of the
transmit array (m) and Orientation of the transmit array parameters. The array is stationary.

• When you select Input port, specify the array location, velocity, and orientation using the
TxPos, TxVel, and TxAxes input ports of the block.

Data Types: char

Position of the transmit array (m) — Position of transmitting array
[0;0;0] (default) | real-valued 3-by-1 vector

The position of the transmitting array phase center, specified as a real-valued, 3-by-1 vector in
Cartesian form [x;y;z] with respect to the global coordinate system. Units are in meters.

Dependencies

To enable this parameter, set the Source of transmit array motion parameter to Property.
Data Types: double

 Scattering MIMO Channel

3-425



Orientation of the transmit array — Set the orientation of transmitting array axes
eye(3,3) (default) | real-valued 3-by-3 orthonormal matrix

The orientation of transmitting array, specified as a real-valued, 3-by-3 orthonormal matrix. The
matrix specifies the directions of the three axes that define the local coordinate system of the array
with respect to the global coordinate system. The columns of the array correspond to the x, y, and z
axes, respectively.

Dependencies

To enable this parameter, set the Source of transmit array motion parameter to Property.
Data Types: double

Source of receive array motion — Specify the source of the receiving array motion
parameters
Property (default) | Input port

Source of receiving array motion parameters, specified as Property or Input port.

• When you select Property, specify the array location and orientation using the Position of the
receive array (m) and Orientation of the receive array parameters. The array is stationary.

• When you select Input port, specify the array location, velocity, and orientation using the
RxPos, RxVel, and RxAxes input ports of the block.

Data Types: char

Position of the receive array (m) — Position of receiving array
[physconst('LightSpeed' )/1e5; 0;0] (default) | real-valued 3-by-1 vector

The position of the receiving array phase center, specified as a real-valued, 3-by-1 vector in Cartesian
form [x;y;z] with respect to the global coordinate system. Units are in meters.

Dependencies

To enable this parameter, set the Source of receive array motion parameter to Property.
Data Types: double

Orientation of the receive array — Set the orientation of receiving array axes
eye(3,3) (default) | real-valued 3-by-3 orthonormal matrix

The orientation of receiving array, specified as a real-valued, 3-by-3 orthonormal matrix. The matrix
specifies the directions of the three axes that define the local coordinate system of the array with
respect to the global coordinate system. The columns of the array correspond to the x, y, and z axes,
respectively.

Dependencies

To enable this parameter, set the Source of receive array motion parameter to Property.
Data Types: double

Scatterer specification — Specify source of scatterer parameters
Auto (default) | Property | Input port

The source of scatterer parameters, specified as Auto, Property, or Input port.
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• When you set this parameter to Auto, all scatterer positions and coefficients are randomly
generated. Scatterer velocities are zero. The generated positions are contained within the region
set by the Boundary of scatterer positions parameter. Set the number of scatterers using the
Number of scatterers parameter.

• When you set this property to Property, set the scatterer positions using the Positions of
scatterers (m) parameter. Set the scattering coefficients using the Scattering coefficients
parameter. Scatterer velocities are zero.

• When you set this parameter to Input port, you specify the scatterer positions, velocities, and
scattering coefficients using the ScatPos, ScatVel, and ScatCoef block input ports.

Data Types: char

Number of scatterers — Number of scatterers
1 (default) | nonnegative integer

The number of scatterers, specified as a nonnegative integer.

Dependencies

To enable this property, set the Scatterer specification parameter to Auto.
Data Types: double

Boundary of scatterer positions — Constrain scatterer positions within a boundary
[0,1000] (default) | 1-by-2 real-valued vector | 3-by-2 real-valued matrix

The boundary scatterer positions, specified as a 1-by-2 real-valued row vector or a 3-by-2 real-valued
matrix. If the boundary is a 1-by-2 row vector, the vector contains the minimum and maximum,
[minbdry maxbdry], for all three dimensions. If the boundary is a 3-by-2 matrix, the matrix
specifies boundaries in all three dimensions in the form [x_minbdry x_maxbdry;y_minbdry
y_maxbdry; z_minbdry z_maxbdry].

Dependencies

To enable this property, set the Scatterer specification parameter to Auto.
Data Types: double

Positions of scatterers (m) — Positions of scatterers
[physconst('LightSpeed' )*5e-6;0;0] (default) | real-valued 3-by-Ns matrix

The positions of the scatterers, specified as real-valued 3-by-Ns matrix. Ns is the number of scatterers.
Each column represents a different scatterer and has the Cartesian form [x;y;z] with respect to the
global coordinate system. Units are in meters.

Dependencies

To enable this property, set the Scatterer specification parameter to Property.
Data Types: double

ScattererCoefficient — Scattering coefficients
1 (default) | complex-valued 1-by-Ns matrix

Scattering coefficients, specified as a complex-valued 1-by-Ns vector. Ns is the number of scatterers.
Units are dimensionless.
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Dependencies

To enable this property, set the Scatterer specification parameter to Property.
Data Types: double

See Also
System Objects
phased.ScatteringMIMOChannel

Introduced in R2017a
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Stepped FM Waveform
Stepped FM pulse waveform
Library: Phased Array System Toolbox / Waveforms

Description
The Stepped FM Waveform block generates a stepped FM pulse waveform with a specified pulse
width, pulse repetition frequency (PRF), and number of frequency steps. The transmitted frequency is
incremented in constant steps over the duration of the pulse. The block outputs an integral number of
pulses or samples.

Ports
Input

PRFIdx — PRF Index
positive integer

Index to select the pulse repetition frequency (PRF), specified as a positive integer. The index selects
the PRF from the predefined vector of values specified by the Pulse repetition frequency (Hz)
parameter.
Example: 4
Dependencies

To enable this port, select Enable PRF selection input.
Data Types: double

FreqOffset — Frequency offset
scalar

Frequency offset in Hz, specified as a scalar.
Example: 2e3
Dependencies

To enable this port, set Source of Frequency Offset to Input port.
Data Types: double

Output

Y — Pulse waveform
complex-valued vector

Pulse waveform samples, returned as a complex-valued vector.
Data Types: double
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PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency of current pulse, returned as a positive scalar.

Dependencies

To enable this port, set the Output signal format parameter to Pulses and then select the Enable
PRF output parameter.
Data Types: double

Coeff — Matched filter coefficients
vector | matrix

Matched filter coefficients, returned as a vector or matrix.

Dependencies

To enable this port, select Enable Matched Filter Coefficients Output.
Data Types: double

Parameters
Sample rate (Hz) — Sample rate of the output waveform
1e6 (default) | positive scalar

Sample rate of the output waveform, specified as a positive scalar. The ratio of Sample rate (Hz) to
each element in the Pulse repetition frequency (Hz) vector must be an integer. This restriction is
equivalent to requiring that the pulse repetition interval is an integral multiple of the sample interval.

Method to specify pulse duration — Pulse duration as time or duty cycle
Pulse width (default) | Duty cycle

Method to set the pulse duration, specified as Pulse width or Duty cycle. When you set this
parameter to Pulse width, the pulse duration is set using the Pulse width (s) parameter. When
you set this parameter to Duty cycle, the pulse duration is computed from the values of the Pulse
repetition frequency (Hz) and Duty Cycle parameters.

Pulse width (s) — Time duration of pulse
50e-6 (default) | positive scalar

The duration of each pulse, specified as a positive scalar. Set the product of Pulse width (s) and
Pulse repetition frequency to be less than or equal to one. This restriction ensures that the pulse
width is smaller than the pulse repetition interval. Units are in seconds.
Example: 300e-6

Dependencies

To enable this parameter, set the Method to specify pulse duration parameter to Pulse width.

Duty cycle — Waveform duty cycle
0.5 (default) | scalar in the range [0,1]

Waveform duty cycle, specified as a scalar in the range [0,1].
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Example: 0.7

Dependencies

To enable this parameter, set the Method to specify pulse duration parameter to Duty cycle.

Pulse repetition frequency (Hz) — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency, PRF, specified as a scalar or a row vector. Units are in Hz. The pulse
repetition interval, PRI, is the inverse of the pulse repetition frequency, PRF. The value of Pulse
repetition frequency (Hz) must satisfy these constraints:

• The product of Pulse width and Pulse repetition frequency (Hz) must be less than or equal to
one. This condition expresses the requirement that the pulse width is less than one pulse
repetition interval. For the phase-coded waveform, the pulse width is the product of the chip width
and number of chips.

• The ratio of sample rate to any element of Pulse repetition frequency must be an integer. This
condition expresses the requirement that the number of samples in one pulse repetition interval is
an integer.

You can select the value of PRF by using block parameter settings alone or in conjunction with the
input port, PRFIdx.

• When the Enable PRF selection input parameter is not selected, set the PRF using block
parameters.

• To implement a constant PRF, specify Pulse repetition frequency (Hz) as a positive scalar.
• To implement a staggered PRF, specify Pulse repetition frequency (Hz) as a row vector with

positive values. After the waveform reaches the last element of the vector, the process
continues cyclically with the first element of the vector. When PRF is staggered, the time
between successive output pulses cycles through the successive values of the PRF vector.

• When the Enable PRF selection input parameter is selected, you can implement a selectable
PRF by specifying Pulse repetition frequency (Hz) as a row vector with positive real-valued
entries. But this time, when you execute the block, select a PRF by passing an index into the PRF
vector into the PRFIdx port.

In all cases, the number of output samples is fixed when you set the Output signal format to
Samples. When you use a varying PRF and set Output signal format to Pulses, the number of
output samples can vary.

Enable PRF selection input — Select predefined PRF
off (default) | on

Select this parameter to enable the PRFIdx port.

• When enabled, pass in an index into a vector of predefined PRFs. Set predefined PRFs using the
Pulse repetition frequency (Hz) parameter.

• When not enabled, the block cycles through the vector of PRFs specified by the Pulse repetition
frequency (Hz) parameter. If Pulse repetition frequency (Hz) is a scalar, the PRF is constant.

Frequency step (Hz) — Linear frequency step size
2e4 (default) | positive scalar
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Specify the linear frequency step size as a positive scalar. Units are in Hertz.
Example: 1e3

Number of frequency steps — Number of frequency steps in pulse
5 (default) | positive integer

Specify the number of frequency steps as a positive integer. When the Number of frequency steps
is 1, the stepped FM waveform reduces to a rectangular waveform.
Example: 8

Source of simulation sample time — Source of simulation sample time
Derive from waveform parameters (default) | Inherit from Simulink engine

Source of simulation sample time, specified as Derive from waveform parameters or Inherit
from Simulink engine. When set to Derive from waveform parameters, the block runs at a
variable rate determined by the PRF of the selected waveform. The elapsed time is variable. When set
to Inherit from Simulink engine, the block runs at a fixed rate so the elapsed time is a
constant.

Dependencies

To enable this parameter, select the Enable PRF selection input parameter.

Source of Frequency Offset — Source of frequency offset
Property (default) | Input port

Source of frequency offset, specified as Property or Input port.

• When set to Property, the offset is determined by the value of the Frequency Offset parameter.
• When set to Input port, the offset is determined by the value of the FreqOffset port.

Frequency Offset (Hz) — Frequency offset
0 (default) | scalar

Frequency offset in Hz, specified as a scalar.
Example: 2e3

Dependencies

To enable this parameter set the Source of Frequency Offset parameter to Input port.

Output signal format — Format of the output signal
Pulses (default) | Samples

The format of the output signal, specified as Pulses or Samples.

If you set this parameter to Samples, the output of the block consists of multiple samples. The
number of samples is the value of the Number of samples in output parameter.

If you set this parameter to Pulses, the output of the block consists of multiple pulses. The number
of pulses is the value of the Number of pulses in output parameter.

Number of samples in output — Number of samples in output
100 (default) | positive integer
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Number of samples in the block output, specified as a positive integer.
Example: 1000

Dependencies

To enable this parameter, set the Output signal format parameter to Samples.
Data Types: double

Number of pulses in output — Number of pulses in output
1 (default) | positive integer

Number of pulses in the block output, specified as a positive integer.
Example: 2

Dependencies

To enable this parameter, set the Output signal format parameter to Pulses.
Data Types: double

Enable PRF Output — Enable output of PRF
off (default) | on

Select this parameter to enable the PRF output port.

Dependencies

To enable this parameter, set Output signal format to Pulses.

Enable Matched Filter Coeficients Output — Enable output of matched filter
coefficients
off (default) | on

Select this parameter to enable the Coeff output port.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

See Also
phased.SteppedFMWaveform

Introduced in R2014b
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Stretch Processor
Stretch processor for linear FM waveforms
Library: Phased Array System Toolbox / Detection

Description
The Stretch Processor block applies stretch processing on a linear FM waveform. Also known as
dechirping, stretch processing is an alternative to matched filtering for linear FM waveforms.

Ports
Input

X — Input signal
M-by-P complex-valued matrix

Input signal, specified as an M-by-P complex-valued array. M is the number of samples and P is the
number of pulses.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

PRF — Pulse repetition frequency
positive scalar

Pulse repetition frequency of current pulse, specified as a positive scalar.

Dependencies

To enable this port, set the Specify PRF as parameter to Input port.
Data Types: double

Output

Y — Stretch processed signal
M-by-P complex-valued matrix

Stretch processed signal, returned as an M-by-P complex-valued array. M is the number of samples
and P is the number of pulses.
Data Types: double
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Parameters
Sample rate (Hz) — Sample rate of the output waveform
1e6 (default) | positive scalar

Sample rate of the output waveform, specified as a positive scalar. The ratio of Sample rate (Hz) to
each element in the Pulse repetition frequency (Hz) vector must be an integer. This restriction is
equivalent to requiring that the pulse repetition interval is an integral multiple of the sample interval.

Pulse width (s) — Time duration of pulse
50e-6 (default) | positive scalar

The duration of each pulse, specified as a positive scalar. Set the product of Pulse width (s) and
Pulse repetition frequency to be less than or equal to one. This restriction ensures that the pulse
width is smaller than the pulse repetition interval. Units are in seconds.
Example: 300e-6

Specify PRF as — Source of PRF value
Property (default) | Auto | Input port

Source of PRF value for the stretch processor, specified as Property, Auto, or Input port. When
set to Property, the Pulse repetition frequency (Hz) parameter sets the PRF. When set to Input
port, pass in the PRF using the PRF input port. When set to Auto, PRF is computed from the number
of rows in the input signal.

.

Pulse repetition frequency (Hz) — Pulse repetition frequency
1e4 (default) | positive scalar

Pulse repetition frequency, PRF, specified as a positive scalar. Units are in Hertz. Set this parameter
to the same value set in any Waveform library block used in the simulation.

Dependencies

To enable this parameter, set the Specify PRF as parameter to Property.

FM sweep slope (Hz/s) — Slope of linear FM sweep
2e9 (default) | scalar

Slope of the linear FM sweeping as a scalar, specified as a scalar. Units are in Hertz per second.
Example: 1e3

FM sweep interval — Direction of FM sweep
Positive (default) | Symmetric

FM sweep interval, specified as Positive or Symmetric. If you set this parameter value to
Positive, the waveform sweeps the frequency bandwidth between 0 and B, where B is the
frequency bandwidth. If you set this parameter value to Symmetric, the waveform sweeps in the
interval between –B/2 and B/2.

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar
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Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Reference range (m) — Center of ranges of interest
5000 (default) | positive scalar

Center of ranges of interest, specified as a positive scalar. The reference range must be within the
unambiguous range of one pulse. Units are in meters.
Example: 10e3

Reference span (m) — Span of ranges of interest
500 (default) | positive scalar

Span of ranges of interest, specified as a positive scalar. The span of ranges is centered on the range
specified by the Reference range (m) parameter. Units are in meters.
Example: 1e3

Source of simulation sample time — Source of simulation sample time
Derive from waveform parameters (default) | Inherit from Simulink engine

Source of simulation sample time, specified as Derive from waveform parameters or Inherit
from Simulink engine. When set to Derive from waveform parameters, the block runs at a
variable rate determined by the PRF of the selected waveform. The elapsed time is variable. When set
to Inherit from Simulink engine, the block runs at a fixed rate so the elapsed time is a
constant.
Dependencies

To enable this parameter, select the Enable PRF selection input parameter.

Output signal format — Format of the output signal
Pulses (default) | Samples

The format of the output signal, specified as Pulses or Samples.

If you set this parameter to Samples, the output of the block consists of multiple samples. The
number of samples is the value of the Number of samples in output parameter.

If you set this parameter to Pulses, the output of the block consists of multiple pulses. The number
of pulses is the value of the Number of pulses in output parameter.

Number of samples in output — Number of samples in output
100 (default) | positive integer

Number of samples in the block output, specified as a positive integer.
Example: 1000
Dependencies

To enable this parameter, set the Output signal format parameter to Samples.
Data Types: double
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Number of pulses in output — Number of pulses in output
1 (default) | positive integer

Number of pulses in the block output, specified as a positive integer.
Example: 2

Dependencies

To enable this parameter, set the Output signal format parameter to Pulses.
Data Types: double

Enable PRF Output — Enable output of PRF
off (default) | on

Select this parameter to enable the PRF output port.

Dependencies

To enable this parameter, set Output signal format to Pulses.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).
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See Also
phased.StretchProcessor

Introduced in R2014b
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Subband MVDR Beamformer
Subband MVDR (Capon) beamformer
Library: Phased Array System Toolbox / Beamforming

Description
The Subband MVDR Beamformer block performs minimum variance distortionless response (MVDR)
beamforming on wideband signals. Signals are decomposed into frequency subbands and narrowband
MVDR beamforming is performed in each band. The resulting subband signals are summed to form
the output signal. MVDR beamforming preserves signal power in a given direction while suppressing
interference and noise from other directions. The MVDR beamformer is also called the Capon
beamformer.

Ports
Input

X — Input signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

XT — Training signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.

Dependencies

To enable this port, select the Enable training data input check box.
Data Types: double

Ang — Beamforming direction
2-by-1 real-valued vector | 2-by-L real-valued matrix

3 Blocks

3-440



Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form of [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°, inclusive, and the elevation
angle must lie between –90° and 90°, inclusive. Angles are defined with respect to the local
coordinate system of the array.

Dependencies

To enable this port, set the Source of beamforming direction parameter to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-L complex-valued matrix

Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of desired beamforming directions specified by the Beamforming
direction parameter or from the Ang port.
Data Types: double

Freq — Subband center frequencies
K-by-1 real-valued column vector

Subband center frequencies, returned as K-by-1 real-valued column vector. The quantity K is the
number of subbands specified by the Number of subbands property.

Dependencies

To enable this port, select the Enable subband center frequencies output checkbox.
Data Types: double

W — Beamforming weights
N-by-L complex-valued matrix

Beamformed weights, returned as an N-by-L complex-valued matrix. The quantity N is the number of
array elements. When the Specify sensor array as parameter is set to Partitioned array or
Replicated subarray, N represents the number of subarrays. L is the number of desired
beamforming directions specified in the Ang port or by the Beamforming direction (deg)
property. There is one set of weights for each beamforming direction.

Dependencies

To enable this port, select the Enable weights output checkbox.
Data Types: double

Parameters
Main tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar
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Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

Number of subbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128

Diagonal loading factor — Diagonal loading factor for stability
nonnegative scalar

Specify the diagonal loading factor as a nonnegative scalar. Diagonal loading is a technique used to
achieve robust beamforming performance, especially when the sample support is small.

Enable training data input — Enable the use of training data
off (default) | on

Select this check box to specify additional training data via the input port XT. To use the input signal
as the training data, clear the check box which removes the port.

Source of beamforming direction — Source of beamforming direction
Property (default) | Input port

Source of beamforming direction, specified as Property or Input port. When you set Source of
beamforming direction to Property, you then set the direction using the Beamforming
direction (deg) parameter. When you select Input port, the direction is determined by the input
to the Ang port.
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Beamforming direction (deg) — Beamforming directions
2-by-L real-valued matrix

Beamforming directions, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must
lie between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.

Dependencies

To enable this parameter, set the Source of beamforming direction parameter to Property.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Enable subband center frequencies output — Enable the output of subband center
frequencies
off (default) | on

Select this check box to obtain the center frequencies of each subband via the output port, Freq.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).
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Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])
Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector
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Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.

Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

 Subband MVDR Beamformer

3-445



Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.
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• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
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Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2
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The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.
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Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.
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Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.
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Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.

Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.
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Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.

• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

 Subband MVDR Beamformer

3-453



Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.
Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.
Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.
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See Also
phased.SubbandMVDRBeamformer

Introduced in R2015b
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Subband Phase Shift Beamformer
Subband phase shift beamformer
Library: Phased Array System Toolbox / Beamforming

Description
The Subband Phase Shift Beamformer block performs delay-and-sum beamforming in the frequency
domain. The signal is divided into frequency subbands. In each subband, a phase shift at the subband
center frequency approximates the time delay. The resulting subband signals are summed to form the
frequency-domain output signal and then converted to the time domain.

Ports
Input

X — Input signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Ang — Beamforming direction
2-by-1 real-valued vector | 2-by-L real-valued matrix

Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form of [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°, inclusive, and the elevation
angle must lie between –90° and 90°, inclusive. Angles are defined with respect to the local
coordinate system of the array.

Dependencies

To enable this port, set the Source of beamforming direction parameter to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-L complex-valued matrix
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Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of desired beamforming directions specified by the Beamforming
direction parameter or from the Ang port.
Data Types: double

Freq — Subband center frequencies
K-by-1 real-valued column vector

Subband center frequencies, returned as K-by-1 real-valued column vector. The quantity K is the
number of subbands specified by the Number of subbands property.

Dependencies

To enable this port, select the Enable subband center frequencies output checkbox.
Data Types: double

W — Beamforming weights
N-by-L complex-valued matrix

Beamformed weights, returned as an N-by-L complex-valued matrix. The quantity N is the number of
array elements. When the Specify sensor array as parameter is set to Partitioned array or
Replicated subarray, N represents the number of subarrays. L is the number of desired
beamforming directions specified in the Ang port or by the Beamforming direction (deg)
property. There is one set of weights for each beamforming direction.

Dependencies

To enable this port, select the Enable weights output checkbox.
Data Types: double

Parameters
Main tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
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Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

Number of subbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128

Source of beamforming direction — Source of beamforming direction
Property (default) | Input port

Source of beamforming direction, specified as Property or Input port. When you set Source of
beamforming direction to Property, you then set the direction using the Beamforming
direction (deg) parameter. When you select Input port, the direction is determined by the input
to the Ang port.

Beamforming direction (deg) — Beamforming directions
2-by-L real-valued matrix

Beamforming directions, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must
lie between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.

Dependencies

To enable this parameter, set the Source of beamforming direction parameter to Property.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Enable subband center frequencies output — Enable the output of subband center
frequencies
off (default) | on

Select this check box to obtain the center frequencies of each subband via the output port, Freq.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
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run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | Partitioned array | Replicated subarray | MATLAB
expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• Partitioned array — use the block parameters to specify the array.
• Replicated subarray — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.
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Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values
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Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.
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Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.
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• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.
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Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

• When you set Specify sensor array as to Replicated subarray, this parameter applies to
each subarray.
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Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.
• When you set Specify sensor array as to Replicated subarray, this parameter applies to

each subarray.

For a URA, array elements are indexed from top to bottom along the leftmost column, and then
continue to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.

Dependencies

To enable this parameter, set Geometry to URA.
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Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.
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Dependencies

To enable this parameter set Geometry to Conformal Array.

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. For a matrix, each column specifies the
normal direction of the corresponding element in the form [azimuth;elevation] with respect to
the local coordinate system. The local coordinate system aligns the positive x-axis with the direction
normal to the conformal array. If the parameter value is a 2-by-1 column vector, the same pointing
direction is used for all array elements.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

Dependencies

To enable this parameter, set Geometry to Conformal Array.

Taper — Array element tapers
1 (default) | complex-valued scalar | complex-valued row vector

Element tapering, specified as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.

When you set Specify sensor array as to Replicated subarray, this parameter applies to each
subarray.

Subarray definition matrix — Define elements belonging to subarrays
logical matrix

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the total
number of elements in the array. Each row of the matrix represents a subarray and each entry in the
row indicates when an element belongs to the subarray. When the entry is zero, the element does not
belong the subarray. A nonzero entry represents a complex-valued weight applied to the
corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray lies at the subarray geometric center. The subarray geometric
center depends on the Subarray definition matrix and Geometry parameters.
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Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array.

Subarray steering method — Specify subarray steering method
None (default) | Phase | Time

Subarray steering method, specified as one of

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter,
and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband Transmit
Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma Clutter, and GPU
Constant Gamma Clutter blocks.
Dependencies

To enable this parameter, set Specify sensor array as to Partitioned array or Replicated
subarray.

Phase shifter frequency (Hz) — Subarray phase shifting frequency
3.0e8 (default) | positive real-valued scalar

Operating frequency of subarray steering phase shifters, specified as a positive real-valued scalar.
Units are Hz.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Number of bits in phase shifters — Subarray steering phase shift quantization bits
0 (default) | non-negative integer

Subarray steering phase shift quantization bits, specified as a non-negative integer. A value of zero
indicates that no quantization is performed.
Dependencies

To enable this parameter, set Sensor array to Partitioned array or Replicated subarray and
set Subarray steering method to Phase.

Subarrays layout — Subarray position specification
Rectangular (default) | Custom

Specify the layout of replicated subarrays as Rectangular or Custom.

• When you set this parameter to Rectangular, use the Grid size and Grid spacing parameters
to place the subarrays.
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• When you set this parameter to Custom, use the Subarray positions (m) and Subarray
normals parameters to place the subarrays.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray

Grid size — Dimensions of rectangular subarray grid
[1,2] (default)

Rectangular subarray grid size, specified as a single positive integer, or a 1-by-2 row vector of
positive integers.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and column.
If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the first entry is
the number of subarrays along each column. The second entry is the number of subarrays in each
row. A row is along the local y-axis, and a column is along the local z-axis. The figure here shows how
you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Grid spacing (m) — Spacing between subarrays on rectangular grid
Auto (default) | positive real-valued scalar | 1-by-2 vector of positive real-values

The rectangular grid spacing of subarrays, specified as a positive, real-valued scalar, a 1-by-2 row
vector of positive, real-values, or Auto. Units are in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along a
row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for both
rows and columns while building the full array. This option is available only when you specify
Geometry as ULA or URA.
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Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Rectangular.

Subarray positions (m) — Positions of subarrays
[0,0;0.5,0.5;0,0] (default) | 3-by-N real-valued matrix

Positions of the subarrays in the custom grid, specified as a real 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray in the array local coordinate system. The coordinates are expressed in the form [x; y; z].
Units are in meters.

Dependencies

To enable this parameter, set Sensor array to Replicated subarray and Subarrays layout to
Custom.

Subarray normals — Direction of subarray normal vectors
[0,0;0,0] (default) | 2-by-N real matrix

Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N matrix,
where N is the number of subarrays in the array. Each column of the matrix specifies the normal
direction of the corresponding subarray, in the form [azimuth;elevation]. Angle units are in
degrees. Angles are defined with respect to the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Dependencies

To enable this parameter, set the Sensor array parameter to Replicated subarray and the
Subarrays layout to Custom.

See Also
phased.SubbandPhaseShiftBeamformer

Introduced in R2014b
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Time Delay Beamformer
Time-delay beamformer
Library: Phased Array System Toolbox / Beamforming

Description
The Time Delay Beamformer block performs delay-and-sum beamforming. Plane-wave signals arriving
at the array elements are time-aligned and then summed. Time alignment is achieved by transforming
the signals into the frequency domain and applying linear phase shifts corresponding to a time delay.
The individual signals are then added and converted back to the time domain.

Ports
Input

X — Input signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Ang — Beamforming direction
2-by-1 real-valued vector

Beamforming direction, specified as a 2-by-1 real-valued vector. The vector takes the form of
[AzimuthAngle;ElevationAngle]. Angle units are in degrees. The azimuth angle must lie
between –180° and 180°, inclusive, and the elevation angle must lie between –90° and 90°, inclusive.
Angles are defined with respect to the local coordinate system of the array.
Dependencies

To enable this port, set the Source of beamforming direction parameter to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-L complex-valued matrix

Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of desired beamforming directions specified by the Beamforming
direction parameter or from the Ang port.
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Data Types: double

W — Beamforming weights
N-by-L complex-valued matrix

Beamformed weights, returned as an N-by-L complex-valued matrix. The quantity N is the number of
array elements. When the Specify sensor array as parameter is set to Partitioned array or
Replicated subarray, N represents the number of subarrays. L is the number of desired
beamforming directions specified in the Ang port or by the Beamforming direction (deg)
property. There is one set of weights for each beamforming direction.

Dependencies

To enable this port, select the Enable weights output checkbox.
Data Types: double

Parameters
Main tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

Source of beamforming direction — Source of beamforming direction
Property (default) | Input port

Source of beamforming direction, specified as Property or Input port. When you set Source of
beamforming direction to Property, you then set the direction using the Beamforming
direction (deg) parameter. When you select Input port, the direction is determined by the input
to the Ang port.
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Beamforming direction (deg) — Beamforming directions
2-by-L real-valued matrix

Beamforming directions, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must
lie between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.
Dependencies

To enable this parameter, set the Source of beamforming direction parameter to Property.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes
Block Simulation Simulation Behavior

Normal Accelerator Rapid Accelerator
Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.
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• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.

Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.
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Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.

Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
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Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

3 Blocks

3-476



• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector
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Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.
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Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element

spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of elements in each row and column.

For a URA, array elements are indexed from top to bottom along the leftmost array column, and
continued to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.
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Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.
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Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.

Dependencies

To enable this parameter set Geometry to Conformal Array.
Data Types: double

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. If the parameter value is a matrix, each
column specifies the normal direction of the corresponding element in the form
[azimuth;elevation] with respect to the local coordinate system. The local coordinate system
aligns the positive x-axis with the direction normal to the conformal array. If the parameter value is a
2-by-1 column vector, the same pointing direction is used for all array elements.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

To enable this parameter, set Geometry to Conformal Array.
Data Types: double

Taper — Array element tapers
1 (default) | complex scalar | complex-valued row vector

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.
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If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.
Data Types: double

See Also
phased.TimeDelayBeamformer

Introduced in R2014b
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Time Delay LCMV Beamformer
Time delay LCMV beamformer
Library: Phased Array System Toolbox / Beamforming

Description
The Time Delay LCMV Beamformer block performs time-delay linear constraint minimum variance
(LCMV) beamforming.

Ports
Input

X — Input signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

XT — Training signal
M-by-N complex-valued matrix

Input signal, specified as an M-by-N matrix, where M is the number of samples in the data, and N is
the number of array elements.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Dependencies

To enable this port, select the Enable training data input check box.
Data Types: double

Ang — Beamforming direction
2-by-1 real-valued vector | 2-by-L real-valued matrix

Beamforming direction, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form of [AzimuthAngle;ElevationAngle]. Angle
units are in degrees. The azimuth angle must lie between –180° and 180°, inclusive, and the elevation
angle must lie between –90° and 90°, inclusive. Angles are defined with respect to the local
coordinate system of the array.
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Dependencies

To enable this port, set the Source of beamforming direction parameter to Input port.
Data Types: double

Output

Y — Beamformed output
M-by-L complex-valued matrix

Beamformed output, returned as an M-by-L complex-valued matrix. The quantity M is the number of
signal samples and L is the number of desired beamforming directions specified by the Beamforming
direction parameter or from the Ang port.
Data Types: double

W — Beamforming weights
N-by-L complex-valued matrix

Beamformed weights, returned as an N-by-L complex-valued matrix. The quantity N is the number of
array elements. When the Specify sensor array as parameter is set to Partitioned array or
Replicated subarray, N represents the number of subarrays. L is the number of desired
beamforming directions specified in the Ang port or by the Beamforming direction (deg)
property. There is one set of weights for each beamforming direction.
Dependencies

To enable this port, select the Enable weights output checkbox.
Data Types: double

Parameters
Main tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.
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Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

FIR filter length — FIR filter length
1 (default) | positive integer

The length of the FIR filter used to process each sensor element data, specified as a positive integer.
Data Types: double

Constraint matrix — Constraint matrix used for time-delay LCMV beamformer
[1;1] | complex-valued M-by-K matrix

The constraint matrix used for time-delay LCMV beamformer, specified as a complex-valuedM-by-K
matrix. Each column of the matrix is a constraint and M is the degrees of freedom of the beamformer.
For a time delay LCMV beamformer, M is given by the product of the number of elements of the array
and the value of the FIR filter length parameter.
Data Types: double

Desired response vector — Desired response of time-delay LCMV beamformer
1 (default) | K column vector

Desired response used for time-delay LCMV beamformer, specified as a length-K column vector. K is
the number of constraints in the Constraint matrix parameter. Each element in the vector defines
the desired response of the constraint specified in the corresponding column of the Constraint
matrix parameter matrix.

Diagonal loading factor — Diagonal loading factor for stability
nonnegative scalar

Specify the diagonal loading factor as a nonnegative scalar. Diagonal loading is a technique used to
achieve robust beamforming performance, especially when the sample support is small.

Enable training data input — Enable the use of training data
off (default) | on

Select this check box to specify additional training data via the input port XT. To use the input signal
as the training data, clear the check box which removes the port.

Source of beamforming direction — Source of beamforming direction
Property (default) | Input port

Source of beamforming direction, specified as Property or Input port. When you set Source of
beamforming direction to Property, you then set the direction using the Beamforming
direction (deg) parameter. When you select Input port, the direction is determined by the input
to the Ang port.

Beamforming direction (deg) — Beamforming directions
2-by-L real-valued matrix

Beamforming directions, specified as a 2-by-L real-valued matrix, where L is the number of
beamforming directions. Each column takes the form [AzimuthAngle;ElevationAngle]. Angle
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units are in degrees. The azimuth angle must lie between –180° and 180°. The elevation angle must
lie between –90° and 90°. Angles are defined with respect to the local coordinate system of the array.

Dependencies

To enable this parameter, set the Source of beamforming direction parameter to Property.

Enable weights output — Option to output beamformer weights
off (default) | on

Select this check box to obtain the beamformer weights from the output port, W.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Arrays Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.
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Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])
Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on
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Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector
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Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna.
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Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.

Dependencies

To enable this parameter, set Element type set to Custom Microphone.
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Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Geometry — Array geometry
ULA (default) | URA | UCA | Conformal Array

Array geometry, specified as one of

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements — Number of array elements
2 for ULA arrays and 5 for UCA arrays (default) | integer greater than or equal to 2

The number of array elements for ULA or UCA arrays, specified as an integer greater than or equal to
2.

Dependencies

To enable this parameter, set Geometry to ULA or UCA.

Element spacing (m) — Spacing between array elements
0.5 for ULA arrays and [0.5,0.5] for URA arrays (default) | positive scalar for ULA or URA arrays |
2-element vector of positive values for URA arrays

Spacing between adjacent array elements:

• ULA — specify the spacing between two adjacent elements in the array as a positive scalar.
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• URA — specify the spacing as a positive scalar or a 1-by-2 vector of positive values. If Element
spacing (m) is a scalar, the row and column spacings are equal. If Element spacing (m) is a
vector, the vector has the form
[SpacingBetweenArrayRows,SpacingBetweenArrayColumns].

Dependencies

To enable this parameter, set Geometry to ULA or URA.

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. All ULA array elements are uniformly spaced
along this axis in the local array coordinate system.

Dependencies

• To enable this parameter, set Geometry to ULA.
• This parameter is also enabled when the block only supports ULA arrays.

Array size — Dimensions of URA array
[2,2] (default) | positive integer | 1-by-2 vector of positive integers

Dimensions of a URA array, specified as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of elements in each row and column.

For a URA, array elements are indexed from top to bottom along the leftmost array column, and
continued to the next columns from left to right. In this figure, the Array size value of [3,2] creates
an array having three rows and two columns.
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Dependencies

To enable this parameter, set Geometry to URA.

Element lattice — Lattice of URA element positions
Rectangular (default) | Triangular

Lattice of URA element positions, specified as Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive row-axis

direction. The displacement is one-half the element spacing along the row dimension.

Dependencies

To enable this parameter, set Geometry to URA.

Array normal — Array normal direction
x for URA arrays or z for UCA arrays (default) | y

Array normal direction, specified as x, y, or z.

Elements of planar arrays lie in a plane orthogonal to the selected array normal direction. Element
boresight directions point along the array normal direction.

Array Normal Parameter Value Element Positions and Boresight Directions
x Array elements lie in the yz-plane. All element

boresight vectors point along the x-axis.
y Array elements lie in the zx-plane. All element

boresight vectors point along the y-axis.
z Array elements lie in the xy-plane. All element

boresight vectors point along the z-axis.

Dependencies

To enable this parameter, set Geometry to URA or UCA.

Radius of UCA (m) — UCA array radius
0.5 (default) | positive scalar

Radius of UCA array, specified as a positive scalar.

Dependencies

To enable this parameter, set Geometry to UCA.

Element positions (m) — Positions of conformal array elements
[0;0;0] (default) | 3-by-Nmatrix of real values

Positions of the elements in a conformal array, specified as a 3-by-N matrix of real values, where N is
the number of elements in the conformal array. Each column of this matrix represents the position
[x;y;z]of an array element in the array local coordinate system. The origin of the local coordinate
system is (0,0,0). Units are in meters.
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Dependencies

To enable this parameter set Geometry to Conformal Array.
Data Types: double

Element normals (deg) — Direction of conformal array element normal vectors
[0;0] | 2-by-1 column vector | 2-by-N matrix

Direction of element normal vectors in a conformal array, specified as a 2-by-1 column vector or a 2-
by-N matrix. N indicates the number of elements in the array. If the parameter value is a matrix, each
column specifies the normal direction of the corresponding element in the form
[azimuth;elevation] with respect to the local coordinate system. The local coordinate system
aligns the positive x-axis with the direction normal to the conformal array. If the parameter value is a
2-by-1 column vector, the same pointing direction is used for all array elements.

You can use the Element positions (m) and Element normals (deg) parameters to represent any
arrangement in which pairs of elements differ by certain transformations. The transformations can
combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal direction.

To enable this parameter, set Geometry to Conformal Array.
Data Types: double

Taper — Array element tapers
1 (default) | complex scalar | complex-valued row vector

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.
Data Types: double

See Also
phased.TimeDelayLCMVBeamformer

Introduced in R2014b
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Time Varying Gain
Time varying gain (TVG) control

Library
Detection

phaseddetectlib

Description
The Time Varying Gain block applies a time varying gain to input signals to compensate for range loss
at each range gate. Time varying gain (TVG) is sometimes called automatic gain control (AGC).

Parameters
Source of range losses

Specify the range loss source as either Property or Input Port

Property Range losses are specified by the Range loss (dB)
parameter.

Input port Range losses are specified using the input port L.

Range loss (dB)
Specify the loss due to range as a vector — elements correspond to the samples in the input
signal. Units are in dB

Reference range loss (dB)
Specify the loss, in dB, at a given reference range as a scalar.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.
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When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
In Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

L Range loss.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

 

Out Compensated signal. Double-precision floating point

See Also
phased.TimeVaryingGain
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Introduced in R2014b
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Transmitter
Amplify and transmit a signal

Library
Transmitters and Receivers

phasedtxrxlib

Description
The Transmitter block amplifies and transmits waveform pulses. The transmitter can either maintain
coherence between pulses or insert phase noise.

Parameters
Peak power (W)

Specify the transmit peak power in watts as a positive scalar.
Gain (dB)

Specify the transmit gain in dB as a real scalar.
Loss factor (dB)

Specify the transmit loss factor in dB as a nonnegative scalar.
Enable transmitter status output

Select this check box to send the transmitter-in-use status for each output sample from the output
port TR. From the output port, a 1 indicates that the transmitter is on, and a 0 indicates that the
transmitter is off.

Preserve coherence among pulses
Select this check box to preserve coherence among transmitted pulses. When you select this box,
the transmitter does not introduce any random phases to the output pulses. When you clear this
box, the transmitter adds a random phase noise to each transmitted pulse. The random phase
noise is introduced by multiplying the pulse value by ejϕ where ϕ is a uniform random variable on
the interval [0,2π].

Enable pulse phase noise output
This check box appears only when Preserve coherence among pulses is cleared.

Select this check box to create an output port, Ph, with the output sample’s random phase noise
introduced if Preserve coherence among pulses is cleared. The output port can be directed to
a receiver to simulate coherent-on-receive systems.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
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your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Ph Added phase noise. Double-precision floating point
TR Transmitter status. Double-precision floating point
Y Transmitted signal. Double-precision floating point

 Transmitter

3-499



See Also
phased.Transmitter

Introduced in R2014b
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Two-Ray Channel
Two-ray channel environment

Library
Environment and Target

phasedenvlib

Description
The Two-Ray Channel block propagates narrowband signals from one point in space to multiple
points or from multiple points back to one point via both the direct path and the ground reflection
path. The block models propagation time, free-space propagation loss, and Doppler shift. The block
assumes that the propagation speed is much greater than the object's speed in which case the stop-
and-hop model is valid.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a positive scalar.

Specify atmospheric parameters
Select this check box to enable atmospheric attenuation modeling.

Temperature (degrees Celsius)
Ambient atmospheric temperature, specified as a real-valued scalar. Units are degrees Celsius.
This parameter appears when you select the Specify atmospheric parameters check box. Units
are degrees Celsius.

Dry air pressure (Pa)
Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are Pascals (Pa).
The value 101325 for this property corresponds to one standard atmosphere. This parameter
appears when you select the Specify atmospheric parameters check box.

Water vapour density (g/m^3)
Atmospheric water vapor density, specified as a positive real-valued scalar. Units are gm/m3. This
parameter appears when you select the Specify atmospheric parameters check box.
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Liquid water density (g/m^3)
Liquid water density of fog or clouds, specified as a non-negative real-valued scalar. Units are
gm/m3. Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog. This
parameter appears when you select the Specify atmospheric parameters check box.

Rain rate (mm/hr)
Rainfall rate, specified as a non-negative real-valued scalar. Units are in mm/hour. This parameter
appears when you select the Specify atmospheric parameters check box.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Ground reflection coefficient
Fraction of incident signal amplitude reflected towards receiver.

Combine two rays at output
Select this checkbox to coherently sum the direct-path and reflected-path signals at output. Clear
the checkbox to keep the two rays separate.

Maximum one-way propagation distance (m)
The maximum distance between the signal origin and the destination, specified as a positive
scalar. Units are in meters. Amplitudes of any signals that propagate beyond this distance will be
set to zero.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Input signal. Double-precision floating point
Pos1 Signal source position. Double-precision floating point
Pos2 Signal destination position. Double-precision floating point
Vel1 Signal source velocity. Double-precision floating point
Vel2 Signal destination velocity. Double-precision floating point
Out Propagated signal. Double-precision floating point

Algorithms
When the origin and destination are stationary relative to each other, the block output can be written
as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation loss. The delay is computed
from τ = R/c where R is the propagation distance and c is the propagation speed. The free space path
loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in losses smaller than one,
equivalent to a signal gain. For this reason, the loss is set to unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also introduces a
frequency shift. This shift corresponds to the Doppler shift between the origin and destination. The
frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation. The parameter v is
the relative speed of the destination with respect to the origin.
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See Also
phased.FreeSpace | phased.TwoRayChannel | phased.WidebandTwoRayChannel

Introduced in R2015b
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ULA Beamscan Spectrum
Beamscan spatial spectrum estimator for ULA
Library: Phased Array System Toolbox / Direction of Arrival

Description
The ULA Beamscan Spectrum block estimates the spatial spectrum of incoming narrowband signals
by scanning a region of broadside angles using a narrowband conventional beamformer applied to a
uniform linear array. The block optionally calculates the direction of arrival of a specified number of
signals by estimating peaks of the spectrum.

Ports
Input

Port 1 — Received signal
M-by-N complex-valued matrix

Received signal, specified as an M-by-N complex-valued matrix. The quantity M is the number of
sample values (snapshots) contained in the signal and N is the number of sensor elements in the
array.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Output

Y — Beamscan spatial spectrum
non-negative, real-valued column vector

Beamscan spatial spectrum, returned as a non-negative, real-valued column vector representing the
magnitude of the estimated beamscan spatial spectrum. Each entry corresponds to an angle specified
by the Scan angles (deg) parameter.
Data Types: double

Ang — Directions of arrival
non-negative, real-valued column vector

Directions of arrival of the signals, returned as a real-valued row vector. The direction of arrival angle
is the broadside angle between the source direction and the array axis. Angle units are in degrees.
The length of the vector is the number of signals specified by the Number of signals parameter. If
the object cannot identify peaks in the spectrum, it will return NaN.
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Dependencies

To enable this output port, select the Enable DOA output check box.
Data Types: double

Parameters
Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Number of bits in phase shifters — Number of phase shift quantization bits
0 (default) | nonnegative integer

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Forward-backward averaging — Enable forward-backward averaging
off (default) | on

Select this parameter to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with a conjugate symmetric array manifold structure.

Spatial smoothing — Enable spatial smoothing
0 (default) | non-negative integer

Specify the amount of averaging used by spatial smoothing to estimate the covariance matrix as a
nonnegative integer. Each increase in smoothing handles one extra coherent source, but reduces the
effective number of elements by one. The maximum value of this parameter is N – 2, where N is the
number of sensors in the ULA.

Scan angles (deg) — Search angles for spectrum peaks
-90:90 (default) | real-valued row vector

Specify the scan angles in degrees as a real-valued row vector. The angles are array broadside angles
and must lie between –90° and 90°, inclusive. You must specify the angles in increasing order.

Enable DOA output — Output directions of arrival through output port
off (default) | on

Select this parameter to output the signals directions of arrival (DOA) through the Ang output port.
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Number of signals — Expected number of arriving signals
1 (default) | positive integer

Specify the expected number of signals for DOA estimation as a positive scalar integer.
Dependencies

To enable this parameter, select the Enable DOA output check box.
Data Types: double

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Array Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object
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MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.

Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.

Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on
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Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values

Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.
Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector
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Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.
Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Radiation pattern (dB) — Custom antenna radiation pattern
zeros(181,361) | complex-valued matrix | complex-valued MATLAB array

Magnitude of the combined polarized antenna radiation pattern, specified as a Q-by-P matrix or a Q-
by-P-by-L array. The value of Q must equal the value of Q specified by Elevation angles (deg). The
value of P must equal the value of P specified by Azimuth angles (deg). The value of L must equal
the value of L specified by Operating frequency vector (Hz).
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.
Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector
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Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Number of elements — Number of array elements in U
2 (default) | positive integer greater than or equal to two

The number of array elements for ULA arrays, specified as an integer greater than or equal to two.
Example: 11
Data Types: double

Element spacing — Distance between ULA elements
0.5 (default) | positive scalar

Distance between adjacent ULA elements, specified as a positive scalar. Units are in meters.
Example: 1.5

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. Then, all ULA array elements are uniformly
spaced along this axis in the local array coordinate system.

Taper — Array element tapers
1 (default) | complex scalar | complex-valued row vector

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.
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If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.
Data Types: double

See Also
phased.BeamscanEstimator

Introduced in R2014b
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ULA MVDR Spectrum
MVDR spatial spectrum estimator for ULA

Library
Direction of Arrival (DOA)

phaseddoalib

Description
The ULA MVDR Spectrum block estimates the spatial spectrum of incoming narrowband signals by
scanning a region of broadside angles using a narrowband minimum variance distortionless response
(MVDR) beamformer for a uniform linear array. The block optionally calculates the direction of arrival
(DOA) of a specified number of signals by estimating peaks of the spectrum. The MVDR DOA
estimator is also called the Capon DOA estimator.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Forward-backward averaging
Select this parameter to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with a conjugate symmetric array manifold.

Spatial smoothing
Specify the amount of averaging, L, used by spatial smoothing to estimate the covariance matrix
as a nonnegative integer. Each increase in smoothing handles one extra coherent source, but
reduces the effective number of elements by one. The maximum value of this parameter is N – 2,
where N is the number of sensors.

Scan angles (deg)
Specify the scan angles in degrees as a real vector. The angles are broadside angles and must be
between –90° and 90°, inclusive. You must specify the angles in increasing order.
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Enable DOA output
Select this parameter to output the signals directions of arrival (DOA) through the Ang output
port. Selecting this parameter enables the Number of signals parameter.

Number of signals
Specify the number of signals for DOA estimation as a positive scalar integer. This parameter
appears when you select the Enable DOA output check box.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.
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Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In
this vector, N represents the number of elements in the array. If Taper is a scalar, the same
weight is applied to each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for example,
phased.ULA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.
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Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.
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Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.
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When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.
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Port Description Supported Data Types
In Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Ang Estimated broadside DOA
angles.

Double-precision floating point

Y Estimated spatial spectrum. Double-precision floating point

See Also
phased.MVDREstimator

Introduced in R2014b
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ULA MUSIC Spectrum
MUSIC spatial spectrum estimator for ULA
Library: Phased Array System Toolbox / Direction of Arrival

Description
The ULA MUSIC Spectrum block estimates the spatial spectrum of incoming narrowband signals
using the MUSIC algorithm. The algorithm computes the MUSIC pseudo-spectrum of a ULA by
scanning a region of broadside angles. The block optionally calculates the direction of arrival (DOA)
of a specified number of signals by estimating peaks of the spectrum.

Ports
Input

Port 1 — Received signal
M-by-N complex-valued matrix

Received signal, specified as an M-by-N complex-valued matrix. The quantity M is the number of
sample values (snapshots) contained in the signal and N is the number of sensor elements in the
array.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Output

Y — MUSIC spatial spectrum
non-negative, real-valued column vector

MUSIC spatial spectrum, returned as a non-negative, real-valued column vector representing the
magnitude of the estimated MUSIC spatial spectrum. Each entry corresponds to an angle specified by
the Scan angles (deg) parameter.
Data Types: double

Ang — Directions of arrival
non-negative, real-valued column vector

Directions of arrival of the signals, returned as a real-valued row vector. The direction of arrival angle
is the broadside angle between the source direction and the array axis. The length of the vector is the
number of signals specified by the Number of signals parameter. If the object cannot identify
peaks in the spectrum, it will return NaN. Angle units are in degrees.

3 Blocks

3-520



Dependencies

Select the Enable DOA output parameter to enable this output port.
Data Types: double

Parameters
Main Tab

Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Operating frequency (Hz) — System operating frequency
3.0e8 (default) | positive real scalar

System operating frequency, specified as a positive scalar. Units are in Hz.

Forward-backward averaging — Enable forward-backward averaging
off (default) | on

Select this parameter to use forward-backward averaging to estimate the covariance matrix for
sensor arrays with a conjugate symmetric array manifold structure.

Spatial smoothing — Enable spatial smoothing
0 (default) | non-negative integer

Specify the amount of averaging used by spatial smoothing to estimate the covariance matrix as a
nonnegative integer. Each increase in smoothing handles one extra coherent source, but reduces the
effective number of elements by one. The maximum value of this parameter is N – 2, where N is the
number of sensors in the ULA.

Scan angles (deg) — Search angles for spectrum peaks
-90:90 (default) | real-valued row vector

Specify the scan angles in degrees as a real-valued row vector. The angles are array broadside angles
and must lie between –90° and 90°, inclusive. You must specify the angles in increasing order.

Enable DOA output — Output directions of arrival through output port
off (default) | on

Select this parameter to output the signals directions of arrival (DOA) through the Ang output port.

Number of signals — Expected number of arriving signals
1 (default) | positive integer

Specify the expected number of signals for DOA estimation as a positive scalar integer.

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation
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Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Sensor Array Tab

Specify sensor array as — Method to specify array
Array (no subarrays) (default) | MATLAB expression

Method to specify array, specified as Array (no subarrays) or MATLAB expression.

• Array (no subarrays) — use the block parameters to specify the array.
• MATLAB expression — create the array using a MATLAB expression.

Expression — MATLAB expression used to create an array
Phased Array System Toolbox array System object

MATLAB expression used to create an array, specified as a valid Phased Array System Toolbox array
System object.
Example: phased.URA('Size',[5,3])

Dependencies

To enable this parameter, set Specify sensor array as to MATLAB expression.
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Element Parameters

Element type — Array element types
Isotropic Antenna (default) | Cosine Antenna | Custom Antenna | Omni Microphone |
Custom Microphone

Antenna or microphone type, specified as one of the following:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Operating frequency range (Hz) — Operating frequency range of the antenna or
microphone element
[0,1.0e20] (default) | real-valued 1-by-2 row vector

Specify the operating frequency range of the antenna or microphone element as a 1-by-2 row vector
in the form [LowerBound,UpperBound]. The element has no response outside this frequency
range. Frequency units are in Hz.
Dependencies

To enable this parameter, set Element type to Isotropic Antenna, Cosine Antenna, or Omni
Microphone.

Operating frequency vector (Hz) — Operating frequency range of custom antenna or
microphone elements
[0,1.0e20] (default) | real-valued row vector

Specify the frequencies at which to set antenna and microphone frequency responses as a 1-by-L row
vector of increasing real values. The antenna or microphone element has no response outside the
frequency range specified by the minimum and maximum elements of this vector. Frequency units are
in Hz.
Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone. Use
Frequency responses (dB) to set the responses at these frequencies.

Baffle the back of the element — Set back response of an Isotropic Antenna
element or an Omni Microphone element to zero
off (default) | on

Select this check box to baffle the back response of the element. When back baffled, the responses at
all azimuth angles beyond ±90° from broadside are set to zero. The broadside direction is defined as
0° azimuth angle and 0° elevation angle.
Dependencies

To enable this check box, set Element type to Isotropic Antenna or Omni Microphone.

Exponent of cosine pattern — Exponents of azimuth and elevation cosine patterns
[1.5 1.5] (default) | nonnegative scalar | real-valued 1-by-2 matrix of nonnegative values
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Specify the exponents of the cosine pattern as a nonnegative scalar or a real-valued 1-by-2 matrix of
nonnegative values. When Exponent of cosine pattern is a 1-by-2 vector, the first element is the
exponent in the azimuth direction and the second element is the exponent in the elevation direction.
When you set this parameter to a scalar, both the azimuth direction and elevation direction cosine
patterns are raised to the same power.

Dependencies

To enable this parameter, set Element type to Cosine Antenna.

Frequency responses (dB) — Antenna and microphone frequency response
[0,0] (default) | real-valued row vector

Frequency response of a custom antenna or custom microphone for the frequencies defined by the
Operating frequency vector (Hz) parameter. The dimensions of Frequency responses (dB) must
match the dimensions of the vector specified by the Operating frequency vector (Hz) parameter.

Dependencies

To enable this parameter, set Element type to Custom Antenna or Custom Microphone.

Input Pattern Coordinate System — Coordinate system of custom antenna pattern
az-el (default) | phi-theta

Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify az-
el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Azimuth angles (deg) — Azimuth angles of antenna radiation pattern
[-180:180] (default) | real-valued row vector

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row vector.
P must be greater than 2. Azimuth angles must lie between –180° and 180°, inclusive, and be in
strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.

Elevation angles (deg) — Elevation angles of antenna radiation pattern
[-90:90] (default) | real-valued row vector

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must be
greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90°, inclusive,
and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to az-el.
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Phi Angles (deg) — Phi angle coordinates of custom antenna radiation pattern
0:360 | real-valued 1-by-P row vector

Phi angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-P
row vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Theta Angles (deg) — Theta angle coordinates of custom antenna radiation pattern
0:180 | real-valued 1-by-Q row vector

Theta angles of points at which to specify the antenna radiation pattern, specify as a real-valued 1-by-
Q row vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 360° and be in strictly increasing order.

Dependencies

To enable this parameter, set the Element type parameter to Custom Antenna and the Input
Pattern Coordinate System parameter to phi-theta.

Radiation pattern (dB) — Custom antenna radiation pattern
zeros(181,361) | complex-valued matrix | complex-valued MATLAB array

Magnitude of the combined polarized antenna radiation pattern, specified as a Q-by-P matrix or a Q-
by-P-by-L array. The value of Q must equal the value of Q specified by Elevation angles (deg). The
value of P must equal the value of P specified by Azimuth angles (deg). The value of L must equal
the value of L specified by Operating frequency vector (Hz).
Dependencies

To enable this parameter, set Element type to Custom Antenna.

Magnitude pattern (dB) — Magnitude of combined antenna radiation pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.
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Dependencies

To enable this parameter, set Element type to Custom Antenna.

Phase pattern (deg) — Custom antenna radiation phase pattern
zeros(181,361) (default) | real-valued Q-by-P matrix | real-valued Q-by-P-by-L array

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length of
the vector specified by the Elevation angles (deg) parameter and P equals the length of the
vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length of
the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in the
Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (

Dependencies

To enable this parameter, set Element type to Custom Antenna.

MatchArrayNormal — Rotate antenna element to array normal
on (default) | off

Select this check box to rotate the antenna element pattern to align with the array normal. When not
selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without the
rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to phi-
theta, selecting this check box rotates the pattern so that the z-axis of the element coordinate
system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.

Dependencies

To enable this parameter, set Element type to Custom Antenna.

Polar pattern frequencies (Hz) — Polar pattern microphone response frequencies
1e3 (default) | real scalar | real-valued 1-by-L row vector

Polar pattern microphone response frequencies, specified as a real scalar, or a real-valued, 1-by-L
vector. The response frequencies lie within the frequency range specified by the Operating
frequency vector (Hz) vector.
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Dependencies

To enable this parameter, set Element type set to Custom Microphone.

Polar pattern angles (deg) — Polar pattern response angles
[-180:180] (default) | real-valued -by-P row vector

Specify the polar pattern response angles, as a 1-by-P vector. The angles are measured from the
central pickup axis of the microphone and must be between –180° and 180°, inclusive.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Polar pattern (dB) — Custom microphone polar response
zeros(1,361) (default) | real-valued L-by-P matrix

Specify the magnitude of the custom microphone element polar patterns as an L-by-P matrix. L is the
number of frequencies specified in Polar pattern frequencies (Hz). P is the number of angles
specified in Polar pattern angles (deg). Each row of the matrix represents the magnitude of the
polar pattern measured at the corresponding frequency specified in Polar pattern frequencies (Hz)
and all angles specified in Polar pattern angles (deg). The pattern is measured in the azimuth
plane. In the azimuth plane, the elevation angle is 0° and the central pickup axis is 0° degrees
azimuth and 0° degrees elevation. The polar pattern is symmetric around the central axis. You can
construct the microphone response pattern in 3-D space from the polar pattern.

Dependencies

To enable this parameter, set Element type to Custom Microphone.

Array Parameters

Number of elements — Number of array elements in U
2 (default) | positive integer greater than or equal to two

The number of array elements for ULA arrays, specified as an integer greater than or equal to two.
Example: 11
Data Types: double

Element spacing — Distance between ULA elements
0.5 (default) | positive scalar

Distance between adjacent ULA elements, specified as a positive scalar. Units are in meters.
Example: 1.5

Array axis — Linear axis direction of ULA
y (default) | x | z

Linear axis direction of ULA, specified as y, x, or z. Then, all ULA array elements are uniformly
spaced along this axis in the local array coordinate system.

Taper — Array element tapers
1 (default) | complex scalar | complex-valued row vector
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Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In this
vector, N represents the number of elements in the array.

Also known as element weights, tapers multiply the array element responses. Tapers modify both
amplitude and phase of the response to reduce side lobes or steer the main response axis.

If Taper is a scalar, the same weight is applied to each element. If Taper is a vector, a weight from
the vector is applied to the corresponding sensor element. The number of weights must match the
number of elements of the array.
Data Types: double

See Also
Blocks
MUSIC Spectrum

System Objects
phased.MUSICEstimator | phased.ULA

Functions
musicdoa

Topics
“MUSIC Super-Resolution DOA Estimation”

Introduced in R2016b
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ULA Sum and Difference Monopulse
Sum-and-difference monopulse tracker for ULA

Library
Direction of Arrival (DOA)

phaseddoalib

Description
The ULA Sum-and-Difference Monopulse block estimates the direction of arrival of a narrowband
signal on a uniform linear array based on an initial guess using a sum-and-difference monopulse
algorithm. The block obtains the difference steering vector by phase-reversing the latter half of the
sum steering vector.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.
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When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Number of elements
Specifies the number of elements in the array as an integer.

Element spacing
Specify the spacing, in meters, between two adjacent elements in the array.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

Specify element tapering as a complex-valued scalar or a complex-valued 1-by-N row vector. In
this vector, N represents the number of elements in the array. If Taper is a scalar, the same
weight is applied to each element. If Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform linear array, for example,
phased.ULA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as
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• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.
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Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.
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• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
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of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Steer Initial estimate of broadside
DOA angles.

Double-precision floating point

Ang Estimated broadside DOA
angles.

Double-precision floating point

See Also
phased.SumDifferenceMonopulseTracker

Introduced in R2014b
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URA Sum and Difference Monopulse
Sum-and-difference monopulse for URA

Library
Direction of Arrival (DOA)

phaseddoalib

Description
The URA Sum-and-Difference Monopulse block estimates the direction of arrival of a narrowband
signal on a uniform rectangular array (URA) based on an initial guess using a sum-and-difference
monopulse algorithm. The block obtains the difference steering vector by phase-reversing the latter
half of the sum steering vector.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Operating frequency (Hz)
Specify the operating frequency of the system, in hertz, as a positive scalar.

Number of bits in phase shifters
The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

 URA Sum and Difference Monopulse

3-535



When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify a ULA sensor array directly or by using a MATLAB expression.

Types

Array (no subarrays)
MATLAB expression

Array size
Specify the size of the array as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.

Elements are indexed from top to bottom along a column and continuing to the next columns from
left to right. In this figure, an Array size of [3,2] produces an array has three rows and two
columns.
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Element spacing
Specify the element spacing of the array, in meters, as a 1-by-2 vector or a scalar. If Element
spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of these quantities, see
phased.URA. If Element spacing is a scalar, the spacings between rows and columns are equal.

Element lattice
Specify the element lattice as one of Rectangular or Triangular.

• Rectangular — Aligns all the elements in row and column directions.
• Triangular — Shifts the even-row elements of a rectangular lattice toward the positive-row

axis direction. The elements are shifted a distance of half the element spacing along the row.

Array normal
This parameter appears when you set Geometry to URA or UCA. Specify the Array normal as x,
y, or z. All URA and UCA array elements are placed in the yz, zx, or xy-planes, respectively, of the
array coordinate system.

Taper
Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

Specify element tapering as a complex-valued scalar or complex-valued M-by-N matrix. In this
matrix, M is the number of elements along the z-axis, and N is the number of elements along the
y-axis. M and N correspond to the values of [NumberofRows, NumberOfColumns] in the Array
size matrix. If Taper is a scalar, the same weight is applied to each element. If the value of Taper
is a matrix, a weight from the matrix is applied to the corresponding sensor element. A weight
must be applied to each element in the sensor array.

Expression
A valid MATLAB expression containing a constructor for a uniform rectangular array, for example,
phased.URA.
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Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.
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Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.
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Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.

Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.
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Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Input signal.

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Steer Initial estimate of arrival
directions.

Double-precision floating point

Ang Estimate of arrival directions. Double-precision floating point

See Also
phased.SumDifferenceMonopulseTracker2D

Introduced in R2014b
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Wideband Backscatter Radar Target
Backscatter wideband signals from radar target
Library: Phased Array System Toolbox / Environment and Target

Description
The Wideband Backscatter Radar Target block models the monostatic reflection of nonpolarized
wideband electromagnetic signals from a radar target. The target radar cross-section (RCS) model
includes all four Swerling target fluctuation models and a nonfluctuating model. You can model
several targets simultaneously by specifying multiple RCS matrices.

Ports
Input

X — Wideband incident nonpolarized signal
N-by-M complex-valued matrix

Wideband incident nonpolarized signal, specified as an N-by-M complex-valued matrix. The quantity
N is the number of signal samples, and M is the number of independent signals reflecting off the
target. Each column contains an independent signal to be reflected from the target.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Data Types: double

Ang — Incident signal direction
2-by-1 real-valued column vector of positive values | 2-by-M real-valued column vector of positive
values

Incident signal direction, specified as a 2-by-1 or 2-by-M real-valued column matrix of positive values.
Each column of Ang specifies the incident direction of the corresponding signal. The number of
columns in Ang must match the number of independent signals in X. The columns take the form
[AzimuthAngle;ElevationAngle]. Units are in degrees.
Data Types: double

Update — Enable update of RCS
false (default) | true

Option to enable updating of RCS values for fluctuation models, specified as false or true. When
Update is true, a new RCS value is generated each time you run the block. If Update is false, the
RCS remains unchanged.
Dependencies

To enable this port, set the Fluctuation model parameter to one of the Swerling models.
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Data Types: Boolean

Output

Out — Wideband reflected nonpolarized signal
N-by-M complex-valued matrix

Wideband reflected nonpolarized signal, returned as an N-by-M complex-valued matrix. The quantity
N is the number of signal samples, and M is the number of independent signals reflected from the
target. Each column contains an independent signal reflected from the target.
Data Types: double

Parameters
Backscatter pattern frequency vector (Hz) — Wideband backscatter pattern
frequencies
[0,1e20] (default) | real-valued row vector of positive values in strictly increasing order

Specify the frequencies used in the RCS matrix. The elements of this vector must be in strictly
increasing order. The target has no response outside this frequency range. Frequencies are defined
with respect to the physical frequency band, not the baseband. Frequency units are in Hz.

Azimuth angles (deg) — Azimuth angles
[-180:180] (default) | 1-by-P real-valued row vector | P-by-1 real-valued column vector

Azimuth angles used to define the angular coordinates of each column of the matrices specified by
the RCS pattern (m^2) parameter. Specify the azimuth angles as a length P vector. P must be
greater than two. Angle units are in degrees.
Example: [-45:0.1:45]
Data Types: double

Elevation angles (deg) — Elevation angles
[-90:90] (default) | 1-by-Q real-valued row vector | Q-by-1 real-valued column vector

Elevation angles used to define the angular coordinates of each row of the matrices specified by the
RCS pattern (m^2) parameter. Specify the elevation angles as a length Q vector. Q must be greater
than two. Angle units are in degrees.
Example: [-30:0.1:30]
Data Types: double

RCS pattern (m^2) — Radar cross-section pattern
ones(181,361) (default) | Q-by-P real-valued matrix | Q-by-P-by-K real-valued array | 1-by-P-by-K
real-valued array | K-by-P real-valued matrix

Radar cross-section pattern, specified as a real-valued matrix or array.

Dimensions Application
Q-by-P matrix Specifies a matrix of RCS values as a function of

Q elevation angles and P azimuth angles. The
same RCS matrix is used for all frequencies.
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Dimensions Application
Q-by-P-by-K array Specifies an array of RCS patterns as a function

of Q elevation angles, P azimuth angles, and K
frequencies. If K = 1, the RCS pattern is
equivalent to a Q-by-P matrix.

1-by-P-by-K array Specifies a matrix of RCS values as a function of
P azimuth angles and K frequencies. These
dimension formats apply when there is only one
elevation angle.

K-by-P matrix

• Q is the length of the vector specified by the Elevation angles (deg) parameter.
• P is the length of the vector specified by the Azimuth angles (deg) parameter.
• K is the number of frequencies specified by the Backscatter pattern frequency vector (Hz)

parameter.

You can specify patterns for L targets by putting L patterns into a cell array. All patterns must have
the same dimensions. The value of L must match the column dimensions of the signals passed as
input into the block. You can, however, use one pattern to model L multiple targets.

RCS units are in square meters.
Example: [1,2;2,1]
Data Types: double

Fluctuation model — Target fluctuation model
Nonfluctuating (default) | Swerling1 | Swerling2 | Swerling3 | Swerling4

Target fluctuation model, specified as Nonfluctuating, Swerling1, Swerling2, Swerling3, or
Swerling4. If you set this parameter to a value other than Nonfluctuating, you must pass either
true or false into the Update Update port.

Propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed').
Data Types: double

Operating frequency (Hz) — Signal carrier frequency
300.0e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in hertz.

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar
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Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
Data Types: double

Number of subbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

See Also
System Objects
phased.BackscatterRadarTarget | phased.RadarTarget

Blocks
Backscatter Radar Target | Radar Target
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Wideband Free Space
Wideband free space environment

Library
Environment and Target

phasedenvlib

Description
The Wideband Free Space Channel block propagates the signal from one point to another in space.
The block models propagation time, free space propagation loss and Doppler shift. The block assumes
that the propagation speed is much greater than the target or array speed in which case the stop-and-
hop model is valid.

When propagating a signal in free-space to an object and back, you have the choice of either using a
single block to compute a two-way free space propagation delay or two blocks to perform one-way
propagation delays in each direction. Because the free-space propagation delay is not necessarily an
integer multiple of the sampling interval, it may turn out that the total round trip delay in samples
when you use a two-way propagation block differs from the delay in samples when you use two one-
way propagation blocks. For this reason, it is recommended that, when possible, you use a single two-
way propagation block.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a positive scalar.

Number of subbands
The number of subbands used for subband processing, specified as a positive integer.

Perform two-way propagation
Select this check box to perform round-trip propagation between the origin and destination.
Otherwise the block performs one-way propagation from the origin to the destination.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.
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Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Maximum one-way propagation distance (m)
The maximum distance , in meters, between the origin and the destination as a positive scalar.
Amplitudes of any signals that propagate beyond this distance will be set to zero.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Input signal. Double-precision floating point
Pos1 Signal source position. Double-precision floating point
Pos2 Signal destination position. Double-precision floating point
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Port Description Supported Data Types
Vel1 Signal source velocity. Double-precision floating point
Vel2 Signal destination velocity. Double-precision floating point
Out Propagated signal. Double-precision floating point

Algorithms
When the origin and destination are stationary relative to each other, the block output can be written
as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation loss. The delay is computed
from τ = R/c where R is the propagation distance and c is the propagation speed. The free space path
loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in losses smaller than one,
equivalent to a signal gain. For this reason, the loss is set to unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also introduces a
frequency shift. This shift corresponds to the Doppler shift between the origin and destination. The
frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation. The parameter v is
the relative speed of the destination with respect to the origin.

See Also
phased.WidebandFreeSpace

Introduced in R2015b
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Wideband LOS Channel
Wideband line-of-sight propagation channel

Library
Environment and Target

phasedenvlib

Description
The Wideband LOS Channel block propagates signals from one point in space to multiple points or
from multiple points back to one point via line-of-sight (LOS) channels. The block models propagation
time, free-space propagation loss, Doppler shift, and atmospheric as well as weather loss. The block
assumes that the propagation speed is much greater than the object's speed in which case the stop-
and-hop model is valid.

When propagating a signal in an LOS channel to an object and back, you have the choice of either
using a single block to compute two-way LOS channel propagation delay or two blocks to perform
one-way propagation delays in each direction. Because the LOS channel propagation delay is not
necessarily an integer multiple of the sampling interval, it may turn out that the total round trip delay
in samples when you use a two-way propagation block differs from the delay in samples when you use
two one-way propagation blocks. For this reason, it is recommended that, when possible, you use a
single two-way propagation block.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Signal carrier frequency (Hz)
Specify the carrier frequency of the signal in hertz of the narrowband signal as a positive scalar.

Number of subbands
The number of subbands used for subband processing, specified as a positive integer.

Specify atmospheric parameters
Select this check box to enable atmospheric attenuation modeling.

Temperature (degrees Celsius)
Ambient atmospheric temperature, specified as a real-valued scalar. Units are degrees Celsius.
This parameter appears when you select the Specify atmospheric parameters check box. Units
are degrees Celsius.
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Dry air pressure (Pa)
Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are Pascals (Pa).
The value 101325 for this property corresponds to one standard atmosphere. This parameter
appears when you select the Specify atmospheric parameters check box.

Water vapour density (g/m^3)
Atmospheric water vapor density, specified as a positive real-valued scalar. Units are gm/m3. This
parameter appears when you select the Specify atmospheric parameters check box.

Liquid water density (g/m^3)
Liquid water density of fog or clouds, specified as a non-negative real-valued scalar. Units are
gm/m3. Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog. This
parameter appears when you select the Specify atmospheric parameters check box.

Rain rate (mm/hr)
Rainfall rate, specified as a non-negative real-valued scalar. Units are in mm/hour. This parameter
appears when you select the Specify atmospheric parameters check box.

Perform two-way propagation
Select this check box to perform round-trip propagation between the origin and destination.
Otherwise the block performs one-way propagation from the origin to the destination.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Maximum one-way propagation distance (m)
The maximum distance between the signal origin and the destination, specified as a positive
scalar. Units are in meters. Amplitudes of any signals that propagate beyond this distance will be
set to zero.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Input signal. Double-precision floating point
Pos1 Signal source position. Double-precision floating point
Pos2 Signal destination position. Double-precision floating point
Vel1 Signal source velocity. Double-precision floating point
Vel2 Signal destination velocity. Double-precision floating point
Out Propagated signal. Double-precision floating point

More About
Attenuation and Loss Factors

Attenuation or path loss in the Wideband LOS channel consists of four components. L = LfspLgLcLr,
where

• Lfsp is the free-space path attenuation
• Lg is the atmospheric path attenuation
• Lc is the fog and cloud path attenuation
• Lr is the rain path attenuation

Each component is in magnitude units, not in dB.

Propagation Delay, Doppler, and Free-Space Path Loss

When the origin and destination are stationary relative to each other, you can write the output signal
of a free-space channel as Y(t) = x(t-τ)/Lfsp. The quantity τ is the signal delay and Lfsp is the free-space
path loss. The delay τ is given by R/c, where R is the propagation distance and c is the propagation
speed. The free-space path loss is given by
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Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far field of the transmitting element or array. In the
near field, the free-space path loss formula is not valid and can result in a loss smaller than one,
equivalent to a signal gain. Therefore, the loss is set to unity for range values, R ≤ λ/4π.

When the origin and destination have relative motion, the processing also introduces a Doppler
frequency shift. The frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation.
The quantity v is the relative speed of the destination with respect to the origin.

Atmospheric Gas Attenuation Model

This model calculates the attenuation of signals that propagate through atmospheric gases.

Electromagnetic signals attenuate when they propagate through the atmosphere. This effect is due
primarily to the absorption resonance lines of oxygen and water vapor, with smaller contributions
coming from nitrogen gas. The model also includes a continuous absorption spectrum below 10 GHz.
The ITU model Recommendation ITU-R P.676-10: Attenuation by atmospheric gases is used. The
model computes the specific attenuation (attenuation per kilometer) as a function of temperature,
pressure, water vapor density, and signal frequency. The atmospheric gas model is valid for
frequencies from 1–1000 GHz and applies to polarized and nonpolarized fields.

The formula for specific attenuation at each frequency is

γ = γo(f ) + γw(f ) = 0.1820f N″(f ) .

The quantity N"() is the imaginary part of the complex atmospheric refractivity and consists of a
spectral line component and a continuous component:

N″(f ) = ∑
i

SiFi + N″D(f )

The spectral component consists of a sum of discrete spectrum terms composed of a localized
frequency bandwidth function, F(f)i, multiplied by a spectral line strength, Si. For atmospheric
oxygen, each spectral line strength is

Si = a1 × 10−7 300
T

3
exp a2(1− 300

T P .

For atmospheric water vapor, each spectral line strength is

Si = b1 × 10−1 300
T

3.5
exp b2(1− 300

T W .

P is the dry air pressure, W is the water vapor partial pressure, and T is the ambient temperature.
Pressure units are in hectoPascals (hPa) and temperature is in degrees Kelvin. The water vapor
partial pressure, W, is related to the water vapor density, ρ, by

W = ρT
216.7 .

The total atmospheric pressure is P + W.
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For each oxygen line, Si depends on two parameters, a1 and a2. Similarly, each water vapor line
depends on two parameters, b1 and b2. The ITU documentation cited at the end of this section
contains tabulations of these parameters as functions of frequency.

The localized frequency bandwidth functions Fi(f) are complicated functions of frequency described in
the ITU references cited below. The functions depend on empirical model parameters that are also
tabulated in the reference.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length, R. Then, the total attenuation is Lg= R(γo + γw).

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Fog and Cloud Attenuation Model

This model calculates the attenuation of signals that propagate through fog or clouds.

Fog and cloud attenuation are the same atmospheric phenomenon. The ITU model, Recommendation
ITU-R P.840-6: Attenuation due to clouds and fog is used. The model computes the specific
attenuation (attenuation per kilometer), of a signal as a function of liquid water density, signal
frequency, and temperature. The model applies to polarized and nonpolarized fields. The formula for
specific attenuation at each frequency is

γc = Kl f M,

where M is the liquid water density in gm/m3. The quantity Kl(f) is the specific attenuation coefficient
and depends on frequency. The cloud and fog attenuation model is valid for frequencies 10–1000 GHz.
Units for the specific attenuation coefficient are (dB/km)/(g/m3).

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the path length R. Total attenuation is Lc = Rγc.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands, and apply narrowband attenuation to each subband. Then, sum all attenuated
subband signals into the total attenuated signal.

Rainfall Attenuation Model

This model calculates the attenuation of signals that propagate through regions of rainfall. Rain
attenuation is a dominant fading mechanism and can vary from location-to-location and from year-to-
year.

Electromagnetic signals are attenuated when propagating through a region of rainfall. Rainfall
attenuation is computed according to the ITU rainfall model Recommendation ITU-R P.838-3: Specific
attenuation model for rain for use in prediction methods. The model computes the specific
attenuation (attenuation per kilometer) of a signal as a function of rainfall rate, signal frequency,
polarization, and path elevation angle. The specific attenuation, ɣR, is modeled as a power law with
respect to rain rate

γR = kRα,
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where R is rain rate. Units are in mm/hr. The parameter k and exponent α depend on the frequency,
the polarization state, and the elevation angle of the signal path. The specific attenuation model is
valid for frequencies from 1–1000 GHz.

To compute the total attenuation for narrowband signals along a path, the function multiplies the
specific attenuation by the an effective propagation distance, deff. Then, the total attenuation is L =
deffγR.

The effective distance is the geometric distance, d, multiplied by a scale factor

r = 1
0.477d0.633R0.01

0.073αf 0.123− 10.579 1− exp −0.024d

where f is the frequency. The article Recommendation ITU-R P.530-17 (12/2017): Propagation data
and prediction methods required for the design of terrestrial line-of-sight systems presents a
complete discussion for computing attenuation.

The rain rate, R, used in these computations is the long-term statistical rain rate, R0.01. This is the
rain rate that is exceeded 0.01% of the time. The calculation of the statistical rain rate is discussed in
Recommendation ITU-R P.837-7 (06/2017): Characteristics of precipitation for propagation modelling.
This article also explains how to compute the attenuation for other percentages from the 0.01%
value.

You can apply the attenuation model to wideband signals. First, divide the wideband signal into
frequency subbands and apply attenuation to each subband. Then, sum all attenuated subband
signals into the total attenuated signal.

Subband Frequency Processing

Subband processing decomposes a wideband signal into multiple subbands and applies narrowband
processing to the signal in each subband. The signals for all subbands are summed to form the output
signal.

When using wideband frequency System objects or blocks, you specify the number of subbands, NB,
in which to decompose the wideband signal. Subband center frequencies and widths are
automatically computed from the total bandwidth and number of subbands. The total frequency band
is centered on the carrier or operating frequency, fc. The overall bandwidth is given by the sample
rate, fs. Frequency subband widths are Δf = f s/NB. The center frequencies of the subbands are

fm =
fc−

fs
2 + m− 1 Δf ,   NB even

fc−
NB− 1 fs

2NB
+ m− 1 Δf ,   NB odd

,   m = 1, …, NB

Some System objects let you obtain the subband center frequencies as output when you run the
object. The returned subband frequencies are ordered consistently with the ordering of the discrete
Fourier transform. Frequencies above the carrier appear first, followed by frequencies below the
carrier.

See Also
System Objects
phased.LOSChannel | phased.WidebandLOSChannel
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Introduced in R2016a
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Wideband Receive Array
Wideband receive array

Library
Transmitters and Receivers

phasedtxrxlib

Description
The Wideband Receive Array block receives wideband plane waves incident on the elements of a
sensor array. The block divides the input signal into subbands and then applies a phase shift in each
subband according to the incident direction. The resulting subband signals are then combined to
form the output.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Assume modulated input
Select this check this box to indicate that the input signal is demodulated at a carrier frequency.

Carrier frequency
This parameter appears when the Assume modulated input check box is selected. The
parameter specifies the carrier frequency, in hertz, as a positive scalar.

Number of subbands
Number of processing subbands, specified as a positive integer.

Sensor gain measure
Sensor gain measure, specified as dB or dBi.

• When you set this parameter to dB, the input signal power is scaled by the sensor power
pattern (in dB) at the corresponding direction and then combined.
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• When you set this parameter to dBi, the input signal power is scaled by the directivity pattern
(in dBi) at the corresponding direction and then combined. This option is useful when you
want to compare results with the values computed by the radar equation that uses dBi to
specify the antenna gain. The computation using the dBi option is expensive as it requires an
integration over all directions to compute the total radiated power of the sensor. The default
value is dB.

Enable weights input
Select this check box to specify array weights using the input port W. The input port appears only
when this box is checked.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify sensor element or sensor array. A sensor array can also contain subarrays or be a
partitioned array. This parameter can also be expressed as a MATLAB expression.
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Types

Single element
Array (no subarrays)
Partitioned array
Replicated subarray
MATLAB expression

Geometry
Specify the array geometry as one of the following:

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements
Number of array elements.

Number of array elements, specified as a positive integer. This parameter appears when the
Geometry is set to ULA or UCA. If Sensor Array has a Replicated subarray option, this
parameter applies to the subarray.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarrays.

Specify the size of the array as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing to the next
columns from left to right. In this figure, an Array size of [3,2] produces an array of three rows
and two columns.
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Element spacing (m)
This parameter appears when Geometry is set to ULA or URA. When Sensor Array has the
Replicated subarray option, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the array as a
scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector or a scalar. If
Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of these quantities,
see phased.URA. If Element spacing is a scalar, the spacings between rows and columns are
equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.

Array normal
This parameter appears when you set Geometry to URA or UCA. Specify the Array normal as x,
y, or z. All URA and UCA array elements are placed in the yz, zx, or xy-planes, respectively, of the
array coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

This parameter applies to all array types, but when you set Sensor Array to Replicated
subarray, this parameter applies to subarrays.
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• For a ULA or UCA, specify element tapering as a complex-valued scalar or a complex-valued 1-
by-N row vector. In this vector, N represents the number of elements in the array. If Taper is a
scalar, the same weight is applied to each element. If Taper is a vector, a weight from the
vector is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued M-by-N
matrix. In this matrix, M is the number of elements along the z-axis, and N is the number of
elements along the y-axis. M and N correspond to the values of
[NumberofArrayRows,NumberOfArrayColumns] in the Array size matrix. If Taper is a
scalar, the same weight is applied to each element. If Taper is a matrix, a weight from the
matrix is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a Conformal Array, specify element tapering as a complex-valued scalar or complex-
valued 1-by-N vector. In this vector, N is the number of elements in the array as determined by
the size of the Element positions vector. If Taper is a scalar, the same weight is applied to
each element. If the value of Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarray.

Specify the element lattice as Rectangular or Triangular

• Rectangular — Aligns all the elements in row and column directions.
• Triangular— Shifts the even-row elements of a rectangular lattice toward the positive-row

axis direction. The displacement is one-half the element spacing along the row dimension.

Element positions (m)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.

Specify the positions of conformal array elements as a 3-by-N matrix, where N is the number of
elements in the conformal array. Each column of Element positions (m) represents the position
of a single element, in the form [x;y;z], in the array’s local coordinate system. The local
coordinate system has its origin at an arbitrary point. Units are in meters.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N matrix or a 2-by-1
column vector in degrees. The variable N indicates the number of elements in the array. If
Element normals (deg) is a matrix, each column specifies the normal direction of the
corresponding element in the form [azimuth;elevation], with respect to the local coordinate
system. The local coordinate system aligns the positive x-axis with the direction normal to the
conformal array. If Element normals (deg) is a 2-by-1 column vector, the vector specifies the
same pointing direction for all elements in the array.

You can use the Element positions (m) and Element normals (deg) parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You can combine
translation, azimuth rotation, and elevation rotation transformations. However, you cannot use
transformations that require rotation about the normal.
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Subarray definition matrix
This parameter appears when Specify sensor array as is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the
total number of elements in the array. Each row of the matrix corresponds to a subarray and each
entry in the row indicates whether or not an element belongs to the subarray. When the entry is
zero, the element does not belong the subarray. A nonzero entry represents a complex-valued
weight applied to the corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray is its geometric center. Subarray definition matrix and
Geometry determine the geometric center.

Subarray steering method
This parameter appears when the Specify sensor array as parameter is set to Partitioned
array or Replicated subarray.

Specify the subarray steering method as either

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array,
Narrowband Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant
Gamma Clutter, and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma
Clutter, and GPU Constant Gamma Clutter blocks.

Phase shifter frequency (Hz)
This parameter appears when you set Sensor array to Partitioned array or Replicated
subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray steering as a
positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or Replicated
subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Rectangular.
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Rectangular subarray grid size, specified as a single positive integer or a positive integer-valued
1-by-2 row vector.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and
column. If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the
first entry is the number of subarrays along each column. The second entry is the number of
subarrays in each row. A row is along the local y-axis, and a column is along the local z-axis. The
figure here shows how you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-by-2 row
vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along
a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for
both rows and columns while building the full array. This option is available only when you
specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray, in meters, in the array’s local coordinate system. The coordinates are expressed in the
form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated subarray
and the Subarrays layout to Custom.

 Wideband Receive Array

3-563



Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N
matrix, where N is the number of subarrays in the array. Each column of the matrix specifies the
normal direction of the corresponding subarray, in the form [azimuth; elevation]. Each
angle is in degrees and is defined in the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations
can combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example, phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.
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Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.
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The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.
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Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Arriving signals input port

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Ang Incident directions of signals
input port.

Double-precision floating point
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Port Description Supported Data Types
W Array or subarray weights input

port. To enable this port, select
the Enable weights input
check box.

Double-precision floating point

WS Subarray element weights input
port. To enable this port select
Custom from the Subarray
steering method pull down
menu.

 

Steer Steering angle input port. To
enable this port, select Phase
or Time from the Subarray
steering method pull down
menu.

Double-precision floating point

Out Collected signals Double-precision floating point

See Also
phased.WidebandCollector

Introduced in R2014b
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Wideband Two-Ray Channel
Wideband two-ray channel environment
Library: Phased Array System Toolbox / Environment and Target

Description
The Wideband Two-Ray Channel block propagates wideband signals from one point in space to
multiple points or from multiple points back to one point via both the direct path and the ground
reflection path. The block propagates wideband signals by (1) decomposing them into subbands, (2)
propagating subbands independently, and (3) recombining the propagated subbands. The block
models propagation time, propagation loss, and Doppler shift. The block assumes that the
propagation speed is much greater than the object's speed in which case the stop-and-hop model is
valid.

Ports
Input

X — Wideband input signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix

• Wideband nonpolarized scalar signal, specified as an

• M-by-N complex-valued matrix. The quantity M is the number of samples in the signal and N is
the number of two-ray channels. Each channel corresponds to a source-destination pair. Each
column contains an identical signal that is propagated along the line-of-sight and reflected
paths.

• M-by-2N complex-valued matrix. The quantity M is the number of samples of the signal and N
is the number of two-ray channels. Each channel corresponds to a source-destination pair.
Each adjacent pair of columns represents a different channel. Within each pair, the first column
represents the signal propagated along the line-of-sight path and the second column
represents the signal propagated along the reflected path.

The quantity M is the number of samples of the signal and N is the number of two-ray channels. Each
channel corresponds to a source-destination pair.

The size of the first dimension of the input matrix can vary to simulate a changing signal length. A
size change can occur, for example, in the case of a pulse waveform with variable pulse repetition
frequency.
Example: [1,1;j,1;0.5,0]
Data Types: double
Complex Number Support: Yes

Pos1 — Position of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix
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Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of two-ray channels. If Pos1 is a column vector, it takes the
form [x;y;z]. If Pos1 is a matrix, each column specifies a different signal origin and has the form
[x;y;z]. Position units are in meters.

Pos1 and Pos2 cannot both be specified as matrices — at least one must be a 3-by-1 column vector.
Example: [1000;100;500]
Data Types: double

Pos2 — Position of signal destination
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Origin of the signal or signals, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued
matrix. The quantity N is the number of two-ray channels. If Pos2 is a column vector, it takes the
form [x;y;z]. If Pos2 is a matrix, each column specifies a different signal origin and has the form
[x;y;z]. Position units are in meters.

Pos1 and Pos2 cannot both be specified as matrices — at least one must be a 3-by-1 column vector.
Example: [-100;300;50]
Data Types: double

Vel1 — Velocity of signal origin
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of Vel1 must match the dimensions of Pos1. If Vel1 is a column vector, it takes the
form [Vx;Vy;Vz]. If Vel1 is a 3-by-N matrix, each column specifies a different origin velocity and
has the form [Vx;Vy;Vz]. Velocity units are in meters per second.
Example: [-10;3;5]
Data Types: double

Vel2 — Velocity of signal destination
3-by-1 real-valued column vector | 3-by-N real-valued matrix

Velocity of signal origin, specified as a 3-by-1 real-valued column vector or 3-by-N real-valued matrix.
The dimensions of Vel2 must match the dimensions of Pos2. If Vel2 is a column vector, it takes the
form [Vx;Vy;Vz]. If Vel2 is a 3-by-N matrix, each column specifies a different origin velocity and
has the form [Vx;Vy;Vz]. Velocity units are in meters per second.
Example: [-1000;300;550]
Data Types: double

Output

Out — Propagated signal
M-by-N complex-valued matrix | M-by-2N complex-valued matrix

• M-by-N complex-valued matrix. To return this format, set the CombinedRaysOutput property to
true. Each matrix column contains the coherently combined signals from the line-of-sight path
and the reflected path.
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• M-by-2N complex-valued matrix. To return this format set the CombinedRaysOutput property to
false. Alternate columns of the matrix contain the signals from the line-of-sight path and the
reflected path.

The output Out contains signal samples arriving at the signal destination within the current input
time frame. Whenever it takes longer than the current time frame for the signal to propagate from
the origin to the destination, the output may not contain all contributions from the input of the
current time frame. The remaining output will appear in the next execution of the block.

Parameters
Signal propagation speed (m/s) — Signal propagation speed
physconst('LightSpeed') (default) | real-valued positive scalar

Signal propagation speed, specified as a real-valued positive scalar. The default value of the speed of
light is the value returned by physconst('LightSpeed'). Units are in meters per second.
Example: 3e8
Data Types: double

Signal carrier frequency (Hz) — Signal carrier frequency
300e6 (default) | positive real-valued scalar

Signal carrier frequency, specified as a positive real-valued scalar. Units are in hertz.
Data Types: double

Number of subbands — Number of processing subbands
64 (default) | positive integer

Number of processing subbands, specified as a positive integer.
Example: 128

Specify atmospheric parameters — Enable atmospheric attenuation model
off (default) | on

Select this parameter to enable to add signal attenuation caused by atmospheric gases, rain, fog, or
clouds. When you select this parameter, the Temperature (degrees Celsius), Dry air pressure
(Pa), Water vapour density (g/m^3), Liquid water density (g/m^3), and Rain rate (mm/hr)
parameters appear in the dialog box.
Data Types: Boolean

Temperature (degrees Celsius) — Ambient temperature
15 (default) | real-valued scalar

Ambient temperature, specified as a real-valued scalar. Units are in degrees Celsius.
Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: double

Dry air pressure (Pa) — Atmospheric dry air pressure
101.325e3 (default) | positive real-valued scalar
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Atmospheric dry air pressure, specified as a positive real-valued scalar. Units are in pascals (Pa). The
default value of this parameter corresponds to one standard atmosphere.

Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: double

Water vapour density (g/m^3) — Atmospheric water vapor density
7.5 (default) | positive real-valued scalar

Atmospheric water vapor density, specified as a positive real-valued scalar. Units are in g/m3.

Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: datetime

Liquid water density (g/m^3) — Liquid water density
0.0 (default) | nonnegative real-valued scalar

Liquid water density of fog or clouds, specified as a nonnegative real-valued scalar. Units are in g/m3.
Typical values for liquid water density are 0.05 for medium fog and 0.5 for thick fog.

Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: double

Rain rate (mm/hr) — Rainfall rate
0.0 (default) | non-negative real-valued scalar

Rainfall rate, specified as a nonnegative real-valued scalar. Units are in mm/hr.

Dependencies

To enable this parameter, select the Specify atmospheric parameters checkbox.
Data Types: double

Inherit sample rate — Inherit sample rate from upstream blocks
on (default) | off

Select this parameter to inherit the sample rate from upstream blocks. Otherwise, specify the sample
rate using the Sample rate (Hz) parameter.
Data Types: Boolean

Sample rate (Hz) — Sampling rate of signal
1e6 (default) | positive real-valued scalar

Specify the signal sampling rate as a positive scalar. Units are in Hz.

Dependencies

To enable this parameter, clear the Inherit sample rate check box.
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Data Types: double

Ground reflection coefficient — Ground reflection coefficient
-1 (default) | complex-valued scalar | complex-valued 1-by-N row vector

Ground reflection coefficient for the field at the reflection point, specified as a complex-valued scalar
or a complex-valued 1-by-N row vector. Coefficients have an absolute value less than or equal to one.
The quantity N is the number of two-ray channels. Units are dimensionless.
Example: -0.5

Combine two rays at output — Option to combine two rays at output
on (default) | off

Select this parameter to combine the two rays at channel output. Combining the two rays coherently
adds the line-of-sight propagated signal and the reflected path signal to form the output signal. You
can use this mode when you do not need to include the directional gain of an antenna or array in your
simulation.
Example: on

Maximum one-way propagation distance (m) — Maximum one-way propagation distance
10.0e3 (default) | positive real-valued scalar

Maximum one-way propagation distance, specified as a real-valued positive scalar. Units are in
meters. Any signal that propagates more than the maximum one-way distance is ignored. The
maximum distance must be greater than or equal to the largest position-to-position distance.
Example: 5000.0

Simulate using — Block simulation method
Interpreted Execution (default) | Code Generation

Block simulation, specified as Interpreted Execution or Code Generation. If you want your
block to use the MATLAB interpreter, choose Interpreted Execution. If you want your block to
run as compiled code, choose Code Generation. Compiled code requires time to compile but
usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you are
satisfied with your results, you can then run the block using Code Generation. Long simulations
run faster with generated code than in interpreted execution. You can run repeated executions
without recompiling, but if you change any block parameters, then the block automatically recompiles
before execution.

This table shows how the Simulate using parameter affects the overall simulation behavior.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate using
overrides the simulation mode.
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Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the model
are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Algorithms
When the origin and destination are stationary relative to each other, the block output can be written
as y(t) = x(t – τ)/L. The quantity τ is the delay and L is the propagation loss. The delay is computed
from τ = R/c where R is the propagation distance and c is the propagation speed. The free space path
loss is given by

Lf sp = (4πR)2

λ2 ,

where λ is the signal wavelength.

This formula assumes that the target is in the far-field of the transmitting element or array. In the
near-field, the free-space path loss formula is not valid and can result in losses smaller than one,
equivalent to a signal gain. For this reason, the loss is set to unity for range values, R ≤ λ/4π.

When there is relative motion between the origin and destination, the processing also introduces a
frequency shift. This shift corresponds to the Doppler shift between the origin and destination. The
frequency shift is v/λ for one-way propagation and 2v/λ for two-way propagation. The parameter v is
the relative speed of the destination with respect to the origin.

See Also
System Objects
phased.FreeSpace | phased.LOSChannel | phased.TwoRayChannel |
phased.WidebandFreeSpace | phased.WidebandLOSChannel |
phased.WidebandTwoRayChannel

Functions
fogpl | fspl | gaspl | rainpl | rangeangle

Introduced in R2016b
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Wideband Transmit Array
Wideband transmit array

Library
Transmitters and Receivers

phasedtxrxlib

Description
The Wideband Transmit Array block transmits wideband plane waves from the elements of a sensor
array. The block divides the transmitted signals into subbands and then applies a phase shift for each
subband according to the radiating direction. The resulting subband signals are then combined to
form the output.

Parameters
Signal Propagation speed (m/s)

Specify the propagation speed of the signal, in meters per second, as a positive scalar. You can
use the function physconst to specify the speed of light.

Inherit sample rate
Select this check box to inherit the sample rate from upstream blocks. Otherwise, specify the
sample rate using the Sample rate (Hz) parameter.

Sample rate (Hz)
Specify the signal sampling rate (in hertz) as a positive scalar. This parameter appears only when
the Inherit sample rate parameter is not selected.

Assume modulated input
Select this check this box to indicate that the input signal is demodulated at a carrier frequency.

Carrier frequency
This parameter appears when the Assume modulated input check box is selected. The
parameter specifies the carrier frequency, in hertz, as a positive scalar.

Number of subbands
The number of subbands used for subband processing, specified as a positive integer.

Sensor gain measure
Sensor gain measure, specified as dB or dBi.

• When you set this parameter to dB, the input signal power is scaled by the sensor power
pattern (in dB) at the corresponding direction and then combined.
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• When you set this parameter to dBi, the input signal power is scaled by the directivity pattern
(in dBi) at the corresponding direction and then combined. This option is useful when you
want to compare results with the values computed by the radar equation that uses dBi to
specify the antenna gain. The computation using the dBi option is expensive as it requires an
integration over all directions to compute the total radiated power of the sensor. The default
value is dB.

Enable weights input
Select this check box to specify array weights using the input port W. The input port appears only
when this box is checked.

Simulate using
Block simulation method, specified as Interpreted Execution or Code Generation. If you
want your block to use the MATLAB interpreter, choose Interpreted Execution. If you want
your block to run as compiled code, choose Code Generation. Compiled code requires time to
compile but usually runs faster.

Interpreted execution is useful when you are developing and tuning a model. The block runs the
underlying System object in MATLAB. You can change and execute your model quickly. When you
are satisfied with your results, you can then run the block using Code Generation. Long
simulations run faster than they would in interpreted execution. You can run repeated executions
without recompiling. However, if you change any block parameters, then the block automatically
recompiles before execution.

When setting this parameter, you must take into account the overall model simulation mode. The
table shows how the Simulate using parameter interacts with the overall simulation mode.

When the Simulink model is in Accelerator mode, the block mode specified using Simulate
using overrides the simulation mode.

Acceleration Modes

Block Simulation Simulation Behavior
Normal Accelerator Rapid Accelerator

Interpreted
Execution

The block executes
using the MATLAB
interpreter.

The block executes
using the MATLAB
interpreter.

Creates a standalone
executable from the
model.

Code Generation The block is compiled. All blocks in the
model are compiled.

For more information, see “Choosing a Simulation Mode” (Simulink).

Array Parameters

Specify sensor array as
Specify sensor element or sensor array. A sensor array can also contain subarrays or be a
partitioned array. This parameter can also be expressed as a MATLAB expression.
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Types

Single element
Array (no subarrays)
Partitioned array
Replicated subarray
MATLAB expression

Geometry
Specify the array geometry as one of the following:

• ULA — Uniform linear array
• URA — Uniform rectangular array
• UCA — Uniform circular array
• Conformal Array — arbitrary element positions

Number of elements
Number of array elements.

Number of array elements, specified as a positive integer. This parameter appears when the
Geometry is set to ULA or UCA. If Sensor Array has a Replicated subarray option, this
parameter applies to the subarray.

Array size
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarrays.

Specify the size of the array as a positive integer or 1-by-2 vector of positive integers.

• If Array size is a 1-by-2 vector, the vector has the form
[NumberOfArrayRows,NumberOfArrayColumns].

• If Array size is an integer, the array has the same number of rows and columns.

For a URA, elements are indexed from top to bottom along a column and continuing to the next
columns from left to right. In this figure, an Array size of [3,2] produces an array of three rows
and two columns.
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Element spacing (m)
This parameter appears when Geometry is set to ULA or URA. When Sensor Array has the
Replicated subarray option, this parameter applies to the subarrays.

• For a ULA, specify the spacing, in meters, between two adjacent elements in the array as a
scalar.

• For a URA, specify the element spacing of the array, in meters, as a 1-by-2 vector or a scalar. If
Element spacing is a 1-by-2 vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumns]. For a discussion of these quantities,
see phased.URA. If Element spacing is a scalar, the spacings between rows and columns are
equal.

Array axis
This parameter appears when the Geometry parameter is set to ULA or when the block only
supports a ULA array geometry. Specify the array axis as x, y, or z. All ULA array elements are
uniformly spaced along this axis in the local array coordinate system.

Array normal
This parameter appears when you set Geometry to URA or UCA. Specify the Array normal as x,
y, or z. All URA and UCA array elements are placed in the yz, zx, or xy-planes, respectively, of the
array coordinate system.

Radius of UCA (m)
Radius of a uniform circular array specified as a positive scalar. Units are meters.

This parameter appears when the Geometry is set to UCA.
Taper

Tapers, also known as element weights, are applied to sensor elements in the array. Tapers are
used to modify both the amplitude and phase of the transmitted or received data.

This parameter applies to all array types, but when you set Sensor Array to Replicated
subarray, this parameter applies to subarrays.
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• For a ULA or UCA, specify element tapering as a complex-valued scalar or a complex-valued 1-
by-N row vector. In this vector, N represents the number of elements in the array. If Taper is a
scalar, the same weight is applied to each element. If Taper is a vector, a weight from the
vector is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a URA, specify element tapering as a complex-valued scalar or complex-valued M-by-N
matrix. In this matrix, M is the number of elements along the z-axis, and N is the number of
elements along the y-axis. M and N correspond to the values of
[NumberofArrayRows,NumberOfArrayColumns] in the Array size matrix. If Taper is a
scalar, the same weight is applied to each element. If Taper is a matrix, a weight from the
matrix is applied to the corresponding sensor element. A weight must be applied to each
element in the sensor array.

• For a Conformal Array, specify element tapering as a complex-valued scalar or complex-
valued 1-by-N vector. In this vector, N is the number of elements in the array as determined by
the size of the Element positions vector. If Taper is a scalar, the same weight is applied to
each element. If the value of Taper is a vector, a weight from the vector is applied to the
corresponding sensor element. A weight must be applied to each element in the sensor array.

Element lattice
This parameter appears when Geometry is set to URA. When Sensor Array is set to Replicated
subarray, this parameter applies to the subarray.

Specify the element lattice as Rectangular or Triangular

• Rectangular — Aligns all the elements in row and column directions.
• Triangular— Shifts the even-row elements of a rectangular lattice toward the positive-row

axis direction. The displacement is one-half the element spacing along the row dimension.

Element positions (m)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.

Specify the positions of conformal array elements as a 3-by-N matrix, where N is the number of
elements in the conformal array. Each column of Element positions (m) represents the position
of a single element, in the form [x;y;z], in the array’s local coordinate system. The local
coordinate system has its origin at an arbitrary point. Units are in meters.

Element normals (deg)
This parameter appears when Geometry is set to Conformal Array. When Sensor Array is set
to Replicated subarray, this parameter applies to subarrays.

Specify the normal directions of the elements in a conformal array as a 2-by-N matrix or a 2-by-1
column vector in degrees. The variable N indicates the number of elements in the array. If
Element normals (deg) is a matrix, each column specifies the normal direction of the
corresponding element in the form [azimuth;elevation], with respect to the local coordinate
system. The local coordinate system aligns the positive x-axis with the direction normal to the
conformal array. If Element normals (deg) is a 2-by-1 column vector, the vector specifies the
same pointing direction for all elements in the array.

You can use the Element positions (m) and Element normals (deg) parameters to represent
any arrangement in which pairs of elements differ by certain transformations. You can combine
translation, azimuth rotation, and elevation rotation transformations. However, you cannot use
transformations that require rotation about the normal.
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Subarray definition matrix
This parameter appears when Specify sensor array as is set to Partitioned array.

Specify the subarray selection as an M-by-N matrix. M is the number of subarrays and N is the
total number of elements in the array. Each row of the matrix corresponds to a subarray and each
entry in the row indicates whether or not an element belongs to the subarray. When the entry is
zero, the element does not belong the subarray. A nonzero entry represents a complex-valued
weight applied to the corresponding element. Each row must contain at least one nonzero entry.

The phase center of each subarray is its geometric center. Subarray definition matrix and
Geometry determine the geometric center.

Subarray steering method
This parameter appears when the Specify sensor array as parameter is set to Partitioned
array or Replicated subarray.

Specify the subarray steering method as either

• None
• Phase
• Time
• Custom

Selecting Phase or Time opens the Steer input port on the Narrowband Receive Array,
Narrowband Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant
Gamma Clutter, and GPU Constant Gamma Clutter blocks.

Selecting Custom opens the WS input port on the Narrowband Receive Array, Narrowband
Transmit Array, Wideband Receive Array, Wideband Transmit Array blocks, Constant Gamma
Clutter, and GPU Constant Gamma Clutter blocks.

Phase shifter frequency (Hz)
This parameter appears when you set Sensor array to Partitioned array or Replicated
subarray and you set Subarray steering method to Phase.

Specify the operating frequency, in hertz, of phase shifters to perform subarray steering as a
positive scalar.

Number of bits in phase shifters
This parameter appears when you set Sensor array to Partitioned array or Replicated
subarray and you set Subarray steering method to Phase.

The number of bits used to quantize the phase shift component of beamformer or steering vector
weights. Specify the number of bits as a non-negative integer. A value of zero indicates that no
quantization is performed.

Subarrays layout
This parameter appears when you set Sensor array to Replicated subarray.

Specify the layout of the replicated subarrays as Rectangular or Custom.
Grid size

This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Rectangular.
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Rectangular subarray grid size, specified as a single positive integer or a positive integer-valued
1-by-2 row vector.

If Grid size is an integer scalar, the array has an equal number of subarrays in each row and
column. If Grid size is a 1-by-2 vector of the form [NumberOfRows, NumberOfColumns], the
first entry is the number of subarrays along each column. The second entry is the number of
subarrays in each row. A row is along the local y-axis, and a column is along the local z-axis. The
figure here shows how you can replicate a 3-by-2 URA subarray using a Grid size of [1,2].

Grid spacing
This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Rectangular.

Specify the rectangular grid spacing of subarrays as a real-valued positive scalar, a 1-by-2 row
vector, or Auto. Grid spacing units are expressed in meters.

• If Grid spacing is a scalar, the spacing along the row and the spacing along the column is the
same.

• If Grid spacing is a 1-by-2 row vector, the vector has the form
[SpacingBetweenRows,SpacingBetweenColumn]. The first entry specifies the spacing
between rows along a column. The second entry specifies the spacing between columns along
a row.

• If Grid spacing is set to Auto, replication preserves the element spacing of the subarray for
both rows and columns while building the full array. This option is available only when you
specify Geometry as ULA or URA.

Subarray positions (m)
This parameter appears when you set Sensor array to Replicated subarray and Subarrays
layout to Custom.

Specify the positions of the subarrays in the custom grid as a 3-by-N matrix, where N is the
number of subarrays in the array. Each column of the matrix represents the position of a single
subarray, in meters, in the array’s local coordinate system. The coordinates are expressed in the
form [x; y; z].

Subarray normals
This parameter appears when you set the Sensor array parameter to Replicated subarray
and the Subarrays layout to Custom.
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Specify the normal directions of the subarrays in the array. This parameter value is a 2-by-N
matrix, where N is the number of subarrays in the array. Each column of the matrix specifies the
normal direction of the corresponding subarray, in the form [azimuth; elevation]. Each
angle is in degrees and is defined in the local coordinate system.

You can use the Subarray positions and Subarray normals parameters to represent any
arrangement in which pairs of subarrays differ by certain transformations. The transformations
can combine translation, azimuth rotation, and elevation rotation. However, you cannot use
transformations that require rotation about the normal.

Expression
A valid MATLAB expression containing an array constructor, for example, phased.URA.

Sensor Array Tab: Element Parameters

Element type
Specify antenna or microphone type as

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Omni Microphone
• Custom Microphone

Exponent of cosine pattern
This parameter appears when you set Element type to Cosine Antenna.

Specify the exponent of the cosine pattern as a scalar or a 1-by-2 vector. You must specify all
values as non-negative real numbers. When you set Exponent of cosine pattern to a scalar, both
the azimuth direction cosine pattern and the elevation direction cosine pattern are raised to the
specified value. When you set Exponent of cosine pattern to a 1-by-2 vector, the first element is
the exponent for the azimuth direction cosine pattern and the second element is the exponent for
the elevation direction cosine pattern.

Operating frequency range (Hz)
This parameter appears when Element type is set to Isotropic Antenna, Cosine Antenna,
or Omni Microphone.

Specify the operating frequency range, in hertz, of the antenna element as a 1-by-2 row vector in
the form [LowerBound,UpperBound]. The antenna element has no response outside the
specified frequency range.

Operating frequency vector (Hz)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.

Specify the frequencies, in Hz, at which to set the antenna and microphone frequency responses
as a 1-by-L row vector of increasing values. Use Frequency responses to set the frequency
responses. The antenna or microphone element has no response outside the frequency range
specified by the minimum and maximum elements of Operating frequency vector (Hz).

Frequency responses (dB)
This parameter appears when Element type is set to Custom Antenna or Custom
Microphone.
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Specify this parameter as the frequency response of an antenna or microphone, in decibels, for
the frequencies defined by Operating frequency vector (Hz). Specify Frequency responses
(dB) as a 1-by-L vector matching the dimensions of the vector specified in Operating frequency
vector (Hz).

Input Pattern Coordinate System
Coordinate system of custom antenna pattern, specified az-el or phi-theta. When you specify
az-el, use the Azimuth angles (deg) and Elevations angles (deg) parameters to specify the
coordinates of the pattern points. When you specify phi-theta, use the Phi angles (deg) and
Theta angles (deg) parameters to specify the coordinates of the pattern points.

Azimuth angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the azimuth angles at which to calculate the antenna radiation pattern as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Azimuth angles must lie between –
180° and 180° and be in strictly increasing order.

Elevation angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to az-el.

Specify the elevation angles at which to compute the radiation pattern as a 1-by-Q vector. Q must
be greater than 2. Angle units are in degrees. Elevation angles must lie between –90° and 90° and
be in strictly increasing order.

Phi Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Phi angles of points at which to specify the antenna radiation pattern, specify as a 1-by-P row
vector. P must be greater than 2. Angle units are in degrees. Phi angles must lie between 0° and
360° and be in strictly increasing order.

Theta Angles (deg)
This parameter appears when Element type is set to Custom Antenna and the Input Pattern
Coordinate System parameter is set to phi-theta.

Theta angles of points at which to specify the antenna radiation pattern, specify as a 1-by-Q row
vector. Q must be greater than 2. Angle units are in degrees. Theta angles must lie between 0°
and 180° and be in strictly increasing order.

Magnitude pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Magnitude of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-
by-L array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.
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The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

Phase pattern (dB)
This parameter appears when the Element type is set to Custom Antenna.

Phase of the combined antenna radiation pattern, specified as a Q-by-P matrix or a Q-by-P-by-L
array.

• When the Input Pattern Coordinate System parameter is set to az-el, Q equals the length
of the vector specified by the Elevation angles (deg) parameter and P equals the length of
the vector specified by the Azimuth angles (deg) parameter.

• When the Input Pattern Coordinate System parameter is set to phi-theta, Q equals the
length of the vector specified by the Theta Angles (deg) parameter and P equals the length
of the vector specified by the Phi Angles (deg) parameter.

The quantity L equals the length of the Operating frequency vector (Hz).

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

• If this parameter is a Q-by-P matrix, the same pattern is applied to all frequencies specified in
the Operating frequency vector (Hz) parameter.

• If the value is a Q-by-P-by-L array, each Q-by-P page of the array specifies a pattern for the
corresponding frequency specified in the Operating frequency vector (Hz) parameter.

MatchArrayNormal
This parameter appears when the Element type is set to Custom Antenna.

Select this check box to rotate the antenna element pattern to align with the array normal. When
not selected, the element pattern is not rotated.

When the antenna is used in an antenna array and the Input Pattern Coordinate System
parameter is az-el, selecting this check box rotates the pattern so that the x-axis of the element
coordinate system points along the array normal. Not selecting uses the element pattern without
the rotation.

When the antenna is used in an antenna array and Input Pattern Coordinate System is set to
phi-theta, selecting this check box rotates the pattern so that the z-axis of the element
coordinate system points along the array normal.

Use the parameter in conjunction with the Array normal parameter of the URA and UCA arrays.
Polar pattern frequencies (Hz)

This parameter appears when the Element type is set to Custom Microphone.
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Specify the measuring frequencies of the polar patterns as a 1-by-M vector. The measuring
frequencies lie within the frequency range specified by the Operating frequency vector (Hz)
parameter. Frequency units are in Hz.

Polar pattern angles (deg)
This parameter appears when Element type is set to Custom Microphone.

Specify the measuring angles of the polar patterns, as a 1-by-N vector. The angles are measured
from the central pickup axis of the microphone, and must be between –180° and 180°, inclusive.

Polar pattern (dB)
This parameter appears when Element type is set to Custom Microphone.

Specify the magnitude of the microphone element polar pattern as an M-by-N matrix. M is the
number of measuring frequencies specified in Polar pattern frequencies (Hz). N is the number
of measuring angles specified in Polar pattern angles (deg). Each row of the matrix represents
the magnitude of the polar pattern measured at the corresponding frequency specified in Polar
pattern frequencies (Hz) and all angles specified in Polar pattern angles (deg). Assume that
the pattern is measured in the azimuth plane. In the azimuth plane, the elevation angle is 0° and
the central pickup axis is 0° degrees azimuth and 0° degrees elevation. Assume that the polar
pattern is symmetric around the central axis. You can construct the microphone’s response
pattern in 3-D space from the polar pattern.

Baffle the back of the element
This check box appears only when the Element type parameter is set to Isotropic Antenna
or Omni Microphone.

Select this check box to baffle the back of the antenna element. In this case, the antenna
responses to all azimuth angles beyond ±90° from broadside are set to zero. Define the broadside
direction as 0° azimuth angle and 0° elevation angle.

Ports

Note The block input and output ports correspond to the input and output parameters described in
the step method of the underlying System object. See link at the bottom of this page.

Port Description Supported Data Types
X Radiated signals input port

The size of the first dimension of
the input matrix can vary to
simulate a changing signal
length. A size change can occur,
for example, in the case of a
pulse waveform with variable
pulse repetition frequency.

Double-precision floating point

Ang Radiating directions of signals
input port.

Double-precision floating point
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Port Description Supported Data Types
W Array or subarray weights input

port. To enable this port, select
the Enable weights input
check box.

Double-precision floating point

WS Subarray element weights input
port. To enable this port select
Custom from the Subarray
steering method pull down
menu.

 

Steer Steering angle input port. To
enable this port, select Phase
or Time from the Subarray
steering method pull down
menu.

 

Out Radiated signals. Double-precision floating point

See Also
phased.WidebandRadiator

Introduced in R2015b
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Radar Equation Calculator
Estimate maximum range, peak power, and SNR of a radar system

Description
The Radar Equation Calculator app solves the basic radar equation for monostatic or bistatic radar
systems. The radar equation relates target range, transmitted power, and received signal SNR. Using
this app, you can:

• Solve for maximum target range based on the transmit power of the radar and specified received
SNR

• Calculate required transmit power based on known target range and specified received SNR
• Calculate the received SNR value based on known range and transmit power

Open the Radar Equation Calculator App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter radarEquationCalculator.

Examples

Maximum Detection Range of a Monostatic Radar

This example shows how to compute the maximum detection range of a 10 GHz, 1 kW, monostatic
radar with a 40 dB antenna gain and a detection threshold of 10 dB.
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From the Calculation Type drop-down list, choose Target Range as the solution.

Choose Configuration as monostatic.

Enter 40 dB for the antenna Gain.

Set the Wavelength to 3 cm.

Set the SNR detection threshold parameter to 10 dB.

Assuming the target is a large airplane, set the Target Radar Cross Section value to 100 m2.

Specify the Peak Transmit Power as 1 kW

Specify the Pulse Width as 2 µs.

Assume a total of 5 dB System Losses.
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The maximum target detection range is 92 km.

Maximum Detection Range of a Monostatic Radar Using Multiple Pulses

This example shows how to use multiple pulses to reduce the transmitted power while maintaining
the same maximum target range.

Continue with the results from the previous example.

Click the arrows to the right of the SNR label.

The Detection Specifications for SNR menu opens.

Set Probability of Detection to 0.95.

Set Probability of False Alarm to 10–6.

Set Number of Pulses to 4.

Reduce Peak Transmit Power to 0.75 kW.

Assume a nonfluctuating target model, and set the Swerling Case Number is 0.
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The maximum detection range is approximately the same as in the previous example, but the
transmitted power is reduced by 25%.

Maximum Detection Range of Bistatic Radar System

This example shows how to solve for the geometric mean range of a target for a bistatic radar system.
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Specify the Calculation Type as Target Range.

Specify the Configuration as bistatic.

Provide a Transmitter Gain and a Receiver Gain parameter, instead of the single gain needed in
the monostatic case.

Alternatively, to achieve a particular probability of detection and probability of false alarm, open the
Detection Specifications for SNR menu.

Enter values for Probability of Detection and Probability of False Alarm, Number of Pulses,
and Swerling Case Number.
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Required Transmit Power for a Bistatic Radar

This example shows how to compute the required peak transmit power of a 10 GHz, bistatic X-band
radar for a 80 km total bistatic range, and 10 dB received SNR.
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The system has a 40 dB transmitter gain and a 20 dB receiver gain. The required receiver SNR is 10
dB.

From the Calculation Type drop-down list, choose Peak Transmit Power as the solution type.

Choose Configuration as bistatic.

From the system specifications, set Transmitter Gain to 40 dB and Receiver Gain to 20 dB.

Set the SNR detection threshold to 10 dB and the Wavelength to 0.3 m.

Assume the target is a fighter aircraft having a Target Radar Cross Section value of 2 m2.

Choose Range from Transmitter as 50 km, and Range from Receiver as 30 km.

Set the Pulse Width to 2 µs and the System Losses to 0 dB.
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The required Peak Transmit Power is about 0.5 kW.

Receiver SNR for a Monostatic Radar

This example shows how to compute the received SNR for a monostatic radar with 1 kW peak
transmit power with a target at a range of 2 km.

Assume a 2 GHz radar frequency and 20 dB antenna gain.

From the Calculation Type drop-down list, choose SNR as the solution type and set the
Configuration as monostatic.

Set the Gain to 20, the Peak Transmit Power to 1 kW, and the Target Range to 2000 m.

Set the Wavelength to 15 cm.

Find the received SNR of a small boat having a Target Radar Cross Section value of 0.5 m2.

The Pulse Width is 1 µs and System Losses are 0 dB.
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• “Detection, Range and Doppler Estimation”

Parameters
Calculation Type — Type of calculation to perform
Target Range (default) | Peak Transmit Power | SNR

Target Range – solves for maximum target range based on transmit power of the radar and desired
received SNR.

Peak Transmit – Power computes power needed to transmit based on known target range and
desired received SNR.

SNR – calculates the received SNR value based on known range and transmit power.

Wavelength — Wavelength of radar operating frequency
0.3 m (default) | m | cm | mm
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Specify the wavelength of radar operating frequency in m, cm, or mm.

The wavelength is the ratio of the wave propagation speed to frequency. For electromagnetic waves,
the speed of propagation is the speed of light.

Denoting the speed of light by c and the frequency (in hertz) of the wave by f, the equation for
wavelength is:

λ = c
f

Pulse Width — Single pulse duration
1 µs (default) | µs | ms | s

Specify the single pulse duration in µs, ms, or s.

System Losses — System loss in decibels (dB)
0 dB (default)

System Losses represents a general loss factor that comprises losses incurred in the system
components and in the propagation to and from the target.

Noise Temperature — System noise temperature in kelvins
290 K (default)

The system noise temperature is the product of the system temperature and the noise figure.

Target Radar Cross Section — Radar cross section (RCS)
1 m² (default) | m² | dBsm

Specify the target radar cross section in m², or dBsm.

The target radar cross section is nonfluctuating.

Configuration — Type of radar system
Monostatic (default) | Bistatic

Monostatic – Transmitter and receiver are colocated (monostatic radar).

Bistatic – Transmitter and receiver are not colocated (bistatic radar).

Gain — Transmitter and receiver gain in decibels (dB)
20 dB (default)

When the transmitter and receiver are colocated (monostatic radar), the transmit and receive gains
are equal.

This parameter is enabled only if the Configuration is set to Monostatic.

Peak Transmit Power — Transmitter peak power
1 kw (default) | kW | mW | W | dBW

Specify the transmitter peak power in kW, mW, W, or dBW.

This parameter is enabled only if the Calculation Type is set to Target Range or SNR.
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SNR — Minimum output signal-to-noise ratio at the receiver in decibels
10 dB (default)

Specify an SNR value, or calculate an SNR value using Detection Specifications for SNR.

You can calculate the SNR required to achieve a particular probability of detection and probability of
false alarm using Shnidman's equation. To calculate the SNR value:

1 Click the arrows to the right of the SNR label to open the Detection Specifications for SNR
menu.

2 Enter values for Probability of Detection, Probability of False Alarm, Number of Pulses, and
Swerling Case Number.

This parameter is enabled only if the Calculation Type is set to Target Range or Peak Transmit
Power.

Probability of Detection — Detection probability used to estimate SNR
0.81029 (default)

Specify the detection probability used to estimate SNR using Shnidman's equation.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or
Target Range, and you select the Detection Specifications for SNR button for the SNR
parameter.

Probability of False Alarm — False alarm probability used to estimate SNR
0.001 (default)

Specify the false-alarm probability used to estimate SNR using Shnidman's equation.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or
Target Range, and you select the Detection Specifications for SNR button for the SNR
parameter.

Number of Pulses — Number of pulses used to estimate SNR
1 (default)

Specify a single pulse, or the number of pulses used for noncoherent integration in Shnidman's
equation.

Use multiple pulses to reduce the transmitted power while maintaining the same maximum target
range.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or
Target Range, and you select the Detection Specifications for SNR button for the SNR
parameter.

Swerling Case Number — Swerling case number used to estimate SNR
0 (default) | 1 | 2 | 3 | 4

Specify the Swerling case number used to estimate SNR using Shnidman's equation:

• 0 – Nonfluctuating pulses.
• 1 – Scan-to-scan decorrelation. Rayleigh/exponential PDF–A number of randomly distributed

scatterers with no dominant scatterer.
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• 2 – Pulse-to-pulse decorrelation. Rayleigh/exponential PDF– A number of randomly distributed
scatterers with no dominant scatterer.

• 3 – Scan-to-scan decorrelation. Chi-square PDF with 4 degrees of freedom. A number of scatterers
with one dominant.

• 4 – Pulse-to-pulse decorrelation. Chi-square PDF with 4 degrees of freedom. A number of
scatterers with one dominant.

Swerling case numbers characterize the detection problem for fluctuating pulses in terms of:

• A decorrelation model for the received pulses.
• The distribution of scatterers affecting the probability density function (PDF) of the target radar

cross section (RCS).

The Swerling case numbers consider all combinations of two decorrelation models (scan-to-scan;
pulse-to-pulse) and two RCS PDFs (based on the presence or absence of a dominant scatterer).

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or
Target Range, and you select the Detection Specifications for SNR button for the SNR
parameter.

Target Range — Range to target
10 km (default) | km | m | mi | nmi

Specify target range in m, km, mi, or nmi.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or SNR,
and the Configuration is set to Monostatic.

Transmitter Gain — Transmitter gain in decibels (dB)
20 dB (default)

When the transmitter and receiver are not colocated (bistatic radar), specify the transmitter gain
separately from the receiver gain.

This parameter is enabled only if the Configuration is set to Bistatic.

Range from Transmitter — Range from the transmitter to the target
10 km (default) | km | m | mi | nmi

When the transmitter and receiver are not colocated (bistatic radar), specify the transmitter range
separately from the receiver range.

You can specify range in m, km, mi, or nmi.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or SNR,
and the Configuration is set to Bistatic.

Receiver Gain — Receiver gain in decibels (dB)
20 dB (default)

When the transmitter and receiver are not colocated (bistatic radar), specify the receiver gain
separately from the transmitter gain.

This parameter is enabled only if the Configuration is set to Bistatic.
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Range from Receiver — Range from the target to the receiver
10 km (default) | km | m | mi | nmi

When the transmitter and receiver are not colocated (bistatic radar), specify the receiver range
separately from the transmitter range.

You can specify range in m, km, mi, or nmi.

This parameter is enabled only when the Calculation Type is set to Peak Transmit Power or SNR,
and the Configuration is set to Bistatic.

See Also
Apps
Radar Waveform Analyzer | Sensor Array Analyzer

Functions
radareqpow | radareqrng | radareqsnr | shnidman

Topics
“Detection, Range and Doppler Estimation”

Introduced in R2014b
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Radar Waveform Analyzer
Analyze performance characteristics of pulsed, frequency-modulated, and phase-coded waveforms

Description
The Radar Waveform Analyzer app lets you explore the properties of signals commonly used in
radar. You can display 2-D and 3-D plots that let you visualize waveform time series and spectra.

The app lets you change waveform parameters and see how different parameter values affect the
appearance and properties of the waveform. Waveform parameters include pulse repetition frequency
(PRF), pulse duration, and bandwidth. The app displays basic waveform characteristics such as range
resolution, Doppler resolution, and maximum range. When you launch the app, the Real and
Imaginary and Spectrum tabs are shown by default. You can simultaneously overlay plots of
multiple waveforms.

You can select different types of displays using this pull-down menu. You can also rearrange the tabs
by using drag-and-drop to change the default layout.

The app lets you analyze these types of waveforms:

 Radar Waveform Analyzer
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• Rectangular
• Linear frequency modulation (LFM)
• Stepped FM
• Phase-coded waveforms
• Frequency modulation constant waveform (FMCW)

You can export waveforms as workspace variables or files containing:

• Phased Array System Toolbox waveform objects such as phased.LinearFMWaveform.
• Phased Array System Toolbox phased.PulseWaveformLibrary objects.
• Phased Array System Toolbox phased.PulseCompressionLibrary objects.

You can also create waveform blocks, Pulse Waveform Library blocks, Pulse Compression Library
blocks, Matched Filter blocks, and Stretch Processor blocks for use in Simulink.

You can also use this app for sonar applications by choosing the appropriate propagation speed.

Open the Radar Waveform Analyzer App
• MATLAB toolstrip: On the Apps tab, under Signal Processing and Communications, select the

app icon, or
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• MATLAB command prompt: Enter radarWaveformAnalyzer. For ways to use the app
programmatically, see “Programmatic Use” on page 4-26.

Examples

Rectangular Waveform

This example shows how to analyze a rectangular waveform. An ideal rectangular waveform jumps
instantaneously to a constant value and stays there for some duration. Rearrange the Parameters
and Characteristics tabs to make the plots larger.

When you open the app, the Library tab shows the default rectangular waveform and the center
panel displays the waveform shape or spectrum. First, set the Sample Rate (Hz) to 3 MHz. The
same sample rate applies to all waveforms that you analyze.

You can rename the waveform by right-clicking its name. Change the name to RectangularPulse.

Design the pulse for a maximum range of 50 km. For this range, the time for a signal to propagate
and return is 333 μs. Therefore, allow 333 μs between pulses, equivalent to a pulse repetition
frequency (PRF) of 3000 Hz.

Set the Pulse Width to 50 μs.
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Change the value of the speed of light in the Propagation Speed field to a more precise value by
entering physconst('Lightspeed'). You can use workspace variables and MATLAB functions in
any editable field.

After you select the green check mark, the app displays a range resolution of approximately 7.5 km in
the Characteristics tab. In this panel, you can scroll right to see other properties. The range
resolution of a rectangular pulse is roughly 1/2 the pulse-width multiplied by the speed of light. The
Doppler resolution is approximately the width of the Fourier transform of the pulse.

In the center panel of the window, select the Real and Imaginary tab to plot the waveform.

Select the Spectrum tab in the center panel of the window to show the power spectral density.
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You can display the joint range-Doppler resolution by selecting Surface from the Ambiguity Plots
menu.
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Linear FM Waveform

This example shows how to improve range resolution using a linear FM waveform. In the previous
example, the range resolution of the rectangular pulse was poor, approximately 7.5 km. You can
improve the range resolution by choosing a signal with a larger bandwidth. A good choice is a linear
FM pulse.

In the Parameters tab, change the Waveform to Linear FM. Then, change the waveform name to
LinearFMWaveform. This type of pulse has a varying frequency, which can either increase or
decrease as a linear function of time. Keep the sample rate at 3 MHz.

Choose the Sweep Direction as Up, and the Sweep Bandwidth as 1 MHz.

You can see that keeping the same pulse width as in the previous example, improves the range
resolution to 150 m, as shown in the Characteristics tab.
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While the range resolution gets better, the Doppler resolution is worse than the resolution of a
rectangular waveform. You can see this by selecting the Surface ambiguity plot. The Ambiguity
Function-Surface tab shows this tradeoff between Doppler resolution and range resolution.
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Linear FM Waveform Spectrogram

This example shows how to display the spectrogram of a linear FM waveform with and without
frequency reassignment.

Use the same signal parameters as in the previous example.

Select Spectrogram from the Signal Plots drop-down menu. Then, select the Reassigned check
box to show the frequency reassigned spectrogram (reassignment is turned on by default). Set the
Threshold to -100 dB. Frequency reassignment is a technique for sharpening the magnitude
spectrogram of a signal using information from its phase spectrum. For more information on
frequency reassignment, see Fulop and Kelly (2006) [1].
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You can vary the Threshold setting to show or hide weaker spectrum components.

To view the conventional spectrogram, clear the Reassigned check box.
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Again, you can vary the Threshold Value setting to show or hide weaker spectrum components.

Display and Analyze Two Signals

This example shows how to display the two signals simultaneously.

First, create a rectangular waveform with the same parameters as used in the first example. Then,
rename the waveform to RectangularPulse.

Next, create an LFM waveform. Click the Add Waveform button. Rename the second waveform to
LinearFMPulse. Set the waveform parameters to the same values as in the second example.

Select both waveforms in the Library panel using Ctrl+click. The display now shows the waveforms,
spectra, and characteristics for both waveforms.
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Programmatic Use
You can run radarWaveformAnalyzer from the command line.

radarWaveformAnalyzer(wav) opens the Radar Waveform Analyzer app and imports and plots
the waveform wav. wav can be a variable in the workspace representing a waveform object such as:

wav = phased.LinearFMWaveform('SampleRate',fs, ...
    'SweepBandwidth',200e3,...
    'PulseWidth',1e-3,'PRF',1e3);
radarWaveformAnalyzer(wav)

or you can enter the object directly:

radarWaveformAnalyzer(phased.LinearFMWaveform( ...
    'SampleRate',fs, ...
    'SweepBandwidth',200e3,...
    'PulseWidth',1e-3,'PRF',1e3))

radarWaveformAnalyzer(wavlib) opens the Radar Waveform Analyzer app and imports a
phased.PulseWaveformLibrary object, wavlib. For example, construct the waveform library
object from three waveforms with a common sample rate of 1 MHz. Then run from the command line:

waveform1 = {'Rectangular','PRF',1e4,'PulseWidth', 50e-6};
waveform2 = {'LinearFM','PRF',1e4,'PulseWidth',50e-6, ...
    'SweepBandwidth',1e5,'SweepDirection','Up',...
    'SweepInterval', 'Positive'};
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waveform3 = {'PhaseCoded','PRF',1e4,'Code','Zadoff-Chu', ...
    'SequenceIndex',3,'ChipWidth',5e-6,'NumChips',8};
fs = 1e6;
wavlib = phased.PulseWaveformLibrary('SampleRate',fs, ...
    'WaveformSpecification',{waveform1,waveform2,waveform3});
radarWaveformAnalyzer(wavlib)

radarWaveformAnalyzer(comprlib) opens the Radar Waveform Analyzer app and imports a
phased.PulseCompressionLibrary object, comprlib. For example, using the waveforms from
the “Rectangular Waveform” on page 4-17 and “Linear FM Waveform” on page 4-20 examples, create
a matched filter for the rectangular waveform and a stretch processor for the linear FM waveform.
Set the sample rate to 3 MHz, the pulse width of the rectangular wave to 25 μs, the pulse width of the
linear wave to 50 μs, and the pulse repetition frequency to 3000 Hz. Export the compressed
waveforms to the waveform app with these commands:

fs = 3e6;
rectpw = 25e-6;
linpw = 50e-6;
prf = 3e3;

waveform1 = {'Rectangular','PRF',prf,...
    'PulseWidth',rectpw};
waveform2 = {'LinearFM','PRF',prf,'PulseWidth',linpw,...
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    'SweepBandwidth',1e6,'SweepDirection','Up',...
    'SweepInterval','Positive'};

procspec1 = {'MatchedFilter','SpectrumWindow','Hann'};
procspec2 = {'StretchProcessor','ReferenceRange',5000,...
    'RangeSpan',200,'RangeWindow','Hamming'};

comprlib = phased.PulseCompressionLibrary(...
    'WaveformSpecification',{waveform1, waveform2},...
    'ProcessingSpecification',{procspec1, procspec2},...
    'SampleRate',fs,'PropagationSpeed',physconst('Lightspeed'));
radarWaveformAnalyzer(comprlib)

References
[1] Fulop, Sean A., and Kelly Fitz. "Algorithms for Computing the Time-Corrected Instantaneous

Frequency (Reassigned) Spectrogram, with Applications." The Journal of the Acoustical
Society of America 119, no. 1 (January 2006): 360–71.
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See Also
Apps
Radar Equation Calculator | Sensor Array Analyzer

Objects
phased.PulseCompressionLibrary | phased.PulseWaveformLibrary

Introduced in R2014b
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Sensor Array Analyzer
Analyze beam patterns and performance characteristics of linear, planar, 3-D, and arbitrary sensor
arrays

Description
The Sensor Array Analyzer app enables you to construct and analyze common sensor array
configurations. These configurations range from 1-D to 3-D arrays of antennas, sonar transducers,
and microphones, and can contain subarrays. After you specify array and sensor parameters, the app
displays basic performance characteristics such as array directivity and array dimensions. You can
then create various directivity plots and images.

Array Types

You can use this app to show the directivity of these arrays:

• Uniform Linear Array (ULA)
• Uniform Rectangular Array (URA)
• Uniform Circular Array (UCA)
• Uniform Hexagonal Array (UHA)
• Circular Planar Array
• Concentric Array
• Spherical Array
• Cylindrical Array
• Arbitrary Array

Subarrays

You can use this app to create and analyze arrays containing subarrays to:

• Replicate an array along a spatial grid.
• Partition a larger array into subarrays.

Element Types

These elements are available to populate an array:

• Isotropic Antenna
• Cosine Antenna
• Custom Antenna
• Cardioid Microphone
• Custom Microphone
• Omnidirectional Microphone
• Isotropic Hydrophone
• Isotropic Projector
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Plot Options

The Sensor Array Analyzer app can create these types of plots:

• Array Geometry
• 2-D Array Patterns
• 3-D Array Pattern
• Grating Lobes

Open the Sensor Array Analyzer App
• MATLAB toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command prompt: Enter sensorArrayAnalyzer.

Examples

Uniform Linear Array (ULA)

This example analyzes a 10-element uniform linear array (ULA) in a sonar application. The array
consists of isotropic hydrophones. Design the array for a 10 KHz signal.

A uniform linear array has sensor elements that are equally spaced along a line.
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Under the Analyzer tab, in the Array section of the toolstrip, select ULA. In the Element section of
the toolstrip, select Hydrophone.

Select the Parameters tab and set the Number of Elements to 10. Set the Element Spacing to 0.5
wavelengths.

Design the array for a 10 KHz signal by setting Signal Frequencies (Hz) to 10000. Then click the
Apply button. You can change many menu items and apply the changes at any time. The parameters
that appear in this tab depend on your choice of array and element.

When you choose a sonar element, the app automatically sets the signal propagation speed in water
to 1500. You can set the signal propagation speed to any value by setting the Propagation Speed
(m/s).

Select the Array Geometry tab and use the check boxes to display element normals (Show
Normals), element indices (Show Index), and element tapers (Show Tapers).

In the rightmost Array Characteristics panel, you can view the array directivity, half-power beam
width (HPBW), first-null beam-width (FNBW), and side lobe level (SLL).

To display a directivity plot, go to the Plots section of the Analyzer tab. Select Azimuth Pattern
from the 2D Pattern menu. The azimuth directivity pattern is now displayed in the center panel of
the app. Select the Azimuth Pattern tab, and set the Coordinate to Rectangular.
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You can see the main lobe of the array directivity function (also called the main beam) at 0° and
another main lobe at ±180°. Two main lobes appear because of the cylindrical symmetry of the ULA
array.

A beam scanner works by successively pointing the array main lobe in different directions. In the
Steering tab, set Azimuth Angles (deg) to 30 and Elevation Angles (deg) to 0. This steers the
main lobe to 30° in azimuth and 0° elevation.
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One disadvantage of a ULA is its large side lobes. An examination of the array directivity shows two
side lobes close to each main lobe, each down by about only 13 dB. A strong side lobe inhibits the
ability of the array to detect a weaker signal in the presence of a larger nearby signal. By using array
tapering, you can reduce the side lobes.

Use the Taper option to specify the array taper as a Taylor window with Sidelobe Attenuation set
to 30 dB and nbar set to 4. Click the Apply button.

Azimuth Response of Partitioned ULA

This example plots the azimuth response of a four-element ULA partitioned into two two-element
ULAs.

Under the Analyzer tab, in the Array section of the toolstrip, select ULA. Create a ULA with default
parameters (with the number of elements set to 4 and the element spacing set to 0.5 meters).
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From Subarray on the Analyzer tab of the toolstrip select Partition the array. Design the
array for a 1 GHz signal by setting Signal Frequencies (Hz) to 1e9. Then click the Apply button.
You can change many menu items and apply the changes at any time. The parameters that appear in
this tab depend on your choice of array and element.
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Select 2D Pattern in the Analyzer tab and choose the Azimuth pattern to visualize the 2-D
azimuth pattern in polar coordinates.
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Uniform Rectangular Array (URA)

This example shows how to construct a 6-by-6 uniform rectangular array (URA) designed to detect
and localize a 100 MHz signal.

Under the Analyzer tab, in the Array section of the toolstrip, select URA. In the Element section of
the toolstrip, select Isotropic.

Design the array for a 100 MHz signal by setting Signal Frequencies to 100e6 and the row and
column Element Spacing to [0.5 0.5] wavelength.

Select the Parameters tab and set the Size to [6,6].

From the Taper drop-down, choose Row and Column. Set Row Taper and Column Taper to a
Taylor window using default taper parameters. Click the Apply button to apply the changes. You
can change many menu items and apply the changes at any time. The parameters that appear in this
tab depend on your choice of array and element.

The shape of the array is shown in this figure.
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Next, display a 3-D array pattern by selecting 3D Pattern in the Plots section of the Analyzer tab.
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A significant performance measure for any array is directivity. You can use the app to examine the
effects of tapering on array directivity. Without tapering, the array directivity for this URA is 17.16
dB. With tapering, the array directivity is reduced to 16.03 dBi.

Grating Lobes for a Rectangular Array

This example shows the grating lobe diagram of a 4-by-4 uniform rectangular array (URA) designed
to detect and localize a 300 MHz signal.

Under the Analyzer tab, in the Array section of the toolstrip, select URA. In the Element section of
the toolstrip, select Isotropic. Set the Size to [4,4]. In the Steering tab, set Azimuth Angles
(deg) to 20 and Elevation Angles (deg) to 0.

Design the array for a 300 MHz signal by setting Signal Frequencies to 3e8 and the row and
column Element Spacing to [0.7,0.7] wavelength. By setting the row and column Element
Spacing to [0.7,0.7] wavelengths, you create a spatially under-sampled, array. Then click the
Apply button.

Select Grating Lobe Diagram from the Plots section to plot the grating lobes.

This figure shows the grating lobe diagram produced when you beamform the array towards the
angle [20,0]. The main lobe is designated by the small black-filled circle. The multiple grating lobes
are designated by the small unfilled black circles. The larger black circle is called the physical region,
for which u2+ v2 ≤ 1. The main lobe always lies in the physical region. The grating lobes can
sometimes lie outside the physical region. Any grating lobe in the physical region leads to an
ambiguity in the direction of the incoming wave. The green region shows where the main lobe can be
pointed without any grating lobes appearing in the physical region. If the main lobe is set to point
outside the green region, a grating lobe can move into the physical region.
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The next figure shows what happens when the pointing direction lies outside the green region. In the
Steering tab, set Azimuth Angles (deg) to 35 and Elevation Angles (deg) to 0. In this case, one
grating lobe moves into the physical region.
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Specify Arbitrary Array Geometry

This example shows how to construct a triangular array of three isotropic antenna elements.

You can specify an array which has an arbitrary placement of sensors. Select Arbitrary in the
Arraydrop-down. Select Isotropic from the Element menu. Enter the elements positions in the
Element Position field. The positions of the three elements are (0,0,0), (0,1,0),
(0,0.5,0.866). All elements have the same normal direction, pointing to 0° azimuth and 20°
elevation and to set the normal in the Element Normal (deg) type [0 0 0;20 20 20] and click
the Apply button. Select Array Geometry from the Plots section.
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To show the 3-D array directivity, select 3D Pattern from the Plots tab.
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Specify Arbitrary Array Geometry Using Variables

This example illustrates an array with arbitrary geometry specified by MATLAB variables set at the
command line. Enter the variables in the appropriate sensorArrayAnalyzer fields.

At the MATLAB command line, create an element position array, pos, an element normal array, nrm,
and a taper value array, tpr.

pos = [0 0 0; 0 1.0 0.5000; 0 0 0.866];
nrm = [0 0 0; 20 20 20];
tpr = [1 1 1];

Enter these variables in the appropriate sensorArrayAnalyzer fields, click Apply button. To show
the 3-D array directivity, click 3D Pattern from the Plots tab.

URA With Custom Antenna Element

Use the same parameters as in the “Uniform Rectangular Array (URA)” on page 4-37 example and
click the Apply button. In the Element section of the toolstrip, select Custom in the Antenna
section.

For a custom antenna element, specify the magnitude and phase patterns. Because patterns usually
require large matrices, it is better to use the command line to specify the magnitude and phase
patterns. The magnitude pattern specified here has directionality along the ±x-axes and is a function
of azimuth and elevation. The phase pattern is all zeros. Alternatively, you can specify a pattern in
terms of phi and theta angles by setting the Pattern Coordinate System parameter to phi-theta.

azpat = cosd([0:360]).^2 + 1;
elpat = cosd([-90:90]') + 1;
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mag = elpat*azpat;
magdb = 10*log10(mag);

To show the 3-D array directivity, select 3D Pattern from the Plots tab.

• “Array Geometries and Analysis”

See Also
Objects
phased.PartitionedArray | phased.ReplicatedSubarray

Apps
Radar Equation Calculator | Radar Waveform Analyzer

Topics
“Array Geometries and Analysis”

Introduced in R2014b
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Sonar Equation Calculator
Estimate maximum range, SNR, transmission loss and source level of a sonar system

Description
The Sonar Equation Calculator app solves the basic sonar equation for monostatic sonar systems.
The sonar equation relates transmission loss (or target range), source level, directivity, noise level,
target strength, and signal SNR. You can solve for one of these quantities in terms of the others.
Using this app, you can:

• Calculate the received SNR value from transmission loss (or equivalently, target range), source
level, and noise level.

• Solve for transmission loss from sonar source level of the sonar, specified received SNR, and array
directivity.

• Solve for target range from sonar source level of the sonar, specified received SNR, and array
directivity.

• Calculate required source level from target range, source level, and received SNR.
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Open the Sonar Equation Calculator App
• MATLAB Toolstrip: On the Apps tab, under Signal Processing and Communications, click the

app icon.
• MATLAB command line: Enter sonarEquationCalculator.

Examples
Maximum Detection Range of Active Sonar

Compute the maximum detection range of an active monostatic sonar designed to achieve an SNR of
at least 10 dB. The operating frequency is 5 kHz, and the source level is 180 dB. Assume that the
noise level is 73 dB, the receiver directivity is 20 dB, and the target strength is 10 dB.

• Set Calculation to Target Range.
• Set Mode to Active.
• Set Noise Level to 73 dB//1μPa.
• Set receiver Directivity index to 20 dB.
• Set Target Strength to 10 dB.
• Set Frequency to 5 kHz.
• Set channel Depth to 100 m.
• Set Source Level to 180 dB//1μPa.
• Set required SNR to 10 dB.

The maximum target range is 14.61 km.
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Maximum Detection Range for Multiple Pulses

Use multiple pulses to reduce the source level while maintaining the same maximum target range.

Start with the values set in the “Maximum Detection Range of Active Sonar” on page 4-46 example.

• Click the arrows to the right of the SNR label to access the Detection Specifications for SNR
options.

• Set Probability of Detection to 0.95.
• Set Probability of False Alarm to 1e-6.
• Set Number of Pulses to 10.
• Reduce Source Level to 175.
• Set the Swerling Case Number to 0 assuming a nonfluctuating target.

The maximum detection range is 14.81 km, approximately the same as in the previous example, but
the source level is reduced by 5 dB.

Required Source Level for Monostatic Sonar

Compute the source level for an active monostatic sonar with a received SNR of 15 dB. The target
range is 5 km and the target strength is 25 dB. Assume a 5-kHz sonar frequency.
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• Set Calculation to Source Level.
• Set Mode to Active.
• Set Noise Level to 75.
• Set receiver Directivity index to 20 dB.
• Set Target Strength to 25.
• Click the arrows to the right of the Transmission Loss label to access the Calculation of

Transmission Loss options.
• Set the Range to 10.0 km.
• Set the Frequency to 5 kHz.
• Set the Depth to 200 m.
• Set SNR to 15 dB.

The required source level is 171.6 dB//1 μPa.

Received SNR for Monostatic Sonar

Compute the received SNR for a passive sonar with a source level of 140 db//1 μPa for a source 10.0
km away. Assume a 3-kHz sonar frequency.

• Set Calculation to SNR.
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• Set Mode to Passive.
• Set Noise Level to 75.
• Set receiver Directivity index to 20 dB.
• Click the arrows to the right of the Transmission Loss label to access the Calculation of

Transmission Loss options.
• Set Range to 10.0 km.
• Set Frequency to 3 kHz.
• Set Depth to 200 m.
• Set Source Level to 140 dB//1 μPa.

The received SNR is 23.16 dB.

Transmission Loss of Monostatic Active Sonar

Compute the transmission loss for an active sonar that results in an SNR of 15 dB. The source level is
215 dB//1 μPa. Assume that the noise level is 75 dB//1 μPa, the receiver directivity is 20 dB, and the
target strength is 10 dB.

• Set Calculation to Transmission Loss.
• Set Mode to Active.
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• Set Noise Level to 75 dB.
• Set receiver Directivity index to 20 dB.
• Set Target Strength to 25 dB.
• Set Source Level to 215 dB.
• Set required SNR to 15 dB.

The transmission loss is 85 dB.

Parameters
Calculation — Select type of calculation
Target Range (default) | Transmission Loss | Source Level | SNR

Select the type of calculation:

• Target Range -— solves for the maximum target range based on source level of the sonar and
required received SNR.

• Transmission Loss -— computes the required transmit power from known target range and
required received SNR.

• Source Level -— computes the source level from the range or transmission loss, and received
SNR.

• SNR -— calculates the received SNR value based on known range and transmit power.

Mode — Type of sonar
Active (default) | Passive
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Specify whether the sonar is operating in active mode or passive mode. Active mode means that a
signal is transmitted from a source, reflects off a target, and returns to the receiver which is
collocated with the source. Active mode requires the specification of the reflector target strength.
Passive mode means that the signal is transmitted from a source to a receiver along a direct path.

Noise Level — Noise Level
70 (default) | scalar

Noise level at sonar receiver, specified as a scalar. Units are dB//1μP.

Directivity Index — Directivity index of receive array or element
20 (default) | scalar

Directivity index of receive array or element, specified as a scalar. Units are dB.

Target Strength — Target strength of reflector
25 (default) | scalar

Target strength of reflector, specified as a scalar. Units are dB//1m2.
Dependencies

To enable this parameter, set the Mode parameter to Active.

Frequency — Sound frequency
2 (default) | positive scalar

Sound frequency, specified as a positive scalar. Default units are in kHz. You can also select Hz, kHz,
or MHz.

Depth — Water channel depth
10000 (default) | positive scalar

Water channel depth. Default units are meters. You can select units in m, km, mi, or nmi.

Source Level — Source level of sonar transmitter
220 (default) | scalar

Source level of sonar transmitter, specified as a scalar. Units are dB//1 μP.

SNR — Output signal-to-noise ratio at receiver
10 (default)

Specify an SNR value, or calculate an SNR value using the Detection Specifications for SNR
options. You can calculate the SNR required to achieve a particular probability of detection and
probability of false alarm using the Shnidman equation. To calculate the SNR value:

1 Click the arrows to the right of the SNR label to access the Detection Specifications for SNR
options.

2 Enter values for Probability of Detection, Probability of False Alarm, Number of Pulses,
and Swerling Case Number.

Dependencies

To enable this parameter, set Calculation to Target Range, Transmission Loss, or Source
Level.
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Probability of Detection — Detection probability used to estimate SNR
0.81029 (default)

Specify the detection probability used to estimate SNR using the Shnidman equation.

Dependencies

To enable this parameter, set Calculation to Target Range, Transmission Loss, or Source
Level, and select the Detection Specifications for SNR options for the SNR parameter.

Probability of False Alarm — False alarm probability used to estimate SNR
0.001 (default)

Specify the false alarm probability used to estimate SNR using the Shnidman equation.

Dependencies

To enable this parameter, set Calculation to Target Range, Transmission Loss, or Source
Level, and access the Detection Specifications for SNR options for the SNR parameter.

Number of Pulses — Number of pulses used to estimate SNR
1 (default)

Specify the number of pulses. You can specify multiple pulses for noncoherent integration in the
Shnidman equation.

Dependencies

To enable this parameter, set Calculation to Target Range, Transmission Loss, or Source
Level, and select the Detection Specifications for SNR options for the SNR parameter.

Swerling Case Number — Swerling case number used estimate SNR
0 (default) | 1 | 2 | 3 | 4

Specify the Swerling case number used to estimate SNR using the Shnidman equation. Swerling
numbers characterize the detection problem for fluctuating pulses in terms of:

• a decorrelation model for the received pulses.
• the distribution of scatterers affecting the probability density function (pdf) of the target radar

cross section (RCS).

The Swerling cases include two decorrelation models (scan-to-scan or pulse-to-pulse) and two radar
cross section pdfs (based on the presence or absence of a dominant scatterer):

• 0 – Nonfluctuating pulses.
• 1 – Scan-to-scan decorrelation: Several randomly distributed scatterers with no dominant

scatterer described by a Rayleigh/exponential PDF.
• 2 – Pulse-to-pulse decorrelation: Several randomly distributed scatterers with no dominant

scatterer described by a Rayleigh/exponential PDF.
• 3 – Scan-to-scan decorrelation: Several scatterers with one dominant scatterer described by a chi-

square PDF with 4 degrees of freedom.
• 4 – Pulse-to-pulse decorrelation: Several scatterers with one dominant scatterer described by a

chi-square PDF with 4 degrees of freedom.
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Dependencies

To enable this parameter, set Calculation to Target Range, Transmission Loss, or Source
Level, and select the Detection Specifications for SNR options for the SNR parameter.

Transmission Loss — Transmission loss in channel
78.0614 (default) | scalar

Transmission loss in channel, specified as a scalar. Units are dB. For passive sonar modeling, specify
a one-way transmission loss. For active sonar modeling, specify a two-way transmission loss. You can
specify a transmission loss value, or calculate transmission loss using the Calculation of
Transmission Loss options.

To calculate transmission loss:

1 Click the arrows to the right of the Transmission Loss label to access the Calculation of
Transmission Loss menu.

2 Enter values for Target Range, Frequency, and Depth.

Dependencies

To enable this parameter, set Calculation to Source Level or SNR.

Target Range — Target range
10000 (default) | positive scalar

Target range, specified as a positive scalar. When Mode is Passive, target range is from source to
receiver. When Mode is Active, target range is from source to reflecting target. Default units are in
meters. You can also select km, mi, or nmi.

Dependencies

To enable this parameter, set the Calculation parameter to Source Level or SNR and click the
arrow next to Calculation of Transmission Loss.

Frequency — Signal frequency
2 (default) | positive scalar

Signal frequency, specified as a positive scalar. Default units are in kHz. You can also select Hz, kHz,
and MHz.

Dependencies

To enable this parameter, set Calculation to Source Level or SNR and click the arrow next to
Calculation of Transmission Loss.

Depth — Channel depth
10000 (default) | positive scalar

Channel depth, specified as a positive scalar. Default units are in meters. You can also select km, mi,
and nmi.

Dependencies

To enable this parameter, set the Calculation parameter to Source Level or SNR and click the
arrow next to Calculation of Transmission Loss.
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See Also
Apps
Sensor Array Analyzer

Functions
range2tl | sonareqsl | sonareqsnr | sonareqtl | tl2range

Topics
“Sonar Equation”

Introduced in R2017b
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